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Abstract—The intrinsically underactuated and nonlinear na-
ture of continuum soft robots makes the derivation of provably
stable feedback control laws a challenging task. Most of the
works so far circumvented the issue either by looking at coarse
fully-actuated approximations of the dynamics or by imposing
quasi-static assumptions. In this letter, we move a step in the
direction of controlling generic soft robots taking explicitly into
account their underactuation. A class of soft robots that have no
direct elastic couplings between the dynamics of actuated and
unactuated coordinates is identified. Considering the actuated
variables as output, we prove that the system is minimum phase.
We then propose regulators that implement different levels of
model compensation. The stability of the associated closed-loop
systems is formally proven by Lyapunov/LaSalle techniques,
taking into account the nonlinear and underactuated dynamics.
Simulation results are reported for two models of 2D and 3D
soft robots.

Index Terms—Modeling, Control, and Learning for Soft
Robots; Motion Control; Flexible Robotics

I. INTRODUCTION

CONTINUUM soft robots are mechanical systems whose
main body is entirely made of deformable soft materi-

als [1]. This design choice allows safe human-robot interaction
and provides to soft robots the ability to exhibit unprecedented
adaptation, sensitivity, and agility [2]. However, to deliver on
these high expectations, soft robots must be capable at the
very least to control their shape in space in a reliable way.
This is still an open challenge due to the peculiar dynamic
characteristics of such systems.

Deriving exact dynamic equations for soft robots requires
continuum mechanics methods (e.g., by Cosserat rod the-
ory [3]), with the constitutive equations given by nonlinear par-
tial differential equations. However, using infinite-dimensional
formulations imposes substantial limitations to model-based
control methods [4], [5]. To address this issue, researchers
have proposed finite-dimensional descriptions of soft robots
dynamics based on a discretization of rod models [6]–[9] or on
direct volumetric FEM [10]–[12]. These formulations can be
made physically consistent and accurate enough. In addition,
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their structure lends itself more directly to the design of model-
based controllers [13].

Researchers have devoted much attention to develop-
ing model-based controllers within a purely kinematic ap-
proach [14]–[16]. These control laws work in practice when
the actuator dynamics is dominant and under quasi-static
regimes, e.g., for very lightweight soft robots moving slow.
More recently, these hypotheses have been removed and
controllers designed using full-fledged dynamic models have
been proposed [11], [17], assuming that full actuation is
available. However, soft robots are intrinsically underactuated
mechanical systems. Fully actuated models are obtained only
when considering coarse approximations of the continuum
dynamics, leading in turn to possibly erroneous assessments
of controller stability and performance. Thus, underactuation
must be explicitly taken into account in a more formal control
design.

In [18], local stabilization of a robot equilibrium is obtained
within a linear approximation of the dynamics. A regulator
compensating for higher-order deformation modes has been
presented in [8] without a stability analysis. Posture regulation
using an energy shaping method is considered in [19], but
developed only for a single planar soft segment. An heuristic
extension of computed torque to underactuated soft robots
is tested by simulation in [20]. Finally, the soft inverted
pendulum is proposed as a template model for nonlinear
control of soft robots in [21], showing how the unstable equi-
librium is stabilized by means of collocated or non-collocated
feedback linearization. Underactuation is taken explicitly into
account for control purposes only in [8] and [21], where
stability analyses are performed for a single soft pendulum
with affine or polynomial curvature. As a matter of fact, there
is still no feedback control method that allows to formally
guarantee closed-loop stability of desired equilibria for general
underactuated soft robots.

In this letter, we consider a class of underactuated soft
robots that we call elastically decoupled, for which there is
no direct elastic coupling between actuated and unactuated
variables (Sec. II). This class is reasonably large and contains,
among others, fine piecewise constant curvature (or strain)
discretizations of homogeneous segments [13]. Interestingly,
the structure of the dynamic equations is similar to that of
robots with flexible links [22], [23], other well-studied under-
actuated mechanical systems. For elastically decoupled soft
robots, we prove first that the zero dynamics of the collocated
control problem is stable, i.e., the system is minimum phase
(Sec. III). Starting from this basic result, we present in Sec. IV
the main contribution of the paper, i.e., a PD regulator with
gravity cancellation in the actuated subsystem for (possibly,
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global) asymptotic stabilization. Few variants with different
compensation/cancellation of gravity and of other dynamic
terms are briefly presented in Sec. V. The stability properties
of the various control laws are formally assessed via Lya-
punov/LaSalle techniques. In Sec. VI, validation is performed
through simulations on two models of 2D and 3D soft robots.

II. DYNAMIC MODEL

Consider a generic soft robot. A finite dimensional model
for such systems can be derived by means of different dis-
cretization approaches. Such models can be obtained through
the Euler-Lagrange formalism. It can be shown [13] that they
are described by Ordinary Differential Equations (ODEs) of
the form

B(θ)θ̈ + S(θ, θ̇)θ̇ + E(θ) +Hθ + F (θ) θ̇ = Aτ, (1)

where θ, θ̇, θ̈ ∈ Rn are the vectors of configuration variables
and their time derivatives, B(θ) > 0 is the symmetric robot
inertia matrix, S(θ, θ̇)θ̇ collects Coriolis and centrifugal terms,
E(θ) = (∂U(θ)/∂θ)

T is the gravity vector being U(θ) the
gravitational potential energy of the robot. The terms Hθ and
F (θ) θ̇ model, respectively, elastic and (possibly nonlinear)
dissipative effects, with H > 0 and F (θ) > 0 both symmetric.
Furthermore, the (constant) matrix A ∈ Rn×m, with m < n,
projects the actuation torques τ ∈ Rm into the configuration
space. Without loss of generality, matrix A is always full
column rank.

A. Underactuated model for control design

Model (1) can be conveniently rewritten by separating the
dynamic equations of the actuated and unactuated variables.
To this end, we introduce the linear change of coordinates
q = Tθ with

TT =
(
A T2

)
, (2)

being T2 ∈ Rn×(n−m) any orthogonal complement to A. We
will refer with the term elastically decoupled to the class of
soft robots that have block diagonal stiffness in these new
coordinates, i.e., that are represented by the dynamic equations

M(q)︷ ︸︸ ︷(
Maa Mau

Mua Muu

)(
q̈a
q̈u

)
+

C(q,q̇)︷ ︸︸ ︷(
Caa Cau

Cua Cuu

)(
q̇a
q̇u

)
+

G(q)︷ ︸︸ ︷(
Ga

Gu

)
+

(
Kaa 0

0 Kuu

)
︸ ︷︷ ︸

K

(
qa
qu

)
+

(
Daa Dau

Dua Duu

)
︸ ︷︷ ︸

D(q)

(
q̇a
q̇u

)
=

(
τ

0

)
,

(3)
where qa ∈ Rm and qu ∈ Rn−m denote, respectively, the
actuated and unactuated variables, and the dynamic terms
have been partitioned accordingly, omitting the dependence
for the ease of reading. We assume the coordinate trans-
formation (2) is such that the symmetric stiffness matrix
K = T−THT−1 > 0 takes on the elastically decoupled
form in (3) with zero off-diagonal blocks. Moreover, being
D(q) = T−TF

(
T−1q

)
T−1 > 0, it is Duu > 0. Also,

symmetry of F implies Dua = DT
au.

Remark 1. This is a reasonably general class of systems,
which includes fine discretizations of sequences of contin-
uum segments with homogeneous stiffness, and sequences

of actuated and passive segments, moving either in 2D or
3D (including for example the affine and polynomial models
in [8], [21]). Examples of 2D and 3D soft robots are provided
in Sec. VI.

B. Known structural properties

Model (3) verifies a set of classical properties of rigid robots
with revolute joints, as inherited from eq. (1) [13].
Property 1. The inertia matrix M(q) is symmetric, positive
definite and bounded for any q ∈ Rn.
Property 2. If the matrix C(q, q̇) is defined through Christoffel
symbols, then Ṁ(q) − 2C(q, q̇) is a skew symmetric matrix.
This is equivalent to Ṁ(q) = C(q, q̇) + CT(q, q̇).
Property 3. The matrix C(q, q̇) is bounded in q and linear in
the velocity q̇. Thus, there exists a constant γC > 0 such that
∥C(q, q̇)∥ ≤ γC∥q̇∥, for any q, q̇ ∈ Rn.
Property 4. There exist constants αU , αG, α∂G > 0 such that

∥U(q)∥ ≤ αU , ∥G(q)∥ ≤ αG,

∥∥∥∥∂G(q)

∂q

∥∥∥∥ ≤ α∂G,

for any q ∈ Rn. The latter implies also

∥G(q1)−G(q2)∥ ≤ α∂G ∥q1 − q2∥ ,
for any q1, q2 ∈ Rn.

III. ZERO DYNAMICS ANALYSIS

The role of the zero dynamics is fundamental in assessing
the stability properties of a nonlinear feedback control system,
and can be used as a guideline for the design of effective
control laws [24]. The zero dynamics of a system is the
residual dynamics left in the state space of x when the
controlled output y is forced to be zero at all times (by a
suitable control input u). A nonlinear control system is said to
be minimum phase if the trajectories of its zero dynamics are
bounded. To apply advanced control techniques, such as high-
gain output feedback or input-output feedback linearization for
trajectory tracking, it is necessary that the system is minimum
phase w.r.t. the controlled output. If the zero dynamics is
unstable, the system state will eventually diverge. Indeed, the
stability properties of the zero dynamics may depend on the
choice of the controlled output y, thus establishing what can
be expected (or not) from a proposed feedback control design.

In particular, feedback control of linear or nonlinear me-
chanical systems turns out to be more problematic if the
controlled output y is associated to an unstable zero dynamics.
In fact, one should resort to a feedback from the full state
x (or to a dynamic feedback law from the output y, e.g.,
using a state observer) in order to be able to stabilize the
closed-loop system. As a result, energy-motivated control laws
like a PD action on the error e = yd − y of a positional
output y would fail in this case. Therefore, when considering
a general underactuated model of a soft robot, it is relevant
to investigate the nature of the zero dynamics for different
possible controlled outputs of interest.

In this letter, we consider as controlled output of system (3)
the actuated variables qa, i.e., y = qa − qa,d, for a constant
qa,d. This is also known as the collocated case. Due to the
presence of the unactuated dynamics, the system possesses a
zero dynamics of dimension 2(n − m). This is easily found
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by looking at the residual dynamics in (3) when y, ẏ, and ÿ
are forced to zero:

Muu(qa,d, qu)q̈u + Cuu(qa,d, qu, 0, q̇u)q̇u

+Gu(qa,d, qu) +Kuuqu +Duu(qa,d, qu)q̇u = 0.
(4)

The following result shows that the dynamic system (3) with
the chosen output y is minimum phase. Intuitively, this hap-
pens because eq. (4) contains a damping term that dissipates
the energy initially stored in the unactuated subsystem.
Lemma 1. For any initial state, the trajectories of (4) are
bounded and converge to (qu, q̇u) = (qu,eq, 0) where qu,eq is
a solution of Kuuqu +Gu(qa,d, qu) = 0. (5)

Proof. Consider the Lyapunov-like function

V (qu, q̇u) =
1

2
q̇TuMuu(qa,d, qu)q̇u+

1

2
qTuKuuqu+U(qa,d, qu).

The gravitational potential U(qa,d, qu) is lower bounded
thanks to Property 4. This implies that also V (qu, q̇u) is such.
Evaluating V̇ along the trajectories of (4) yields (omitting
dependence of the dynamic terms)

V̇ (qu, q̇u) =
1

2
q̇Tu Ṁuuq̇u + q̇TuMuuq̈u + q̇TuKuuqu + q̇TuGu

=
1

2
q̇Tu Ṁuuq̇u + q̇TuKuuqu + q̇TuGu

+ q̇Tu (−Cuuq̇u −Kuuqu −Duuq̇u −Gu)

= −q̇TuDuuq̇u ≤ 0,

where the skew symmetry of Ṁuu − 2Cuu has been used.
Being V both radially unbounded and lower bounded, it is
possible to invoke the Corollary to LaSalle invariance principle
in the Appendix from which the thesis follows.

Remark 2. The equilibrium reached by the unactuated vari-
ables is not unique in general. In Sec. IV-B, a sufficient
condition for the uniqueness of qu,eq will be presented.

IV. PD+ CONTROL UNDER GRAVITY

We present here our main result for elastically decoupled
underactuated soft robots under gravity. The law is an exten-
sion of the PD regulator of [13] which uses a constant gravity
compensation term evaluated at the target equilibrium. We
prove that regulation can be achieved also by fully cancelling
gravity on the actuated variables at the current configuration.
Additional conditions are provided for obtaining a global result
and for tuning the (lowest) proportional gain in the control law
sufficient for asymptotic stability.
A. PD control with gravity cancellation

Consider the collocated control law for the regulation of the
actuated variables qa,

τ = KP (qa,d − qa)−KD q̇a +Ga(q) +Kaaqa,d, (6)

where qa,d ∈ Rm is the desired set point, and KP > 0 and
KD ≥ 0 are gain matrices assumed to be symmetric.
Theorem 1. There exists a finite constant αP > 0 such that,
for all KP > −Kaa + αPIm, the trajectories of the closed-
loop system (3), (6) are bounded and converge asymptotically
to the equilibrium state (qa, qu, q̇a, q̇u) = (qa,d, qu,eq, 0, 0),
where qu,eq is a solution of

Kuuqu +Gu(qa,d, qu) = 0. (7)

Proof. The proof is based again on the Corollary to LaSalle
reported in Appendix. Consider the Lyapunov-like function1

V (q̄, q̇) = γ1

(
1

2
q̇TM(q)q̇ +

1

2
q̄TK̂q̄ − q̃Ta Ga(q)

1 + 2q̃Ta q̃a
+ U(q)

)
+
2q̃Ta (Maa(q)q̇a +Mau(q)q̇u)

1 + 2q̃Ta q̃a
, (8)

where γ1 > 0 is a scalar and we defined

q̄ =

(
q̃a
q̄u

)
=

(
qa − qa,d

qu

)
, K̂ =

(
KP +Kaa 0

0 Kuu

)
,

D̂(q) =

(
D̂a(q)

D̂u(q)

)
=

(
KD +Daa(q) Dau(q)

Dua(q) Duu(q)

)
.

We show first that hypothesis i) of the Corollary in Appendix
holds. We have that 2q̃Ta (Maaq̇a+Mauq̇u)

1+2q̃Ta q̃a
≥ −2λmax(M)∥q̇∥,

−γ1
q̃Ta Ga

1+2q̃Ta q̃a
≥ −γ1αG, and γ1U ≥ −γ1αU . Hence,

V (q̄, q̇)≥ γ1
2
λmin(M)∥q̇∥2 − 2λmax(M)∥q̇∥

−γ1(αG + αU ) +
γ1
2
λmin(K̂)∥q̄∥ (9)

≥ γ1
2
λmin(M)∥q̇∥2 − 2λmax(M)∥q̇∥+ γ1(αG + αU ).

The function on the right hand-side of the last inequality is
convex and quadratic in ∥q̇∥. Its minimum is located at ∥q̇∥ =
2λmax(M)/(γ1λmin(M)), with value

γ2 = − 8λ2
max(M)

γ1λmin(M)
− γ1(αG + αU ). (10)

Combining (10) with (9) yields

V (q̄, q̇) ≥ γ2 > −∞. (11)

Being V (q̄, q̇) lower bounded, hypothesis i) holds true.
From (9), V (q̄, q̇) is radially unbounded and thus hypothesis
ii) is also fulfilled. Consider the time derivative of (8):

V̇ (q̄, q̇) = γ1

(
1

2
q̇T Ṁq̇ + q̇TMq̈ + q̇T K̂q̄ − q̇Ta Ga

1 + 2q̃Ta q̃a

−
q̃Ta

∂Ga
∂q

q̇

1 + 2q̃Ta q̃a
+

4q̃Ta Gaq̇
T
a q̃a

(1 + 2q̃Ta q̃a)2
+ q̇TG

)
+

2q̇Ta (Maaq̇a +Mauq̇u)

1 + 2q̃Ta q̃a
+

2q̃Ta (Maaq̈a +Mauq̈u)

1 + 2q̃Ta q̃a

+
2q̃Ta (Ṁaaq̇a + Ṁauq̇u)

1 + 2q̃Ta q̃a
− 8q̃Ta (Maaq̇a +Mauq̇u)q̃

T
a q̇a

(1 + 2q̃Ta q̃a)2
.

Simple algebraic manipulations lead to

V̇ (q̄, q̇) = γ1

(
− q̇T D̂q̇ +

2q̃Ta q̃aq̇
T
a Ga

1 + 2q̃Ta q̃a
−

q̃Ta
∂Ga
∂q

q̇

1 + 2q̃Ta q̃a

+
4q̃Ta Gaq̇

T
a q̃a

(1 + 2q̃Ta q̃a)2

)
+

2q̇Ta (Maaq̇a +Mauq̇u)

1 + 2q̃Ta q̃a

− 2q̃Ta K̂aq̃a
1 + 2q̃Ta q̃a

− 2q̃Ta D̂aq̇

1 + 2q̃Ta q̃a
+

2(q̇Ta Caa + q̇TuCua)q̃a
1 + 2q̃Ta q̃a

− 8q̃Ta (Maaq̇a +Mauq̇u)q̃
T
a q̇a

(1 + 2q̃Ta q̃a)2
.

1The function (8) is inspired by a similar one used in the control of rigid
manipulators, see [25].
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All terms in the right-hand side, except for the first and the
sixth one (the only that are certainly negative definite), can be
easily upper bounded by positive functions using Prop. 1–4 of
Sec. II. As a result, we can bound V̇ (q̄, q̇) as

V̇ (q̄, q̇) ≤ −

 ∥q̇∥
∥q̃a∥√

1 + 2∥q̃a∥2


T

Q

 ∥q̇∥
∥q̃a∥√

1 + 2∥q̃a∥2

 ,

with matrix Q given by(
γ1λmin(D̂)− γC√

2
−4λmax(M) −γ1(2αG+α∂G+σmax(D̂a))

symm 2λmin(KP +Kaa)

)
.

Thus, V̇ ≤ 0 for a matrix Q > 0. According to Sylvester
criterion, this will be the case i.f.f.

γ1λmin(D̂)− γC√
2
− 4λmax(M) > 0,

and
detQ = 2λmin(KP +Kaa)

(
γ1λmin(D̂)− γC√

2
− 4λmax(M)

)
−
(
γ1(2αG + α∂G) + σmax(D̂a)

)2
> 0.

(12)

Both conditions are fulfilled by taking γ1 and KP such that

γ1 >
γC + 4

√
2λmax(M)√

2λmin(D̂)
, (13)

and

λmin(KP +Kaa) >

(
γ1(2αG + α∂G) + σmax(D̂a)

)2
2
(
γ1λmin(D̂)− γC√

2
− 4λmax(M)

) . (14)

The latter is verified by hypothesis taking αP equal to the
right-hand side of (14). Combining (12), (13) and (14), it
follows that V̇ ≤ 0. All three hypotheses of the Corollary to
LaSalle are therefore verified. Furthermore, Q > 0 implies
that V̇ vanishes if and only if q̃a = 0 and q̇ = 0. As a result,
the trajectories of the closed-loop system will asymptotically
converge to q̃a = 0 and q̇ = 0, hence the thesis.
Remark 3. Assuming elastic decoupling between actuated
and unactuated variables guarantees the absence of the term
q̇Ta Kauqu in V̇ (q̄, q̇), which is not definite in sign and possibly
unbounded in qu. However, the results from this section can be
generalized to the case of weakly elastically coupled systems,
i.e., having bounded elastic coupling.

B. Uniqueness of the equilibrium

The same control law (6) is also sufficient to ensure global
convergence to a single equilibrium, as soon as the stiffness
of the field acting on underactuated variables is large enough.

Corollary 1. Under the hypotheses of Theorem 1, if

Kuu > −∂2U(qa,d, qu)

∂q2u
,

for all qu ∈ Rn−m, then the closed-loop system (3), (6) has a
unique globally asymptotically stable equilibrium.

Proof. Consider the auxiliary function

P (qu) = U(qa,d, qu) +
1

2
qTuKuuqu.

According to Theorem 1, the unactuated variables tend to a
qu,eq such that Gu(qa,d, qu,eq) + Kuuqu,eq = 0. The latter
is the gradient of P evaluated at this closed-loop equilibrium,
and thus qu,eq is an extremum of P . This point is unique since
the Hessian of P (qu) is ∂2U(qa,d, qu)/∂q

2
u +Kuu, which is

positive definite by hypothesis.

C. Lower bounds on control gains

Asymptotic stability of the (single or multiple) closed-
loop equilibria has been proven under the hypothesis that the
proportional gain KP in (6) is large enough. Still, it is useful
to find a lower bound on this gain, that can be used to reduce
the control effort and to avoid stiffening unnecessarily the soft
robot [26].

Corollary 2. All KP such that
λmin(KP +Kaa) > αth, (15)

verify Theorem 1, with

αth = 2(2αG + α∂G)
2
(

γC√
2
+ 4λmax(M)

)
/λ2

min(D̂)

+ 2 (2αG + α∂G)σmax(D̂a)/λmin(D̂),

where

D̂(q) =

(
D̂a(q)

D̂u(q)

)
=

(
KD +Daa(q) Dau(q)

Dua(q) Duu(q)

)
.

Proof. Consider the right-hand side of inequality (14) as a
function of γ1 subject to the constraint (13), i.e., a function
f(γ1) : D = ((k4/k3),∞) → R+ defined as

f(γ1) =
(k1γ1 + k2)

2

2(k3γ1 − k4)
, (16)

with k1 = 2αG + α∂G, k2 = σmax(D̂a), k3 = λmin(D̂), and
k4 =

(
γC/

√
2
)
+ 4λmax(M). Function (16) is convex in its

domain of definition D since the second-order derivative
∂2f(γ1)

∂γ2
1

=
(k1k4 + k2k3)

2

(k3γ1 − k4)3

is positive for γ1 > (k4/k3). Thus, its unique global minimum
can be found analytically as the solution of

∂f(γ1)

∂γ1
=

√
2k1

2
√
k3γ1 − k4

−
√
2k3(k1γ1 + k2)

4(k3γ1 − k4)
3
2

= 0. (17)

This is obtained at γ1,min = (2k1k4 + k2k3)/(k1k3) ∈ D,
with minimum value

f(γ1,min) =
2k1(k1k4 + k2k3)

k23
. (18)

The thesis follows by substituting back in (18) the values of
k1, k2, k3 and k4.

V. VARIANTS FOR HANDLING GRAVITY

We can further simplify the regulator by updating online
only the unactuated variables in the term that cancels gravity
in (6), as in the following ‘mixed’ PD+ control law

τ = KP (qa,d − qa)−KD q̇a+Ga(qa,d, qu)+Kaaqa,d. (19)
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The closed-loop asymptotic stability properties are similar
to the those obtained with the previous solution, with the
exception of a higher proportional gain.

Corollary 3. Under the hypothesis of Theorem 1, with KP

such that λmin(KP + Kaa) > α∂G + αth, the trajectories
of the closed-loop system (3), (19) are bounded and con-
verge asymptotically to the equilibrium state (qa, qu, q̇a, q̇u) =
(qa,d, qu,eq, 0, 0), where qu,eq is a solution of (7).

Proof. We only sketch the proof due to lack of space. The first
part proceeds along similar steps as in the proof of Theorem 1
using the Lyapunov-like function

V (q̄, q̇) = γ1

(
1

2
q̇TM(q)q̇ +

1

2
q̄T K̂q̄ − q̃Ta Ga(qa,d, qu)

1 + 2q̃Ta q̃a

+U(q)

)
+

2q̃Ta (Maa(q)q̇a +Mau(q)q̇u)

1 + 2q̃Ta q̃a
.

Instead, the part that deals with defining a lower bound for
KP follows by exactly the same steps as in the proof of
Corollary 2.

Both regulators (6) and (19) guarantee that the trajectories of
the closed-loop system converge asymptotically to an equilib-
rium. However, there is no clue about if and how a sufficiently
fast convergence rate can be obtained in the large. Instead, this
goal is automatically achieved by a controller designed using
(collocated) Partial Feedback Linearization (PFL) theory [23].
When considering our class of underactuated soft robots, it is
possible to compute the explicit expression of q̈uu from the
last n − m equations in (3) and to replace it in the first m
equations, leading to(

Maa −MauM
−1
uu Mua

)
q̈aa −MauM

−1
uu

· (Cuaq̇a+Cuuq̇u+Gu+Kuuqu+Duaq̇a+Duuq̇u)

+ Caaq̇a + Cauq̇u +Ga +Kaaqa +Daaq̇a +Dauq̇u = τ.

The above set of equations is exactly linearized by the law

τ =
(
Maa −MauM

−1
uu Mua

)
u−MauM

−1
uu

· (Cuaq̇a + Cuuq̇u +Gu +Kuuqu +Duaq̇a +Duuq̇u)

+ Caaq̇a + Cauq̇u +Ga +Kaaqa +Daaq̇a +Dauq̇u,

(20)

where u is the input acting on the linearized system. Choosing
u = KP (qa,d − qa)−KD q̇a, yields the closed-loop dynamics
for the actuated variables

q̈a +KD q̇a +KP (qa − qa,d) = 0.

Thus, for any KP > 0 and KD > 0, qa will converge
exponentially fast to qa,d, with a rate explicitly assigned
by the choice of gains, as calculated using standard linear
theory. Moreover, thanks to Lemma 1, the use of (20) will
also induce a convergent behavior to the entire state of the
soft robot. However, these nice properties come at the cost
of a substantially more complex and potentially less robust
controller when compared to (6), since the implementation
of (20) requires full knowledge of the robot dynamics.

Remark 4. To implement the proposed control laws the
measure of both θ and θ̇ (or, equivalently, of q and q̇) is needed.
Although with some limitations, the first can be acquired

through a motion capture system, while the latter estimated
through backward differentiation [17]. Note also that, unlike
the PFL law in (20), the PD+ control laws (6) and (19) do
not necessarily require velocity measures, as KD can be set
to zero without affecting the asymptotic stability of the closed-
loop system.

VI. SIMULATION RESULTS

Two simulations are proposed to show that the considered
class of systems encompasses different types of underac-
tuation. In the first simulation (Sec. VI-A), we consider
an inextensible 3D soft arm described through the state
parametrization proposed in [27], while in the second one
(Sec. VI-B) a planar soft robot modeled under the Piecewise
Constant Curvature (PCC) formulation presented in [17] is
used. In both cases, the base is rotated so that in the rest
position q = 0 ([m] or [rad]) the arm is aligned with the
gravitational field, with its tip pointing downwards. The PD
law with gravity cancellation (6) and the partially feedback
linearizing control law (20) are compared. We do not report
results for the control law (19) since its performance were
found comparable to those of (6).

A. Simulation 1

Consider an inextensible 3D soft arm with 3 segments,
where only the first and third ones are actuated. In this case,
the change of coordinates (2) boils down to a reordering
of the variables. Thus, the goal is to regulate the two con-
figuration variables of each of the actuated segments, i.e.,
qa =

(
θ1,1 θ1,2 θ3,1 θ3,2

)T ∈ R4. Each uniform segment
has length 0.11 [m] and mass 0.1 [kg]. The stiffness and
damping are assumed uniform and equal to hi = 0.6 [N/m]
and fi = 0.03 [N s/m], i = 1, 2, 3. The robot starts at rest and
the simulation runs for 30 [s]. The reference for the controllers
has two successive targets (in [m]):

q(1,2,3,4),d(t) =


(
1 2 −1 1

)T
, 0 ≤ t < 15 [s](

− 0021
)T

, t ≥ 15 [s].
(21)

At t = 17 [s], an external force fext =
(
1 3 0

)T
[N] is

applied for 1 [s] to the robot tip. The control gains are chosen
as KP = 1 · I4 [N/m] and KD = 0.1 · I4 [N s/m] for the
PD+ controller (6) and, respectively, as KP = 20 · I4 [s−2

]
and KD = 5 · I4 [s−1

] for the nonlinear PFL regulator (20).
Figure 1 shows the time evolution of the configuration

variables. Despite of the disturbance fext, both regulators
yield zero error at steady state. The PFL law is characterized
by a faster transient, but does not exhibit the same nice
disturbance rejection capability of the PD+ regulator. This is
expected since (20) makes the input-output behavior virtually
equivalent to a unitary mass-spring-damper system subject to
(the projection of) fext. On the other hand, the PD+ controller
preserves the inertial properties of the soft robot, achieving
regulation by cancelling only the necessary dynamic terms.
Figure 2 shows the control effort requested to execute the
motion. During the action of fext an oscillatory behaviour is
observed in the output of the PFL control torque, which attains
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Figure 1. Simulation 1 (3D soft arm). Time evolution of the configuration
for the reference (21) (black dashed lines). A force fext =

(
1 3 0

)T
[N]

is applied to the robot tip as a disturbance during motion in the time window
spanned by the shaded gray area.
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Figure 2. Simulation 1 (3D soft arm). Time evolution of the control torques.

peaks that are one order of magnitude larger than those of the
PD+ torque.

B. Simulation 2
Consider a planar soft robot with 2 actuated segments. It

is assumed that the shape of each segment is well described
by 3 CC segments. However, including a higher number of
segments yields similar results.

As discussed in [13], the actuation matrix takes the form

A =

(
1 1 1 0 0 0
0 0 0 1 1 1

)T

.
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Figure 3. Simulation 2 (2D soft robot). Time evolution of the actuated
variables for the reference (22) (black dashed lines). A lateral force of
fext =

(
0 3

)T
[N] is applied to the robot tip as a disturbance during

motion in the time window spanned by the gray shaded area.
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(b) Partial feedback linearization

Figure 4. Simulation 2 (2D soft robot). Time evolution of the curvatures of
the six CC segments used for the discretization of the soft robot.

Hence, according to (2), the first and second variables in the
new coordinates q ∈ R6 are the sum of the three curvatures of
the first and, respectively, the second actuated segment, i.e.,
qa =

(
θ1 + θ2 + θ3 θ4 + θ5 + θ6

)T
. As a result, through the

commands τ ∈ R2 it is possible to regulate the orientation of
the tip of the two actuated segments. Each CC segment has
length 0.1 [m] and mass 0.3 [kg]. The stiffness and damping
matrices are both taken diagonal with elements 0.2 [Nm/rad]
and 0.2 [Nm s/rad], respectively. The robot starts at rest and
the simulation runs for 30 [s]. The reference commanded to
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Figure 5. Simulation 2 (2D soft robot). Time evolution of the control torques.

the controllers has again two successive targets (in [rad]):

q(1,2),d(t) =


(
−π π

)T
, 0≤ t < 15 [s](

π/2 0
)T

t, ≥ 15 [s].
(22)

To empirically evaluate the disturbance rejection capabilities,
at t = 17 [s] an external force fext =

(
0 3

)T
[N] is applied to

the robot tip for 0.5 [s]. The chosen control gains are KP =
1 · I2 [Nm/rad] and KD = 0.1 · I2 [Nms/rad] for the PD+
law (6), and KP = 10 · I2 [s−2

], KD = 5 · I2 [s−1
] for the

PFL controller (20).
Figure 3 shows the time evolution of the actuated vari-

ables, together with the corresponding references. The final
curvature of each actuated segment is correctly regulated. The
closed-loop system under the PD+ control exhibits a more
oscillatory behavior compared to what obtained with the PFL
law. However, also in this scenario, the latter control law is
less robust to the presence of an external disturbance fext.
Figure 4 shows the curvature of the six CC segments used to
discretize the structure. As expected, these converge to finite
values. Finally, Figure 5 shows the control torques required to
perform the motion, for which similar conclusions as the ones
drawn in Simulation 1 hold. In particular, the control action
for the PFL controller attains a peak during the action of fext
that is one order of magnitude larger than the peak of the PD+
law.

For better illustration of the dynamic behavior in the
workspace, Figures 6 and 7 show stroboscopic views of the
motion of the two soft robots in Simulation 1 and Simulation
2, for both the PD+ and the PFL controller.

VII. CONCLUSIONS

We have identified a new class of underactuated soft robots
that we call elastically decoupled. For such systems we
proved the asymptotic stability of the zero dynamics when
the collocated variables are taken as controlled output. This

has at least two important consequences. First, it allows the
application of well-established nonlinear control techniques,
such as input-output (partial) feedback linearization. Second, it
serves as a guideline to look for simpler control laws allowing
the regulation of the actuated coordinates. Along this line
of thought, we proposed two PD+ controllers and provided
sufficient conditions that guarantee the global asymptotic sta-
bility of the desired closed-loop equilibrium under gravity. The
theoretical results have been validated through simulations.
Future work will be devoted to the experimental validation
of these controllers.

APPENDIX

We report here a trivial variation on the LaSalle invariance
principle that we use to prove the main results of this paper.

Corollary (to LaSalle [28]). Consider the system ẋ = f(x),
with x ∈ Rl. Suppose that ∀x(0) ∈ Rl, t ≥ 0 there exists a
unique solution x(t, x(0)) to ẋ = f(x). Let V (x) : Rl → R
be a continuously differentiable function, such that ∀x ∈ Rl

i) V (x) ≥ γV , for some γV > −∞,
ii) V (x) is radially unbounded,

iii) V̇ (x) ≤ 0.
Let E be the set of points in Rl where V̇ (x) = 0. Then,
for all initial conditions x(0) ∈ Rl, the evolution x(t, x(0))
approaches the largest invariant set in E as t → ∞.

Proof. Consider Ωc =
{
x ∈ Rl | γV ≤ V (x) ≤ c

}
, with

γV < c. This set is bounded ∀c < ∞. Indeed, if that was
not true, then there would be a η ∈ Rl such that αη ∈ Ωc

for all α > 0, and thus limα→∞ V (αη) ≤ c < ∞. This is in
contradiction with ii). Furthermore, Ωc is also closed since the
set [γV ; c] is closed and the inverse image of closed sets on
continuous functions is closed. Hence, Ωc is compact. This set
is also positively invariant. Indeed, from iii) for all x(0) ∈ Ωc

and t ≥ 0, V (x(t, x(0))) ≤ V (x(0)) ≤ c. In addition from i),
γV ≤ V (x(t)). Thus, if x(0) ∈ Ωc, then x(t, x(0)) stays in Ωc

at all the future instants. Finally, for any initial state x(0) ∈ Rl

it is possible to choose c large enough so that x(0) ∈ Ωc. In
particular, it is sufficient that c ≥ V (x(0)). The thesis follows
choosing Ωc as the set Ω in Theorem 4.4 in [28].
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Figure 6. Simulation 1 (3D soft arm). Stroboscopic views of the robot motion in the workspace for the reference (21). At t = 17 [s], a disturbance force
fext =

(
1 3 0

)T
[N] is applied to the robot tip for 0.5 [s]. (a) and (b) show the robot motion under the PD+ regulator for t ∈ [0, 15] [s] and t ∈ [15, 30] [s],

respectively. Similarly, (c) and (d) show the motion under the PFL regulator in the same time windows.
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