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Abstract: Modeling of complex thermo-fluid systems often leads to either many states or large
non-linear systems of equations, which are both undesirable especially for real-time applications.
Both of these issues can be solved by our algebraic stream-dominated approach to build hard
real-time capable simulations. In this approach volume elements play a central role as boundaries
and loop-breakers for fluid streams.
In this paper, we first derive a lumped state standard volume model from first principle and
then several specialized volumes for different applications. We regularize the models to perform
robustly, even in degenerated operating conditions that might appear in dynamic simulations.
While doing so, we show all approximations and assumptions used to arrive at the final models.
Finally, we present some application examples showcasing the use of the different volumes for
dynamic simulations. Alongside the models developed in this paper these examples are part of
our open-source Modelica library and their implementation is therefore available.
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1. INTRODUCTION

Robust dynamic simulation of large (system-level) thermo-
fluid networks is a challenging problem, as any lump-
ing of states leads to non-linear equations, and in con-
sequence often to large non-linear systems of equations.
Typical approaches use either a finite volume approach
(e.g. Moukalled et al. (2016); Franke (2009)) or an alge-
braic stream approach like most elements of the Modelica
Standard Fluid library (Franke (2009)). While the former
avoids the implicit computation of the non-linear systems,
it relies on many states. The result is a very large ordinary
differential equation and real-time capability is not feasible
for system-level simulations. The latter avoids all or most
states by defining boundaries for a stream of fluid, as well
as the non-linear equations for the components manipulat-
ing the thermodynamic state of the fluid along the stream.
The result is an algebraic system with often large non-
linear systems of equations that in general is hard to solve
robustly.

For many applications, especially ones that require hard
real-time capability like onboard fault diagnosis or model
predictive control, the approaches above are either too
slow (finite volumes) or the non-linear solver is not robust
enough (algebraic stream approach). For this reason, a
stream-dominated differential-algebraic approach was de-
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veloped at DLR (Zimmer et al. (2018)) and recently open-
sourced a Modelica implementation on GitHub as DLR
ThermofluidStream Library (TFS) (Zimmer et al. (2021)).
The library uses the Modelica Standard Media Library
(Casella et al. (2006)) and hence has a wide range of media
available by default.

The stream-dominated differential-algebraic approach com-
bines thermodynamic streams with pressure-mass-flow dy-
namics and uses the concepts of inertial and steady-state
pressure to solve the non-linear equations explicitly from
source to sink, while reducing the number of states to
a manageable amount. With a bit of care when model-
ing individual components, no implicit non-linear systems
arise and the eigenvalues can be manipulated in a way
that a fixed step solver can be utilized, resulting in hard
real-time capability. The differential-algebraic nature of
the approach is ideal to be solved by the index reduction
techniques of Modelica.

Volume elements play a special role in the approach, as
they act as additional boundaries for the fluid stream.
Therefore we put much effort into robustly modeling
them. We developed several volume models for different
applications and applied regularization for reversed mass-
flow and directly coupled volumes.

In this paper we give a short overview over the algebraic-
differential stream-dominated approach (cap. 2), derive
the equations of our standard volume while stating all
assumptions, approximations and regularizations used for
it to perform robustly (cap. 3), and finally explain the
specialized volume models we implemented (cap. 4 and 5)
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and show applications examples (cap. 6). The Modelica
code for all models and examples presented are publicly
part of our open-source TFS Library.

2. ALGEBRAIC-DIFFERENTIAL
THERMO-FLUID-STREAM NETWORKS

The directed thermo-fluid stream approach of Zimmer
et al. (2018) uses streams of fluid masses (ṁ) that emerge
from a source with a defined thermodynamic state. This
state then is manipulated by an arbitrary number of com-
ponents the stream passes, until it arrives at a sink that
acts as a pressure boundary condition. These components
might be pumps, flow resistances, combustion chambers,
heat exchanges or any other device.

The mass-flow dynamics inside each component along a
stream is governed by the equation

Lm̈ = ∆r = ro − ri (1)

where the inertance L =
∫

ds
A is defined statically by the

components area A along the flow direction s and ∆r
is the part of the pressure difference between inlet and
outlet that results in an acceleration of the stream. This
naturally leads to the definition of steady-state pressure
p̂ = p − r as the difference between static pressure p and
inertial pressure r. Zimmer et al. (2018) defines the inertial
pressure at each source as zero. Hence using (1), for a
steady-state solution (m̈ = 0), for each component along
the stream r goes to zero and steady-state pressure is equal
to the static pressure.

Zimmer et al. (2018) then uses the steady-state pressure
instead of the static pressure to express the thermody-
namic state of the stream at each component. While this
simplification introduces some inaccuracies in the tran-
sients, the error is minute for typical applications and
the simplification allows to separate the forward compu-
tation of the thermodynamic state (see fig. 1) from the
linear mass-flow dynamics (1). This in turn allows the
explicit computation of the non-linear equations governing
the manipulation of the state (e.g. steady-state pressure
and enthalpy) along the stream starting from the known
state at the source. The inertial pressure at the sink is
computed by the difference of the static pressure, that is
the boundary condition at the sink, and the steady-state
pressure arriving after passing through all components of
the stream.

Source

r = 0
h = hsource

ho, p̂o = f(hi, p̂i)
p̂, h p̂, h

rsink = p̂sink − psink

SinkComponent

p̂ = psource

Fig. 1. Propagation of the thermodynamic state along a
stream with boundaries hsource, psource and psink.

The result is a complex thermo-fluid network, that has
no, or only very small non-linear equation systems, which
are separated and localized within single components. For
more details and how junctions and splitters of streams are
implemented, we refer to Zimmer et al. (2018). Further-
more Zimmer (2019a) introduces an un-directed stream

approach, with the same principle and Zimmer (2019b)
adds several methods to make the solution more real-time
capable.

Volume elements contain noticeable amounts of fluid.
Here the state is governed by differential equations, and
therefore cannot be modeled as simply manipulating a
stream. Hence, volumes elements with pressure pV and
volume V play a special role in the approach, as they also
act as boundaries for the stream: volume outlets (subscript
o) are sources (ro = 0, po = p̂o = pV) and inlets (subscript
i) are sinks (pi = pV) for the stream. This makes them
particularly useful in closed loops, such as refrigeration
cycles, where often a single volume is the only source and
sink for the refrigerant, and therefore breaks the otherwise
closed loop of the stream and makes it possible to compute
the state explicitly from a source to a sink.

3. THE STANDARD VOLUME MODEL

In this chapter we first derive the equations for a simple
volume model from first principle. We do that from the
directed stream approach while stating which assumptions
were used and then add some regularization for reversed
mass-flow and direct coupled volumes.

3.1 Ideal Volume Equations

To derive the equations of an ideal standard volume,
we assume that the medium within the model is ideally
mixed (uniform pressure, temperature and composition).
This allows us to depict the state of the fluid in the
volume using only a few lumped states. For all mass-flows,
enthalpy-flows or heat-flows a positive sign indicates the
respective quantity entering the over the system boundary.
This implies that the ”correct” mass-flow for an outlet is
negative. Furthermore we model heat-flow over the volume
boundary which can be useful for modeling e.g. cooling
systems or heat-flow into cryogenic tanks, but we don’t
model work going into the volume. The mass (Mj) balance
(Baehr and Kabelac (1966)) for each component j of the
fluid contained in the volume is the sum over the respective
mass-flows into or out of the volume:

Ṁj =
∑
i

ṁj,i (2a)

with i mass-flows over the system boundary. Note that
often the fluid consists of only one component.

The power balance equation for the volume with the above
simplifications (Baehr and Kabelac (1966)) results in

U̇V +ĖV,kin + ĖV,pot =∑
i

ṁi

(
hi +

c2i
2

+ gzi

)
+
∑
k

Q̇k − pVV̇
(2b)

with inner energy UV, kinetic and potential energy of the
volume EV,kin and EV,pot, specific enthalpy, speed and
height hi, ci, zi of the i incoming or outgoing mass streams
and k heat-flows Q̇k.

We choose to neglect kinetic and potential energy of the
fluid in the volume (ĖV,kin = ĖV,pot = ci = zi = 0),
since they play only a minor role for our applications. The
next simplification is that the wall (area A, temperature
Tsurf) temperature of the volume element is uniform and

the heat-flow into the fluid (temperature TV) is governed
by a simple heat-transfer with coefficient U :∑

k

Q̇k = Q̇surf = UA(Tsurf − TV)

with a single heat-flow Q̇surf into the volume element.

Assuming a single inlet and outlet (subscripts i, and o)
and using the overall mass in the volume M =

∑
j Mj and

specific inner energy uV and specific enthalpy hV of the
volumes fluid (UV = MuV), the power balance equation
for a volume becomes

˙(MuV) = ṁihi + ṁohV + Q̇surf − pVV̇ (3)

The above equation assumes that outlet-streams state is
the one of the fluid contained in the volume.

The thermodynamic state is defined by two state variables
(Baehr and Kabelac (1966)). Since the above equations
set only one, namely the specific inner energy uV, we
have to give a boundary condition on another state. A
straightforward choice is fixing the volume V to a constant
value and computing the medium’s density from it, which
together with uV fully defines the state. This choice
also eliminates the pressure-volume term in (3). In the
following we will refer to this condition as the standard
volume. Note that other choices of boundary conditions
also are possible, as discussed in cap. 4.

Volume elements implement an inertance term (1) for all
inlets and outlets, enabling mass-flow dynamics between
directly connected volumes.

3.2 Regularization

Although we could use the above equations to accurately
simulate a volume element, several numerical problems
would arise. Firstly, even if the directed stream approach
does not yield correct results for mass-flows against the
flow direction, we want to have numerical stability for
these conditions, since they might occur in dynamic sim-
ulations from time to time.

To illustrate the instability in the above equations, lets
look at a steady mass-flow against the stream 0 > ṁ =
ṁi = −ṁo, no heat-flow and no pressure-volume work
(fixed volume). With Ṁ = 0 (2a) the energy balance (3)
becomes

Mu̇V = |ṁ|(hV − hi)

If the inlet enthalpy is smaller than the one in the volume,
the fluid in the volume will heat up and vice versa, which
both becomes exponentially unstable. To stabilize this,
we simply set the enthalpy of the exiting stream ho to
hi instead of hV for reversed flow, basically disabling
the energy equation. While this is not physically correct
(correctness is not possible without state information of
the fluid entering through the outlet - information not
available in the approach), it is a stable behavior.

Secondly, if a volumes described as above gets connected
to another volume or boundary without a flow resistance,
the resulting mass-flow dynamics will lead in very fast
and un-damped oscillations, which are highly undesirable.
Zimmer (2019b) proposes to use a damping term only on
the change of mass in the volume, instead of artificial flow
resistances on inlet and outlet. This dampens these fast

oscillations while not changing the steady-state solution.
This damping term is added to (1) for the inlet and outlet
of the volume:

m̈L = ∆r − kṀ (4)

To determine the damping factor k, let us consider a
volume, where the inlet is closed (mi = 0) and the outlet is
directly connected to a sink (subscript s) with a constant
static pressure boundary (ps = const, p̂s = p̂V). In
contrast to Zimmer (2019b), we consider a general volume
described by (2a) and (3). Using ro = 0, pV = po = p̂o =
p̂V the inertial pressure difference at the outlet becomes

∆r = rs − ro = rs = ps − p̂s = ps − pV

Given this, a Taylor series expansion of first order of ∆r
with respect to the mass that has been flowing through the
outlet mo around the steady-state point (∆r0 = 0) yields

∆r = ∆r0 +
∂∆r

∂mo
mo = − ∂pV

∂mo
mo

and hence with Ṁ = ṁi + ṁo = ṁo (4) becomes

m̈oL = −∂pV
∂M

mo − kṁo

When we assume only a small change of the volume
V (∂pV

∂M = ∂pV

∂ρV ≈ 1
V

∂pV

∂ρ ), we can achieve critical or

supercritical dampening therefore with

k >= 2

√
L
∂pV
∂M

≈ 2

√
L

V

∂pV
∂ρ

(5)

The term ∂pV

∂ρ is determined by the choice of boundary

condition of the volumes thermodynamic state. For the
straightforward standard volume (V̇ = 0), it is determined

by the media model. For other choices the term ∂pV

∂M will
directly be derived in the next chapter.

The derivation at the inlet works analog and yields the
same result as (5).

3.3 Un-directed Volume Elements

Zimmer (2019a) introduces an un-directed thermo-fluid
stream approach. TFS implements the base components
for un-directed flow, as well as connectors to combine
directed and un-directed parts of the fluid network. The
basic idea is to transport the thermodynamic state infor-
mation in both directions along a stream and then decide
which is the relevant one depending on the sign of the
mass-flow. The latter is done using the ”regstep” function,
a smoothed jump between the two available states. For
details of the theory and implementation in TFS we refer
to Zimmer (2019a).

All volume elements discussed in this paper have a bidi-
rectional counterpart with the same governing equations.
The only notable difference is that the reversed mass-flow
regularization introduced in the last section is no longer
needed, since we have the information of the state the
medium is arriving at the outlet.

4. NON-STANDARD VOLUME ELEMENTS

While the standard volume element described in the last
chapter is suitable for many applications some others are
still required.
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the one of the fluid contained in the volume.

The thermodynamic state is defined by two state variables
(Baehr and Kabelac (1966)). Since the above equations
set only one, namely the specific inner energy uV, we
have to give a boundary condition on another state. A
straightforward choice is fixing the volume V to a constant
value and computing the medium’s density from it, which
together with uV fully defines the state. This choice
also eliminates the pressure-volume term in (3). In the
following we will refer to this condition as the standard
volume. Note that other choices of boundary conditions
also are possible, as discussed in cap. 4.

Volume elements implement an inertance term (1) for all
inlets and outlets, enabling mass-flow dynamics between
directly connected volumes.

3.2 Regularization

Although we could use the above equations to accurately
simulate a volume element, several numerical problems
would arise. Firstly, even if the directed stream approach
does not yield correct results for mass-flows against the
flow direction, we want to have numerical stability for
these conditions, since they might occur in dynamic sim-
ulations from time to time.

To illustrate the instability in the above equations, lets
look at a steady mass-flow against the stream 0 > ṁ =
ṁi = −ṁo, no heat-flow and no pressure-volume work
(fixed volume). With Ṁ = 0 (2a) the energy balance (3)
becomes

Mu̇V = |ṁ|(hV − hi)

If the inlet enthalpy is smaller than the one in the volume,
the fluid in the volume will heat up and vice versa, which
both becomes exponentially unstable. To stabilize this,
we simply set the enthalpy of the exiting stream ho to
hi instead of hV for reversed flow, basically disabling
the energy equation. While this is not physically correct
(correctness is not possible without state information of
the fluid entering through the outlet - information not
available in the approach), it is a stable behavior.

Secondly, if a volumes described as above gets connected
to another volume or boundary without a flow resistance,
the resulting mass-flow dynamics will lead in very fast
and un-damped oscillations, which are highly undesirable.
Zimmer (2019b) proposes to use a damping term only on
the change of mass in the volume, instead of artificial flow
resistances on inlet and outlet. This dampens these fast

oscillations while not changing the steady-state solution.
This damping term is added to (1) for the inlet and outlet
of the volume:

m̈L = ∆r − kṀ (4)

To determine the damping factor k, let us consider a
volume, where the inlet is closed (mi = 0) and the outlet is
directly connected to a sink (subscript s) with a constant
static pressure boundary (ps = const, p̂s = p̂V). In
contrast to Zimmer (2019b), we consider a general volume
described by (2a) and (3). Using ro = 0, pV = po = p̂o =
p̂V the inertial pressure difference at the outlet becomes

∆r = rs − ro = rs = ps − p̂s = ps − pV

Given this, a Taylor series expansion of first order of ∆r
with respect to the mass that has been flowing through the
outlet mo around the steady-state point (∆r0 = 0) yields

∆r = ∆r0 +
∂∆r

∂mo
mo = − ∂pV

∂mo
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and hence with Ṁ = ṁi + ṁo = ṁo (4) becomes

m̈oL = −∂pV
∂M

mo − kṁo

When we assume only a small change of the volume
V (∂pV
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∂ρV ≈ 1
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∂pV

∂ρ ), we can achieve critical or

supercritical dampening therefore with

k >= 2

√
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∂pV
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≈ 2

√
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V

∂pV
∂ρ

(5)

The term ∂pV

∂ρ is determined by the choice of boundary

condition of the volumes thermodynamic state. For the
straightforward standard volume (V̇ = 0), it is determined

by the media model. For other choices the term ∂pV

∂M will
directly be derived in the next chapter.

The derivation at the inlet works analog and yields the
same result as (5).

3.3 Un-directed Volume Elements

Zimmer (2019a) introduces an un-directed thermo-fluid
stream approach. TFS implements the base components
for un-directed flow, as well as connectors to combine
directed and un-directed parts of the fluid network. The
basic idea is to transport the thermodynamic state infor-
mation in both directions along a stream and then decide
which is the relevant one depending on the sign of the
mass-flow. The latter is done using the ”regstep” function,
a smoothed jump between the two available states. For
details of the theory and implementation in TFS we refer
to Zimmer (2019a).

All volume elements discussed in this paper have a bidi-
rectional counterpart with the same governing equations.
The only notable difference is that the reversed mass-flow
regularization introduced in the last section is no longer
needed, since we have the information of the state the
medium is arriving at the outlet.

4. NON-STANDARD VOLUME ELEMENTS

While the standard volume element described in the last
chapter is suitable for many applications some others are
still required.
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4.1 Phase Separator

In almost any two-phase cycle (e.g. vapor cycle or Rank-
ine cycle), accumulator and/or receiver models are used.
These are tanks with fixed volume. If the medium in
the phase separator contains two phases, it separates the
phases and outputs either the liquid or the vapor phase,
or a mixture. In our phase-separator model (see fig. 2) we
assume, that the two phases are ideally separated and at
ideal thermal equilibrium. Like the standard volume, it
also has a fixed volume condition but additionally com-
putes the vapor quality and the relative liquid level of it’s
medium l. With this and the upper and lower height of
the outlet pipe (hlow, hhigh), the relative liquid level in the
outlet

lpipe =
l − hlow

hhigh − hlow

and finally the outlet enthalpy

hout =



hliquid, for lpipe >= 1

hvapor, for lpipe <= 0

lpipehliquid + (1− lpipe)hvapor, else

are computed. Accumulators and receivers are both phase
separator models, the first with a very high and the latter
with a low outlet pipe.

outlet

l

h
lo
w

h
h
ig
h

Fig. 2. Phase separator model. Inlet is not shown.

Similar to the standard volume the term ∂pV

∂ρ is computed

by the media model.

4.2 Flexible Volume

Closed loops of (nearly) in-compressible liquids could for
example arise from a liquid cooling loop with water or
glycol. Here the mass-flow-pressure differential equation
becomes very stiff when using a standard volume, since
between the fixed volume and in-compressiveness of the
fluid there is no mechanism of budging when more mass
must enter the volume. Zimmer (2019b) introduces a
volume element with a compression module, basically a
flexible tank that expands linearly with the pressure. It can
also be seen as a linearisation of a fixed volume containing
a gas bubble. The pressure the wall imposes on the fluid
is linearly dependent on the volumes expansion with a
reference point (pref, Vref) and slope (bulk modulus) K:

pV = pref +K(
V

Vref
− 1) = pref +K

M/ρV
Vref

−K (6)

This equation replaces the constant-volume condition of
the standard volume. We also compute

∂pV
∂M

=
K

VrefρV
for the dampening term (5). When this result is inserted
into (5), the damping term is the same as derived in
Zimmer (2019b) for a flexible volume.

4.3 Reservoir

A reservoir is a tank that is partially filled with fluid and
partially with air from the environment. Therefore it’s
surface is in a pressure equilibrium with the environment.
We assume that inlet and outlet are at the bottom of the
reservoir, therefore the pressure at inlet and outlet are
determined by environment pressure penv and the mass of
the fluid under earth gravity g. To simplify the equations
we neglect the pressure gradient with height in the fluid.
The static pressure of inlet, outlet and fluid therefore is

pV = penv +
Mg

AV

From this we can compute

∂pV
∂M

=
g

AV

for the regularization. Note that the reservoir can be seen
as a special case of the flexible volume with K = gVrefρV

AV

and pref = penv +K

4.4 Mixing Volume

Junctions of fluid streams as defined in Zimmer et al.
(2018) make simplifications that, although good enough
for most cases, might influence the result at transient
conditions if the application requires very accurate mixing
behavior. For such applications we implemented a volume
with an arbitrary number if inlets. The dampening term
is applied to all inlets simultaneously. Other than that
the mixing volume is a standard volume. In contrast
to a junction, the mixing volume does not have to use
approximations in mixing and is also accurate for fast
transients.

5. THE CONDUCTION ELEMENT

Heat exchangers that evaporate or condensate a working
fluid pose a challenge in modeling, since the classic ϵ-
NTU method (Incropera et al. (1996)) does not apply, and
because the fluid has very different properties in its liquid,
gaseous or 2-phase form. In TFS we include a discretized
heat exchanger, that thermally couples N volume elements
on each path in cross- and counter-flow configurations (see
fig. 3). The volume of each element is computed by dividing
the heat exchangers volume by N, resulting in many very
small volumes in a row. Even with the dampening term
introduced in 3.2 or when we introduce discretized flow
resistance models between the volumes to simulate the
pressure drop within the heat exchanger, we get a (with
these measures damped but) very fast mass-flow-pressure
dynamics between the very small volumes resulting in a
very stiff simulation.

Since our scope is a medium-fidelity simulation on system
level, we are not interested in the mass-flow dynamics
within the heat exchanger and would rather have a single
fluid stream going through it. Because of this, we simplified
the standard volume model to what we call a conduction
element, replacing the mass balance (2a) by directly cou-
pling inlet and outlet mass-flow (ṁ = ṁi = −ṁo) and
implementing (1) between inlet and outlet. Without the
information of the mass dynamics, we assume the mass to
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Fig. 3. Discretized counter-flow heat exchanger with three
elements in Modelica. The lower conduction elements
compute the heat transfer coefficient to the wall
depending on the phase of the liquid contained.

be quasi-stationary (with Ṁ small enough to be negligible
for our modeling purpose and M = V ρV ) depending on
volume and density of the liquid ρV . To investigate the
influence of this assumption on the power balance (3) we
first look at its left-hand side:

˙(MuV) = ˙(M(h− pVV )) ≈ ˙(MhV) = MḣV + ṀhV (7)

Here we made use of the fact that V is constant and
neglect the volume-pressure term ṗVV (which didn’t show
noticeable impact on our simulation results) to arrive at a
equations in the enthalpy hV instead of the inner energy
uV. This simplifies the interaction with the media models.
The other option would be to include the pressure-volume
term on the right-hand side, but this would require the
pressure to be differentiable which is not always the case
in our simulations. On the right-hand side enthalpy-flow
terms for inlet and outlet are of interest. With ṁi +
ṁo = Ṁ they can be expressed as:

ṁihi + ṁohV =

ṁihi + (ṁo + ṁi − ṁi)hV = ṁ(hi − hV) + ṀhV

(ṁi + ṁo − ṁo)hi + ṁohV = ṁ(hi − hV) + Ṁhi

these two solutions pose the edge cases of whether we
want to attribute the changes in mass we neglect to
an additional inlet or outlet mass-flow. In general the
solutions should lie somewhere in the middle, so with
k ∈ [0, 1] we can state the full right-hand side of the power
balance (3) for quasi-stationary mass as

ṁ(hi − hV) + Ṁ(hV + k(hi − hV)) + Q̇surf

and with (7) derive the power balance for the conduction
element:

MḣV = ṁ(hi − hV) + Ṁk(hi − hV) + Q̇surf (8)

The term Ṁk(hi − hV) poses several problems. Firstly,
it requires the mass to be differentiable, which might
be violated e.g. for a step in pressure. Secondly, k is
an unknown time dependent variable and thirdly, it has
shown to lead to numerical problems in practice. Luckily,
its impact is mostly neglectable, so we can neglect changes
in mass in (8) (Ṁ = 0). The disadvantage of this is an
error in the power balance when the mass in the volume
is changing, that can be noticeable when the change is
drastic (e.g. during phase transitions of the fluid).

Naturally, without mass dynamics the conduction element
does not need the mass-flow dampening but still needs

the regularization for the reversed mass-flow condition
introduced in cap. 3.2. In fact, it was while working with
conduction elements, that the instability of the reversed
mass-flow condition became apparent for the fist time.

While the modeling approach of the conduction element
might not be suited for high fidelity modeling tasks that
involve major mass transitions, like optimal charge de-
termination or accumulator/receiver sizing, its simplicity
offers big advantages, for high-level simulations. It intro-
duces only a single state without adding fast mass-flow
dynamics while still being a good proxy for a volume,
depicting the energy balance and therefore the dynamics
of heat transfer. This is why we use it very frequently to
transfer heat in and out of fluid stream. If a higher fidelity
model is needed the conduction element can be replaced
by standard or flexible volumes.

It is to be noted that the conduction element is part of a
fluid stream and no longer acts as a stream boundary. It
therefore can not be used to break a closed fluid loop.

6. APPLICATION EXAMPLES

In this section we present some application examples of the
volume models developed in the last chapters in dynamic
simulations. All examples are part of our Modelica library
(Zimmer et al. (2021)) and hence their implementation
is available open-source. In the examples’ images, we
removed all control elements and most flow resistance
models for better readability.

Fig. 4. Model of a espresso machine. The boiler is imple-
mented especially for this model, but is conceptually
very close to the phase separator. The brewing head
is in thermal contact with the environment. The cup
is internally modeled as a Sink.

In fig. 4 the standard volume heats up water going to the
brewing head by being in thermal contact to the boiler.
Another standard volume is used in fig. 5 to put heat into
the heat engine.
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Fig. 3. Discretized counter-flow heat exchanger with three
elements in Modelica. The lower conduction elements
compute the heat transfer coefficient to the wall
depending on the phase of the liquid contained.

be quasi-stationary (with Ṁ small enough to be negligible
for our modeling purpose and M = V ρV ) depending on
volume and density of the liquid ρV . To investigate the
influence of this assumption on the power balance (3) we
first look at its left-hand side:

˙(MuV) = ˙(M(h− pVV )) ≈ ˙(MhV) = MḣV + ṀhV (7)

Here we made use of the fact that V is constant and
neglect the volume-pressure term ṗVV (which didn’t show
noticeable impact on our simulation results) to arrive at a
equations in the enthalpy hV instead of the inner energy
uV. This simplifies the interaction with the media models.
The other option would be to include the pressure-volume
term on the right-hand side, but this would require the
pressure to be differentiable which is not always the case
in our simulations. On the right-hand side enthalpy-flow
terms for inlet and outlet are of interest. With ṁi +
ṁo = Ṁ they can be expressed as:

ṁihi + ṁohV =

ṁihi + (ṁo + ṁi − ṁi)hV = ṁ(hi − hV) + ṀhV

(ṁi + ṁo − ṁo)hi + ṁohV = ṁ(hi − hV) + Ṁhi

these two solutions pose the edge cases of whether we
want to attribute the changes in mass we neglect to
an additional inlet or outlet mass-flow. In general the
solutions should lie somewhere in the middle, so with
k ∈ [0, 1] we can state the full right-hand side of the power
balance (3) for quasi-stationary mass as

ṁ(hi − hV) + Ṁ(hV + k(hi − hV)) + Q̇surf

and with (7) derive the power balance for the conduction
element:

MḣV = ṁ(hi − hV) + Ṁk(hi − hV) + Q̇surf (8)

The term Ṁk(hi − hV) poses several problems. Firstly,
it requires the mass to be differentiable, which might
be violated e.g. for a step in pressure. Secondly, k is
an unknown time dependent variable and thirdly, it has
shown to lead to numerical problems in practice. Luckily,
its impact is mostly neglectable, so we can neglect changes
in mass in (8) (Ṁ = 0). The disadvantage of this is an
error in the power balance when the mass in the volume
is changing, that can be noticeable when the change is
drastic (e.g. during phase transitions of the fluid).

Naturally, without mass dynamics the conduction element
does not need the mass-flow dampening but still needs

the regularization for the reversed mass-flow condition
introduced in cap. 3.2. In fact, it was while working with
conduction elements, that the instability of the reversed
mass-flow condition became apparent for the fist time.

While the modeling approach of the conduction element
might not be suited for high fidelity modeling tasks that
involve major mass transitions, like optimal charge de-
termination or accumulator/receiver sizing, its simplicity
offers big advantages, for high-level simulations. It intro-
duces only a single state without adding fast mass-flow
dynamics while still being a good proxy for a volume,
depicting the energy balance and therefore the dynamics
of heat transfer. This is why we use it very frequently to
transfer heat in and out of fluid stream. If a higher fidelity
model is needed the conduction element can be replaced
by standard or flexible volumes.

It is to be noted that the conduction element is part of a
fluid stream and no longer acts as a stream boundary. It
therefore can not be used to break a closed fluid loop.

6. APPLICATION EXAMPLES

In this section we present some application examples of the
volume models developed in the last chapters in dynamic
simulations. All examples are part of our Modelica library
(Zimmer et al. (2021)) and hence their implementation
is available open-source. In the examples’ images, we
removed all control elements and most flow resistance
models for better readability.

Fig. 4. Model of a espresso machine. The boiler is imple-
mented especially for this model, but is conceptually
very close to the phase separator. The brewing head
is in thermal contact with the environment. The cup
is internally modeled as a Sink.

In fig. 4 the standard volume heats up water going to the
brewing head by being in thermal contact to the boiler.
Another standard volume is used in fig. 5 to put heat into
the heat engine.
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Fig. 5. Basic heat engine model. Air enters at the source,
gets compressed in a compressor, heated up in a
standard volume, gets de-pressurized in a turbine and
exits at environment pressure at the sink.

Fig. 6. Heat pump model consisting of two air-streams
and a two-phase loop with accumulator, compressor,
condenser, receiver, expansion valve and evaporator.

The phase separator is the basis for the accumulator (high
outlet pipe position) and receiver (low pipe outlet position)
in the heat-pump depicted in fig. 6. While the receiver is
adiabatic (Qsurf = 0) the accumulator is connected to a
heat capacity. Note that this looped stream is broken into
two streams by the two volumes.

The liquid cooling example (see fig. 7) needs a flexible vol-
ume to break the loop, since its medium is in-compressible.
An alternative would have been a reservoir, as it is a special
case of a flexible Volume.

The conduction element is used in figs. 4 and 7 to exchange
heat with the fluid. In the former to exchange heat between
brewing head fluid, in the latter to cool the heat-load.
Furthermore in fig. 6 both heat exchangers are discretized
ones that use multiple conduction elements to exchange
heat between the fluids.

7. CONCLUSION

In this paper we derived a number of volume elements
that can be used in the algebraic-differential thermo-
fluid stream approach to simulate complex thermo-fluid
networks. While deriving the equations from first principle,
we stated all approximations and assumptions taken to
optimize the models to the algebraic-differential thermo-
fluid-stream approach. All models developed are part
of our TFS Modelica library and their source-code is
therefore publicly available. With these volume models

Fig. 7. Simple liquid cooling loop. The in-compressible
fluid exits the flexible volume, passes a conduction
element that is used to cool a heat load, passes a flow
resistance, goes through a ϵ-NTU heat exchanger, a
pump and flows back into the volume. The heat load is
modeled by a heat capacity and prescribed heat-flow.
The heat exchanger is cooled by a cold air stream.

within the library and using the Modelica Standard Media
Models, we are able to model a broad range of applications,
some of which we presented in the last section of this
paper.

We will continue to use our library and with it the volume
models presented in our future scientific work, further
validating the usefulness of the models presented.
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