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o ADAPTATIONS OF NOWCASTING APPROACH
BASED ON BENCHMARK RESULTS
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Overview- A physical nowcasting approach 4#7
DLR

Physical model
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Overview — A hybrid nowcasting approach 4#7
DLR

Hybrid model as used during the benchmark

Combined hybrid nowcasts using an accuracy weighting approach [4]
* Real-time validation over recent past (5 min windows)
* Lead time 0 min as reference
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Persistence model

Hybrid model

The hybrid approaches exploit clear divisions in strengths between fundamentally distinct models for

distinct prevailing conditions and outperform each model by itself.
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Overview — A improved hybrid nowcasting approach 4#7
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Improved hybrid model developed after the benchmark

Combined hybrid nowcasts using an accuracy weighting approach [4]
* Real-time validation over recent past (5 min windows)
* Lead time 0 min as reference
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Persistence model
Machine learning Hybrld model
model

The hybrid approaches exploit clear divisions in strengths between fundamentally distinct models for

distinct prevailing conditions and outperform each model by itself.
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End-to-end Nowcasting — A data-driven approach

Sky images

Time series data

Irradiance nowcast
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* Use end-to-end machine learning (ML) models
to generate nowcast directly from raw data
= ML models are trained on large amounts of
observations or features extracted from
observations to learn patterns in the data

(Feature
Extraction)

Irradiance
nowcast




Multi-modal Deep Learning Model

Solution approach: Training Size: ~ 400 000 data points
» Combined Vision Transformer and (filtered data from 2016-2019)
Timeseries Transformer
» Vision Transformer
* Input: 5 min all-sky imager (ASI)

sequence | 1
* Output: Feature vector (512x1) y Vision

« Time Series Transformer ASI sequence Transformer
* Input: 30 min time series
» Output: Feature vector (512x1)
« Combination via a multilayer
perceptron (MLP)
» Input: stacked feature vectors
« Output: 20min GHI/DNI Timeseries

Transformer

[6]

[5]
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B IMPROVEMENT COMPARED TO
BENCHMARK STATUS
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Comparison of hybrid nowcasting approaches — skill score 4#7
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Validation based on 28 day lasting benchmark data set as described in [7]
Both hybrid approaches show an overall positive skill score

The approach used during the benchmark archives an average skill score of 12.6£5.5%
Significant improvements were achieved by the new hybrid approach with an average skill score of 24.9+4.5%
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Comparison of hybrid nowcasting approaches — ramp rate 4#7
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The presented hybrid nowcasting

approaches provides spatial
resolved irradiance maps with
coverages > 60 km?.

Physical + Pers. Physical + Pers. + ML
Accuracy: 78.19% Accuracy: 81.79%

90.0% 24.4%
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Observed events

Predicted events

Predicted events
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Observed events

Physical + Pers.
Accuracy: 79.67%

Accuracy: 83.02%

Ramp rate validation according to Stavros
et al. 2022 [8] (time horizon range 1 to 20
min)

Overall improvement since the

80.2%
5327

benchmark >3% points in accuracy
Further improvement >1% point in
accuracy when spatial information are
considered (1 km?)

Predicted events
Predicted events

NR R
Observed events

Evaluation over 1 km?

Observed events

Yann Fabel, Bijan Nouri et al. 15.12.2022




‘i il 2 . o) N W METAS at CIEMAT's Plataforma Solar de Alme

- -




Conclusion 4#7
DLR

« Possible improvements of the ASI system have been identified based on the benchmark
results.
« The hybrid approach used in the benchmark that is based on real-time validation was
enhanced.
« The physical model was not only combined with the smart persistence model as in the
original benchmark, but another 3rd method is also included:
» end-to-end multi-modal deep learning model (combined Vision Transformer and
Timeseries Transformer)
 Significant improvements could be reached:
» Overall skill score improvement >12% points
» 8% points more ramps are correctly predicted, overall ramp accuracy improvement
>3% points
» The hybridization approach exploits strengths of fundamentally distinct models
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Comparison of hybrid nowcasting approaches — skill score 4#7
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