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ADAPTATIONS OF NOWCASTING APPROACH 
BASED ON BENCHMARK RESULTS
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Overview– A physical nowcasting approach
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Overview – A hybrid nowcasting approach
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Hybrid model

Persistence model

Combined hybrid nowcasts using an accuracy weighting approach [4] 
• Real-time validation over recent past (5 min windows)  
• Lead time 0 min as reference

• 𝑅𝑀𝑆𝐸 , = ∑ 𝐺𝐻𝐼 (𝑡 ) − 𝐺𝐻𝐼 , (𝑡 )
.
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Hybrid model as used during the benchmark

The hybrid approaches exploit clear divisions in strengths between fundamentally distinct models for 
distinct prevailing conditions and outperform each model by itself.  



Overview – A improved hybrid nowcasting approach
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Hybrid model

Persistence model

Machine learning 
model

Combined hybrid nowcasts using an accuracy weighting approach [4] 
• Real-time validation over recent past (5 min windows)  
• Lead time 0 min as reference

• 𝑅𝑀𝑆𝐸 , = ∑ 𝐺𝐻𝐼 (𝑡 ) − 𝐺𝐻𝐼 , (𝑡 )
.
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Improved hybrid model developed after the benchmark

The hybrid approaches exploit clear divisions in strengths between fundamentally distinct models for 
distinct prevailing conditions and outperform each model by itself.  



End-to-end Nowcasting – A data-driven approach
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Cloud detection 

Cloud modelling

Shadow projection

Cloud tracking

Irradiance nowcast

Sky images

Allocation of cloud transmittance

 Use end-to-end machine learning (ML) models 
to generate nowcast directly from raw data
 ML models are trained on large amounts of 

observations or features extracted from 
observations to learn patterns in the data

Time series data

(Feature 
Extraction)

Irradiance 
nowcast



Multi-modal Deep Learning Model
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Vision 
Transformer 

[5]

Timeseries 
Transformer 

[6]

Meteorological Timeseries 
(DNI, GHI, DHI, solar position)
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Multi-step
Future Irradiance

ASI sequence

Solution approach:
• Combined Vision Transformer and 

Timeseries Transformer
• Vision Transformer

• Input: 5 min all-sky imager (ASI) 
sequence

• Output: Feature vector (512x1)
• Time Series Transformer

• Input: 30 min time series 
• Output: Feature vector (512x1)

• Combination via a multilayer 
perceptron (MLP)

• Input: stacked feature vectors
• Output: 20min GHI/DNI

Training Size: ~ 400 000 data points
(filtered data from 2016-2019)



IMPROVEMENT COMPARED TO 
BENCHMARK STATUS 
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Comparison of hybrid nowcasting approaches – skill score
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• Validation based on 28 day lasting benchmark data set as described in [7]
• Both hybrid approaches show an overall positive skill score
• The approach used during the benchmark archives an average skill score of 12.6±5.5%
• Significant improvements were achieved by the new hybrid approach with an average skill score of 24.9±4.5%
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Physical + Pers. + MLPhysical + Pers.

Physical + Pers. + MLPhysical + Pers.

Comparison of hybrid nowcasting approaches – ramp rate 
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• Ramp rate validation according to Stavros 
et al. 2022 [8] (time horizon range 1 to 20 
min)

• Overall improvement since the 
benchmark >3% points in accuracy

• Further improvement >1% point in 
accuracy when spatial information are 
considered (1 km²)

The presented hybrid nowcasting 
approaches provides spatial 
resolved irradiance maps with 
coverages > 60 km².  
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CONCLUSION
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Conclusion
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• Possible improvements of the ASI system have been identified based on the benchmark 
results. 

• The hybrid approach used in the benchmark that is based on real-time validation was 
enhanced.

• The physical model was not only combined with the smart persistence model as in the 
original benchmark, but another 3rd method is also included:

• end-to-end multi-modal deep learning model (combined Vision Transformer and 
Timeseries Transformer)

• Significant improvements could be reached:
• Overall skill score improvement >12% points
• 8% points more ramps are correctly predicted, overall ramp accuracy improvement 

>3% points
• The hybridization approach exploits strengths of fundamentally distinct models
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Comparison of hybrid nowcasting approaches – skill score
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