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7. Project Partners and Funding

UNSEEN11 (grant number FKZ 03EI1004A; duration: 10/2019-09/2022) is an 
interdisciplinary consortium of researchers and practitioners from system analysis, 
mathematics, and high performance computing.

4. Current status of the project

5. Intermediate/Preliminary Results

6. Roadmap

10 https://www.fz-juelich.de/ias/jsc/juwels

11 https://unseen-project.gitlab.io/home

• Completed tool development for automatic parameter sampling

• Widely scalable model of the German power system available, with options to perform:

o Optimal power flow on the transmission grid level

o Discrete expansion planning for power plants, storage and transmission lines

o Unit Commitment for thermal power plants

• Create a scenario-evaluation framework that assesses more than 20 indicators 
describing affordability, sustainability and security of the optimized energy scenarios

• Evaluated the structure of more than 1000 MIPs

• The development of a generic MIP solver framework is close to completion

• Initial concepts for the architecture of our neural network (NN)

• Workflow & benchmarking environment JUBE9 successfully parallelized and tested 
within our HPC-workflow approach

• Our open-source solver PIPS-IPM++7 can solve large-scale structured Linear Programs 
(LPs) and outperforms commercial solvers on massively parallel architectures

• Q1/2022: Improve robustness of HPC workflow and NN training on small instances

• Q2/2022: Adaptation of HPC workflow to solve energy scenarios based on MIPs

• Q2/2022-Q4/2022: Performance tuning and up-scaling of model size for MIP
based energy scenarios; NN experimentations with large-scale instances

• Q3/2022-Q4/2022: Analysis of indicator space and finalisation of development of new 
energy system modeling concept

PIPS-IPM++ can solve large-scale structured LPs and outperforms commercial solvers on massively parallel architecture

8 https://www.dlr.de/ve/amiris

9 https://www.fz-juelich.de/ias/jsc/jube

Benchmark instance:

• 5.1 Mio. rows; 5.6 Mio. columns

• Up to 32 nodes; 2 threads per MPI 
process

REMix model based on PyPSA-Eur dataset

• 234 Mio. rows; 213 Mio. columns

• 16 nodes; 96 MPI tasks; 8 threads per task

1. Comparison of PIPS-IPM++7 against state-of-the-art commercial solvers on JUWELS10:

6 https://www.dlr.de/ve/remix 

7 https://github.com/NCKempke/PIPS-IPMpp

3. Approach and Methodology

We need to deal with an unprecedented number of large-scale scenarios:

• To ensure applicability for real policy support we aim to use both generic and applied 
models (i.e. REMix6 on transmission grid level resolution) which are formulated as 
Mixed Integer Programs (MIPs).

• To keep computing times manageable we exploit the capabilities of customized 
algorithms designed for High Performance Computing (e.g. PIPS-IPM++7) and 
Machine Learning (GCNN).

• To obtain a comprehensive outcome from a multitude of model runs we aggregate to 
different domain-specific indicators using indicator models (e.g. AMIRIS8) and post-
processing routines.

Outlook on Reinforcement Learning and the HPC workflow

Idea: Provide integer feasible points by learning the MIP optimization process from 
thousands of examples. Applied to large-scale instances, this provides an efficient upper-
bound heuristic without the use of costly traditional techniques.

Fig. 3: Reinforcement learning in the HPC workflow. Each individual workflow block contains multiple codes, with the ones mentioned in 
parentheses among them. 
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Fig. 4: Benchmark instance of the SIMPLE model Fig. 5: REMix model based on PyPSA-Eur dataset

1. Background: The status quo of scenario analyses

Fig. 1: The established scenario funnel for decarbonization pathways of energy systems

2. Objective: Implementing the theoretical best practice 

Fig. 2: The scenario funnel for decarbonization pathways of energy systems in UNSEEN

Decarbonized futures

We have instead opted to fully inspect the conceivable parameter space for the first time 
by using a hitherto unattained number of model-based energy scenarios. Efficiently 
leveraging the capabilities of HPC could be a game changer for the energy-system 
analysis community.

Decarbonized futures

Best case

Trend

Worst case

Forecasting the future is fraught with large uncertainties. The state of the art in energy-
system analysis is to tackle these uncertainties with ensemble modeling of a small 
subset of all possible scenarios. This has proved to be inadequate. Additionally, the 
widely-used commercial solvers show poor scalability and are limited to single shared-
memory compute nodes.

2. A first analysis of 1000 instances confirmed our approach for the solver framework. 
Without our newly developed software infrastructure for HPC, it would have been 
infeasible to solve such a large amount of instances with the envisaged size.  
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