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Abstract
In this article an overview of the current development status of the "On-board Data Analysis And Real-Time
Information System" (ODARIS) developed at the German Aerospace Center (DLR) is presented. We will focus
on an upcoming technology demonstration experiment of the ODARIS concept planned around 2023-2025 and
include topics as the utilization of “low-cost real-time communication channels”, on-board data evaluation, the
communication concept and the benefits and limitations of our approach.
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1. INTRODUCTION

For satellite operation, having the capability to
communicate with the satellite system, anytime,
anywhere, with low communication latency and high
network bandwidth, would be beneficial in many
satellite missions. At the moment communication
with the space segment can only be established,
when the satellite passes a communication window
of a ground station network. For many satellite
missions in Low Earth Orbits (LEO) this is equiv-
alent of having a timeframe for communication of
typical 10-20 minutes within one or two contacts a
day. The connectivity for space operations can be
increased via additional ground control stations to
the ground segment network, or by utilizing relay
satellite networks like the European Data Relay
Satellite (EDRS) [1]. Due to high operational cost,
these solutions are currently only utilized by large
space missions, as for example the Sentinel-1 and
-2 satellites in the Copernicus Programme of the
European Space Agency (ESA). But for many space
missions, the high transmission bandwidth offered
by these solutions are not mandatory. They would
already largely benefit from low-bandwidth communi-
cation channels, which are uncomplicated to deploy
and offer transmit- and receive-latencies around a
few minutes. An example would be the transmission
of warning messages or the capability to request
satellite state parameters without having a ground
station in sight.

Taking into account the above-mentioned mis-
sion benefits- & cost-characteristics, DLR is currently
exploring the feasibility of a low-cost "On-board
Data Analysis And Real-Time Information Sys-

tem" (ODARIS) for small- to medium-sized satellite
missions [2]. The general approach is the utilization of
existing satellite communication networks, designed
for satellite telecommunication [3–5], and mask the
low-bandwidth limitations, by massively increasing
the information efficiency already on-board. This
can be achieved by providing just the most valuable
product data at times, when it is most beneficial.
One key enabling factor for realizing this concept, is
being able to perform data analysis and management
directly on-board a satellite. With Moore’s Law [6] like
advances in on-board computer technology, on-board
data processing, or from a broader perspective edge
computing on satellites, becomes viable even on
small satellite platforms [7,8].

In this article we will present the current devel-
opment status of ODARIS. We especially focus
on providing details of a technology demonstration
experiment of the ODARIS concept, planned for a
future satellite mission, scheduled around 2024. The
technology demonstration will be prepared in collab-
oration with the DLR’s Scalable On-board Computing
for Space Avionics (ScOSA) team, which develops a
high-performance on-board computing platform [9].
As we are currently in a mid-level phase of the
software development process of the experiment,
the article will focus on the scientific mission targets,
the experiment design, the current implementation
methods. The paper concludes with the obstacles
occurred while developing the system and the way
forward.



2. THE ODARIS CONCEPT

In this section a brief overview of the ODARIS con-
cept is presented. A more detailed introduction can
be found at the article about the "On-board Data Anal-
ysis And Real-Time Information System" experiment,
presented at the DLRK 2020 [2].

2.1. History

The development of an ODARIS concept started
around 2012 with the experiment "Verification of
Image Analysis Onboard a Spacecraft" (VIMOS).
With VIMOS the feasibility to perform on-board data
analysis on satellite platform should be evaluated.
A cloud detection application and change detec-
tion application had been developed with the goal
to extract useful information directly on board of
a spacecraft, to shorten the time between image
acquisition and an appropriate reaction from the
operators and to avoid unnecessary data down-
loads [10]. VIMOS was also intended to be combined
with an on-board planning system [11] for scheduling
additional image acquisition or additional down-
load passes. The experiment was scheduled to be
demonstrated on the 2016 launched DLR technology
demonstration satellite "Bispectral InfraRed Opti-
cal System" (BIROS) [12, 13], but due to technical
problems with the satellite platform itself, the demon-
stration could not be performed. With the VIMOS
experiment only utilizing the standard satellite-based
ground communication, the reaction time was in-
tended to be decreased slightly by direct event
notification via Satellite Telemetry (TM) and by data
download prioritization.
For being able to perform event notification within
minutes, a real-time communication channel was
required. Around 2016 several satellite mission
experiments analyzed the feasibility of using satellite
phone networks for satellite communication [5, 14].
Based on the results of these experiments we de-
veloped an experimental predecessor system of
ODARIS, called "Autonomous real-time detection of
moving maritime objects" (AMARO), suited for an
aircraft flight experiment, which was successfully
demonstrated in 2018 [15]. The communication sys-
tem was based on a text message concept, utilizing
the Iridium satellite communication system [16] and
allowed us to perform real-time (RT) communication
with a latency around a few minutes. The focus on
the on-board data processing of AMARO was a ship
detection algorithm by analyzing camera images
with the open source library Open source Computer
Vision library (OpenCV) [17]. As an extension of
these classic object detection algorithms, a modern
Artificial intelligence (AI) based approach for object
detection will be evaluated in ODARIS.
Starting with begin of 2020, ODARIS joined the
ScOSA Flight Experiment (ScFE) project. The aim of
ScOSA is to develop a reliable, performance focused,
heterogeneous and distributed computing platform,
by combining Commercial Off-The-Shelf (COTS)

and space qualified computing nodes with a scalable
software middleware [9]. Within this project an in-orbit
demonstration of ODARIS is planned around 2024 on
a DLR technology demonstration satellite platform.
The goal is to demonstrate ODARIS in a space en-
vironment, to evaluate the feasibility of the concept’s
approach for providing real-time information and
identifying the usability, limits and performance of the
systems. The successful demonstration shall also
increase the Technology readiness level (TRL) of the
system.
An additional opportunity for demonstrating ODARIS
also occurred in 2022, by joining a satellite mission
of the Universität der Bundeswehr München called
Seamless Radio Access Networks for Internet of
Space (SERANIS) [18].

2.2. Design goals

The design goals of ODARIS have been derived
by analyzing typical bottlenecks of satellite opera-
tion, especially of small- and medium-sized satellite
missions without access to high performance data
communication networks like EDRS. In the following
the extracted main design criteria for ODARIS are
presented.

Real-time communication capability

The key target of ODARIS is enabling near instant ac-
cess to satellite data. With ODARIS the user shall be
capable to query data anytime from the satellite and
get a response as soon as possible. For example,
an operator can request the satellites health status
anytime. These requests will be handled within the
QUERY-Service of ODARIS. Furthermore, ODARIS
shall provide a PUSH-Service, which enables an op-
erator to define an event or specific criteria. If such
an event or criteria occurs, a notification message will
be immediately dispatched. For example, it can be
used as an alarming service or for periodic updates
of specific information.
We decided to keep the language for defining queries
and push events more generic, since it may not be
clear at design time of the satellite system, which in-
formation is required by the operator. A use case may
be a step by step inspection of all system compo-
nents in case of an unknown malfunction. The com-
munication latency is mainly dependent of the com-
munication system, but our goal is to complete a full
query/respond cycle within a few minutes.

Space application service platform

ODARIS shall enable other developers to easily im-
plement their own applications, without the need of
dealing with the integration details of the space sys-
tem. The goal is to provide an user-friendly -not space
specific- interface, where application developers can
operate and communicate with their application.



Broad support for flight platforms

Another design goal of ODARIS is the integrability on
a broad variety of space platforms. The flight plat-
forms we currently targeting are satellite platforms,
but also High altitude platform (HAP) [19] or other au-
tonomous vehicles would be possible. It shall also
be scalable regarding the available computing per-
formance and available communication system. To
achieve this goal the ODARIS system shall be:
• compatible to popular on-board computing ecosys-

tems which have a high probability to be supported
by current and future space missions,

• adaptable to platform specific interfaces, as for ex-
ample the communication system,

• integrable for a broad variety of data processing ap-
plications as well offer an option for an RT commu-
nication system, which can be deployed on a broad
variety of space systems.

Quality of service

A crucial nonfunctional requirement of ODARIS is, to
be able to provide a high quality of service and system
robustness, since the system maintenance measure-
ments may become limited during operation. This
also includes the reactivity of the system, allowing
low latency data processing and communication, im-
plementation of Fault detection, isolation, and recov-
ery (FDIR) measurements, availability of interfaces to
enable thorough system monitoring & inspection and
a continuously performed system validation & verifi-
cation process to minimize implementation errors.

3. SPACE FLIGHT EXPERIMENTS

The ODARIS system was designed for space oper-
ability from the start. To evaluate if the concept is
feasible for space operations, we started to prepare
an In-orbit demonstration of ODARIS targeting a
satellite platform in 2018. Within different space
experiments, we target to answer the following
open scientific and engineering questions, but with
the main focus on the applicability of the general
ODARIS concept for space operations.

Open scientific & engineering questions:

a) Can real-time satellite based telecommunication
networks, designed for ground operation, be
meaningfully utilized for real-time communication
of (LEO-)satellites ?

b) Can ODARIS be operated reliably within a space
environment ?

c) Can we deploy ODARIS on a space system ?

From these major questions we derived also scien-
tific objectives we want to answer within the space
experiments.

Scientific & engineering objectives:

• Assessment of the performance of the real-time
communication system regarding connectivity

• Assessment of the performance of the real-time
communication system regarding information
transfer latency

• Assessment of the performance of the real-time
communication system regarding data transfer
volume

• Assessment of the reliability and quality of service
that can be provided by real-time communication
system

• Elaboration of the methods for efficiently operating
a real-time information system

• Evaluation of the operability of the information sys-
tem within space operation

• Evaluation of the reliability and quality of service of
the information system

• Identification of space-based error sources
• Evaluation of the FDIR-model of the information

system
• Evaluation of the performance of the on-board data

analysis and information extraction
• Assessment of the feasibility for usage of AI-based

methods for on-board data analysis
• Identification of efficient methods for on-board data

extraction
• Evaluation of the computing performance achiev-

able for on-board data analysis on medium sized
satellite platforms

3.1. ScOSA Flight Experiment

ScOSA is a next generation Scalable On-board Com-
puting for Space Avionics, developed at DLR starting
in 2012 [20]. As part of the DLR project ScFE,
which started in 2020, we are currently preparing a
flight mission scheduled to launch around 2024/2025
on one of the next DLR technology demonstration
satellites. Within ScFE, we plan to deploy a RT com-
munication system on the satellite platform, integrate
ODARIS within the ScOSA system middleware and
perform multiple short- & long-term experiments in
space, answering the scientific questions mentioned
above. To demonstrate, that ODARIS and ScOSA are
capable of supporting modern remote sensing data
analysis applications, an AI-based object detection
algorithm shall be performed on-board, on image
data provided by Visible Spectrum (VIS) camera, a
COTS optical camera system. The major challenges
for the ScOSA flight experiment is providing a RT
communication solution, the system integration of
the ODARIS components and setting up a suitable
trained AI algorithm for image analysis.
A major part of the current development phase
concerns the integration of the ODARIS software
components into the ScOSA software environment.
For detailed information of the ScOSA software
system see [9]. The ScOSA system is a distributed
computing system, consisting of High Performance
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FIG 1. Block diagram of an exemplary ScOSA system
configuration (source [20]).

FIG 2. ScOSA development board containing three HPN
(source [2])

Nodes (HPN) for high performance tasks, Interface
Nodes (IFN) for attaching external components like
sensors and Reliable Computing Nodes (RCN) for
mission critical tasks, system monitoring and FDIR
management. A block diagram of an exemplary
configuration is shown in Fig. 1 and an image of an
ScOSA development board containing three HPN’s
in Fig. 2. The HPNs are based on a COTS Xilinx
Zynq7020 System on a chip (SOC), which provide
a dual-core ARM Cortex-A9MPCore CPU with a
frequency up to 1 GHz and an embedded Field Pro-
grammable Gate Array (FPGA). The RCNs are based
on a radiation hardened LEON3 CPU [21]. Each HPN
node will be equipped with 1024 MB system mem-
ory with Error correcting code (ECC) support, and
2 GB of NAND flash memory.
The ScOSA On-board computing system (OBC) will
consist of 4 Multi-HPN-Modules (MHM) each housing
2 HPN’s and 1 RCN. The nodes are connected
using two SpaceWire networks [22]. The first one
is a slower network with a star-like topology and the
RCN at its center. The second one is an additional
high-speed mesh-like network, connecting all HPNs.
The nodes are completely independent computing
systems, running their own operating system. The
HPNs run a version of the embedded Poky-Linux
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FIG 3. Exploratory ScOSA application data flow schema
(source [25]).

distribution from the Yocto Project, which is an open
source collaboration project, that helps developers
create custom embedded Linux-based systems [23].
The Poky-Linux is a source distribution, providing
an up-to-date Linux system with a package registry,
offering a broad variety of common libraries and tools
used in Linux development environments, such as
OpenCv [17] and Boost [24]. The ScOSA distributed
system consist of the ScOSA middleware and ScOSA
applications, compiled as one composite executable,
which runs on each HPN as a single instance. The
ScOSA middleware is implemented in C++ program-
ming language (C++) and offers an C++-API for the
applications. The ScOSA middleware is responsi-
ble for many system management tasks, such as
application execution, FDIR-management, system
communication and configuration. The ScOSA sys-
tem execution architecture is based on a dataflow
driven design, which its major building blocks called
tasks and channels. Tasks are callable function
objects, with predefined data inputs (sources) and
outputs (sinks), connected via different channels. An
exemplary application data flow schema is presented
on Fig. 3. If data is available within all of the data
sources of a task, the task is executed, and the
output is sent via the channel to the next tasks as
input. The ScOSA middleware follows a static con-
figuration paradigm, where tasks are tied to specific
nodes, predefined at system design. If a node fails
the ScOSA system can reconfigure the system, to
migrate tasks, executed on the failing node, to an
operational node. More details about the scosa
middleware and application integration can be found
in [9,25].

3.2. Seamless Radio Access Networks for Inter-
net of Space

Beginning of 2022 the DLR participates with several
experiments on the upcoming SERANIS satellite mis-
sion of the Universität der Bundeswehr München [18].
The goal of the mission is to provide a satellite as
a multifunctional Experiment-Laboratory for various
scientific research topics, including the 6G mobile
systems standard, laser communication, Internet of
Things and more. Currently more than ten exper-
iments are in development for the platform, where



ODARIS is one of them. The start for the mission is
targeted in 2025. The satellite will have a LEO-Orbit
and weights around 200kg. Since this project is still
an early stage, preliminary designs of the experi-
ments where defined so far. The experiment concept
of ODARIS will be similar to the ScFE mission.

4. DEVELOPMENT STATUS

In the following chapter the complete status overview
of all ODARIS components will be given.

4.1. System architecture

For a high level overview of the software we will
present a brief insight of the ODARIS system ar-
chitecture. A more detailed view will be provided
here [2].
For the implementation of the ODARIS system com-
ponents the Linux operating system (LINUX) environ-
ment and C++ has been chosen. LINUX and C++
are well documented and offer a widely sophisticated
set of libraries and development tools. Both tech-
nologies are widely used in the embedded world and
also increasingly becoming popular within the space
ecosystem. One example is the "F Prime" Framework
for small-scale flight software systems developed by
the NASA Jet Propulsion Laboratory [26]. It is ex-
pected, that on many future space systems, LINUX
applications will be supported. Additionally, the us-
age of C++ also delivers a high probability for appli-
cation developers to reuse already implemented soft-
ware components and therefore, avoid the need of re-
implementing the applications for space usage.
The ODARIS software system uses a service-based
approach which is illustrated in fig 4.
The system contains several service applications,
each performing a specific task. For inter-service
communication and data storage, the design decision
was made to use a Structured Query Language (SQL)
database. One key benefit of using SQL databases is
the availability of SQL itself as an interface language.
It is a powerful, widely used and well documented
domain-specific language, designed for managing
and dynamically accessing structured data.
With the decision to use the SQL language also for
formulating query-request, push-events, and inter-
service communication, we instantly could provide a
generic well-known interface, for system operators
and application developers for performing data re-
quests. At the moment we decided to use the file
based SQLite database engine (SQLite) [27]. In case
it will become a bottleneck in the future development,
it can also be replaced with a server based SQL
database implementation with only moderate effort.
For the inter-service communication within ODARIS,
a message-based approach has been established.
All services can send messages to other services,
by putting them into a postbox, implemented as a
database table. Concurrently, they periodically poll
the postbox and extract the messages assigned to
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FIG 4. ODARIS context diagram

them. Using a polling based approach allows a lose
coupling of the services. The most critical system
bottleneck is the RT communication channel between
the space and ground segment. Other limitations like
the service-to-service message transfer latency, re-
stricted message throughput and limited data transfer
bandwidth are therefore currently negligible to the
overall system performance.
More application services can be attached to ODARIS
as standalone executables, communicating with other
ODARIS services via the database tables. Appli-
cation developers can also provide their application
core functionality in form of C++ compatible libraries.
Afterwards, they can integrate their application ser-
vice by using the ODARIS system libraries, which are
providing user friendly interfaces for accessing the
databases and other functionality like logging. The
concrete implementation method for a service is often
dependent on the platform ecosystem. As an exam-
ple, for the ScOSA project, the services are required
to be integrated in form of ScOSA tasks, which will
be provided by the ScOSA middleware [9]. For the
former AMARO flight experiment, the services have
been implemented as standard linux applications,
with the system startup, shutdown and monitoring
implemented via Bourne-again shell (Bash) scripts.
For the decrease of platform dependency and on
the other hand the increase of code reusability, the
services core functions are provided as libraries.
Only a shallow platform integration layer will be used



for implementing the concrete services for a specific
space system [25].

4.2. ODARIS Information System

The information system is also implemented as
a collection of different services. External com-
munication interfaces like a satellite’s standard
Telemetry/Telecommand interface (TMTC) or addi-
tional RT channels are also meant to be implemented
as services, responsible for sending and receiving
messages via the satellite’s communication channels.
The push- and query-functionality is implemented by
the accordingly named PUSH- and QUERY-service.
For example, if an operator wants to access on-
board data from an application service, the operator
sends a query message via one of the available
communication channels, with the QUERY-service
as the destination address. The message will be
received by the responsible ODARIS communica-
tion service and inserted into the overall message
postbox. The QUERY-service pulls the message and
answers it by collecting all requested data from the
databases, creating a reply message and stores it
in the message postbox assigned to the communi-
cation service. Finally, the communication service
pulls the answer-message and send it back to the
operator via the communication channel. Similarly,
the PUSH-service performs event checks, by period-
ically executing SQL-queries stored in a database.
If such an event is detected, the result data will be
packed in a message and also stored in the postbox
assigned to the communication service. Events can
be managed and reconfigured anytime by inserting
or deleting push-queries using the QUERY-service.
At last, different kind of data analysis applications
can provide information by inserting product data
in a SQL database accessible by the information
services. Databases can also be used for controlling
the applications.

4.3. RT-communication system

Since our focus is on the software development of the
experiment, we searched for an external partner pro-
viding a ready-to-use hardware communication solu-
tion. With Near Space Launch (NSL) we found a U.S.
located company, providing a suitable solution [28] for
ODARIS. We are planning to integrate one of their
newest products, a half-duplex communication solu-
tion based on the Iridium network [3]. It has been de-
signed for providing an easy to deploy TMTC interface
for smaller Equatorial Low Earth Orbits (ELEO) satel-
lite missions, without the need of a dedicated ground
segment. Based on the published article, see [3], it
is a package based low bandwidth solution offering
a maximal transfer rate of about 1 byte per second
or 80 kB per day. The tested packages of around
18 byte had a latency in the order of seconds to a few
minutes. Within the ScFE project, we want to evalu-
ate if this product is a feasible solution for our concept
of providing RT capability on satellite platforms.

4.4. AI-based Application

One of the design goals for ODARIS is the usage
for other application developers as a flexible space
application platform, as stated in the "Design Goals"
section earlier in this article. Developers shall be able
to integrate their applications without dealing with the
integration and communication details of the satellite
system. For the In-orbit demonstration of the ScFE
project an AI-based image analysis application ser-
vice will be implemented to generate useful product
data, which can be queried via the ODARIS infor-
mation system anytime during the satellite mission.
The image analysis concept will be developed in the
scope of another DLR’s Vorhaben called "Cognitive
Autonomy for Space Systems" (CASSy). One of the
goals is to evaluate different concepts to increase
the autonomy of spacecrafts and perform data pro-
cessing already on-board as much as possible. The
process of the space application consists of the
preprocessing of the available camera images, the
inference of the AI-based image analysis and the
storage of the analysis results in one of the ODARIS
databases, accessible for the information system.
Derived from the former AMARO mission, an ob-
ject detection algorithm for ships or other smaller
object was targeted. The camera systems for the
flight experiments cannot provide a sufficient reso-
lution to detect such small objects. But since the
demonstration focuses on the applicability of such
concepts, we plan to use an already well researched
and established AI-based cloud detection algorithm
instead. The AI-model itself shall be based on an
Convolutional neural network (CNN) model, which
is currently the most used deep learning algorithm
for object detection. The model will be trained
on-ground with datasets of satellite images with
different amount of cloud coverages. To provide the
necessary machine learning algorithms, we use the
popular open source Framework Tensorflow (TF)
developed by Google [29]. The training process will
be performed in a python environment on an x86
computer system within our lab environment. One
of the major advantages of TF is the availability of
the lightweight version of the Framework Tensorflow
Lite Library (TFLite) [30, 31], explicitly developed to
run on edge devices for the inference. Furthermore,
TFLite provides already a well-documented C++-
Application Programming Interface (API) out of the
box. The preprocessing algorithm for the satellite’s
images depends on the used camera system and will
be implemented later in the project. In the current
development phase, we face the following major
challenges for the implementation of an AI-based
image analysis concept:

• TFLite library integration into the ODARIS CMake-
Buildsystem:
The TF framework was not intended to be in-
tegrate as a plain standalone static third-party
library. Furthermore, Google uses its own build



system Bazel [32] to compile the framework from
source, which contradicts our CMake-Buildsystem
approach. Our goal was to have a clean build-
infrastructure for all our dependencies without
mixing several build systems. In newer versions of
TFLite a CMake build system file was delivered by
Google, but still caused issues in CMake variables
between dependency libraries of TFLite and other
direct dependent libraries of ODARIS. Additionally,
it is not possible to compile a self-contained static
library of TFLite [33]. By resolving all CMake
Variable conflicts by hand and explicitly including all
necessary transitive dependencies, we could suc-
cessfully integrate the TF Lite library into ODARIS.

• Suitable satellite image datasets for training of the
AI-model prior to the actual satellite mission:
A crucial aspect for the usage of current deep
neural networks like CNN is the availability of
large datasets from the production environment
for the training process. Therefore, most known
AI-system were implemented as an enhancement
of already running systems or have at least enough
data available from earlier equivalent systems.
For satellite missions this is a major challenge,
since the production environment changes on
every mission, either by new orbit parameters or
camera systems. Already available satellite images
datasets are therefore not completely suitable to
train an AI-model for upcoming missions. There-
fore, we currently collecting datasets from former
or current satellite missions with orbit and camera
parameters as close as possible. But to reach a
good performance of the AI-Model the real camera
images from the mission are necessary for the
training process.

• Re-training process with actual satellite image data
and update of AI-model file on-board:
Subsequent to the previous challenge, the real
performance of the trained AI-Model can only be
measured in the production environment itself,
which in our case is In-orbit after the satellite’s
launch. This makes a re-training of the AI-Model
file necessary after launch. A critical requirement
for such a mission is the Up- & Downlink capacity
of the satellite. The downlink is necessary to down-
load enough camera images to create a suitable
dataset for training and the uplink will be used to
upload the updated AI-Model file or at the least a
diff-file for the update’s parameter values.

Since some of these challenges can only be resolved
in later stages of the project and satellite’s system de-
sign, we still planning the best approaches and con-
tinuously keep in touch with the responsible systems
engineers and project managers.
For the SERANIS project a similar AI-based concept
is in development. Due to parallel software experi-
ments with focus on AI planned on this mission, we
follow a synergetic approach, like the common usage

of the TFLite Framework and share of satellite images
on-ground for re-training. This would reduce the in-
cluded dependencies of our software application and
lower the downlink demand for the satellite images.

4.5. Application integration

To integrate the ODARIS application into the ScOSA
system, three major steps are required:

• Add support for the ScOSA software system envi-
ronment.

• Prepare and ensure the compatibility of the
ODARIS application within the ScOSA middle-
ware.

• Integrate the ODARIS application within the overall
ScOSA experimental version.

As stated in the history section, a first version of
the ODARIS system has been available at end of
2016. The system was developed and operated
on an x86 OpenSuse desktop platform [34], utiliz-
ing several external libraries, such as Boost C++
library (Boost), OpenCV and SQLite. Bash scripts
were used for starting and stopping the service tasks
and the task’s supervision. Most of the ODARIS
system components have been developed as modern
standard C++-14 and were updated later on to a
C++-17 application, using the new available lan-
guage features [35]. A port to specialized operating
systems like Real-Time Executive for Multiprocessor
Systems (RTEMS) or Free Real Time Operating
System (FreeRTOS), which are currently widely used
on space systems, is currently not planned due to the
high effort it would require. Additionally, necessary
third-party libraries may not be supported as well.
To avoid such a practical rewrite, we decided as a
critical system requirement the availability of a Linux
operating system, allowing us to use modern libraries
and toolsets. Within the ScFE project, a Poky-Linux
distribution will be used on the HPNs, which simplifies
the integration process for our software in the ScOSA
system environment. An advantage of Poky-Linux is,
that a lot of libraries are available as packages. For a
first integration test, an equivalent Poky-linux embed-
ded system was set up in our own lab environment,
containing our library resources. In the result, most
of the external packages required by ODARIS have
been already available, resulting in only a few missing
libraries, which needed to be compiled by ourselves.
As our software infrastructure does not support
package management at the moment, we added
missing libraries from source via Git-Submodules
and integrated the build and deployment of these
libraries within our own CMake-Buildsystem.

As second step the integration of ODARIS in the
ScOSA middleware was performed. Since ODARIS
has a complete orthogonal design and is therefore
compatible with the tasking philosophy of ScOSA,
we used the ScOSA tasks as call wrappers for our



services. This gives us a clean separation between
the middleware’s tasking framework and our internal
service structure. In the current state, the ODARIS
application cannot not utilize the distributed system
architecture of the ScOSA system as it has to be
executed on one node. Since check pointing of large
datasets is not natively supported by the ScOSA
system yet, an auto-migration of ODARIS to another
node is not possible, at the moment.
Currently, we are in the process of integrating the
ODARIS system within the official project’s overall
experimental system. The major challenge consists
of the export and deployment of all software compo-
nents on ScOSA software system. Until completion
of the integration process, we provide all our library
resources and additional external dependencies as
pre-build binary resources, so that first tests in the
project’s lab environment are already possible.

4.6. Status summary

In this section, the current development status of all
ODARIS components from the previous sections will
be summarized.
• A first demonstration setup of ODARIS was setup

in our lab environment, where the software runs on
an ARMv7-board within a lab environment. A x86-
Computer will be used as terminal for the operators.

• The information system, including QUERY- and
PUSH-service, is already fully functional and could
be successfully verified.

• Since the RT-Communication device by NSL
is still in procurement and the specific TMTC
protocols of the targeted satellite are also not
available yet, the simulation of the communica-
tion will be established via an Ethernet-Network
between the devices. A server/client-Architecture
via TCP/IPv4 between ODARIS and the operator
terminal was implemented with the open source
library Boost.Asio [36]. This enables us to verify the
end-to-end information system concept of ODARIS,
where the communication channel can be replaced
later on with minimal effort.

• To verify the general functionality of an AI-based im-
age analysis algorithm, the image analysis service
currently performs an inference with a pre-trained
AI-model for object detection, based on the popu-
lar CIFAR-10 database [37]. A set of test images,
stored in the mass storage, will be periodically pro-
cessed to simulate the input from the future camera
system. The object detection results will be stored
in a dedicated database accessible by the ODARIS
information system.

• The operation of ODARIS can be performed via dif-
ferent CLI-scripts. Additionally, a GUI-Application,
based on the open source library wxWidgets [38], to
interact with all ODARIS features is currently in de-
velopment. The integration of a minimal version of
ODARIS into the ScOSA system environment was
successfully performed.

5. CONCLUSIONS AND WAY FORWARD

In this paper we presented the current status of the
ODARIS system developed at DLR. We are currently
in the process of preparing a flight mission scheduled
around 2024/2025, with the intension to evaluate,
if the proposed concept for RTcommunication is
feasible for space operation, if the ODARIS software
system can be reliable operated in space and if we
can perform state of the art AI-based image analysis
using COTS software components. Within the last
two years we have been able make our software
compatible for Linux ARM based embedded comput-
ing platforms, which will be hosted on the projects
space platform and probably utilized in many upcom-
ing space missions. Additionally, we have set up
a complete Continues Integration (CI) development
platform for testing our software system on the target
system platform.

With the next year we plan to perform a thoroughly
quality revision of the system and implementing a
basic FDIR model.
Furthermore, for the preparation of ODARIS as a soft-
ware experiment on a satellite platform, several major
steps are planned:
As a next step, we will implement the RT-communication
service to operate an engineering model of the RT
communication system, after the hardware was
delivered. Also, an TMTC interface service will be
implemented as soon as the necessary information
are available from the system engineers.
For the AI-base image analysis service the transition
to the targeted cloud detection algorithm will be com-
pleted, with the challenges of finding suitable datasets
and developing appropriate processes for retraining
after the real image data from the mission is available.
The integration of all upcoming ODARIS components
into the ScFE project system environment will be con-
tinuously carried out.
In parallel, similar preparations for the SERANIS
project, which is still in an early stage, will be
performed.
At last, during the continuous progress of the sys-
tem design of the satellite platforms, also typical
preparations for a space mission will occur like
providing a FDIR-concept, an operational mission
concept, necessary technical budgets and detailed
AIV processes.
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