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Introduction

In the last years, governments and industry giants became more and more interested in
quantum computing, owing to the capability of quantum computers to find solutions to
problems a classical computer might never hope to solve. Solutions may be found thanks
to two characteristics of quantum mechanics: superposition and entanglement. The first
is the feature of the quantum information not relying on ones and zeros (bit) but on their
superposition, taking characteristics of both (qubit). The second property ensures that
two quantum particles stay connected, regardless of the distance and what affects one
particle does affects also the other. The more qubits entangled within a quantum com-
puter, the greater its computational power can grow. These made quantum information
a central resource used in quantum processing, enabling powerful new ways to compute
and making it suitable for studies involving an enormous quantity of data. Several appli-
cations may gain from this innovation in terms of computing capability, from Industrial
design to logistics, to finance and even artificial intelligence (AI) [1]. Unfortunately, even
if quantum computing seems to be one of the most promising technologies there are
many challenges along the route, such as the susceptibility to errors making quantum
computation difficult to scale. Although a simple quantum processor performing a few
operations on a handful of qubits might be possible, this is not enough to exploit the
full potential of quantum computing. quantum error correction (QEC) may represent the
solution to the failure imposed by quantum mechanics, but differently to classical coding,
the environment in which quantum information exists is subject to severe constraints.
Firstly, the measurement because observing directly a qubit to check for errors damages
it by changing it forever without a chance to use its information. Secondly, the no-cloning
theorem posits the impossibility of making a perfect copy of an unknown quantum state.
Hence, to obtain a realistic copy of a state in a given time we have to store the entire
process up to the moment we want to copy it [2]. The literature has shown how those two
obstacles may be overcome to produce effective QEC codes, the first example of which
was Shor’s code [3]. The aim of this thesis is to find good decoders suitable for those codes
following a heuristic approach. In the thesis, multiple decoders are proposed and tested
using several well-known QEC codes, highlighting their advantages and disadvantages.





Chapter 1

Quantum error correction

In this chapter, a brief review of quantum error correction is performed starting from its
definitions. Furthermore, the channel together with some of the codes, both adopted for
the simulations in this thesis, are presented.

1.1 Preliminaries

In classical communication, the elementary unit that carries information is a bit, which
may take values of 0 or 1. The quantum analog to the classical bit is called a qubit. A
qubit can be in the superposition of two information states, zero and one, and hence
present characteristics of both of them [4]. Analytically, the quantum state of the qubit
|ψ⟩ may be represented as the weighted superposition of the state |0⟩ and state |1⟩ which
form the basis of the two-dimensional Hilbert space. We have

|ψ⟩ = α0|0⟩+ α1|1⟩ (1.1)
where α0 and α1 are complex numbers satisfying the normalization condition according
to

|α0|2 + |α1|2 = 1. (1.2)

Let us now consider a system with K qubits. If a qubit is represented as the superposition
of states zero and one (see (1.1)), a quantum state of K qubits is represented by the
superposition of the 2K quantum states which are the basis of the K-dimensional Hilbert
space. The base vectors can be indexed by a string of length K, and we obtain∑

s

αs|s⟩ (1.3)

As per the single qubit, the weighting factors αs take 2K possible values which are
constrained to normalization, according to the equation∑

s

|αs|2 = 1. (1.4)
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The general expression of a two qubits state is reported below with the normalization
constraint over the weighting factor:

α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩
|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1.

(1.5)

The unitary transformation of a quantum state vector, e.g., induced by the rotation of
the spin of a particle, may be described by the Pauli matrices, in Box 1.1. The operators
can be cast in four types respectively named: I,X,Y and Z. The operator I represents
the identity matrix and does not apply any perturbation to the qubit.

I =

[
1 0

0 1

]
X =

[
0 1

1 0

]

Y =

[
0 −i
i 0

]
Z =

[
1 0

0 −1

]

Box 1.1: Pauli operators

Differently from I, the other operators affect the qubit by changing its state. In Box 1.2
we exemplify the effect of these operators applied to a generic single qubit state.

|0⟩ =

[
0

1

]
X(α0|0⟩+ α1|1⟩) = α0|1⟩+ α1|0⟩

Y (α0|0⟩+ α1|1⟩) = i(α0|1⟩ − α1|0⟩)

|1⟩ =

[
1

0

]
Z(α0|0⟩+ α1|1⟩) = α0|0⟩ − α1|1⟩

Box 1.2: actions of the Pauli operators

The operators X, Z and Y may be seen as a bit flip, a phase flip and a combination
of the two (ignoring the phase factor i), respectively. By multiplying two different Pauli
operators, it is possible to construct the remaining one (this feature will be exploited in
the construction of the binary representation of the quantum codes in Section 1.4):

XY = iZ Y X = iZ

Y Z = iX ZY = iX (1.6)
XZ = iY ZX = iY
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The Pauli operators affecting a state composed of N qubits are described as a sequence of
Pauli operators Mi ∈ {I,X,Z, Y } with i ∈ {1, . . . , N} weighted by a global phase factor
c ∈ {i,−i, 1,−1} which is usually dropped since the global phase does not influence the
measurement outcomes. The Pauli operators applied on N qubits |i1i2 . . . iN ⟩ can be
formally written as:

M1M2 · · ·MN |i1i2 . . . iN ⟩ =M1|i1⟩ ⊗M2|i2⟩ ⊗ · · · ⊗MN |iN ⟩ (1.7)

For instance,
IXZ (|000⟩+ |111⟩) = |010⟩ − |101⟩ (1.8)

A sequence of Pauli operators may be described with a shorter notation which accounts
only for non-identity operators and indexes them with the index of the qubit they affect.
For example, the Pauli operators in (1.8) may be represented as X2Z3. The K-qubit
Pauli group affecting the state of K qubits can be written as

GK = ±{I,X,Z, Y }K (1.9)

and given any two elements P,Q ∈ GK the following holds [5]

if PQ = QP ⇒ P,Q commute
if PQ = −QP ⇒ P,Q anti-commute. (1.10)

This means that two elements of GK commute if the number of positions in which they
differ from each other, not including the identity, is even. If this number is odd then
the two operators are said to anti-commute. For example, the XXIIZ commute with
Y IIIX, since both positions one and five differ, while all the other positions either
include the identity or do not differ. In contrast, the operator IZIII anti-commutes with
XXIIZ, because only position two accounts for two different non-identity operators in
both sequences.

1.2 Quantum Error Correction

Quantum codes aim to encode a quantum state of K (logical) qubits into a quantum
state of N (physical) qubits. In a quantum system, qubits may be subject to different
types of error. In particular one may have a bit-flip, a phase-flip or both at the same
time resulting in the operators X, Y and Z, respectively. The first code able to correct
both bit-flips and phase-flips was introduced by Shor in 1995 [3]. In this code a single
(logical) qubit is encoded in nine (physical) qubits according to

|0̄⟩ = 1√
8
(|000⟩+ |111⟩) (|000⟩+ |111⟩) (|000⟩+ |111⟩)

|1̄⟩ = 1√
8
(|000⟩ − |111⟩) (|000⟩ − |111⟩) (|000⟩ − |111⟩) .

(1.11)

The bar over the state zero (or one) on the right-hand side of (1.11) indicates that a
logical zero (or one) is encoded to the state on the left-hand side.
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If the first qubit is subject to a flip, hence affected by the error E = X1 = XIIIIIIII,
then the Pauli operators Mi = Z1Z2 and Mj = Z2Z3, respectively, anti-commute and
commute with E, then:

MiE = SiEMi

MjE = SjEMj
(1.12)

The previous equation provides the couple SiSj = −1 + 1. Those two values are the
result of measuring Mi,Mj if the error E occurs. If the error appears over the second
qubit, the two measurements would lead to −1 − 1 and if it happens to be over the
third, the measurement would have been +1−1. These operators provide a full mapping
over the first three-qubit and they give a diagnosis analogous to the classical syndrome.
Similarly Z4Z5, Z5Z6 and Z7Z8, Z8Z9 provide the same diagnosis, respectively, over the
second triplet of qubits and over the last. The result of the bit-flip, operator X, over
every bit is shown in Table 1.1. The columns of the Table can be indicate where the error

Error X1 X2 X3 X4 X5 X6 X7 X8 X9 Y1

stabilizer
ZZIIIIIII −1 −1 +1 +1 +1 +1 +1 +1 +1 −1

IZZIIIIII +1 −1 −1 +1 +1 +1 +1 +1 +1 +1

IIIZZIIII +1 +1 +1 −1 −1 +1 +1 +1 +1 +1

IIIIZZIII +1 +1 +1 +1 −1 −1 +1 +1 +1 +1

IIIIIIZZI +1 +1 +1 +1 +1 +1 −1 −1 +1 +1

IIIIIIIZZ +1 +1 +1 +1 +1 +1 +1 −1 −1 +1

Table 1.1: stabilizer for the detection of bit-flip operator X of the Shor code and the
corresponding syndrome

occurred, similar the syndrome tables for to classical code. As mentioned above the code
introduced by Shor is able of correcting also the phase flips. The diagnostic operators
used for this purpose are XXXXXXIII and IIIXXXXXX and the relative quantum
syndrome is reported in Table 1.2.

Error X1 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Y1

stabilizer
XXXXXXIII +1 −1 −1 −1 -1 -1 -1 +1 +1 +1 −1

IIIXXXXXX +1 +1 +1 +1 -1 -1 -1 −1 −1 −1 +1

Table 1.2: stabilizer for the detection of phase-flip operator Z of the Shor code

From the columns of the Table relative to a pure phase-flip can be detected which block
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underwent a phase-flip but not which of the three elements composing the block has
been affected by the flip. Since the block imposes that the signs of the three elements
are multiplied, if an error occurred on one of them, changing the sign of the block would
correct this error no matter which element was affected by it. Since the error Y accounts
for both the bit-flip and the phase-flip, an error of this type over any position can be
detected by checking both tables. For Example, an error E = Y1 would have both the
output of X1 over the first Table and Z1 in the second, as it is shown in the last column
of both tables.

1.3 Stabilizer Codes

Stabilizer codes are the quantum analog to linear codes. Precisely, a stabilizer group
S is a set of Pauli operators on N qubits which commute with each other. Hence any
Si ∈ S commute with any Sj ∈ S,∀i, j. The diagnostic operators reported in the previous
section, both Table 1.1 and 1.2, commute with each other, in fact, they compose the set
of generators of a stabilizer group S. The complete group of stabilizers is composed of all
the sets which commute with each other and are constructed under multiplication from
the original set, e.g.

(ZZIIIIIII)x(IIIXXXXXX) = ZZIXXXXXX (1.13)

A state |ψ⟩ is defined to be a codeword of the stabilizer S if the following holds:

Si|ψ⟩ = |ψ⟩ ∀i (1.14)

meaning that it has to be a +1 eigenstate for all the stabilizers. Recall the definition
of a state of K-qubit, (1.3), then the definition of codeword would lead to the encoding
reported in (1.11), the original Shor code defined to evaluate the stabilizers. In quantum
communication the error may be defined as a set of Pauli operators taking a state |ψ⟩
to a corrupted state Eα|ψ⟩ with Eα being a collection of operators. The corrupted state
may be the ±1 eigenstate of the stabilizers, which depends on whether or not the error
operators commute or anti-commute with the stabilizers. In case the error operator Eα

commutes with stabilizer Si, we have

SiEα|ψ⟩ = EαSi|ψ⟩ = Eα|ψ⟩

whereas when Eα anti-commutes with stabilizer Si, we have

SiEα|ψ⟩ = −EαSi|ψ⟩ = −Eα|ψ⟩.

Whether the error commute or anti-commute with the stabilizer determines the result
of the equation above, consequently, the commutative property of the error defines a
sequence of ±1, which elements account for the different stabilizers. This sequence is
the equivalent of the syndrome in classical coding theory. In quantum mechanics, any
measurement of the state that yields information about it degrades it. The evaluation of
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the syndrome depends only on the relation between the error and the stabilizers, not on
the state of the qubit, hence it does not degrade it. The syndrome can be used to find
the error pattern yielding the corrupted state and this error can be applied to the latest
in order to correct it.

1.4 Binary/4-ary representation of quantum codes

Recall that Y operators may be represented as the product of the X and Z operators,
see (1.13). In this section this characteristics will be adopted to map the quantum over
the classical coding theory. Firstly, by mapping the Pauli operators onto (F2)

2 according
to:

I → (0, 0) X → (0, 1) Z → (1, 0) Y → (1, 1) (1.15)

The (N −K) stabilizer generators of the [N,K] stabilizer code reported in the tables of
Section1.1 can be used as rows of the binary representation of parity-check matrix H of
that code. Matrix H has size [N −K, 2N ], from now on n = 2N . The first N columns
define the matrix HX and have a 1 only in positions where there are stabilizers whose
binary representation has a one on the right digit (X and Y ). The remaining N columns
define the matrix HZ and have a 1 only in positions where there are stabilizers whose
binary representation has a one on the left digit (Z and Y ). This representation derives
from the fact that the product of the X and the Z stabilizer, with a phase factor, produce
the Y stabilizer. Similarly, the bit-wise addition of (0,1) and (1,0) produce (1,1), hence
Y . The matrix constructed with this method is

H = [HX |HZ ] =



1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1


.

(1.16)
The commutative property which applies to the Pauli operators now becomes the sym-
plectic product or twisted product. Given two binary vectors v = [vX ,vZ ] and u =
[uX ,uZ ], their twisted product can be computed as

v ⊙ u = vX · uZ + uX · vZ =

=
N∑
i=1

vXiuZi +
N∑
i=1

uXivZi

(1.17)

with all the sums modulo 2. In a stabilizer group, by definition, any stabilizer has to com-
mute with any other stabilizer. The commutative property among stabilizers is translated
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into the orthogonality of the rows of H with respect to the twisted product. In fact ∀m
with m ∈ {1, . . . , N −K} the following holds,

rm ⊙ rm′ = rXm · rZm′ + rXm′ · rZm = 0 mod 2 ∀m′ ∈ {1, . . . , N −K} (1.18)

with rXm a row of HX and rZm a row of HZ . The quantum syndrome is named after its
capability of mapping the measurement of the error affecting the qubits. This mapping
is performed thanks to the commutative property of the stabilizers with respect to the
error. The symplectic product of the parity-check matrix (PCM) H and an error vector
e represented as [eX |eZ ] is evaluated according to:

S = H ⊙ eT = HXeTZ +HZe
T
X (1.19)

Since the symplectic product ⊙ can be seen as the product of [HX |HZ ] with [eZ |eX ]T

from now on the binary representation of the error vector will be [eZ |eX ] instead of
[eX |eZ ].

For example, the binary representation of the error vector E = X1 assuming N = 7
is eX = [100000000] and eZ = [000000000]. With the PCM and the error, both in binary
form, it is possible to evaluate the syndrome according to (1.19), S = [00100000]. This
result agrees with the first column of Tables 1.2 and 1.1, if the −1 and +1 of the table
are mapped onto 1 and 0, respectively.

The Pauli operators may also be mapped onto the Galois Field(4) elements with the
equivalent symbol notation

I → 0 X → 1 Z → α Y → ᾱ (1.20)

To properly adopt this representation the sum and product in F4 are reported in Box (1.3)

+ 0 1 α ᾱ

0 0 1 α ᾱ

1 1 0 ᾱ α

α α ᾱ 0 1

ᾱ ᾱ α 1 0

× 0 1 α ᾱ

0 0 0 0 0

1 0 1 α ᾱ

α 0 α ᾱ 1

ᾱ 0 ᾱ 1 α

Box 1.3: Addition and Multiplication in F4

According to this isomorphism, the multiplication of Pauli operators became the addition
in F4. Furthermore, because the Pauli operators are mapped over a 4-ary symbol it is
possible to represent PCM as a 4-ary matrix. The example of the Shor code for 9-qubits
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encoder then becomes

Ĥ =



1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1
α α 0 0 0 0 0 0 0
0 α α 0 0 0 0 0 0
0 0 0 α α 0 0 0 0
0 0 0 0 α α 0 0 0
0 0 0 0 0 0 α α 0
0 0 0 0 0 0 0 α α


. (1.21)

The syndrome can be evaluated with this version of the PCM. The commutative property
of the stabilizer code is represented by the field trace of the inner product. Consistently
with the other two representations, also in this case the syndrome is binary. An impor-
tant feature of the field trace is the following: Tr(0) = Tr(1) = 0 and Tr(α) = Tr(ᾱ) = 1.
According to [6] Two operators in the set of stabilizers commute iff the inner product of
their images, the vectors over GF(4), is either 1 or 0, hence their trace is zero. Conse-
quently, the syndrome can be written as:

Si = Tr⟨Ĥi, Ê⟩ (1.22)

with Ĥi a column of the parity check matrix with elements in GF(4). The quantum to
classical isomorphism is summarised in Table 1.3.

Pauli (F2)
2 F4

I (0, 0) 0

X (0, 1) 1

Z (1, 0) α

Y (1, 1) ᾱ

Multiplication Bit-wise Addition Symplectic Product
Commutativity Addition Trace of the Inner product

Table 1.3: Summary isomorphism Quantum and Classical codes

1.5 CSS codes

An important class of quantum codes are CCS Codes [7], named after Calderbank, Shor
and Steane, which have a parity check matrix in the form

H =

[
H1 0
0 H2

]
(1.23)
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+ + +

Figure 1.4: Tanner graph of the Hamming code (1.25) with N = 7, and m = 3

with both H1 and H2 having the same size, (M × N). The commutativity constraint
(1.18) of a quantum stabilizer code translates into

H = [HX |HZ ] ⇒ HXH
T
Z = H1H

T
2 = 0. (1.24)

In the special case in which the two matrices H1 and H2 are equal, the code is referred
to as a dual-containing CSS code. For example, the (7, 4) Hamming code may be used
for the creation of a code of this type. For instance, let

H1 =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 (1.25)

In this case, we have H1H
T
1 = 0 since all the rows present an even number of ones. Hence,

the constraint over the rows is satisfied.

1.6 QLDPC codes

Due to practical reasons, one of the most interesting class of quantum error correction
codes is quantum low-density parity-checks (LDPCs). An LDPC code is a code with a
sparse parity check matrix H. LDPCs codes are typically represented as a bipartite or
(Tanner) graph [8]. For example, in Figure 1.4 the Tanner graph of the (7, 4) Hamming
code with parity check matrix H1 is shown. The performance of LDPCs under belief
propagation decoding is known to deteriorate when short cycles are present in its Tanner
graph [9]. A cycle is defined as a path over a graph which closes back on itself, highlighted
in Figure 1.4. Thus, when designing an LDPC code, one usually tries to obtain a large
girth, which corresponds to the length of the smallest cycle in the graph.

In order to satisfy the constrain reported in (1.24), the PCM H of the dual containing
Calderbank-Shor-Steane (CSS) code must present rows which overlap with each other
on an even number of positions. This, by definition, leads to a Tanner graph with an
enormous number of small loops (of length 4). One can drop the dual containing CSS
constraint to get codes with better properties.
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|ψ⟩ |ψ⟩

X|ψ⟩

Z|ψ⟩

Y |ψ⟩

1− p
p/3

p/3

p/3

Figure 1.5: Transition probability of the depolarizing Channel with probability p

1.7 Measurement and Quantum Channel

In this section, a brief explanation of the effects of measurement and how a quantum
channel may be modelled in order to apply the analog to classical decoding techniques
in a quantum environment is presented. The measurement of the quantum information
itself represents a constraint over the employment of different decoding algorithms. As
introduced in the previous sections, the quantum bit (qubit), differently from the classical
bit, can be in a superposition of states (1.1). Let us consider a generic quantum state
|ψ⟩ = α1|0⟩ + α2|1⟩. When the qubit is measured, it collapses to the state |0⟩ with
probability |α0|2 and to |1⟩ with the probability |α1|2. As a workaround one usually
measures the effect of the error in form of syndrome (see preceding discussion) and
applies a correction to the corrupted quantum states.

Another important feature of the quantum channel, which imposes strict constraints
over the decoding scheme, is called decoherence. In a quantum channel, it is also known as
quantum noise and represents the principal impairment over the practical implementation
of a quantum communication system [10]. It is also described as destructive interaction
between the environment and the qubit [3]. The channel in quantum communication is
strongly hardware dependent. Usually a canonical model is adopted, the depolarizing
channel, which will be employed also in this study.

1.7.1 Depolarizing Channel

A widely adopted model is the depolarizing channel model with error probability p. It
should be recalled that a quantum state of N qubits is subject to a random Pauli error

E = E1 ⊗ · · · ⊗ EN (1.26)

where all Ei ∈ {I,X,Z, Y } affecting the single qubit may cause independently a bit-flip,
a phase-flip or both with the same probability

P (Ei = X) = P (Ei = Z) = P (Ei = Y ) = p/3. (1.27)

The depolarizing channel defined by the error probability p assumes that the errors
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X,Y,Z occur with the same error probability p/3. Then the channel is isomorphic to a
4-ary symmetric channel [11]. In the decoding, as it will be shown later, the channel
may be treated as two independent binary-symmetric channels (BSCs) with crossover
probability 2p/3 [10]. With one channel for the X and one for the Z, this approximation
removes the correlation between these two types of errors.

1.8 Degeneracy in Quantum Codes

In classical coding theory, different error vectors applied to the same codeword lead
necessarily to different received words. However, in quantum communication systems, it
is possible that two different errors applied to the same quantum state |ψ⟩ yield the same
(corrupted) state |ϕ⟩. This effect is known as degeneracy. In particular, if we consider a
quantum |ϕ⟩ that belongs to the +1 eigenspace of a stabilizer code (i.e., it is a codeword),
we have that two operators Eα and Eβ will yield the same quantum state whenever they
differ by a stabilizer,

Eα = EβSi

Eα|ϕ⟩ = EβSi|ϕ⟩ = Eβ|ϕ⟩.
(1.28)

Degeneracy has deep implications in quantum error correction. For example, consider a
quantum system in which the state |ψ⟩ has been altered to |ϕ⟩ = Eα|ψ⟩. As mentioned
in the previous sections, in order to bring back the system to state |ψ⟩, it is sufficient to
apply (again) the same operator Eα,

Eα|ϕ⟩ = EαEα|ψ⟩ = |ψ⟩.

Due to degeneracy, we have that the quantum system may also be brought back to
its original state |ψ⟩ by applying any operator Eβ = SiEα, where Si is any of the
stabilizers. In fact, for a given stabilizer code, all the possible error patterns may be
grouped in equivalence classes or cosets. A coset is a set of error operators which differs
by a stabilizer. Hence any error operator in the same coset applied to |ψ⟩ yields the same
state. Thus, given Ej |ψ⟩ and Ei an error operator of the coset G,

∀Ei ∈ G : Ei|ψ⟩ = Ej |ψ⟩. (1.29)

1.9 Optimal decoding rule for QEC codes

Since the syndrome is a result of a measurement, decoding is performed as in the classical
case, taking into account some peculiarities of quantum codes.

A classical maximum likelihood (ML) decoder would consider all error patterns e =
[eZ , ex] which yield the observed syndrome S and pick the most likely one:

ê = argmax
e|He=S

p(e|S) (1.30)
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In the classical domain, the most likely error pattern associated with a given syndrome,
for a BSC is the error pattern with the minimum weight. Unfortunately, due to (possi-
ble) degeneracy of quantum codes, this metric is not optimal in the quantum scenario.
According to [12] an error pattern E can be decomposed into three different terms: a
pure error, T , which represents the effective centralizer coset that contains E, a logical
operator,L, which represents the stabilizer coset that contains E, and a stabilizer com-
ponent, W , which represents the specific operator in the stabilizer associated with E.
The authors show that for quantum codes the optimal decoding rule is

L̂ = argmax
L

p(L|S) (1.31)

also named the degenerate quantum maximum likelihood decoding rule. In [12] the au-
thors also show that a list of candidates e|He = S grouped into cosets has the optimal
solution in the coset with the highest likelihood.

Ĝ = argmax
G for which ∃e∈G|He=S

∑
e∈G

p(e|S) (1.32)

Once the proper coset is identified, any member can be used to correct the error. This
result is due to the degeneracy in quantum codes. Some of the decoders in the following
chapters produce a list of candidates and the decision will be on the candidates with the
minimum weight, of course the list created will be a reduce list with respect to all the
possible candidates and the decision over the codeword with minimum weight will not
coincide with the ML decoder. To evaluate the degenerate quantum maximum likelihood
decoding rule (1.31), it should be computed the probability of each coset by adding the
probabilities of all the operators that make up the coset. This approach will be simulated
in the following by grouping the error pattern present in the list of candidates.



Chapter 2

Classical Decoding Algorithms

Several algorithms for different types of codes can be found in the literature. We focus
on quantum LDPC codes and first discuss some decoding algorithms.

2.1 Belief Propagation

In this section, a brief description of binary belief propagation (BP) is reviewed. BP de-
coders usually yield an approximation of the symbol-wise maximum a posteriori (MAP)
[8] decoders. They implement the symbol MAP rule when the code’s bipartite graph is
a tree, i.e., when it does not have cycles. Given an observed syndrome S, a symbol-wise
MAP decoder outputs the most likely error bit-wise, e = (e1, e2 · · · , en). Formally,

ẽi = argmax
ei∈F2

P (ei|S). (2.1)

The BP operates by exchanging messages over the Tanner graph of H. The Tanner
graph provides a complete representation of an LDPC code [13]. Let us recall that a
Tanner graph is described as a bipartite graph whose nodes may be check node (CN) or
variable node (VN). CN ci and VN vj are joined by an edge if and only if the element
hij of the parity-check matrix is 1. The Tanner graph of Shor’s code, whose parity-check
matrix is given in (1.16) is shown in Figure 2.1. Since it is a CSS code, its PCM can be
written as

H =

[
Hx 0
0 Hz

]
. (2.2)

The PCM in the form 2.2 implies that the Tanner graph consists of two unconnected
Tanner graphs corresponding to the two sub-matrices. In fact, the first two check nodes
are linked only to half of the variable nodes while the other check nodes are linked
only to the remaining half. This design allows in principle decoding the X and Z parts
independently, although the depolarizing channel introduces dependence between the X
and Z components of the qubits. Ignoring this dependence, the qubit error rate can be
obtained as the sum of the bit error rates (BERs) of the two classical codes.
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+ + + + + + + +

Figure 2.1: Tanner graph of the low-density parity-check code (see also (1.16)) with
n = 18, and m = 8

BP decoding can be understood as an algorithm in which the CNs and VNs, exchange
messages along the edges of the bipartite graph. In particular, BP is based on the ex-
change of extrinsic messages, which implies that the information passed to a node does
not contain information already known at the receiving node. This algorithm relies on
the assumption that the message passed is independent throughout the decoding pro-
cess (i.e., it assumes absence of cycles in the Tanner graph). The information exchanged
between nodes can be a probability, i.e., belief that the bit is one or zero, the ratio of
thees two probabilities, called likelihood ratio (LR), or its logarithm, the log-likelihood
ratio (LLR). In the thesis the LLR is employed.

2.1.1 Belief Propagation Syndrome Decoding

Syndrome decoding can be also illustrated on the code’s Tanner graph. In this setup,
the CNs still represent constraints on the code symbols. The VNs represent the error
pattern, rather than a codeword. Hence, the parity checks might not be satisfied, but
have a parity which is given by the syndrome vector. The task of the decoder is to recover
the error pattern which yields the observed syndrome.

Given p, the error probability of the depolarizing channel (1.7.1), we may define a
prior LLR for each of the VNs. For vj we have,

L = Lj = log

[
1− 2p/3

2p/3

]
. (2.3)

Hereby, we exploit the knowledge of the channel error probability and hence bias the
error pattern to be sparse. The syndrome-based decoding algorithm is summarized in
the following steps:

• Initialization : For each variable node vj with j ∈ {1, · · · , n} evaluate the log-
likelihood ratio according to (2.32).
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Figure 2.2: Node processors

• CN decoder : Let N(ci) being the set of neighbour nodes of ci, a neighbour node
is defined as a node connected to ci,

N(ci) = {vj : Hij = 1}. (2.4)

Let the message Li→j be the LLR at the output of ci to vj . According to [8] we
have

Li→j = (−1)Si2 tanh−1

 ∏
j′|vj′∈N(ci)\vj

tanh

(
1

2
Lj′→i

) (2.5)

• VN decoder : Let N(vj) being the set of neighbour nodes of vj . The message
Lj→i from vj to ci is

Lj→i = Lj +
∑

i′|ci′∈N(vj)\ci

Li′→j (2.6)

• A posteriori LLRs: For i ∈ {1, ..., n} compute

Ltotal
j = Lj +

∑
i|ci∈N(vj)

Li→j . (2.7)

Differently from the previous step, now all the incoming messages flowing into the
variable node vi are summed because this LLR does not need to be sent back to
any other check node. In fact, Ltotal

j will be used for the hard decision.

• Hard decision and Syndrome check: Based on the LLRs evaluated in the
previous step the hard decision over the symbols is done as

ẽj = 0 if Ltotal
j > 0

ẽj = 1 if Ltotal
j < 0

(2.8)
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With the estimated error vector ẽ the syndrome S̃ is computed according to (1.19).
If the syndrome is equal to the syndrome observed from the measurements the
algorithm stops. Otherwise, it goes to the next iteration and computes (2.5).

if S̃ = S ⇒ ê = ẽ. (2.9)

Under the assumption of statistically independent of the messages, BP is optimal, in
the sense that the MAP yields exactly the a posteriori probability (APP) [9]. Thus, if we
denote by γ the girth of the code considered, this condition (statistical independence) is
true up to the γ/2-th iteration. Unfortunately, many quantum codes are characterized by
a small girth. For example, in [14] the author shows that the CSS dual containing codes
constructed from LDPC matrices lead to an enormous number of cycles of length 4. For
these reasons, the performance of BP decoding is far from optimal for many QLDPC¸
families. In the following sections, we describe other algorithms that may provide better
performance.

2.2 Information Set Decoding with Bit-Flipping

In [15] Gallager proposed two algorithms for the decoding of the LDPC codes over a
binary-symmetric channel (BSC). In his paper, the author assumed that the received
sequence was accessible at the receiver. Starting from this information the decoder eval-
uates all the parity-check sums and then flips any digit in the hard decision of the received
sequence r that are contained in a fixed number of unsatisfied check-sums. Consider the
following transmitted codeword c and error pattern introduced by the channel e:

c =
[
1 1 1 1 0 0 0 0 0 0 0 0 0 0

]
e =

[
0 0 0 1 0 0 0 0 0 0 0 0 0 0

] (2.10)

and consider the seven-qubit CSS code from [6] in its binary matrix representation:

H =



1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1


(2.11)
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Given the received sequence and syndrome, it is possible to extract the unsatisfactory
checks, highlighted below.

r =
[

1 1 1 0 0 0 0 0 0 0 0 0 0 0
]

H =



1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1


S =



1
0
0
0
0
0
0
0


(2.12)

From the example, it is clear that flipping any of the first three digits of r would lead to a
non-zero syndrome, which is different from the previous. But by flipping the fourth digit
of the received sequence and computing the syndrome the result would be an all-zeros
vector. In fact, in this case, the error is exactly on the fourth digit in (2.10). Generally,
if the syndrome evaluated with the modified hard-decision is a non-zero vector then the
procedure is performed again. This algorithm stops when a given number of iterations
is reached or the vector obtained through the bit-flipping is a codeword, and hence it
satisfies

S′ = Hr′T = 0 (2.13)

2.2.1 Information Set Decoding of Quantum Codes

When it comes to quantum codes, there are two approaches that may be followed with
the PCM is given in its binary form. In the first you split the system of equations into two
systems: an X-part and a Z-part which are solved independently. The advantage is some
reduction in complexity: e.g., O((2N)3) versus O(2N3) for gaussian elimination (GE).
While the second, keep one system of equations; we go for this, since we want to try to
account for the correlation between X,Z error. For quantum codes the sequence r can
not be observed (see Section 1.7). In fact, only the syndrome S is accessible, and hence
it is not possible to follow the same approach proposed by Gallager. For this reason, a
decoding scheme focused exclusively on the syndrome is investigated.

The idea of information-set decoding (ISD) was first introduced by Prange [16]. The
algorithm selects an information set and reconstructs a message from the corresponding
entries, then re-encodes this message. This procedure assumes that a received sequence
with no errors in the information set may be reprocessed without any changes in the
information set and produce a correct codeword. For instance, given a code C defined
by its generator matrix in systematic form G = [Im|P ], the information set may be
defined as the first K positions of the columns of G, hence BK = {1, 2, ...,K}. Assume
r = c + e the received sequence with c ∈ C the transmitted codeword and e ∈ {0, 1}
the error introduce by the channel. Let eBK

be the entries of r corresponding to the
positions in the information set. We may assume that no errors in the information set
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happened (later we revert this assumption), i.e., ei = 0, ∀i ∈ BK . All other error values
ei, ∀i ∈ [1, ..., n]\BK , i.e., are assumed to be unknown. Then, we have to solve the system
of equations

S = HeT (2.14)

For now, we define the information set as the n−h right-most digits of the error sequence
e. To solve (2.14) the parity-check matrix needs to be into identity form which can be
done by GE. This is the starting point of our algorithm.

Gaussian Elimination

The idea is to obtain H in identity form,

H ′ =
[
Im h′

m+1 · · · h′
n

]
(2.15)

where Im is the m ×m identity-matrix and h′
i is the i − th column of the matrix after

the operations, with m = N − K. If the rank is lower than the number of rows of the
matrix Gaussian elimination would provide H ′ in the form

H ′ =



1 0 · · · 0

0 1 · · · 0
...

...
...

. . . h′
h+1 · · · h′

n

0 · · · 0 1
...

...
· · · O(m−h)xn · · ·


(2.16)

where O(m−h)xn is the (m − h)xn matrix of all zeros. Usually in quantum codes, some
redundancy is introduced resulting in a matrix having the rank (h) lower than the number
of rows.

All row operations on the parity-check matrix need to be applied to the syndrome as
well. The permutations among the columns and among the rows are named, respectively,
µ1(.) and ϕ1(.). In the following, GE is performed over a PCM step-by-step to investigate
for illustration. For simplicity, the matrix used in the example is full-rank (m = h) and
together with the syndrome S, is reported in 2.12.

H =



1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1


S =



1
0
0
0
0
0
0
0


(2.17)

Since the first column is not in the identity form, the first row, highlighted in red, is
summed to the second and the third, highlighted in blue. The same is done over the
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syndrome. Once the first row is in standard form the algorithm passes to the second
column. Here the position (2, 2) reports a zero, which means that the second row has to
be exchanged. The function search for a row with an index greater than 2, which has a
one in the 2nd position. In this case the 3rd row:

H =



1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1


S =



1
1
1
0
0
0
0
0


(2.18)

The rows are swapped and the new row is summed to any other row which presents a one
in the second column, to obtain also the second column in standard form. This procedure
is followed until a column with all zeros below the position considered is encountered. In
this example, the case occurs when the 4th column is considered.

H =



1 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1


(2.19)

In this case, the column without ones in the 4th position or below is switched with the
(h+1)th column, which in this example is the 9th. When the identity matrix on the left
side is achieved then the procedure is finished and as output is provided the PCM in the
new set-up (H ′), the syndrome ordered according to the rows operations performed over
the matrix (S′) and the permutation applied to the columns (µ1). The results for the
example presented are the following:

H ′ =



1 0 0 0 0 0 0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1


S′ =



1
1
1
0
0
0
0
0


µ1 =

[
1 2 3 9 5 10 11 12 4 6 7 8 13 14

]
(2.20)
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The columns highlighted in 2.20 represent the information set for this code. From now
on, the sequence resulting from the encoding of the all-zeros sequence will be named the
candidate for order-zero reprocessing. Orders higher than zero have to be defined and to
do it reprocessing based on bit flipping (BF) should be introduced.

2.2.2 Reprocessing

We consider the information set eBk
which was chosen to be a length-k all-zero vector

assuming no errors in the information set, and the PCM full-ranked. We revert this
assumption and create a list of error patterns, among which we select the most probable
one. This is done by setting some entries of eBk

to one.
Rearranging the components of eBk

according to the permutation µ1 leads to the
sequence:

e′ = µ1 (eBk
) =

(
e′1 e′2 · · · e′n

)
(2.21)

Note that the parity-check matrix is not in identity form (see (2.16)). Now we can
solve (2.14) in order to obtain e′i, assuming (e′h+1, · · · , e′n), with e′i = 0 ∀i ∈ {h+1, . . . , n}.
We refer to this step as encoding. We obtain a first candidate error pattern candidate e0,

e0 =
(
e01 e02 · · · e0h e′h+1 ... e′n

)
(2.22)

More precisely, for 1 ≤ j ≤ h the digits e0j are evaluated according to:

e0j =

n∑
i=h+1

h′ije
′
i + s′i mod 2 (2.23)

We can now flip some of the bits of eBk
and repeat the procedure to generate more

candidate error patterns. The algorithm can be split into several stages, also called orders
ℓ of reprocessing. For the ℓ-th order the algorithm will make all possible changes of i of
the n− h right-most bits of e′. For each change reconstruct the corresponding candidate
ej according to (2.23).

When all the
ℓ∑

i=0

(
n− h

i

)
(2.24)

possible candidates have been computed, order-ℓ reprocessing is finishes. Let wH(ej)
denote the Hamming weight of a sequence. Then, we can assign to each candidate error
pattern a penalty wH(ej). The final error pattern e∗ is selected as the one with the lowest
penalty. Of course, the final estimated ê∗ can be obtained by permuting the components
of e∗ with the inverse permutation µ−1

1 , i.e.,

ê∗ = µ−1
1 (e∗) (2.25)

In case we assume two independent BSCs which act on the different components of the
codeword with equal error probability p, the most likely sequence is the one with the
lowest number of bit-flips (ones), thus the one with the lowest penalty.
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Consider now the example in 2.10. The first candidate corresponds to order-0 re-
processing, and the encoding would have the syndrome positions B̄n−h and all zeros in
positions Bn−h.

H ′ =



1 0 0 0 0 0 0 0 1 1 1 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 0 0 0 0 1 1


s′ =



1
1
1
0
0
0
0
0


Moving to order−1 reprocessing leads to the encoding of all the sequences which present
a single bit-flip in the Bn−h positions. Consequently, out of the 7 candidates obtained
with the encoding the one with a bit-flip over the 9th position has the minimum weight
among the candidates. The unordered and ordered sequences appear as:

e4 =
[
0 0 0 0 0 0 0 0 1 0 0 0 0 0

]
ê4 = µ−1

1

(
e4
)
=

[
0 0 0 1 0 0 0 0 0 0 0 0 0 0

]
In this case, order−0 reprocessing was not enough. This is due to the fact that the error
was in the n− h right-most digits, hence the information set decoding only was not able
to correct it. If a single error had appeared in the complement of the information set,
order − 0 would have produced the error pattern searched.

2.2.3 Smart Bit-Flipping

Similarly to the Gallager algorithm, where the flips over the digit were performed only
over unsatisfactory checks, also with the information set decoding and BF the flips may
be applied over a reduced information set. Given the PCM and the syndrome in the form
2.20, a reduced list of candidates can be evaluated. The implementation consists of the
search for the ones in the syndrome. Once they have been identified, the reprocessing
is performed by changing only the bits which correspond to those unsatisfactory check-
sums. In the following the graphical representation is reported.

H ′ =



1 0 0 0 0 0 0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1


S′ =



1
1
1
0
0
0
0
0
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In this example, only three bits are flipped in the reprocessing phase of the algorithm. This
change affects the list of candidates whose number of elements, for order-ℓ reprocessing,
changes from 2.24 to :

ℓ∑
i=0

(
nuc
i

)
(2.26)

where nuc is the number of bits which leads to unsatisfactory check-sums. This modifica-
tion in the decoder does not affect strongly the performances but decreases the complexity
since the encoding of the information set has to be performed in less time with respect
to the canonical information-set decoding and bit-flipping.

2.3 Classical Ordered Statistics Decoding

Since their advent in [17], ordered-statistics-based algorithms have been widely inves-
tigated thanks to their good performance and moderate complexity. In [18] the author
explores the advantages of searching the correct sequence over a reduced list of candi-
dates, a list based on the reliability of the single bits. The soft-decision decoding scheme
for binary linear block codes is composed of two steps: hard decision and reprocessing. In
the decoding scheme presented by Fossorier, the hard decision is made over the re-ordered
version of the received sequence instead of the actually received sequence. The ordering
is made taking into account the reliability, ensuring however that an information set is
selected. A discussion follows.

Consider a binary linear code C with the generator matrix G, given the received
sequence r a first permutation λ1(.) is applied and a permuted sequence is obtained:

y = λ1 (r) =
[
y1 y2 ... yn

]
(2.27)

with the reliability of the bits ordered in decreasing order:

|y1| > |y2| > · · · > |yn|. (2.28)

The same permutation is applied also to the columns of the generator matrix, to obtain
G′ the generator matrix of a binary linear code C ′ equivalent to C. Later a second
permutation, λ2(.) is applied to G′ to take k independent columns in the first k positions,
by keeping the ordering of the right-most columns ordered by reliability.

G′′ = λ2 (λ1 (G)) . (2.29)

Consequently, row operations are performed over the generator matrix to obtain it in
standard form (G1). This last step may be carried out relying on Gaussian elimination,
see Section 2.2.1. In fact, λ2(.) and µ1(.) in Section 2.20 coincide. The second permuta-
tion is applied also to y and results in the vector z, which is consistent with G1. The
code generated by the latest is equivalent to C ′ and C. Lastly, the hard-decision over
the first k bits of z are encoded with G1 to obtain the first candidate (a0) which is a
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codeword of C1. By performing the inverse permutation of λ1 and λ2 a codeword of C is
obtained:

ĉ0 = λ1
−1

(
λ2

−1
(
a0

))
(2.30)

The reprocessing is performed similarly to Section 2.2 but instead of encoding fol-
lowing (2.23), the encoding is a multiplication of the reprocessed vector of length k with
the generator matrix. During order-ℓ reprocessing, for 1 ≤ i ≤ ℓ, all possible changes of i
of the k bits in the most-reliable positions of a0 are performed and re-encoded to create
the list of candidates. Note that the maximum number of bits eligible for bit flipping cor-
responds to the rank of the matrix, h. Thus, the number of total candidates for order-ℓ
is

ℓ∑
i=0

(
h

i

)
. (2.31)

Finally, the candidate that minimizes the Euclidean distance to the received word is
selected. In quantum communications, the reliability of the received sequence and the
hard-decision are not accessible at the receiver. For those reasons, the hard-decision and
the decision over the list of candidates in this scenario can not be made following [18],
but the reprocessing based on the statistics may still be implemented if another decoder
is applied to get the reliability of the bits. In the following section, this scenario is inves-
tigated. In [19] the authors proposed an equivalent decoding scheme which investigates
the parity-check matrix instead of the generator matrix. This may be more interesting
for the quantum codes because it relies on the syndrome for the creation of the list of
candidates.

2.4 Quantum Codes and Ordered statistics

In [20] a decoding scheme is described which combines BP and order-statistics decoding
(OSD), to overcome the gap between the BP decoder and the ML decoder. It is shown that
the performance of the BP is improved thanks to the reprocessing performed according to
the statistics of the single bits. In [21] the authors propose a similar approach but applied
to quantum low-density parity-check (QLDPC) codes. Initially, the algorithm is presented
with the use of a binary decoder, using the binary representation of the quantum symbols
(1.15), but also non-binary versions are exploited. The paper investigates how OSD may
be applied after BP to achieve better results. In the thesis, a similar approach is followed
by applying BP in F2 first and then at every iterations perform OSD.

Without the received sequence it is not possible to evaluate the Euclidean distance
between what has been received and the candidates. In fact, the syndrome and the parity-
check matrix are the only tools available at the receiver, hence a procedure more biased
towards [21] with respect to the one proposed by [20] is preferred. The estimated error
pattern is provided by the previous iteration of the belief propagation. It is important to
recall that at every iteration of BP (over F2) an estimate of the log-probability ratio of
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each error position (ei), given the observed syndrome s, is produced,

L(ei) = log

(
P (ei = 0|s)
P (ei = 1|s)

)
. (2.32)

Next, the received sequence is obtained by applying a hard decision to the output of
BP, i.e., to the log-likelihood ratios. For each bit in the binary representation of the
quantum code, the absolute value of 2.32 is its reliability and may be employed in the
OSD. Following [20], a test is initialized to decide when to stop the reprocessing. The
test imposes that if the codeword produced by the OSD appears twice it is assumed to
be the correct guess. The algorithm investigated in this thesis, for order-ℓ, is processed
as follows:

• BP decoding : Performed in F2 according to Section 2.1

– Initialization: evaluate the probability of each bit according to the syndrome.

– CN update: compute the extrinsic information according to (2.5).

– VN update: Process the incoming messages according to (2.6).

• Early stopping criteria Save the reliability of the bits evaluated in the previous
step.

– Create ẽ such that ẽi = 1 if L(ẽi) > 0, and ẽi = 1 if L(ẽi) < 0

– if HẽT = S then the decoding algorithm halts and ẽ is considered a valid
decoding result:

ê = ẽ

– Else, the algorithm starts the "Order-ℓ Reprocessing".

• OSD decoding: Based on the reliability values |L(ei)|, sort them and the parity-
check matrix ( with increasing order) and determine its h least reliable independent
columns. Those permutations are named λ1(.) and µ1(.), respectively.

– Apply the same permutations to ẽ

e′ = µ1(λ1(ẽ)) (2.33)

– For 0 ≤ i ≤ ℓ make all possible
(
n−h
i

)
changes of i bits in the most-reliable

positions (MRP) and for each change, determine the corresponding vector ei
according to (2.23).

• Decision:

– Among the candidates selects the one with minimum Hamming weight (e∗).

– if e∗ = ê the test is satisfied and λ1
−1

(
µ1

−1 (ê)
)

is select as the decoded
vector.
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– Else, if the Hamming weight of e∗ is lower than ê set the first as the decision
at previous step

If w (e∗) ≤ w (ê) then ê = e∗ (2.34)

Start the next iteration with BP decoding.

In case the test or the early stopping criteria do not make any decision, the algorithm
stops when the maximum number of iterations is reached. It should be also stated that at
each iteration both the permutations introduced by the algorithm (2.33) are re-evaluated
starting from the updated reliability L(ei). This affects the overall complexity of the
algorithm since GE has to be performed every time. In this sense, some simplification
may be applied as it will be shown in the following chapter.





Chapter 3

Enhanced Decoding Algorithms

This chapter elaborates on common decoding algorithms in the literature. It introduces
modifications of those with the purpose of

a) simplifying those and hence making their practical implementation more appealing

b) improving their performance - if possible - to increase the error correction capabil-
ities

c) gaining deeper insights into the capabilities of BP decoders with post-processing
capabilities.

3.1 Non-Binary Belief Propagation

In Chapter 1, Section 1.1, the Pauli operators have been introduced but in the previous
chapter, only their binary representation has been investigated. In this chapter, a study
of their quaternary description is presented. Quartenary BP is well-known in the LDPC
coding literature. For quantum LDPC codes we present a simplified version.

Consider the Tanner graph representation of a quartenary code. Opposed to the
binary case, the edges of the quantum Tanner graph are labelled. In particular, the edge
connecting CN ci and VN vj exists if and only if hij ∈ F4 \ 0. Then, its label corresponds
to hi,j . We consider the mapping between members of the Pauli group and elements of
F4 from (1.20).Thus with slight abuse of notation, hi,j may take values, I X, Y , Z.
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X
Z

Figure 3.1: Quantum Tanner graph of the low-density parity-check code 1.21 with N = 9,
and m = 8

We illustrate the graphical representation of a quantum Tanner graph following (1.21).

Ĥ =



X X X X X X I I I
I I I X X X X X X
Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
I I I I I I I Z Z


(3.1)

The messages exchanged among the nodes can be represented as vectors of four
elements. Each element of the message vector represents the estimated probability of a
given digit of the error pattern. Next, we will resort to a log-likelihood ratio representation
in analogy to Section 2.1. Let the probabilities for the four Pauli operators {I,X,Z, Y },
be pI ,pX ,pZ , and pY . We define the log-likelihood ratio (LLR) as

l =

(
0, log

pX
pI
, log

pZ
pI
, log

pY
pI

)
. (3.2)

Observe that the first element is always zero and in principle can be removed. We leave
it here for ease of presentation.

The non-binary version of the BP can thus be described by specifying the variable
and check node processing, i.e., how the VNs and CNs compute the outgoing messages as
a function of their input messages. We make the following observation. The computation
in the CNs can be performed as for the binary case. This is a result of (1.22), i.e., two
different Pauli operators yield the same field trace. Let p1 be the sum of the probabilities
of the Pauli operators which anti-commute with the stabilizer with the Pauli operator in



3.1. Non-Binary Belief Propagation 31

X
Z

(p0,p1)
(pI+pX ,pZ+pY )

(pI ,pX ,pZ ,pY )
(p0,p1,p0,p1)/2

Figure 3.2: Quantum Tanner graph of the stabilizer for the five-qubit code 3.3 with
N = 5, and m = 4

position ij of the PCM. Then p0 = 1− p1 is the the sum of the probabilities of the Pauli
operators which commute with the Pauli operator in position ij of the PCM. We can pass
these two probabilities the CNs (or the respective LLR) and perform the computation
as for the binary case. The variable-node processor processes the output messages in a
quaternary fashion, meaning that the messages received at the variable node have to
account for the probabilities pI ,pX ,pZ and pY or the corresponding LLRs. Hence, we
need a conversion from binary LLRs to 4-ary LLRs.

Consider the following PCM [6],

Ĥ =


X Z Z X I
I X Z Z X
X I X Z Z

Z X I X Z

 (3.3)

The edge of the Tanner graph relative to the element H1,1 of Ĥ is highlighted in red,
while the edge for H5,5 is highlighted in blue. Consider the message over the red edge from
v1 to c1, it may be converted from quaternary to binary by letting p1 be the sum of pY and
pZ , and p0 as pI +pX , since H1,1 = X. In contrast, the variable nodes have to receive the
message in the quaternary form. The message from ci to vj has to convert the probabilities
p0 and p1 to pI ,pX ,pZ and pY . The conversion is performed by equally splitting the
probability p0 with the probabilities relative to the Pauli operator which commute with
the Pauli operator in position ij of the PCM. Consider the message highlighted in blue
in Figure(3.2), where H5,5 = Z, then pI = pZ = p0/2 and pX = pY = p1/2.

Let us define soft-max operator,

max*(a, b) = max(a, b) + log(a+ exp(−|a− b|)) (3.4)

We can now summarize the syndrome-based decoding algorithm in F4:
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• Initialization : For each VN vj with j ∈ {1, ..., N} generate log-likelihood ratio
vectors according to (3.2). As mentioned in Section 1.7.1 consider p/3 as the prob-
ability of any non-identity Pauli operator, then the non-binary LLR vector for vj
is

lj =
[
0 log

(
p

3(1−p)

)
log

(
p

3(1−p)

)
log

(
p

3(1−p)

) ]
(3.5)

The message to the CNs has to be a scalar, hence the vector lj cannot be sent as it
is. The conversion consists in two soft-max operators, the first evaluated with the
elements of lj corresponding to the Pauli operators which commute with the Pauli
operator of the edge through which the message is sent. The other, weighted (−1),
accounts for the elements that anti-commute. According to (3.5) for any edge the
initial message is

L0
j→i = max*

[
0, log

(
p

3 (1− p)

)]
−max*

[
log

(
p

3 (1− p)

)
, log

(
p

3 (1− p)

)]
(3.6)

• CN decoder : Let N(ci) being the set of neighbour nodes of ci. Similarly to the
binary decoder (2.2a) the check node ci processes all the incoming messages. The
incoming messages are in binary form, according to Figure(3.2), but are sent back
in quaternary form to each neighbouring node. The message Li→j is the LLR of
the probabilities constrained to the check performed by ci and the value of the
syndrome bit Si ∈ F4. According to [22] it may be approximated as:

Li→j = (−1)Si2 tanh−1

 ∏
j′|vj′∈N(ci)\vj

tanh

(
1

2
Lj′→i

) (3.7)

• VN decoder : The binary LLR Li→j from ci to vi needs to be converted into a
non-binary LLR vector li→j . The conversion has to consider the Pauli operator of
the element i, j of the PCM, by letting Zi,j the set of Pauli operators (P) which
commute with Hi,j the message is:

lPi→j =

{
0 for P ∈ Zij

−Li→j for P ∈ Z̄ij .
(3.8)

Let N(vj) being the set of neighbour nodes of the variable node vj . Then vj pro-
cesses all incoming messages (li→j ∈ F4) and provides back the extrinsic informa-
tion to each neighbouring node in binary form. The vector message lj→i is

lj→i = lj +
∑

i′|ci′∈N(vj)\ci

li′→j . (3.9)

The message sent to ci ∈ N(vj) is computed as follows,

Lj→i = max*

P∈Zij

(
lPj→i

)
− max*

P∈Z̄ij

(
lPj→i

)
. (3.10)
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• Hard decision and Syndrome check: At each variable node, the decoder selects
the Pauli operator with the largest associated LLR.

Ẽj = argmax

lj +
∑

i|ci∈N(vj)

li→j

 . (3.11)

With the estimated error vector Ẽ the syndrome is computed according to 1.22 if
the syndrome is equal to the syndrome given from the channel the algorithm stops
(3.12). Otherwise, it goes to the next iteration (3.7).

if S̃ = S then Ê = Ẽ (3.12)

In Chapter 4 a performance comparison between this decoder and its binary version is
presented. The latest is expected to be outperformed because the scenario introduced
in this chapter exploits the correlation between the X and Z errors in the depolarizing
channel. Next we aim at improving non-binary BP.

3.2 Non-Binary Belief Propagation with Ordered Statistics
over F2

In this section, an approach similar to Section 2.4 is presented. In fact, the objective of
this algorithm is to improve the performance of BP over F4 relying on an order-statistics
decoding (OSD). This approach is similar to Algorithm 3 in [21], but instead of using
the OSD as the post-processor, it is adopted in every iteration, as per the binary case
presented in this thesis. Note that the OSD requires knowledge of the reliability of the
symbols. From (3.11) we know that the hard decision over the symbol is based on the
reliability vector calculated according to:

ltotal
j = lj +

∑
ci∈N(vj)

li→j

=
[
lIj lXj lYj lZj

] (3.13)

BP evaluates the lPj as, where P ∈ {I,X,Z, Y }

lPj = log

(
pP
pI

)
(3.14)

In Section 2.4 the absolute value of the LLR of the bits were used as reliability for
ordering the sequence and the PCM. The elements of the non-binary LLR vector in
(3.14) are normalized to the value of the identity operator. Hence, a comparison of two
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symbol reliabilities (for sorting the vector) is an issue. Consequently, we compute the
probabilities at node vj is as

P̃P
j =

exp
(
lj

)
∑

P exp
(
lPj

) . (3.15)

The maximum value among the elements of the vector is picked and its reliability is used
for the ordering. The maximum value from above, for every variable in the graph, is
stored in the following vector

p =
[
p1 p2 ... pN

]
. (3.16)

3.2.1 Ordering with F4 reliability

Chapter 2 has reported and explained, what has been the procedure for GE and why it has
to be performed simultaneously with the syndrome. This is due to the fact that the same
row operations applied to the PCM have to be also applied to the syndrome otherwise
(2.23) is inconsistent with the creation of a list of codewords. In principle, applying GE
to a non-binary system of equations is not a problem. However, the known term, i.e., the
elements of the syndrome are obtained using the field trace operator, thus are binary.
In other words, each equation puts a binary constraint (binary syndrome value) on the
4-ary symbols involved in the equation. Hence, their value cannot be uniquely resolved.

A remedy is to perform binary OSD based on the binary representation of the symbols
and PCM. To do it, there are two methods the first is to store the 4-ary vector for each
probability and then marginalize to obtain the probability of the X and Z symbols.
For instance, the symbol A with a probability vector evaluated with (3.15) would lead to
P (AX = 1) = P̃X

A +P̃ Y
A and P (AZ = 1) = P̃Z

A +P̃ Y
A , with those is possible to order based

on the bits. The second is to keep for the X and the Z part the same probability. Those
two options, even if the first is more appropriate than the latest, lead to a similar ordering.
In the following is reported the second approach leading to a binary representation of
the PCM in the shape:

H =
[
hX1 hZ1 · · · hXN hZN

]
(3.17)

with hX1 ∈ HX and hZi ∈ HZ for i = {1, . . . , N}. The PCM of the stabilizer code in
(1.21) in this configuration leads to

H =



1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1


(3.18)
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This permutation combined with the sorting of the symbols is saved in a singular function
named Λ1 (.) to be applied to the column of the PCM in the form H = [HX |HZ ] and to
the elements of the binary representation of the output of the BP e = [eZ |eX ]. In fact,
when the permutation is applied to e the result is

ϵ = Λ1 (e) = [ ϵZ1 ϵX1 ϵZ2 ϵX2 · · · ϵZN
ϵXN

]. (3.19)

The reliability of the bit composing the symbols ordered in increasing order:

pϵZ1
= pϵX1

≤ pϵZ2
= pϵX2

≤ · · · pϵZN
= pϵXN

(3.20)

Once the permutation for sorting the bits according to the reliability of the symbols has
been defined, the remaining steps of the OSD are the same as the binary case.

3.2.2 Algorithm Flow-Chart

In the following the algorithm which combines BP over F4 and Ordered Statistic repro-
cessing in F2 is reported.

• BP decoding : Performed in F4 according to Section 3.1

– Initialization: Evaluated the vector of LLRs for each symbol and send the
scalar LLR to the check nodes 3.6.

– CN update: compute the extrinsic information and send the vector message
according to 3.8.

– VN update: Process the incoming messages according to 3.9.

• Early stopping criteria : Save the reliability of the symbols evaluated in the
previous step.

– Compute the symbols according to 3.11 and express Ẽ in binary form (ẽ).
– if HẽT = S then the decoding algorithm halts and ẽ is considered a valid

decoding result:
ê = ẽ

– Else, the algorithm starts the "Order-ℓ Reprocessing".

• OSD decoding: Based on the reliability values 3.16, sort the bits of ẽ and the
binary parity-check matrix ( with increasing order) and determine its h least reli-
able independent columns. Those permutations are named Λ1(.) (3.19) and µ1(.),
respectively.

– Apply the same permutations to ẽ

e′ = µ1(Λ1(ẽ)) (3.21)
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– For 0 ≤ i ≤ ℓ make all possible
(
n−h
i

)
changes of i bits in the MRP and for

each change, determine the corresponding vector ei according to 2.23.

• Decision:

– Among the candidates, select the one with minimum Hamming weight (e∗).

– if e∗ = ê the test is satisfied and Λ1
−1

(
µ1

−1 (ê)
)

is selected as the decoded
vector.

– Else, if the Hamming weight of e∗ is lower than ê, set the former as the deci-
sion at previous step

If w (e∗) ≤ w (ê) then ê = e∗ (3.22)

Start the next iteration with BP decoding.

Similarly to the procedure presented in the previous chapter, the test or the early stop-
ping criteria are the requirements to achieve in order to stop the decoder and provide
a decision. If they are not met then the algorithm stops when the maximum number
of iterations is reached. This algorithm improves the performances with respect to BP
thanks to the use of the reliability of the symbols. It also improves with respect to its
binary version since the correlation between X and Z is exploited, at least in BP. Re-
garding the complexity, analogously to the algorithm presented in Section 2.4, GE has
to be performed at every iteration to find the permutation µ1, and for this reason, the
algorithm loses in speed and gains in complexity. A possible solution will be presented
in the next section.

3.3 Non-Binary Belief Propagation and Information Set De-
coding over F2

In Section 2.4 and Section 3.2 two decoding schemes which employ the combination of BP
and OSD have been investigated, in order to bridge the gap between BP and maximum
likelihood decoding. In the flow-charts of the two algorithms, it is reported that the search
for the independent columns of the PCM, with the consequent modification of the latest
to the form:

H ′ =
[
Im h′

m+1 · · · h′
n

]
(3.23)

is performed at every iteration. This modification implies the use of GE (2.2.1). From the
literature, it is given that such an algorithm has a complexity that scales with the cube of
the dimension of the matrix [23]. In the case under study, the complexity of GE is O(n3).
It is obvious that adding this step at every iteration increases the complexity of the
whole algorithm. For this reason, in this section, a different approach is presented, with
the same goal as the previous decoders but less complex. Differently from the previous
algorithms in this case the statistics of the symbols will not be used in the decoder.
Instead, GE is performed only once before the beginning of the decoding algorithm. The
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matrix H in the form identity (see (3.23)) is given to the decoder, together with the
permutation of the columns (µ1 (.)) and a function which is able to generate a version of
the detected syndrome consistent with the permutations applied by the GE, named Φ.

The syndrome S′ allows to performH ′[e′u, e
′
k]

T = S′. Then, you can split the equation
as eu = BeTk +S′. This way, instead of having a complexity of O(n3) to obtain the same
result in terms of matrices and vectors, only a matrix multiplication is needed, whose
complexity is O(n2). This method has the advantage of performing GE once and not at
every iteration.
The list of candidates is created starting from the binary version of the hard-decision of
the BP with the use of ISD and BF. The algorithm is fully described by the flow-chart
reported below:

• GE and Syndrome modification : Performed according to Section 2.2.1 and
before starting decoding. Then pass to the actual decoder the following results:

H ′ , S′ = Φ ∗ S , µ1 (3.24)

together with the actual Parity-check matrix H and the actual Syndrome S.

• BP decoding : Performed over F4 according to Section 3.1 with H and S.

– Initialization: Evaluated the vector of LLRs for each symbol and send the
scalar LLR to the check nodes 3.6.

– CN update: compute the extrinsic information and send the vector message
according to 3.8.

– VN update: Process the incoming messages according to 3.9.

• Early stopping criteria :

– Compute the symbols according to 3.11 and express Ẽ in binary form (ẽ).

– if HẽT = S then the decoding algorithm halts and ẽ is considered a valid
decoding result:

ê = ẽ

– Else, the algorithm starts the "Order-ℓ Reprocessing".

• Information Set decoding and Bit-Flipping: Performed in F2 according to
Section 2.2.

– Rearrange the bits of ẽ according to µ1(.) evaluated at the beginning 3.24, in
order to full-fill the equation:

H ′ ∗ e′ = H ′ ∗ µ1(ẽ) = S′ (3.25)

– For 0 ≤ i ≤ ℓ make all possible
(
n−h
i

)
changes of i bits in the MRP and for

each change, determine the corresponding vector ei according to 2.23.
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• Decision:

– Among the candidates selects the one with minimum Hamming weight (e∗).
– if e∗ = ê the test is satisfied and µ1−1 (ê) is select as the decoded vector.
– Else, if the Hamming weight of e∗ is lower than ê set the first as the decision

at previous step

If wH (e∗) ≤ wH (ê) then ê = e∗ (3.26)

Start the next iteration with BP decoding.

This implementation saves in complexity, but as it will be shown in the next chapter, not
taking into account the statistics of the symbol will negatively affect the performance
with respect to the algorithm presented in the previous section.

3.4 Correction of Y -Errors

In every combined decoder presented in this thesis the algorithm in charge of the re-
processing of the output of the BP acts in a binary fashion. In fact, the reprocessing,
hence the creation of the list of candidates, is applied over the PCM and the sequence,
respectively, in the form

H = [HX | HZ ]
ẽ = [ẽZ | ẽX ]

(3.27)

Unfortunately, this method does not consider the correlation between the X and Z
components, or more precisely does not support a quaternary symbol-flipping. In this
section, different approaches are presented with the aim of counteracting this loss by
exploiting the correlation between the X and the Z components also in the reprocessing.
To better explain this effect in the decoder an example of the order-1 reprocessing of a
given sequence is reported. In Section 2.2 the reprocessing has been defined as the flip of
a single bit in the information set. Consequently, when both elements of the of ei,Z and
ei,X are in the information a single bit-flip only corrects X or Z errors, but not Y errors
which would require two flips. Consider the PCM in (2.11) in identity form with column
permutation given by µ1,

H ′ =



1 0 0 0 0 0 0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1



µ1 =
[
1 2 3 9 5 10 11 12 4 6 7 8 13 14

]

(3.28)
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And consider the error pattern generated by the channel:

E =
[
0 0 0 0 0 Y 0

]
(3.29)

Which may be express with with ei ∈ F2 as:

e =
[
0 0 0 0 0 1 0 0 0 0 0 0 1 0

]
. (3.30)

The syndrome before and after the GE is

S =



0
1
0
1
0
1
0
1


S′ =



1
1
0
0
1
1
1
1


(3.31)

. Assume that the error pattern received from the BP is the all-zero sequence Ẽzero. In
this case the syndrome would not match the one detected at the receiver and the decoder
would move to the "order-ℓ reprocessing". Then the bit flipping algorithm performed
according to Section 2.2 would produce the following list of candidates:

ecand =



1 1 0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 1 0 0 0 0
0 1 1 0 0 1 1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1 0 0 0 1 0 0
1 1 0 0 1 0 0 0 0 0 0 0 1 0
1 1 0 1 1 1 0 0 0 0 0 0 0 1


(3.32)

In this scenario, the decision based on the Hamming weights of the sequences would
select randomly between the two sequences highlighted in red. It is obvious that none of
them is the transmitted sequence, even if they are not permuted back, since both of the
sequences have four ones instead of two. In this case, the bit-flipping in fact acted on the
couple Z6 X6 by flipping either Z6 or X6. This means that the BP decoded a sequence
presented Ẽ6 = 0 and the bit flipping investigated only the cases: Ẽ6 = X and Ẽ6 = Z
not taking into account Y and leading to a wrong decision. Of course the reprocessing has
to achieve the same result twice before making any decision but not considering one of
the three possible scenarios may lead to a degradation in performance. In the following,
different solutions are proposed.

3.4.1 Symbol Flipping

The first solution proposed in this section is to emulate a symbol-flipping while remaining
in F2. While GE is performed identically to the operation performed in F2, in this scenario
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the reprocessing, in addition to the candidates evaluated in order-ℓ reprocessing, also adds
the candidates which account for the errors of type-Y . The PCM after the GE is given
in the form (2.16) in which is not ensured that the columns referring to the left side of
the original matrix (hxi) are exclusively on the left and the same hold for the right-part.
The new positions of the original columns are in given in (2.20). For order-ℓ reprocessing
let

e1 =
(
e1 e2 · · · eh 0 · · · 0

)
(3.33)

be the starting point of the reprocessing and create the first

ℓ∑
i=0

(
n− h

i

)
(3.34)

candidates according to 2.2.2. Due to the fact that we are working with a binary PCM,
half of the columns are associated toX-components and the other half are Z-components.
Given µ1(.) the permutation among the column, the algorithm saves the positions of the
elements which constitute a pair X−Z in the unmodified matrix. Those pairs are stored
in a matrix named PY , which appears as:

PY =

(
px1 px2 · · · pxm′

pz1 pz2 · · · pzm′

)
(3.35)

With m′ the number of pairs whose elements lay both in the n − h known positions of
the matrix, hence the positions eligible for a bit-flip. For 1 ≤ i ≤ ℓ in addition to the
changes already introduced, the reprocessing function makes all possible changes in the
positions described by the columns of 3.35. This increase the number of candidates to

ℓ∑
i=0

(
n− h+m′

i

)
(3.36)

and enable the chances to account for the Y-errors in the list of candidates.
An Example is proposed to show the behaviour of this particular reprocessing. Consider
the matrix H ′ in 2.20, and the permutation µ1 introduced by the GE, which stores the
new positions of the bits. In this case, N = 7 is the size of HX and HZ . Two elements of
µ1, µ1i and µ1j constitute a pair only if µ1i = µ1j +N = µ1j + 6. Hence the positions of
these elements are stored in PY according to:

[i, j]T ∈ PY ⇐⇒ i, j ∈ Bn−h (3.37)

Where I (Bn−h) is the set of elements belonging to the information set. Below elements
of the considered µ1(.) which satisfies 3.37 are highlighted.

µ1 =
[
1 2 3 9 5 10 11 12 4 6 7 8 13 14

]
(3.38)

In this case, the matrix accounting XZ pairs presents two columns representing these
positions and the total number of positions to be considered in the order−1 reprocessing
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increases by two. Consequently, the encoding is performed, according to 2.23, to the two
vectors:

e8 =
[
e81 e82 e83 e84 e85 e86 e87 e88 0 1 0 0 1 0

]
e9 =

[
e91 e92 e93 e94 e95 e96 e97 e98 0 0 1 0 0 1

]
Assuming the error pattern introduced by the channel in 3.29, the order−1 reprocessing
accounting also for those two new positions would lead to two further candidates. Hence
the list of candidates would become:

ecand =



1 1 0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 1 0 0 0 0
0 1 1 0 0 1 1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1 0 0 0 1 0 0
1 1 0 0 1 0 0 0 0 0 0 0 1 0
1 1 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 1 1 1 0 1 0 0 0 0 1 0 0 1


(3.39)

Differently from 3.32 in this set, there is only one sequence with minimum Hamming
weight and appears to be the sequence highlighted in blue. Consequently, the decoder
decides for that and if the inverse of the permutation (µ−1

1 ) is applied to the decision,
the output of the decoder coincides with the Error pattern generated by the channel.

3.4.2 Modified Gaussian Elimination

In the previous section, a different type of reprocessing has been proposed to cope with
the degradation introduced by the error of type Y . In this section, a different approach is
presented. While before the idea was to increase the number of candidates with the aim
of including also the Y -flips, in this section the construction of the parity-check matrix
in standard form is investigated. The objective of this modified GE is to keep the ele-
ments of the same pair X − Z separate: one in the information set and the other in the
complementary set. This way the bit-flipping does not have to account for the flip over
the couples cause there are none in the information set. Generally, the algorithm aims to
achieve the following:

∀i ∈ Bn−h
if µi > N then j : µj = µi +N,∈ B̄n−h

if µi < N then j : µj = µi −N,∈ B̄n−h
(3.40)

The difference with 2.2.1 lies on the columns switch. In fact, when the i-th column, with
hi ∈ HX , does not have ones, it was set to be exchanged with the column in position
(m + 1)th. In the function proposed, the decision is to exchange it with the column in
position (N + i)th column. Where (N + i)th is the position of the Z-element of the couple
XZ. For big matrices, the proposed GE reduces the overall number of pairs in the right-
most positions of the PCM in standard form, leading to a small increase of performance.



42 Chapter 3. Enhanced Decoding Algorithms

Of course, this type of GE is more complex than the one proposed in the previous chapter,
but for the algorithm presented in Section 3.3 it only has to be performed once, hence
may be possible to see how this improve the performance. On the other hand, this type of
GE may not be applied to the Ordered-Statistic decoder. The reason is that the ordering
imposed by reliability that group the pairs together. Hence, applying this type of GE
would vanish the gain introduced by the knowledge of statistics. The following is reported
as an Example which shows how the seven-cubit CSS code would appear in standard form
if this method is applied.

H =



1 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1


(3.41)

In this case, the fourth column, which is the one that does not present ones below the
index, is exchanged with the eleventh, both highlighted in 3.41. The resulting matrix and
relative columns permutation are:

H ′ =



1 0 0 0 0 0 0 0 0 0 1 0 1 1
0 1 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0



µ1 =
[
1 2 3 11 5 13 14 9 8 10 4 12 6 7

]

(3.42)

In this case, there are no couples in the information set. The indices of the cou-
ples that were on the right-most side are one on two different sides of the matrix. This,
unfortunately, does not work for every matrix. If the code considered during the simu-
lations is adopted in their binary representation, the PCM is of dimensions mxn with
m ≤ n/2. Hence, this procedure would always lead to having some couple remaining in
the set Bn−h. Consequently, this method succeeds in reducing the number of couples in
the information set, but it does not completely eliminate them.



Chapter 4

Numerical Results

4.1 Toric Codes

Toric codes [24] are a class of topological stabilizer codes defined over a two dimensional
lattice, that takes the shape of a torus. We consider a few short toric codes examples
in order to get a first insight on the performance of the proposed decoding algorithms.
A toric code can be described by the parameter L where the number of physical bits
N = L2 and K = 1.

Our first experiment is a comparison between the binary BP decoder and the modified
non-binary BP decoder over a depolarizing channel. The non-binary decoder is expected
to outperform binary BP in terms of error rate, since at the VNs 4-ary probabilities
(or better LLRs) are processed. Hence, the correlation between X and Z errors is ac-
counted by the non-binary decoder. For the experiment we consider a short toric code
with L = 4. In Figure 4.1 the frame error rate (FER) versus the error probability p of the
depolarizing channel is shown. It is visible that non-binary BP outperforms its binary
version. This comes at a cost of enhanced processing at the VNs which mainly consists
of a marginalization step in (3.10) and of addition of 4-ary vectors in (3.9). The latter
one can be simplified, noting that each 4-ary vector (CN message) has only two non-zero
elements and not four.

In the same figure, the performance of non-binary BP with ISD and OSD (with bit
flipping) is also reported for different orders of reprocessing. The results show that both
of them gain in performance with respect to the pure BP, where the gain increases with
the order of reprocessing. This can be attributed to the fact that the former employs the
statistics of the bits while the latter does not. Interestingly, for the considered order of
reprocessing, ISD and OSD perform similarly. The additional cost of the ISD consists
in the re-encoding operation of the candidate error patterns. The complexity of this
operation is driven by a matrix-vector multiplication. The cost is in general quadratic
in n. In case the encoding matrix is sparse or structured simplifications are possible.
OSD comes with the additional complexity of GE, since the information set may change
depending on the output of the BP decoder in every iteration. The cost here is cubic in n.
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Overall it can be stated that (at least) for short codes non-binary BP with ISD is preferred
to non-binary BP with OSD due to the complexity savings and similar performance.

Figure 4.1: Comparison belief propagation in F2, pure belief propagation in F4 and BP in
F4 with information-set decoding and with order-statistics decoding both with standard
GE and BF

Figure 4.2 shows the FERs under non-binary BP and ISD for higher orders of repro-
cessing. In fact, for this toy example the algorithm reaches its best performance already
with order-2. This is due to the fact that the code adopted is very short. Consequently,
the correct codeword is already in the list when two bit-flips are performed. This last
statement does not hold for longer codes, as it will be shown later, in which order-2 is
not be enough to have the correct codeword in the list of candidates.

Next we investigate how the correlation between X and Z errors affects the per-
formance of ISD only. To this end, we employ pairwise flips of those bits which jointly
represent a 4-ary symbol as described in Section 3.4.1. We also refer to this as symbol
flipping (SF). Since there is not the error pattern coming from the iteration of the BP
the sequence of all-zero has been adopted as input of the ISD. For this study the channel
has been modified in order to obtain only two errors of the same type. The outcome is
reported in Figure 4.3. Two different decoders have been implemented both of them of
order-2. Firstly, BF and secondly BF. The curve accounting for a SF decoder for the
two Y errors is not reported because the two Y errors introduced by the channel are
always corrected by the decoder. The same does not hold for the ISD with bit-flips and
it is clear that in this case, the performance is worse than the channel which introduces
two X or Z errors. For this toy example SF pays off in terms of performance. However
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Figure 4.2: Comparison belief propagation in F4 with information-set decoding a nd BF
at different orders

decoding complexity increases: now for order ℓ reprocessing all pairs of bits belonging to
the same symbol (in the information set) need to be also flipped. For the ISD only there
are m′ = 12 couples in the information set, hence the number of candidates change from
596 to 1082 for order-2 according to eq.(3.36).

Figure 4.4 considers the performance of non-binary BP wit ISD and OSD. For the
reprocessing we assume first BF and later SF for both the decoder. When SF is applied
to the OSD the pairs are searched among the indices after the ordering introduced by
the reliability and GE, those positions changes every iterations, but generally are more
than the number of positions for ISD. In facr, for ISD the search for pair is performed
over the indices reordered according to the permutation introduced by GE only, meaning
that the positions of the pairs X and Z are always the same. The curves are very close
to the ones employing reprocessing with BF. For this reason, SF in the reprocessing
is not suggested for short-codes and the result also suggest that the X and Z parts
may be treated independently. In the figure is also reported a curve for ISD employing
the modified GE in this case the curve is lower than the one which employs standard
GE, meaning that the ordering imposed by GE affect the performance more than the
reprocessing with SF, for short codes.

Toric codes with larger dimensions have also been investigated. In Figure 4.5 the
results corresponding to the toric code with L = 7 are shown. Similarly to the previous
code, the curves relative to the combined algorithms show a gain with respect to pure
BP. The adoption of statistics in the creation of the list of candidates (OSD) again
outperforms the simpler algorithm based on ISD.



46 Chapter 4. Numerical Results

Figure 4.3: Information set decoding of order-2 on modified channel introducing exactly
two 2 errors of the same type under BF and SF

Figure 4.4: Comparison BP + ISD and BP + OSD with BF and SF reprocessing
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Figure 4.5: Comparison non-binary BP with information-set decoding and with order-
statistics decoding both with BF reprocessing

Moreover, these results show that BP is less effective in this case compared to toric code
with L = 4, and for this reason, the gain achieved thanks to further algorithms combined
with it is larger. Overall, ISD and OSD perform close to each other also in this case.

4.2 Hyper-Graph Product Codes

We report results for some hyper-graph product codes (HPCs), a well-known family
of quantum codes [25]. The code adopted for the simulations has dimensions [550, 169]
and has been constructed according to [22]. Its PCM is reported in the Appendix. In
Figure 4.6 the results of pure BP and of the algorithms which adopt ISD and OSD to
correct the guess of the BP are reported. Compared to the Toric code with L = 7, the
gain over the pure BP is smaller. Moreover, the graph shows that for OSD with order-
1 reprocessing the employment of the statistics of the symbols does not yield visible
gains compared to ISD. For this reason, when the hyper-graph product code (HPC)s are
adopted is suggested to use higher order of reprocessing and to stay on the ISD to correct
the guess of the BP in order to save complexity.
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Figure 4.6: Hyper-graph Product Code (550, 169) order-1 algorithms with BF reprocess-
ing

4.3 Single Parity-Check Product Code

This section investigates the performance of quantum CSS single parity-check product
codes (SPCPs). These codes were designed to achieve good performance with BP. We
check whether the proposed combined algorithms can improve this result. The code
adopted in the simulations is specified in [22].

The code adopted is a two-dimensional product code with parameters [[32, 64, 4]]
which is labelled by SPCP D = 2. Simulation results for non-binary BP with ISD and
different orders of reprocessing (BF) are shown in Figure 4.7. When the reprocessing
order is small, e.g., ℓ ∈ {0, 1}, the gain is minor much with respect to pure BP.

Additionally, we introduce a benchmark to assess the performance of a genie-aided
decoder. To this end, we put the actual error pattern (introduced by the channel) on list
of candidate error patterns (if not there already). This would yield a lower bound on the
performance of an ML decoder - in absence of degeneracy. We claim that for low error
probabilities this benchmark converges to a lower bound. We argue as follows: when p
is low, the channel error pattern will have low weight. It is improbable, that we find
another error pattern in the same coset with lower weight. Assume that lowest weight
error pattern of this coset (to which also the channel error pattern belongs) is on the
list of candidate error patterns. Since the list is small compared to the full list of an ML
decoder (i.e., there are less competitors), an ML decoder will make more errors than our
genie-aided decoder. Observe that when the list size grows, the lower bound will become
tighter.
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Figure 4.7: CSS code and D=2 with benchmark (BM) and coset decoding (CD) rule over
ISD + BF reprocessing

For L = 1 the benchmark in Figure 4.7 is far from the actual decoding performance.
For L = 2 the gap is small, suggesting that - at least for small error probabilities for which
the benchmark will correspond to a lower bound - we operate close to the maximum-
likelihood performance. Due to degeneracy, the maximum-likelihood decoding rule is not
optimal, though. To this end, we consider a coset decoder described in Section 1.9. For
this all candidate error patterns on the list are grouped into cosets whose probability is
determined. Note that the list of candidate error patterns is small compared to all 2n

error patterns. Hence, the optimal coset decoding rule cannot be implemented.
Simulation results with the proposed coset decoding rule show a tiny loss in perfor-

mance w.r.t. the maximum-likelhood decoding rule that is adopted to select the error
pattern from the list. The reason behind is that the number of candidates in the list is
not big enough.





Conclusions

In this thesis, multiple decoding schemes for quantum low-density parity-check (QLDPC)
codes have been presented. Firstly, the binary version of BP has been investigated be-
cause of the gain in performance iterative decoding has shown through the years in the
decoding process of sparse matrices. The study of QEC, on the other hand, imposes
stringent constraints on the construction and on the decoding. Constraints which guided
this thesis towards algorithms which combine the iterative approach with the reprocess-
ing based on the statistics of the bits. To further embody the characteristics of quantum
communication, the search for decoders has been shifted towards non-binary implemen-
tations. It has been shown how going from F2 to F4 presents some difficulties in handling
decoding schemes which employ the syndrome, which for quantum codes is necessarily
binary. In order to cope with the complexity introduced by the reprocessing performed
with OSD we proposed another algorithm based on ISD. Finally, to further explore the
correlation among the Pauli operators a function aiming to reprocess a binary codeword
over the symbols has been presented.

The results showed that for short-codes, e.g., the toric L=4, a combination of the
belief propagation in F4 and information-set decoding with bit-flipping of order-2 lead to
a significant gain in performance with respect to the pure BP and saves in complexity
with respect to the use of BP combined with OSD. The same holds for larger toric codes.
Moreover, the SF reprocessing of a list of binary codewords does not show any improve-
ment in performance with respect to the reprocessing over the bits. For hyper-graph
product codes it is suggested to adopt ISD with a number ℓ > 1 of bit-flips to correct
the guess of the BP because the use of statistics of the symbols do not guarantee better
performance, but an increase in complexity. Lastly, for the CSS code based on single
parity-check product (SPCP) codes, we confirmed that the iterative approach has good
performance on this type of code. However, it may be suggested to adopt a reprocessing
of order ℓ greater than one to meaningfully lower the curves of error. Generally, it can be
extracted that the optimal decoding rule based on cosets should be applied only when
there are enough samples to properly weight the accumulated probabilities and order-1
does not guarantee that.
From this thesis, we concluded that exploiting the construction of a quantum code im-
proves the performance of a decoding scheme, however, if the decision is based on a list
of candidates, in order to apply some constrain over this list, it should be ensured that
the list is big enough to be a faithful representation of how the cosets appear. Further
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improvement may be explored by changing the construction of the list, or by changing
the decision taking into account the role degeneracy plays inside the decoder. The field
of quantum error correction is far to be standardized and much research may be further
implemented with the goal of making this technology accessible in the near future.



Appendix

Figure 4.8: parity-check matrix of toric L = 4 code

Figure 4.9: parity-check matrix of CSS code from SPCP code [[32, 64, 4]] with D = 2
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Figure 4.10: parity-check matrix of toric L = 7 code

Figure 4.11: parity-check matrix of toric of Hyper-graph Product Code (550, 169)
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