

Design and
Implementation of
a Security Gateway
for Grid Services

Roland Gude
Fachhochschule Bonn-Rhein-
Sieg

Ba
ch

el
or
-A

rb
ei
t

Fachbereich Informatik

Departemet Of Computer Sciences

Bachelor Thesis

Design and Implementation

of a Security Gateway

for Grid Services

von/by

Roland Gude

Erstpr�ufer: Prof. Dr. Rudolf Berrendorf
Zweitpr�ufer: Prof. Dr. Ralf Thiele

Eingereicht am: July 5, 2005

Design and Implementation

of a Security Gateway

for Grid Services

Declaration

I hereby declare, that the work presented in this thesis is solely my work and that to the best of my

knowledge this work is original, except where indicated by references to other authors. No part of

this work has been submitted for any other degree or diploma.

Roland Gude i

Design and Implementation

of a Security Gateway

for Grid Services

Roland Gude ii

Design and Implementation

of a Security Gateway

for Grid Services

Abstract

Grid services will form the base for future computational Grids. Web Services, have been extended to

build Grid services. Grid Services are de�ned in the Open Grid Service Architecture (OGSA) [22]. The

Globus Alliance has released a Web Service Resource Framework, which is still under development

and which is still missing vital parts. One of them is a Concept that allows Grid-Service Requests to

securely traverse Firewalls, and its realization.

This Thesis aims at the development and realization of a detailed Concept for an Application

Level Gateway for Grid services, based on an existing rough concept. This approach should enable

a strict division between a local network and the Internet. The internet is considered as a untrusted

site and the local network is considered as a trusted site. Grid resources are placed in the internet

as well as in the local network. This means that the possibility to communicate through a �rewall is

essential. Some further protocols like Grid Resource Allocation and Management (GRAM) and the

Grid File Transfer Protocol (GridFTP) must be able to traverse the network borders securely as well,

while no further actions must be taken from the user side.

The German Federal O�ce for Information Security (BSI) proposes a Firewall - Application Level

Gateway (ALG) - Firewall solution to the German Aerospace Center (DLR) where this Thesis is

written, as a principle approach. In this approach, the local network is divided from the Internet with

two �rewalls. Between those �rewalls is a demilitarized zone (DMZ), where computers may be placed,

which can be accessed from the Internet and from the local network. An ALG which is placed in this

DMZ should represent the local Grid nodes to the Internet and it should act as a client to the local

nodes. All Grid service requests must be directed to the ALG instead of the protected Grid nodes.

The ALG then checks and validates the requests on the application level (OSI layer 7). Requests that

pose no security threat and ful�ll certain criteria will then be forwarded to the local Grid nodes. The

responses from the local Grid nodes are checked and validated by the ALG as well.

Roland Gude iii

Design and Implementation

of a Security Gateway

for Grid Services

Roland Gude iv

Design and Implementation

of a Security Gateway

for Grid Services

Contents

1 Introduction 3

2 Problem Description 5

3 Technical basis 7

3.1 Grid Services . 7

3.1.1 The Open Grid Service Architecture . 7

3.1.2 From OGSA to WSRF . 8

3.1.3 Web Services . 8

3.1.4 The Simple Object Access Protocol . 9

3.2 Firewalls . 9

3.2.1 Packet Filter . 10

3.2.2 Content Filter . 10

4 Similar Software products 13

5 Concept 15

5.1 Comparison of di�erent concepts . 15

5.1.1 SSH tunneling based approach . 15

5.1.2 VPN based approach . 16

5.1.3 ALG based approach . 17

5.2 Application Level Gateway . 17

5.3 Requirements . 19

5.3.1 User Pro�les . 19

5.3.2 Prerequisites, Duties and Dependencies . 20

5.3.3 Demands on Quality . 20

5.3.4 Use-Cases . 20

6 Realization 23

6.1 Basic Software Architecture . 23

6.2 Used Software . 24

6.2.1 Axis . 25

6.2.2 Java Plugin Framework . 26

6.3 Plugin Architecture . 26

6.4 Implementation of the ALG . 30

6.4.1 MessageContext . 31

6.4.2 Core . 34

6.4.3 Consumer . 34

6.4.4 Supplier . 35

6.5 Tests . 35

6.6 Installation and Con�guration . 36

Roland Gude v

Design and Implementation

of a Security Gateway

for Grid Services

6.7 Limitations . 37

7 Summary 39

Nomenclature 46

Roland Gude 1

Design and Implementation

of a Security Gateway

for Grid Services

Roland Gude 2

Design and Implementation

of a Security Gateway

for Grid Services

Chapter 1

Introduction

Grid-computing is seen as a technique that may enable multiple companies or research facilities to

form joint ventures for certain computational tasks. It might also o�er excellent ways to organize

large amounts of data. The expectations for Grid computing are high. The ability to form Virtual

Organizations between project partners is highly anticipated. For instance a car manufacturer could

form such a Virtual Organization with one of its component suppliers in order to run simulations dur-

ing the design process of a car with the structural data of the components the supplier produces. The

car manufacturer has of course multiple component suppliers which are not partners, but competi-

tors. The car manufacturer can now build multiple Virtual Organizations (one with each component

supplier), but it must be assured that no component supplier has access to the structural data of

its competitors. This example shows, that security is of a high priority for the practical use of Grid

computing.

Today's Grid computing middleware already o�ers ways to form Virtual Organizations, but it does

not yet deal with highly secured networks. All participants of a Virtual Organization will usually protect

their data as much as they can. This includes restrictive �rewalls which block most communication

protocols. Today's Grid middleware can not deal with those restrictive �rewalls and creation of Virtual

Organizations is, due to this issue, not generally possible by now.

The DLR institution Simulations- and Softwaretechnik (SISTEC) is currently developing a software

to manage and setup distributed simulations like those from the example above. A major feature of

this software is, to run such simulations in a Grid. This feature is hardly useful, if the underlying

Grid resources are not able to communicate with each other. That is why SISTEC decided to spend

e�orts on the research of this issue. This thesis is part of these research e�orts.

The Global Grid Forum (GGF), a user, developer and vendor community which is trying to create

global standards for Grid computing, has recently formed the Firewall-Issue research group (FI-RG),

led by Leon Gommans from the Advanced Internet Research group at the Informatics Institute at

University of Amsterdam. The FI-RG is doing research on problems between Grids and �rewalls like

those outlined in the scenario above. The concept described in this thesis as a possible solution for

the problem has been presented by Thijs Metsch from the DLR on the GGF13. It has been perceived

with interest and will probably play a large role in the work of the FI-RG. The author of this thesis

and Thijs Metsch are members of the FI-RG.

This thesis describes an Application Level Gateway or security proxy as a solution for the scenario

above. This concept has been suggested by the BSI as a general approach on �rewall problems. The

concept is compared to some other possible solutions and has been implemented as part of the thesis.

The chapter 3 Technical basis will provide technical background information. It will explain what Grid

services are and contains an introduction to �rewall technology as well. The problem itself is further

explained in chapter 2 Problem Description and the concept is described and compared in chapter 5

Concept. Chapter 4 Similar Software products is about two existing products which share a common

ground with the software which has been developed as a part of this thesis. This software is explained

in chapter 6 Realization.

Roland Gude 3

Design and Implementation

of a Security Gateway

for Grid Services

Roland Gude 4

Design and Implementation

of a Security Gateway

for Grid Services

Chapter 2

Problem Description

Some main goals of Grids are the abstraction from resource locations and the creation of virtual

organizations (VO). Foster, Kesselmann and Tuecke de�ne virtual organizations in the article The

Anatomy of the Grid [8] as

"[. . .]
exible, secure, coordinated resource sharing among dynamic collections of indi-

viduals, institutions, and resources."

The resources of those VOs are usually distributed over many di�erent locations and for security

reasons, the di�erent locations should be protected with �rewalls (see �gure 2.1). While those

�rewalls o�er a vital protection for the resources, they interrupt communication between the Grid

resources on the di�erent locations. Even though Grid services are more ore less �rewall friendly,

because they are based on Web services, Grid service messages still can not traverse very restrictive

�rewalls. Due to the sensibility of the resources in industrial environments, �rewalls which protect

industrial networks will most likely be too restrictive for Grid services.

Figure 2.1: Virtual organization with �rewall-protected local networks

There are several work-arounds for this problem, which can only be applied, while security for the

resources is not of high priority. A common one, is to place all Grid resources in a DMZ which is

Roland Gude 5

Design and Implementation

of a Security Gateway

for Grid Services

only protected by a lax �rewall (Another far more restrictive �rewall, divides the DMZ from the local

sites network). Resources placed in this DMZ can be accessed from the internet and from the local

network. The problem of this work-around is, that the Grid resources are not highly protected. Of

course they can be accessed from the remote Grid resources, but any attacker has quite a chance to

compromise them as well.

As said before, such work-arounds can not be used in Grids, whenever the Grid resources are

somehow sensible. Which is always the case if industrial partners are involved and may even be the

case when the Grid is just used for research. In such environments, Grid resources will never be

placed inside the DMZ, but in the well protected local network. This leads to the conclusion, that

a mechanism needs to be de�ned, which enables Grid service messages to traverse even restrictive

�rewalls while the security of the local site is not at risk.

The DLR institution SISTEC encountered this problem when they tried to aggregate their local

Grid resources with those of the Fraunhofer-Institute for Algorithms and Scienti�c Computing (SCAI).

Even though these Institutions cooperate very closely with each other, the �rewalls posed obstacles

which could not be overcome. Moving the Grid resources into the DMZ was not an option due to the

licenses of some applications that where to run in the aggregated Grid, which only applied to machines

in the local networks. Several concepts have been outlined to solve this problem. The Concept which

seemed to be the only one that is generally applicable and secure enough, is the use of an Application

Level Gateway, which is placed in the DMZ and transparently allows access to the Grid resources (see

section 5.2 Application Level Gateway). Such an ALG would be accessible from both, the internet

and the local network. It would be able to accept messages from the internet, check and validate

them and forward them to their original receivers if they succeed validation. The answers would then

be send to the ALG and forwarded to the original clients. If tra�c from the DMZ into the local net

is disallowed, the ALG must cache messages and another ALG, placed in the local network, must

fetch the cached messages regularly. This concept is addressed in this Thesis and further elucidated

in section 5.2 Application Level Gateway .

The example of the SISTEC/SCAI Grid shows, that the problem is not only a theoretical problem,

but has quite some relevance for the practical usability of computational Grids. Even though both

institutions work together very closely and often appear to project partners as a single Metainstitute,

it was not possible to merge their Grid systems. A problem, almost every VO will probably encounter,

when security policies have to be considered. Additionally to security policies, software licenses that

are bound to certain machines can lead to the outlined problem.

Roland Gude 6

Design and Implementation

of a Security Gateway

for Grid Services

Chapter 3

Technical basis

This Chapter describes some technical basics in order to understand the problem, and the solution

which is proposed and developed in this Thesis, as well as the concept which lies behind that solution.

The section 3.1 Grid Services explains what Grid services are. It therefor includes a short description

of web services, which form the base of Grid services. The Simple Object Access Protocol is described,

because it is the usual protocol Web services use. In section 3.2 Firewalls some basics about �rewall

technology and packet �ltering are described.

3.1 Grid Services

During the evolution of Grid software, several approaches to the problems of grid computing have

emerged. One of them is the concept of Grid services which is described in this section. Grid services

are de�ned by the OGSA [9, 7, 5]. In short, OGSA Grid services are web services (see section

3.1.3 Web Services), which implement certain interfaces (also known as portTypes). In OGSA/Web

Service Resource Framework (WSRF) based Grids, everything from computational resources over

storage resources to networks and programs is represented as a service. Section 3.1.1 The Open Grid

Service Architecture will give further insight into OGSA. According to [6], Grid service based Grids

can be seen as the third generation of Grid systems. As stated in [6], these third-generation Grid

systems are becoming more and more automated and autonomous. An attribute that is one of the

goals of a service based Grid architecture.

3.1.1 The Open Grid Service Architecture

The Open Grid Service Architecture as proposed and outlined in [7] and de�ned in [9] is a service

oriented Grid architecture, which addresses the need of Grid computing for standardization. It calls for

capabilities which address certain key concerns of Grid computing, like authorization and membership

of virtual organizations. It demands dynamic and heterogeneous environment support and interop-

erability in such environments. In addition it asks for the ability to integrate existing legacy systems

into the Grid. The ability to virtualize resources, which means, that Grid services may be aggregated

in order to create higher level Grid services, is also required. Common management capabilities are

demanded in order to simplify the administration of such dynamic and heterogeneous environments as

well as mechanisms for resource discovery and query. [9] states that a service based Grid architecture

like OGSA must enable resource sharing between di�erent organizations and still o�er the possibility,

to optimize resource allocation. Furthermore it must be possible to assure certain qualities of service

if needed. And mechanisms for job submission, including the support for di�erent job types as well as

management of submitted jobs, scheduling and resource provisioning mus be contained. It must be

capable of providing integrated data access and ensuring data consistence and persistence.

Roland Gude 7

Design and Implementation

of a Security Gateway

for Grid Services

3.1.2 From OGSA to WSRF

In [7] Foster et al. explain and outline OGSA. They de�ne a service, as a network-enabled entity which

provides some capability. After a short discussion about how a Grid service could be accomplished,

they identify Web services and the Web Service De�nition Language (WSDL) as a good basis for Grid

services. Some qualities of Web services and WSDL lead the OGSA Working Group (OGSA-WG) to

this conclusion. These qualities are the ability to de�ne service interfaces clearly and distinguished from

the protocol bindings for service invocation. This service based approach allows distributed protocol

bindings as well as locally optimized bindings for service invocation, which is a great advantage when it

comes to Grid computing. The service implementation is also distinguished from interface de�nition

and protocol binding. With basing OGSA on Web services and WSDL, OGSA adopts all these

features.

However, this does not clarify, what the di�erences between Web services and Grid services are.

While Web services and WSDL only provide means to de�ne interfaces and invoke services (of course

with the qualities mentioned above), Foster et al. came to the conclusion, that Grid services required

well de�ned semantics as well. These semantics should assure, that all Grid services follow the same

conventions for things like error noti�cation and creation, as well as termination. They therefore

proposed a set of well-de�ned standard interfaces, which address those conventions. This means,

that a Web service, which implements those well-de�ned interfaces becomes a Grid service. A �rst

speci�cation of interfaces a Web service must implement to become a Grid service has been done

in the OGSI Working Group (OGSI-WG) and published in [22]. As Web services evolved, the Open

Grid Service Infrastructure (OGSI) speci�cations have been refactored into the WSRF [5]. That

refactoring process and relations between OGSI and WSRF are explained in [4]. WSRF contains all

functionality which has been speci�ed in [22], but partitions it into �ve speci�cations and changes

some syntax. Admittedly [5] is a draft document and [9] will most likely be subject to further work.

This shows that the concrete Grid service is not yet clearly speci�ed. Final interfaces may vary from

those proposed in those documents, but the direction and the basic concept are clear.

3.1.3 Web Services

This section contains a short description of Web services and the underlying Simple Object Access

Protocol (SOAP). Explaining the functionality and features of Web services is out of the scope

of this thesis. This section only contains short summaries of technical basics. For further insight

see [25] which contains detailed descriptions of protocol speci�cations and functionalities as well as

architecture explanations.

Web services are software applications, which are identi�ed with a Uniform Resource Identi�er

(URI). Each Web service implements a concrete interface which is de�ned with the WSDL [3]. The

interfaces in WSDL are called portTypes. A client discovers the Web service and its description for

example over a discovery service or a registry. The Web service description contains the information

that is necessary to invoke the service. By obtaining the description, the client gains the ability to

invoke the service 1. This is done by sending a message to the Web service, which contains method

name and parameters. The Web service responses that request with another Message which contains

the results of the method invocation. See Figure 3.1

Web services commonly use SOAP for communication. Another protocol that may be used is

eXtensible Markup Language - Remote Procedure Call (XML-RPC). SOAP is further described in

section 3.1.4 The Simple Object Access Protocol .

It can be said, that Web services are for machines, what Web sites are for humans. A �tting

example is the Google API [10], which enables applications to search the internet with the Google

search engine (http://www.google.de), and enables them to use the search results. Without such a

Web service, an application would have to parse the Google result page, which is quite a hard task.

1of course the client might have known the description without discovery

Roland Gude 8

Design and Implementation

of a Security Gateway

for Grid Services

Figure 3.1: Interaction with Grid services [19]

Web services are often compared to the Common Object Request Broker Architecture (CORBA),

where interfaces are de�ned in the Interface De�nition Language (IDL) and may be implemented in

any programming language. WSDL is for Web services, what IDL is for CORBA and Web services

share some aspects with CORBA, but while CORBA follows a object oriented approach, Web services

are, as the name says, service oriented.

3.1.4 The Simple Object Access Protocol

The SOAP [14] is a protocol for the exchange of structured and typed data, based on the eXtensible

Markup Language (XML). It is a simple and lightweight message based protocol which can be used

with any transport protocol (i.e. Hyper Text Transfer Protocol (HTTP)). A SOAP Message consists

out of a mandatory envelope, which contains an optional header and a mandatory body element. Inside

the header, optional header entries make it possible to provide additional information or metadata.

The body contains body entries, which contain all essential information for the recipient.

SOAP can encapsulate remote procedure calls. Required entries for such a task are a URI which

identi�es the recipient, the name of the method that shall be invoked and its parameters. Applications

which use SOAP for remote procedure calls, do not need to know about the implementation of the

method. This is quite important for Web and Grid services.

Another of SOAPs features is an encoding mechanism for serialization of application-speci�c data

types. As stated in [25], this mechanism might reduce development e�ort but may also lead to

interoperability problems in heterogeneous systems.

3.2 Firewalls

The term �rewall covers a large �eld of technologies. The original de�nition of a �rewall is the

implementation of a security policy. Today's �rewalls vary vastly in functionality. In order to clear

this up a bit, this section describes packet �lter and content �lters. But you should note that the

concept described in chapter 5 Concept could also be referred to as a �rewall, and it might as well

be implemented in a single hardware device.

Firewalls are used to protect networks from attacks and to �lter unwanted tra�c. They consist

out of �ltering software, that screens incoming and outgoing network tra�c. The tra�c is �ltered

according to speci�c rules so packets will either be dropped or forwarded. There are di�erent levels

of �ltering used in �rewalls. The packet �lter (section 3.2.1 Packet Filter) �lters Internet Protocol

(IP) packets one by one without knowledge of the content or complete data stream. Content �lters

are able to �lter the content of several packets at once (section 3.2.2 Content Filter).

Roland Gude 9

Design and Implementation

of a Security Gateway

for Grid Services

Usually, �rewall architectures include a DMZ. The DMZ can be described as a location which is

neither in the local network, nor in the external network, but next to the �rewall. For the ease of

illustration just imagine it as the location between two �rewalls. For example, one �rewall has a rule

set, that allows most tra�c, and one �rewall has a rule set that is more restrictive and disallows a lot

more connections. The place between these two �rewalls is the DMZ. Resources that don't need a

high level of protection but use certain protocols that would be blocked by the restrictive �rewall can

be placed in the DMZ for full functionality. This setup is illustrated in �gure 3.2. Actually hardware

�rewall devices exist and their setup determines which resources should be treated as if they where in

a DMZ.

Figure 3.2: A local network, protected with two �rewalls and DMZ between those �rewalls.

3.2.1 Packet Filter

Packet �lters are the lowest level of �rewall technology. They �lter IP packets, and make decisions

based on rules and the contents of the IP-Header. This Header contains the IP-Address of sender

and receiver, checksums and some other information (e.g. time to live, max hops). IP-packets wrap

Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) packets. These protocols

have additional header information which is usually used for �ltering too. Packet �lters have no

knowledge of the protocol that is transmitted with TCP or UDP and for that reason can not �lter

the content. Packet �lters can be used to disallow tra�c from certain hosts and blocking of ports.

Blocking of ports is sometimes referred to as blocking of protocols, which is not correct. Protocols

are independent of the used port and can be used with any port, but they usually only use one speci�c

port (e.g. HTTP usually uses port 80, but if a packet �lter is set to block port 80, this will not disallow

all HTTP tra�c. A HTTP server listening on port 8080 or any other port would not be a�ected by

that rule). For this reason, administrators tend to block as many ports as possible (e.g. all unused

ports), in order to block all unwanted protocols. By opening a single port for an application, they

enable every application to run over that port.

3.2.2 Content Filter

A content �lter is able to �lter the content of tra�c that passes the �rewall. It therefore collects

complete data streams (which means, that it collects all packages which belong together). It needs

knowledge about the protocol, which is transmitted and it must understand that protocol. Content

�lters can be used to remove certain parts of the content, e.g. JavaScript from a HTML document.

These tasks are very complicated and usually not part of a �rewall. If they are, they are restricted

to �ltering of a few protocols like HTTP or data formats like HTML. The content �ltering is usually

done by other special software (e.g. Virus scanners, SPAM-�lters, Intrusion Detection Systems etc)

which is employed after the use of a �rewall, respective a packet �lter. Figure 3.3 illustrates on which

network layers of the TCP/IP modell the di�erent �lters work. You should note, that the presented

concept and the content �lters share some common ground and the concept might be integrated in

�rewalls as well.

Roland Gude 10

Design and Implementation

of a Security Gateway

for Grid Services

Figure 3.3: Network layers and corresponding �lters.

Roland Gude 11

Design and Implementation

of a Security Gateway

for Grid Services

Roland Gude 12

Design and Implementation

of a Security Gateway

for Grid Services

Chapter 4

Similar Software products

This chapter will give a short overview over software products, which have similarities with the ALG,

designed as part of this thesis. This comparison has already been done as a part of the requirement

analysis for the ALG [12]. During the research for [12] two relevant software products have been

identi�ed. The �rst product is the Xtradyne Web Service Domain Boundary Controller and the second

product is the MultiNet iSecure Web Services Gateway. Both products aim at similar problems as the

ALG but do not target Grid services. The scope of both products only includes ordinary Web services.

The Xtradyne Web Service Domain Boundary Controller (WS-DBC) is an Application Level Gate-

way based approach to secure Web services transparently. This is exactly what the designed ALG

should do for Grid services. WS-DBC features a SOAP content inspection and Security Assertion

Markup Language (SAML) assertions. It is able to provide a secure gateway to Web services. The

concept and the features of WS-DBC are described in [2, 23, 24]. According to those references,

WS-DBC does not provide all features which are needed for Grid services. The following quote is

taken from [12]:

WS-DBC and Fireblade both share the same approach to secure Web/Grid Services.

WS-DBC already features a lot of authentication methods like X.509 or SAML, but its

scope is limited to Web Services, while Fireblade addresses Grid Services. The main

di�erence is, that Grid Services often use protocols, that are not SOAP based, e.g.

GridFTP or GASS. Those protocols can transfer any type of data between to nodes and

will use SOAP messages only to initialise a data transfer. WS-DBC is not able to handle

such data transfers. Additionally WS-DBC only validates SOAP-Messages against given

schema �les. It does not provide functionality to change message contents (e.g. for

mapping of users from internal to external users).

The designed ALG does not provide all these functionalities that have been identi�ed as missing

features of WS-DBC, but instead it will make it easy to develop and add new features on demand

(see Chapter 6 Realization).

The second software product which has been compared to the ALG is the MultiNet iSecure Web

Services Gateway [15, 21]. Like WS-DBC and the solution proposed in this Thesis, it is based on an

ALG architecture. The following statement is taken from [12]:

The MultiNet iSecure Web Services Gateway is, like Xtradyne WS-DBC an ALG-

based approach for securing Web Services. It addresses several security issues for Web

Services, but it does neither provide end-to-end security like WS-DBC, nor is it able to

handle protocols like GridFTP or GASS. It does not o�er any authorization methods as

well. MultiNet iSecure WebService Gateway is meant as a complement to Software that

possesses these features.

The fact that at least two products identi�ed similar problems for Web services and try to solve

those problems with a similar concept shows, that the ALG-based approach goes into the right

Roland Gude 13

Design and Implementation

of a Security Gateway

for Grid Services

direction. However both products lack certain features that are necessary in order to provide a

security gateway for Grid services.

Roland Gude 14

Design and Implementation

of a Security Gateway

for Grid Services

Chapter 5

Concept

Di�erent concepts may provide a solution for the problem described in chapter 2 Problem Description.

This chapter will give some insight into the chosen concepts and it will present some advantages over

other concepts, which have also been considered.

The following concepts have been considered:

� SSH tunneling

� Virtual Private Network (VPN) plus Grid nodes in the DMZ

� Application Level Gateway

5.1 Comparison of di�erent concepts

This section brie
y describes the di�erent concepts and compares them with each other. Every

subsection features a table which shows the major advantages and disadvantages from the di�erent

concepts.

5.1.1 SSH tunneling based approach

The �rst concept, SSH tunneling, was the �rst solution which was considered, when SISTEC and

SCAI encountered problems with �rewalls while creating a VO. The idea behind this concept is, to

create Secure Shell (SSH) tunnels for all necessary connection paths. This would require machines in

the local networks of each participating institution, which would be starting points of such tunnels.

Such an approach has been made by HP Laboratories Palo Alto in 2002 (see [11]1) with Globus

Toolkit 2. The following quote from [11] describes the concept brie
y. See table 5.1 for an overview

about this concept.

The basic idea behind port tunneling is to open an encrypted connection to a remote

host and forward all local connections to certain ports to referred ports at the remote

host (or vise versa).

Advantages

SSH is a widely spread protocol which can be considered as stable. Even inexperienced system

administrators will possess knowledge about SSH and know how to setup SSH-Tunnels. Additionally

it is powerful and can enable any Grid communication between di�erent nodes through SSH-Tunnels.

There are no limitations on the protocols it supports, because it works on TCP/IP level. All tra�c

transmitted through those tunnels is encrypted and thus resistant against wiretapping.

1Some more concepts are discussed in [11], but considered signi�cantly inferior to the Tunneling approach.

Roland Gude 15

Design and Implementation

of a Security Gateway

for Grid Services

Advantages Disadvantages

all features complex setup

protection against wiretapping complex con�guration

stable no reusable setup

no new software needed no reusable con�guration

di�cult automation

Table 5.1: Advantages and disadvantages of a SSH tunneling based approach

Advantages Disadvantages

protection against wiretapping limited to job submission

no new software needed represented resources are invisible for users

not to complex con�guration di�cult automation

Table 5.2: Advantages and disadvantages of a VPN based approach

Disadvantages

Even though the setup process for a single SSH-Tunnel is quite easy, the con�guration and setup

needed for this approach becomes a major drawback. At �rst the number of needed ports can be

extremely high and it might be necessary to open a large number of tunnels. Because the tunnels

may be accessed by anyone who has access to the start-point of the tunnel, it might be a security

risk to leave the tunnels open when not needed. This means that they have to be opened whenever

the Grid should be used. A problem might rise because that process can not easily be automated

(Due to security policies of the participants). Every participating institution needs access to all other

institutions in order to open the tunnels (which might be a security threat). This means that for each

usage of the joined Grid, the users would have to talk to the responsible system administrators in

order to initialize the setup. Another burden is the con�guration of the Grid nodes. They would have

to be con�gured in a way which makes them use the SSH-Tunnels instead of a direct connection to

a certain machine.

5.1.2 VPN based approach

The second concept, using VPN and Grid nodes in the DMZ would require less con�guration than SSH

Tunneling. It features some similarity with the �nally chosen concept. All participating Institutions

would place one Grid node in their DMZ, and con�gure it in a way that communication from that

Grid node into the local network would be possible. In order to ful�ll services, it should invoke services

from the other grid services. All those Grid nodes placed in the DMZ could than be connected with

a VPN in order to disable access from unauthorized users. Although this solution seems to be much

better than the SSH tunneling approach, it has its disadvantages as well.

Advantages

The setup for this concept would be signi�cantly smaller than for the SSH-tunneling approach. Each

institution should only have to con�gure one additional machine in the DMZ for Grid communication

and VPN. Like SSH-Tunneling, this solution o�ers encryption for the tra�c.

Disadvantages

The described setup would not enable all possible Grid communications. It would be limited to job

submission. Services which require direct connections between several nodes might become impossible.

Roland Gude 16

Design and Implementation

of a Security Gateway

for Grid Services

Advantages Disadvantages

transparent communication limited to supported protocols

easy setup con�guration might become hard

possibility of content �ltering eventually a bottleneck

possibility of content validation

Table 5.3: Advantages and disadvantages of an ALG based approach

Furthermore, users would not be able to see the Grid resources which are represented by the nodes

in the DMZ. This would disable the selection of concrete resources for a computation. Another

drawback is, that the VPN can most likely not be opened automatically due to security policies of

participating institutions (similar to the identi�ed disadvantage of the SSH-Tunneling approach).

5.1.3 ALG based approach

An ALG is a system, which understands an application level protocol and �lters network tra�c on that

protocols layer. It is placed between the actual communicating resources which instead of sending

their data directly to their communication partner, send it to the ALG. The ALG acts as if it would

be the original communication partner, accepts and �lters the messages and relays them to their

destination. The same happens with responses. This is similar to the content �lter of a �rewall (see

section 3.2.2 Content Filter). Such a setup would enable transparent communication between all

involved Grid nodes, which means that neither applications running in the Grid, nor the Grid nodes

themselves would need signi�cant con�guration changes. However the installation and con�guration

of such an ALG might become di�cult. A drawback for this concept is, that an ALG needs high level

knowledge about all protocols used for Communication between Grid nodes. In theory, Grid nodes

can communicate with any protocol. Certain Grid services might even introduce their own protocol

for some communication. Grid nodes which are connected with an ALG have their communication

limited to those protocols, the ALG understands and supports.

Advantages

Setting up an ALG is generally not a hard task (except for con�guration, which might become

di�cult). Only one additional machine is needed in the DMZ and the nodes must be con�gured to

talk to that machine instead of the real Grid nodes. This solution would be transparent and would

work fully automated, which means that Administrators would not have to open ports on demands

or setup tunnels each time a computation runs. Additionally an ALG based approach adds the ability

to �lter and validate transmitted data and metadata. This might increase the security of a Grid

signi�cantly.

Disadvantages

The greatest disadvantage of this concept is, that it might become a bottleneck for communication

processes (all communication has to be done with the ALG). An ALG based setup would be limited

to a subset of all possible communication protocols, because the support for each protocol must be

implemented, too (unlike the SSH approach which works on a lower level and has no knowledge about

communication protocols). Furthermore the con�guration of the ALG might become a hard task.

5.2 Application Level Gateway

Neither the setup of SSH tunnels, nor the utilisation of additional Grid nodes in the DMZ provided a

reusable and generally applicable solution for the problem described in chapter 2 Problem Description.

Roland Gude 17

Design and Implementation

of a Security Gateway

for Grid Services

The third and most sophisticated concept leads to such a reusable solution. This is the chosen concept

which introduces an Application Level Gateway and thereby enables a transparent communication

between all grid nodes.

An ALG for Grid services must understand Grid service messages, which are SOAP messages

(see chapter 3 Technical basis). But unlike a content �lter, the ALG would not only have to �lter

those messages, but it would have to provide proxies for the requested services in many cases. This

is due to the fact, that services are not restricted to SOAP messages for their communication. In

order to support non-SOAP communication between the Grid nodes, the ALG would have to identify

the initialization of such communications (which is done via SOAP) and it has to create a proxy

for that communication on the
y. The SOAP messages which initialises the communication has

to be changed, in order to force the usage of the created proxy. In order to create and provide

those proxies, the non-SOAP protocols have to be supported by the ALG. If service requests would

initialise communication over protocols the ALG does not understand, the ALG should not forward

those messages and it should inform the client about that error. Obviously, this would require the

ALG to have knowledge about the initialization process of all protocols. A requirement which cannot

be ful�lled due to the high number of possible protocols. Instead of sending error messages whenever

services are requested which may use unsupported protocols, those services should not even be exposed

to the outside. The decision which services are going to be exposed to the outside has to be done by

a system administrator and can not be done automatically.

Figure 5.1 shows how an ALG which is placed in the DMZ of a institution can enable Grid

communication. Note that the DMZ is represented as the space between two �rewalls as described

in section 3.2 Firewalls.

Figure 5.1: Application Level Gateway enabling a VO with �rewall-protected local networks

As already stated in chapter 2 Problem Description, a �rewall can deny incoming tra�c even

from the resources in the DMZ. In that case two ALGs are needed to enable Grid communication

over a �rewall. ALG one is placed in the DMZ (like in �gure 5.1) and ALG two is placed in the

local network. ALG one has to cache all incoming requests because it is not able to forward them

through the �rewall. Nevertheless it is accessible from ALG two, which may query ALG one for cached

messages. ALG two than forwards the messages to the appropriate resources and sends the answers

to ALG one. ALG one can then forward those answers to the original recipients. This setup is shown

in �gure 5.2 Additional polling ALG for extremely restrictive �rewall environments. The following

quote is taken from the Catalogue of Requirements [12].

"An ALG is placed in the DMZ and reacts to requests from the Internet as if it was the

requested resource. Therefor it acts as a client for the requested resource and forwards

Roland Gude 18

Design and Implementation

of a Security Gateway

for Grid Services

the requests to that resource. After it has received an answer it will forward the answer

to the original client.

The ALG must be able to understand the protocols which are used to determine which

resource has been requested and must be con�gured to allow or disallow certain requests.

Due to the high number of Grid communication protocols and the fast development in

that area, an ALG for Grid Services must be highly extensible."

Figure 5.2: Additional polling ALG for extremely restrictive �rewall environments

This concept has some advantages over the other concepts. It does not require any con�guration

except for the con�guration of the ALG. None of the Grid nodes needs knowledge of the ALG. All

types of service can be made possible with a sophisticated ALG. Even though this might be a hard

task in many cases. Of course this concept has a disadvantage, too. It has a performance bottleneck.

All requests to a �rewall protected node have to be processed by the ALG, which creates latency and

lowers the throughput.

5.3 Requirements

The requirements for this project are documented in the Catalogue of Requirements [12]. This section

summarizes the requirements from that document which contains user pro�les, prerequisites and

duties, dependencies, functional requirements and demands on quality. The functional requirements

are modelled as Use-Cases which are included and explained in section 5.3.4 Use-Cases.

5.3.1 User Pro�les

As stated in [12], the typical user of the ALG is an experienced system administrator. Knowledge of

�rewalls and proxy-servers is required as well as knowledge about the institutions network structure

and security policy. In order to enable Secure Socket Layer (SSL) encryption, the administrator must

be able to acquire all certi�cates of involved Grid nodes. Further requirements on the user might

arise through further extensions (units or plugins) of the ALG (e.g. a Supplier which uses CORBA to

deliver messages will most likely require CORBA knowledge).

Those users who will just run computations on the Grid or developers of Grid applications should

never have to deal with the ALG. This means that there are no requirements on the knowledge of

those people.

Roland Gude 19

Design and Implementation

of a Security Gateway

for Grid Services

5.3.2 Prerequisites, Duties and Dependencies

The ALG should integrate into existing environments easily and it has to provide high availability

(because it provides the only way to access certain Grid resources). It should be able to do load

balancing, because it is performance critical. Additionally, it must be very easy to add new features

and support for new protocols to the ALG. And like every software product, the source code has to

be well documented. The process of extending the ALG has to be documented well to. 2

5.3.3 Demands on Quality

The demands on quality identi�ed in [12] are the following:

The ALG must run on normal out of the box computers (2005 - Pentium IV, 512M RAM).

Load sharing must be possible.

Downtimes must be reduced to a minimum. Availability of the ALG is of a high priority.

The ALG must be con�gured by an easy to use Graphical User Interface to avoid miss con-

�guration. Password protection for the Administration is an absolute must. All set-

tings can only be made by the Administrator.

Security is one of the major features of the Application Level Gateway. Security Pol-

icy must be to disallow everything from the beginning and allow certain speci�ed connec-

tions later.

However those demands do not apply to the software version developed as part of this Thesis. This is

due to the fact that it would not be possible to develop a Software addressing all identi�ed requirements

within the time which is available for a Bachelorthesis. Especially performance and GUI con�guration

have a low priority for a �rst implementation. They will be required in further advanced versions

nevertheless.

5.3.4 Use-Cases

All Use-Cases in this subsection (Figures 5.3, 5.4, 5.5 and 5.6) are taken from the Catalogue of

Requirements [12] and created by Roland Gude and Thijs Metsch, as part of the requirement analysis.

The explanations are summaries of those from [12].

The �rst use-case diagram (�gure 5.3) shows the basic functionality of the ALG. It shows how

the di�erent actors (Client, Administrator, Grid and Developer) interact with the ALG. The Client

can be any source of a Grid service request, e.g. a Grid service from remote Grid nodes. Grid

describes the local Grid nodes which should be protected by the ALG. Developers are those persons

who actually work on the ALG (e.g. create units or plugins), but not the developers of Grid services.

The Administrator is the maintainer of the ALG, who installs and activates units and plugins or de�nes

the con�guration. The use handler unit use-case is modelled in �gure 5.5 and 5.4. The requests are

accepted from the ALG (actually from the consumer), the deployed handler units inspect, validate and

modify the MessageContext for that request (and possibly the request itself), and the ALG invokes

the Grid service (using the supplier).

Figure 5.4 shows the interaction of the ALG's core with the di�erent actors. Possible actors

are cores from other ALG installations, Administrators or units. Administrators con�gure the core

(e.g. the use-case order describes that they de�ne the order in which the handler units should be

used) and other cores just interact in order to achieve load balancing. The interaction between units

and the core is a more complex. Whenever a unit has �nished handling of a request, it passes the

MessageContext back to the core. The core now selects the next unit (which is de�ned by the order

of the units) and sends the MessageContext to that unit.

2A document providing a detailed description on the process of unit/plugin-development is currently under devel-

opment ([13]). This thesis provides some information on the unit/plugin-development process in section 6.3 Plugin

Architecture.

Roland Gude 20

Design and Implementation

of a Security Gateway

for Grid Services

Figure 5.3: Use-Case: Basic functionalities of the ALG

Figure 5.4: Use-Case: Functionalities of the ALG-Core

The unit use-case diagram (�gure 5.5) shows how the ALG units works and interact with other

actors. The actors in this context may either be the core of the ALG, an administrator or the plugins

which extend the unit. The core asks for handling of a MessageContext. The unit then modi�es

the MessageContext (not necessarily the message) and utilizes appropriate plugins for further tasks.

When all plugins have done their tasks, the MessageContexts history is updated and the Message is

�nalized, which means it is handed back to the core.

The last use-case diagram (�gure 5.6) shows the interaction between units and their plugins from

Roland Gude 21

Design and Implementation

of a Security Gateway

for Grid Services

Figure 5.5: Use-Case: Functionalities of the ALG-Units

the perspective of the plugins. The Context receives a MessageContext from the unit it extends and

handles that MessageContext. When this is done, it hands back the MessageContext to the unit.

The plugin may be con�gured by an administrator of course.

Figure 5.6: Use-Case: Functionalities of the ALG-Unit-Plugins

Roland Gude 22

Design and Implementation

of a Security Gateway

for Grid Services

Chapter 6

Realization

This chapter contains information about the software development and the developed software, but

it is neither a complete requirements analysis nor a concept and design manual. At DLR, both

documents are being worked on currently, and this chapter will refer to them several times and

even quote certain parts of the current drafts. These documents have not yet been published, so

this Thesis contains the most detailed information about the developed solution, that is currently

available. Additionally this chapter contains information about major software products that have

been used for the realization of the ALG, namely AXIS, an open-source java based SOAP engine and

the Java Plugin Framework (JPF) which has been employed to guarantee the demanded high grade

of extensibility for this software.

6.1 Basic Software Architecture

The developed ALG has a highly extensible architecture, shown in �gure 6.1. On top of an application

core several units are deployed to handle the SOAP messages which reach the ALG. Two units have

a special role in this architecture, namely the consumer unit and the supplier unit. The consumer unit

is the part of the ALG where new SOAP requests arrive and responses are forwarded to their original

destination. The supplier unit is the part which forwards checked messages to the original recipient

and accepts the answers. The units between consumer and supplier are the handler units. They can

be used for all other tasks that have to be done whenever a message arrives (e.g. validation of user

names). While no handler units are required for the ALG to use (though that might not make to

much sense), consumer and supplier unit are mandatory.

units may be further extended with plugins. Some possible plugins are marked with dotted lines

in �gure 6.1. The Consumer unit could be extended with several plugins. For example one which

receives messages over HTTP, one that receives them over email or one which queries them from

another ALGs cache. A unit which is intended to check whether a message is acceptable might

contain plugins which check the user name as well as plugins which check whether the requested

resource should be visible for that user. It might as well contain plugins which contain certain checks

that are necessary in order to support certain Grid Protocols like GridFTP.

Messages are represented together with some status information as a MessageContext instance.

units that have performed their tasks with a message, update the history of the associated Message-

Context and hand the message over to the core. The core evaluates the MessageContext instance

(e.g. checks the history and status information) and selects the next unit which should handle the

message. The selected unit then performs its tasks and hands the message back to the core after-

wards.

You can imagine the ALG as a bidirectional pipe of handling units, managed by a core. The

internal communication between the core and the units is modeled in the UML sequence diagram

�gure 6.2. In �gure 6.1 the consumer unit would be the entrance point of the pipe and the supplier

Roland Gude 23

Design and Implementation

of a Security Gateway

for Grid Services

would be the pipes exit (and entrance point for the responses). A message arriving at an ALG with

those units shown in �gure 6.1 would pass the following stations in that order:

1. request received by the consumer unit.

2. consumer unit creates MessageContext from the request.

3. consumer hands the MessageContext to the core.

4. core checks status and history of the MessageContext and hands it to the next unit, which is

the authorization unit.

5. authorization unit checks the MessageContext with the Virtual Organization Membership Ser-

vice (VOMS) plugin.

6. authorization unit updates the MessageContext (history and status) and hands it to the core.

7. core checks status and history of the MessageContext and hands it to mapping and validation

unit.

8. the MaV unit validates the request and maps from external to internal users, updates the

MessageContext and hands it to the core.

9. core checks status and history of the MessageContext and hands it to the supplier unit.

10. the supplier unit delivers the request.

11. the supplier receives the response, updates the MessageContext and hands it back to the core.

12. core checks status and history of the MessageContext and hands it to the mapping and validation

unit.

13. the MaV unit validates the request and maps from internal to external users, updates the

MessageContext and hands it to the core.

14. core checks status and history of the MessageContext and hands it to the authorization unit.

15. authorization unit checks the MessageContext with the VOMS plugin.

16. core checks status and history of the MessageContext and hands it to the consumer unit.

17. the consumer delivers the response.

6.2 Used Software

This section describes brie
y which major software products have been employed in order to design

and realize the developed ALG. This is not a list of all used libraries, but contains only those software

products that had signi�cance when it came to the overall software design. The software has been

developed in the Java programming language with the use of the Eclipse IDE and Subversion as a

version management tool.

Roland Gude 24

Design and Implementation

of a Security Gateway

for Grid Services

Figure 6.1: Basic Architecture of the developed ALG.

Figure 6.2: UML sequence diagram of the communication process with between a client, the ALG

and a resource.

6.2.1 Axis

Axis [1] is an open-source java SOAP implementation. All messages, sent in Grid service context

are such SOAP messages. Axis is used to represent those SOAP messages to the ALG. It is used

for everything that has to do with SOAP in the ALG, like generation of error messages. The ALG

can access the messages by utilizing the axis API. This renders XML parsing for message validation

unnecessary.

The following quotation is from the Axis User Guide at [1].

Axis is essentially a SOAP engine { a framework for constructing SOAP processors such

as clients, servers, gateways, etc. The current version of Axis is written in Java, but a

C++ implementation of the client side of Axis is being developed.

All SOAP messages are represented to the ALG using de.dlr.�reblade.message.MessageContext

(see section 6.4.1 MessageContext. It uses the javax.xml.soap.SOAPMessage implementation from

Roland Gude 25

Design and Implementation

of a Security Gateway

for Grid Services

Axis (org.apache.axis.Message) to do so. This enables the ALG to create and parse SOAP messages.

6.2.2 Java Plugin Framework

The Java Plugin Framework enables the development of plugin based architectures. It provides classes

and interfaces to write plugins, as well as a central plugin manager and a plugin registry. It is able to

discover plugins that are installed and to check whether the dependencies (upon other plugins) for a

discovered plugin have been met.

This is what the project Web site [17] states about JPF:

"The Framework implements the runtime engine that dynamically discovers and runs

plugins. A plugin is a structured component that describes itself to the Framework using

a manifest �le. The Framework maintains a registry of available plugins and the function

they provide (via extension points and extensions).

A general goal of the Framework is that the application (and end user using it) should

not pay a memory or performance penalty for plugins that are installed, but not used.

A plugin can be installed and added to the registry (even when application is running),

but the plugin will not be activated unless a functionality provided by the plugin has been

requested according to the user's activity."

JPF is used to achieve the high grade of demanded extensibility. The base classes of the ALG

(de.dlr.�reblade.core.Core, de.dlr.�reblade.core.unit.Unit, de.dlr.�reblade.unit.plugin.Plugin) are all

derived from the JPF org.jpf.plugin.Plugin class. In order to extend the core, a new unit has to

be written by subclassing de.dlr.�reblade.core.unit.Unit and its manifest �le is needed as well. In

order to extend a unit (like the consumer or the supplier, though the reference implementations do

not de�ne any extension points and due to this are not extensible), a new plugin must be written by

subclassing de.dlr.�reblade.unit.plugin.Plugin and its manifest �le must be created. The more detailed

documentation [13], including coding standards is currently under development.

6.3 Plugin Architecture

In order to extend the ALG, a developer has two possibilities (besides modi�cation of the source code

of the ALG itself). He can either develop a unit or a plugin for the ALG. The di�erence between a

unit and a plugin is simple. units extend the ALG, plugins extend a certain unit. A simple example

would be the following. A developer who wants to add the functionality to check the user name

included in a Grid request against valid user names would write a unit to do this task. For a �rst

deployment he only needs to check if the user name is included in a certain �le. In order to extend

this functionality later, he de�nes a extension point for his unit and develops a plugin which attaches

to that extension point and checks a given user name against a list it gets from a certain �le. Some

time later he realizes that checking the user name against user names in a �le is not su�cient for his

needs any more. He now creates a new plugin extending his unit, which checks a user name against

a LDAP-Server (or something similar).

The developed implementation of the ALG includes some abstract classes which enable the cre-

ation of new units and Plugins.

� de.dlr.�reblade.core.unit.Unit

� de.dlr.�reblade.core.unit.plugin.Plugin

In order to create a new Unit, a developer has to subclass de.dlr.�reblade.core.unit.Unit and imple-

ment the abstract methods. Furthermore he needs to create a manifest �le (see 6.2.2 Java Plugin

Framework) for this Unit.

A unit might look like this:

Roland Gude 26

Design and Implementation

of a Security Gateway

for Grid Services

import de.dlr.fireblade.unit.Unit;

import de.dlr.fireblade.unit.exceptions.UnitException;

import de.dlr.fireblade.core.CoreInterface;

import org.java.plugin.PluginDescriptor;

import org.java.plugin.PluginManager;

public class MyNewShinyUnit extends Unit {

//A parameter name for some parameter which is read from the configuration file

private final static String PARAM_PARAMETERNAME = "my.new.unit.param";

//the default value for the parameter

private final static String DEFAULT_PARAMETERNAME = "defaultvalue";

//private String myVariable;

//A Constructor

public MyNewShinyUnit(PluginManager mgr ,PluginDescriptor desc) {

super(mgr, desc);

}

//Initialisation of the unit, which must be called before it is usable

public void init(File dataFolder, CoreInterface core) throws UnitException{

super.init(dataFolder, core);

//extracting the parameters from the configuration properties

try {

if (myProperties.getProperty(PARAM_PARAMETERNAME == null) {

throw new NullPointerException();

}

myVariable = myProperties.getProperty(PARAM_PARAMETERNAME);

} catch (NullPointerException e) {

myVariable = DEFAULT_PARAMETERNAME;

}

}

//implementing those abstract methods

/**

*

* message handling that is done for every incoming message

* before any plugins can work with the message

*

* @param answer the message that should be handled

* @throws UnitException thrown when something goes wrong.

*

*/

protected void doInitialRequestHandling(MessageContext request)

throws UnitException {

//Some Implementation goes here

}

Roland Gude 27

Design and Implementation

of a Security Gateway

for Grid Services

/**

*

* hands an incoming Message (requests) to the appropriate

* plugins and let them do some handling

*

* @param request the message that should be handled

* @throws UnitException thrown when something goes wrong.

*/

protected abstract void delegateRequestToPlugins(MessageContext request)

throws UnitException{

//Some Implementation goes here

}

/**

*

* Final message handling that is done after all plugins did something with

* the incoming message (request) and just before the message is send

* back to the core

*

* @param request the message that should be handled

* @throws UnitException thrown when something goes wrong.

*/

protected abstract void doFinalRequestHandling(MessageContext request)

throws UnitException {

//Some Implementation goes here

}

/**

*

* message handling that is done for every returning message

* before any plugins can work with the message

*

* @param answer the message that should be handled

* @throws UnitException thrown when something goes wrong.

*

*/

protected abstract void doInitialAnswerHandling(MessageContext answer)

throws UnitException {

//Some Implementation goes here

}

/**

*

* hands an returning message (answer) to the appropriate

* plugins and let them do some handling

*

* @param answer the message that should be handled

* @throws UnitException thrown when something goes wrong.

*

*/

protected abstract void delegateAnswerToPlugins(MessageContext answer)

Roland Gude 28

Design and Implementation

of a Security Gateway

for Grid Services

throws UnitException {

//Some Implementation goes here

}

/**

*

* Final message handling that is done after all plugins did something with

* the returning message (answer) and just before the message is send

* back to the core

*

* @param answer the message that should be handled

* @throws UnitException thrown when something goes wrong.

*/

protected abstract void doFinalAnswerHandling(MessageContext answer)

throws UnitException {

//Some Implementation goes here

}

//Now there are some further methods which will not yet

//be called anyway and might be removed from the software someday

/**

* Activate a deployed plugin

*

* @param plugin plugin that should be activated

* @throws PluginException

*/

protected abstract void activatePlugin(de.dlr.fireblade.unit.plugin.Plugin plugin)

throws PluginException {

//Some Implementation goes here. Probably Empty.

}

/**

* Deactivate a deployed plugin

*

* @param plugin plugin that should be deactivated

* @throws PluginException

*/

protected abstract void deactivatePlugin(de.dlr.fireblade.unit.plugin.Plugin plugin)

throws PluginException {

//Some Implementation goes here. Probably Empty

}

}

The manifest �le must be named unit.xml and must be placed (together with the units classes)

in the units folder of the ALG. A manifest �le will look like this:

<?xml version="1.0" ?>

<!DOCTYPE plugin PUBLIC "-//JPF//Java Plug-in Manifest 0.2"

"http://jpf.sourceforge.net/plugin_0_2.dtd">

Roland Gude 29

Design and Implementation

of a Security Gateway

for Grid Services

<plugin id="myShinyNewUnit" version="0.0.1" class="mypackage.MyShinyNewUnit">

<requires>

<import plugin-id="de.dlr.fireblade.core"/>

</requires>

<runtime>

<library id="myShinyLibrary" path="classes/" type="code">

<doc caption="API documentation">

<doc-ref path="api/index.html" caption="javadoc"/>

</doc>

</library>

</runtime>

<extension plugin-id="de.dlr.fireblade.core" point-id="Handler"

id="myShinyNewUnit">

<parameter id="class" value="mypackage.MyShinyNewUnit"/>

<parameter id="name" value="myShinyNewUnit"/>

<parameter id="description" value="Does something really nice"/>

</extension>

<extension-point id="myPluginsMayConnectHere">

<parameter-def id="class"/>

<parameter-def id="name"/>

<parameter-def id="description" multiplicity="one"/>

</extension-point>

</plugin>

The unit described by this manifest �le will be known to the ALG by its plugin id, which ismyShinyNewU-

nit (de�ned in line2). It does only require the core of the ALG and provides its classes as a Library.

The part surrounded by <extension> and </extension> de�nes, to which extension point this unit con-

nects (which part of the ALG is extended by the Unit). For units this must always be the core. The

core o�ers three Extension points. All of them might be used by a Unit. units which connect to the

extension point Consumer or Supplier must implement the corresponding interface. Ordinary units

will extend the Handler extension point. This unit does not only extend the core, but it does also

provide an extension point for Plugins.

Every unit has its own data folder, where it may store its con�guration and other data it needs.

This folder is a sub folder of the ALGs data folder is named with the value supplied as plugin-id in

the units manifest �le. For con�guration of units, a �le called unit.properties should be placed in that

folder. This �le is a standard Java-Properties �le (Syntax: Parameter name=value). The properties

set in this �le will be available to the unit under the variable myProperties.

The creation of plugins is more or less the same as the creation of Units. The plugins are subclassed

from de.dlr.�reblade.core.unit.plugin.Plugin and implement the abstract methods of that class. The

manifest �le di�ers slightly from the manifest �le for Units. A plugin may not connect to any of the

extension points of the core. It must connect to an extension point which is de�ned by a certain unit.

A plugin may not de�ne further extension points 1

6.4 Implementation of the ALG

This section will provide some details about the software that has been developed as a part of this

thesis. Three main parts of the ALG have been implemented. These are the core (section 6.4.2

Core), the consumer unit (section 6.4.3 Consumer) and the supplier unit (section 6.4.4 Supplier).

Some other minor parts have been developed. These are the MessageContext (section 6.4.1 Mes-

sageContext) and some abstract classes and interfaces for units and plugins. Table 6.1 shows which

1Although this is technically possible, it is considered inconvenient.

Roland Gude 30

Design and Implementation

of a Security Gateway

for Grid Services

classes are part of the �nal software. A more detailed documentation can be found in the JavaDocs.

They are generated directly from the source code and its comments and provide the complete API.

Class name abstract interface implements function

Boot no no | Initialization

CoreInterface no yes | core Interface

Core no no CoreInterface core functionalities

CoreTest no no | JUnit Test for the core

CoreException no no | Exception thrown by core

MessageContext no no | message and context information

MessageType no no | distinction requests/answers

ValidationStatus no no | validation process monitoring

MessageHistory no no | handling process monitoring

Entry no no | MessageHistory entries

EntryType no no | Typing of history entries

AbstractUnitTest yes no | Abstract JUnit TestCase

Unit yes no | Base class for all units

Consumer no yes | Consumer Interface

UnitException no no | Exception thrown by units

Plugin yes no | Base class for all plugins

PluginException no no | Exception thrown by plugins

Supplier no yes | Supplier Interface

Receiver no no Consumer Consumer unit

ConsumerServlet no no | receive HTTP requests

BasicSupplier no no | deliver SOAP messages

Table 6.1: Main classes in the �nal software

6.4.1 MessageContext

The MessageContext class wraps the Axis SOAPMessage objects, in order to provide additional

functionality. It is used to provide context information about messages. These context information

is a messages type, like request or response, information about the validation process and its status

and a history, where units can provide information about checks that have been passed or failed.

MessageContext instances are created, when the consumer unit receives SOAP requests, and they

are destroyed as soon as the request has been answered. That means, that request and response

reside in the same MessageContext.

ValidationStatus

The ValidationStatus is used to distinguish between MessageContexts which passed all checks, failed

at least one check or still require further checks. The following states exist:

� VALIDATION IN PROGRESS

� VALIDATION SUCCESSFUL

� VALIDATION FAILED

� VALIDATION ERROR MESSAGES.

While the �rst three status types are self explanatory, the last one needs some additional explanation.

If a message has failed validation, the status is changed to VALIDATION FAILED. The core will then

Roland Gude 31

Design and Implementation

of a Security Gateway

for Grid Services

Figure 6.3: UML-Class-Diagram for the core.

evaluate the MessageHistory and generate an error message from the provided information. This

error message is stored in the same MessageContext instance, as the original message, and the status

is changed to VALIDATION ERROR MESSAGE. A message with this type does not require further

checks (it has been created by the system) and will directly be delivered to the sender of the original

message.

MessageHistory

A MessageHistory is a collection of events that occurred during the life of a MessageContext. The

�rst history entry is the creation of the message context. Further entries will follow during the

validation process. A history entry has a type and related phrase. The type of the entry determines

what happened to the MessageContext and the phrase determines which unit is related to the event

(It will usually be the unique ID of the unit or plugin which triggered the event). The existing entry

types are:

� CHECKED: appended to the history whenever the MessageContext passes a check

� CHECKFAILED: appended whenever the MessageContext fails a check

� RECEIVED: appended whenever a MessageContext is Received from a Consumer unit

� SEND: appended whenever a MessageContext is delivered via a Supplier unit

� MODIFIED: appended whenever the message of a MessageContext has been modi�ed

� REJECTED: appended whenever a MessageContext is rejected by the core

� ACCEPTED: appended when the MessageContext has passed all tests and is �nally accepted

by the core

Roland Gude 32

Design and Implementation

of a Security Gateway

for Grid Services

Figure 6.4: UML-Class-Diagram for Units.

� CONTINUED: appended whenever a MessageContext is forwarded to another unit for further

checks

� CREATED: appended when the MessageContext is newly created

� ANSWERED: appended when the MessageContext has been delivered by the supplier and the

supplier received an answer

� NOTYPE: An Entries of this Type is used whenever no other type �ts

Roland Gude 33

Design and Implementation

of a Security Gateway

for Grid Services

6.4.2 Core

The core is the main part of the ALG. It has knowledge about the deployed units and the order in which

they should handle messages. It de�nes three JPF extension points. One for the consumer, one for

the supplier and one for all other handler units. The cores main task is, to evaluate MessageContexts

and to pass them to the units in the right order. Note that all units are JPF Plugins, as well as the

core itself. The core uses the JPF plugin mechanisms to bring up units when they are needed. The

core itself is started with a special boot class (de.dlr.�reblade.Boot). This class is in large parts the

example Boot class from the JPF project page [17]. A java properties �le boot.properties contains

the JPF and the logging con�guration. The boot class creates a JPF PluginManager using this

con�guration. It then instantiates the core and associates it with the PluginManager. This step

makes the core aware of all deployed units. Figure 6.3 shows the relations between the core and units.

6.4.3 Consumer

A consumer is the part of the ALG, which accepts incoming messages. These messages may be

accepted by many di�erent transport protocols. The Consumer which has been developed for this

thesis, accepts messages over HTTP over Secure Socket Layer (HTTPS). It consists out of several

classes.

The actual unit is de.dlr.�reblade.unit.consumer.receiver.Receiver, a JPF plugin (like every unit).

The core discovers and instantiates it as its consumer using the JPF PluginManager. When initialized,

it starts an HTTP or HTTPS server. All connections which are made to that server a handled by

de.dlr.�reblade.unit.consumer.receiver.ConsumerServlet, which is a Java servlet [20] implementing

the service() method. When this servlet receives a message with HTTP POST, it tries to create a

MessageContext from that message and forwards that context to the receiver class. The receiver

class will then forward the MessageContext to the core (See �gure 6.5).

Figure 6.5: Path of an incoming SOAP message

This consumer does not provide many features yet. It can only be seen as a reference implemen-

tation on how to write a consumer. The supported transport protocols HTTP/HTTPS will probably

be the most common transport protocols for SOAP messages in Grids anyway. Like every Unit, the

consumer de.dlr.�reblade.unit.consumer.Receiver is theoretically extensible with JPF by. subclassing

Roland Gude 34

Design and Implementation

of a Security Gateway

for Grid Services

de.dlr.�reblade.unit.plugin.Plugin and writing a manifest �le which associates the plugin with the an

extension point of the consumer (see [17]). But this consumer does neither de�ne any extension

points nor does it implement the methods which de�ne when and where the plugins are used. See

�gure 6.4 for details about the consumers class hierarchy.

6.4.4 Supplier

The supplier is the message delivering part of the ALG. It forwards the Grid service requests to the

appropriate Grid node. As already stated in 6.4.3 Consumer , it is possible to deliver these messages

with di�erent protocols. This supplier does only support HTTP and HTTPS for message delivery and

consists of a single Java class (de.dlr.�reblade.unit.consumer.supplier.BasicSupplier).

The BasicSupplier is not able to determine the appropriate resource to which it should forward

the SOAP message. Instead it forwards all SOAP messages to a single precon�gured resource.

This is enough for really small Grids but would not be su�cient in larger ones (because every node

would need its own ALG). Even though the BasicSupplier is limited like that, it provides a reference

implementation for other suppliers (which would include all the necessary features). See �gure 6.4

for details about the suppliers class hierarchy.

6.5 Tests

During the development process, software tests played a major role. In order to guarantee working

software pieces, a Test-First approach has been chosen (which means that the TestCases are de�ned

before the software is developed). Due to the plugin architecture and the use of JPF this posed a slight

problem. JPF plugins have to communicate with a plugin manager, which is created upon initialisation

of JPF. In order to test the di�erent units and plugins of the ALG with standard JUnit TestCases

[18], it would have been necessary to initialise the complete JPF for each TestCase. This problem

has been solved by the utilization of JMock [16] as a testing library. JMock extends JUnit with mock

objects, which are placeholders for unimplemented interfaces. It is possible to specify expectations

on the number of method calls to those mock objects, which makes it possible to test the complete

interaction between the tested and the unimplemented parts. For instance it was possible to test

the core, which required a consumer and a supplier, even when consumer ans supplier had not been

implemented. It was also possible to test the units (consumer and supplier) without instantiating

a core (it was replaced by a mock object in the TestCases), so that failures in the core would not

cause the TestCases for the supplier or the consumer to fail. The JPF could be decoupled from the

TestCases as well by using mock objects for the plugin manager instead of starting up the complete

JPF. JMock allowed a strict division between the di�erent parts of the ALG during testing. This

made failure discovery and debugging signi�cantly easier.
When all parts had been implemented and succeeded in all JMock TestCases, the software has

been tested in its whole. Therefore the setup shown in �gure 6.6 has been used. The ALG has
been installed on a PC running Linux and an iptables �rewall. Machine A and machine B where not
able to reach each other directly, but both could reach the ALG. When requests have been created
from machine A and send to the ALG, machine B received those requests and answered them to the
ALG. The ALG then forwarded the response back to machine A. This test scenario shows, that the
developed software is actually able to ful�ll its task of enabling communication of resources which are
divided by a �rewall. The way the message took through the system can be seen in the created log
�le:

2005-06-30 17:32:17,580 [main] INFO de.dlr.fireblade.Boot logging system initialized

2005-06-30 17:32:17,892 [main] INFO de.dlr.fireblade.Boot integrity check done: errors - 0, warnings - 0

2005-06-30 17:32:18,586 [main] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver Starting ACME HTTPS Server

2005-06-30 17:32:18,587 [main] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver configuring ACME for SSL support

2005-06-30 17:32:18,636 [Thread-1] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver ACME HTTPS server is running.

2005-06-30 17:32:18,689 [main] INFO de.dlr.fireblade.unit.supplier.BasicSupplier Activating Unit

2005-06-30 17:32:32,693 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/1

2005-06-30 17:32:32,693 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver finalizing message defaultCore/1

2005-06-30 17:32:32,694 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/1

2005-06-30 17:32:32,694 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier handling message defaultCore/1

2005-06-30 17:32:33,006 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier transferring SOAP message with HTTP GET

2005-06-30 17:32:33,101 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/1 delivered.

2005-06-30 17:32:33,159 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/1 has been answered

2005-06-30 17:32:33,160 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/1

2005-06-30 17:32:33,160 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/1

Roland Gude 35

Design and Implementation

of a Security Gateway

for Grid Services

2005-06-30 17:32:33,446 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/2

2005-06-30 17:32:33,447 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver finalizing message defaultCore/2

2005-06-30 17:32:33,447 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/2

2005-06-30 17:32:33,447 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier handling message defaultCore/2

2005-06-30 17:32:33,458 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier Transferring SOAP message with HTTP GET

2005-06-30 17:32:33,531 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/2 delivered.

2005-06-30 17:32:33,582 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/2 has been answered

2005-06-30 17:32:33,582 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/2

2005-06-30 17:32:33,584 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/2

2005-06-30 17:33:38,481 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/3

2005-06-30 17:33:38,482 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver finalizing message defaultCore/3

2005-06-30 17:33:38,482 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/3

2005-06-30 17:33:38,482 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier handling message defaultCore/3

2005-06-30 17:33:38,510 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier transferring SOAP message with HTTP POST

2005-06-30 17:33:38,603 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/3 delivered.

2005-06-30 17:33:38,611 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/3 has been answered

2005-06-30 17:33:38,611 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/3

2005-06-30 17:33:38,611 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/3

2005-06-30 17:34:43,760 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/4

2005-06-30 17:34:43,761 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver finalizing message defaultCore/4

2005-06-30 17:34:43,761 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/4

2005-06-30 17:34:43,761 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier handling message defaultCore/4

2005-06-30 17:34:43,773 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier transferring SOAP message with HTTP POST

2005-06-30 17:34:43,828 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/4 delivered.

2005-06-30 17:34:43,872 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/4 has been answered

2005-06-30 17:34:43,872 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/4

2005-06-30 17:34:43,872 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/4

2005-06-30 17:35:14,776 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/5

2005-06-30 17:35:14,777 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver finalizing message defaultCore/5

2005-06-30 17:35:14,777 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/5

2005-06-30 17:35:14,777 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier handling message defaultCore/5

2005-06-30 17:35:14,815 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier transferring SOAP message with HTTP POST

2005-06-30 17:35:14,871 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/5 delivered.

2005-06-30 17:35:14,917 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/5 has been answered

2005-06-30 17:35:14,918 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/5

2005-06-30 17:35:14,918 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/5

As you can see, there have been 5 di�erent messages from machine A to machine B (with message
ids defaultCore/1 to defaultCore/5). Some of them have been HTTP Get requests and some have
been HTTP Post requests. All messages took the intended path (machine A ! consumer ! core
! supplier ! machine B ! supplier ! core ! consumer ! machine B). Compare with this snippet
of the log �le:
2005-06-30 17:32:32,693 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/1

2005-06-30 17:32:32,693 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver finalizing message defaultCore/1

2005-06-30 17:32:32,694 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/1

2005-06-30 17:32:32,694 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier handling message defaultCore/1

2005-06-30 17:32:33,006 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier transferring SOAP message with HTTP GET

2005-06-30 17:32:33,101 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/1 delivered.

2005-06-30 17:32:33,159 [Request handler] INFO de.dlr.fireblade.unit.supplier.BasicSupplier message defaultCore/1 has been answered

2005-06-30 17:32:33,160 [Request handler] INFO de.dlr.fireblade.core.Core handling message defaultCore/1

2005-06-30 17:32:33,160 [Request handler] INFO de.dlr.fireblade.unit.consumer.receiver.Receiver handling message defaultCore/1

Figure 6.6: Test scenario for the ALG

6.6 Installation and Con�guration

In order to use the ALG it is of course necessary to install and con�gure it correctly. The installation

from the sources is really simple. At �rst the binaries are needed. If you possess the source code, you

can build those binaries with the command

~/path/to/source# ant all clean

this will create a zip �le in the current folder containing the binaries. Simply unzip that �le to the

folder where you want the ALG to reside (on a machine that is placed in the DMZ).

/path/to/source# mv fireblade-<someversionstring>.zip /path/to/my/alg/

cd /path/to/my/alg

unzip fireblade-<someversionstring>.zip

Roland Gude 36

Design and Implementation

of a Security Gateway

for Grid Services

Actually the software is now able to run, but not very well con�gured. The core and all units have

their own con�guration �le. In order to change the con�guration of the core, create a �le called

core.properties in the data folder of your installation (the place where you extracted the binaries to).

Put the properties that you would like to be set for the core in that �le. See table 6.2 for possible

properties.

cd /path/to/my/alg/data

vi core.properties

// configure the core

Furthermore you have to create the con�guration �les for consumer and supplier. See table 6.3 and

6.4 for the properties that are available to con�gure the developed consumer and supplier.

cd /path/to/my/alg/data

mkdir <plugin-id of the consumer>

cd <plugin-id of the consumer>

vi core.properties

// configure the consumer

cd ..

mkdir <plugin-id of the supplier>

cd <plugin-id of the supplier>

vi core.properties

// configure the supplier

Now that you have con�gured core, consumer and supplier, you have to deploy keystore �les for

both of them. Those keystore �les can be crated with the keytool command. See the man page of

that command (man keytool) for details about this. because the consumer does not support client

authorization yet, it is only needed to setup a certi�cate for the consumer and get it signed by a

Certi�cate Authority (CA). Since the supplier needs to authenticate the Grid resource which it should

talk to, it is needed to import that resources certi�cate into the keystore of the supplier.

The machine where the ALG is installed must additionally be con�gured in a way that enables

access to the ALG from the internet and enables the ALG to access the local network. This can for

instance be accomplished by opening the listening port of the consumer and by employing a second

network interface. The open port enables machines from the internet to access the ALG and the

second network interface could be used in order to access local machines.

Property Function Default value

�reblade.core.id identi�cation string for the core defaultCore

�reblade.unit.consumer plugin id of the consumer unit

that should be used

de.dlr.�reblade.consumer.basic

�reblade.unit.supplier plugin id of the supplier unit that

should be used

de.dlr.�reblade.supplier.basic

�reblade.unit.handlers list of plugin ids of the handler

units that should be used in the

given order

empty

Table 6.2: Properties for con�guration of the core

6.7 Limitations

Due to the short development time of about two months, the realization has some limitations com-

pared to the concept. It lacks features like load balancing and core coupling as well as content �ltering

Roland Gude 37

Design and Implementation

of a Security Gateway

for Grid Services

Property Function Default value

�reblade.consumer.port port number where the consumer

should listen for incoming re-

quests

8181

�reblade.consumer.keystore�le name of the keystore �le where

the SSL certi�cates are stored

ServerKeyStore

�reblade.consumer.keystorepass password for that keystore�le getaccess

�reblade.consumer.keystoretype type of the keystore�le (see man

keytool)

JKS

Table 6.3: Properties for con�guration of the consumer

Property Function Default value

�reblade.supplier.destination.host host name of the target resource

which should receive the requests

localhost

�reblade.supplier.destination.port port number where the target re-

source is listening for requests

8181

�reblade.supplier.keystore.�le name of the keystore �le where

the SSL certi�cates are stored

clientKeyStore

�reblade.supplier.keystore.password password for that keystore�le getaccess

�reblade.supplier.keystore.type type of the keystore�le (see man

keytool)

JKS

�reblade.supplier.secure.protocol SSL encryption protocol TLS

�reblade.supplier.secure.algorithm SSL encryption algorithm SunX509

Table 6.4: Properties for con�guration of the supplier

and validation. By now it does not support any Grid communication but plain SOAP messages. Nei-

ther the Consumer, nor the Supplier support HTTPS client authentication. The harshest limitation

is given by the supplier. It does not support multiple resources yet (see 6.4.4 Supplier). This renders

the realization irrelevant for practical use. Even when the supplier would be changed or extended in

order to enable multiple resources per ALG, it would probably pose a massive bottleneck because no

e�orts have been taken in order to optimize it. The lacking load balancing mechanisms add to this

limitation. Furthermore the setup con�guration is rather complicated. There are no tools which help

an Administrator with this task by now. It can be seen as a framework with a reference implemen-

tation of the main features which can be the basis for further work, but it is far from a stable and

fully-featured product.

The actual overhead which is created by this solution is hard to estimate. It largely depends on

the number of units which check the SOAP messages. In theory it is possible to deploy a in�nite

number of units. This means that the overhead can become in�nitly large. Additionaly it depends

on the transport protocol used by supplier and consumer. A supplier which works with HTTP would

be faster than one working with HTTPS or one working via email. None of the developed classes

have been optimized for speed (latency and throughput) yet. Since Grid applications are usually

emberassing parallel (or latency tolerant), A optimization for throughput might be mormeaningful

than one optimizing latency. It can be assumed, that those applications which require high throughput

or low latenncy would communicate over specialized protocols. The units which add support for those

protocols should then be optimized for the according as well.

Roland Gude 38

Design and Implementation

of a Security Gateway

for Grid Services

Chapter 7

Summary

The problem that today's Grids have with communication over �rewall protected network borders has

been described in this thesis, which also presented and compared several concepts for solving this

�rewall issue. The chosen concept, of utilizing an Application Level Gateway which creates proxies

for Grid services has been implemented in large parts. This has been done with respect to the large

number of possibly required protocols, what led to a highly extensible plugin architecture. Even though

this implementation is not yet capable of solving the problem completely, it already demonstrates some

advantages over other concepts, like its transparency.

By extensively testing the ALG during development, it was possible to create software which

enabled communication between two machines which where separated by a �rewall.

Not only the concept, but also the implementation have been discussed. While the developed

architecture o�ers a transparent and secure solution for the issue, it might become a problem itself,

when it comes to performance and especially to latency tolerance. Additionally the developed ALG

supports has signi�cantly inferior features to those, the other presented concepts might provide.

However these features will most likely be implemented soon. Recently another bachelor thesis which

deals with this issue has been started at SISTEC. During that thesis, Thijs Metsch will implement

the missing content validation which has been identi�ed as a major security advantage of the ALG

concept over the other concepts. Additionally the author of this thesis will continue to work on this

implementation in the future, and it will play a role in the future research of the FI-RG at the GGF.

Roland Gude 39

Design and Implementation

of a Security Gateway

for Grid Services

Roland Gude 40

Design and Implementation

of a Security Gateway

for Grid Services

List of Tables

5.1 Advantages and disadvantages of a SSH tunneling based approach 16

5.2 Advantages and disadvantages of a VPN based approach 16

5.3 Advantages and disadvantages of an ALG based approach 17

6.1 Main classes in the �nal software . 31

6.2 Properties for con�guration of the core . 37

6.3 Properties for con�guration of the consumer . 38

6.4 Properties for con�guration of the supplier . 38

Roland Gude 41

Design and Implementation

of a Security Gateway

for Grid Services

Roland Gude 42

Design and Implementation

of a Security Gateway

for Grid Services

List of Figures

2.1 Virtual organization with �rewall-protected local networks 5

3.1 Interaction with Grid services [19] . 9

3.2 A local network, protected with two �rewalls and DMZ between those �rewalls. . . . 10

3.3 Network layers and corresponding �lters. 11

5.1 Application Level Gateway enabling a VO with �rewall-protected local networks . . . 18

5.2 Additional polling ALG for extremely restrictive �rewall environments 19

5.3 Use-Case: Basic functionalities of the ALG . 21

5.4 Use-Case: Functionalities of the ALG-Core . 21

5.5 Use-Case: Functionalities of the ALG-Units . 22

5.6 Use-Case: Functionalities of the ALG-Unit-Plugins 22

6.1 Basic Architecture of the developed ALG. 25

6.2 UML sequence diagram of the communication process with between a client, the ALG

and a resource. 25

6.3 UML-Class-Diagram for the core. 32

6.4 UML-Class-Diagram for Units. 33

6.5 Path of an incoming SOAP message . 34

6.6 Test scenario for the ALG . 36

Roland Gude 43

Design and Implementation

of a Security Gateway

for Grid Services

Roland Gude 44

Design and Implementation

of a Security Gateway

for Grid Services

Nomenclature

ALG Application Level Gateway

BSI German Federal O�ce for Information Security

CA Certi�cate Authority

CORBA Common Object Request Broker Architecture

DLR German Aerospace Center

DMZ demilitarized zone

FI-RG Firewall-Issue research group

GGF Global Grid Forum

GRAM Grid Resource Allocation and Management

GridFTP Grid File Transfer Protocol

HTTP Hyper Text Transfer Protocol

HTTPS HTTP over Secure Socket Layer

IDL Interface De�nition Language

IP Internet Protocol

JPF Java Plugin Framework

OGSA Open Grid Service Architecture

OGSA-WG OGSA Working Group

OGSI Open Grid Service Infrastructure

OGSI-WG OGSI Working Group

SAML Security Assertion Markup Language

SCAI Fraunhofer-Institute for Algorithms and Scienti�c Computing

SISTEC Simulations- and Softwaretechnik

SOAP Simple Object Access Protocol

SSH Secure Shell

SSL Secure Socket Layer

TCP Transmission Control Protocol

Roland Gude 45

Design and Implementation

of a Security Gateway

for Grid Services

UDP User Datagram Protocol

URI Uniform Resource Identi�er

VO virtual organizations

VOMS Virtual Organization Membership Service

VPN Virtual Private Network

WS-DBC Xtradyne Web Service Domain Boundary Controller

WSDL Web Service De�nition Language

WSRF Web Service Resource Framework

XML eXtensible Markup Language

XML-RPC eXtensible Markup Language - Remote Procedure Call

Roland Gude 46

Design and Implementation

of a Security Gateway

for Grid Services

Bibliography

[1] Axis - project homepage. http://ws.apache.org/axis/.

[2] Gerald Brose. Securing web services with soap security prox-

ies. http://www.xtradyne.com/documents/whitepapers/Xtradyne-

WebServices Security Proxies.pdf.

[3] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web services

description language (wsdl) 1.1, March 2001. http://www.w3.org/TR/wsdl.

[4] Karl Czajkowski, Don Ferguson, Ian Foster, Je�rey Frey, Steve Graham, Tom

Maguire, David Snelling, and Steve Tuecke. From open grid services infrastruc-

ture to wsresource framework: Refactoring & evolution, version 1.1, March 2004.

http://www.globus.org/wsrf/specs/ogsi to wsrf 1.0.pdf.

[5] Karl Czajkowski, Donald F. Ferguson, Ian Foster, Je�rey Frey, Steve Graham, Igor Sedukhin,

David Snelling, Steve Tuecke, and William Vambenepe. The ws-resource framework, version

1.0, March 2004. http://www.oasis-open.org/committees/download.php/6796/ws-wsrf.pdf.

[6] David De Roure, Mark A. Baker, Nicholas R. Jennings, and Nigel R. Shadbolt. Grid Computing

- Making the Global Infrastructure a Reality, chapter 3, pages 65 { 100. John Wiley & Sons,

Ltd, 2003.

[7] Ian Foster, Carl Kesselmann, Je�rey M. Nick, and Steven Tuecke. The physiology of the grid: An

open grid services architecture for distributed systems integration. Presented at GGF4, February

2002. http://www.globus.org/alliance/publications/papers/ogsa.pdf.

[8] Ian Foster, Carl Kesselmann, and Steven Tuecke. The anatomy of the grid. International J.

Supercomputer Applications, 15(3), 2001.

[9] Ian Foster, Hiro Kishimoto, Andreas Savva, Dave Berry, Abdeslem Djaoui, Andrew Grimshaw,

Bill Horn, Fred Maciel, Frank Siebenlist, Ravi Subramaniam, Jem Treadwell, and Jef-

frin J. Von Reich. Open grid services architecture (ogsa) version 1.0, January 2005.

http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf.

[10] Google web api. http://www.google.com/apis/.

[11] Sven Graupner and Carsten Reimann. Globus grid and �rewalls: Issues and solutions in a utility

data center environment, October 2002.

[12] Roland Gude and Thijs Metsch. Fireblade catalogue of requirements. DLR-SISTEC internal

document, April 2005.

[13] Roland Gude and Thijs Metsch. Fireblade concept and design manual. DLR-SISTEC working

document, June 2005.

[14] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik Frystyk

Nielsen. Soap version 1.2, June 2003. http://www.w3.org/TR/soap12.

Roland Gude 47

Design and Implementation

of a Security Gateway

for Grid Services

[15] isecure web services gateway - data sheet.

http://www.multinetsecurity.com/images/pdf/isecureweb services data sheet.pdf.

[16] jmock - a lightweight mock object library for java. http://www.jmock.org/.

[17] Java plugin framework - project homepage. http://jpf.sourceforge.net.

[18] Junit - testing resources for extreme programming. http://www.junit.org/.

[19] Thijs Metsch. Entwicklung von grid services f�ur ein computational grid. seminar paper, June

2005.

[20] Sun developer network - java servlet technology. http://java.sun.com/products/servlet/.

[21] Yury Strashnoy. The need for web application security.

http://www.multinetsecurity.com/images/pdf/need for web app security.pdf.

[22] Steven Tuecke, Karl Czajkowski, Ian Foster, Je�ry Frey, Steve Graham, Carl Kesselman, Tom

Maquire, Thomas Sandholm, David Snelling, and Peter Vanderbilt. Open grid services infras-

tructure (ogsi) version 1.0, June 2003. http://www.ggf.org/ogsi-wg.

[23] Protecting web services with the xml/soap security gateway.

http://www.xtradyne.com/documents/whitepapers/Xtradyne-WS-DBC-WhitePaper.pdf.

[24] Web services domain boundary controller 2.1 - product data sheet.

http://www.xtradyne.com/documents/datasheets/Xtradyne WS-DBC ProductDataSheet.pdf.

[25] Olaf Zimmermann, Mark Tomilson, and Stefan Peuser. Perspectives on Web Services - Applying

SOAP, WSDL and UDDI to Real-World Projects. Springer Verlag Berlin Heidelberg New York,

2003.

Roland Gude 48

