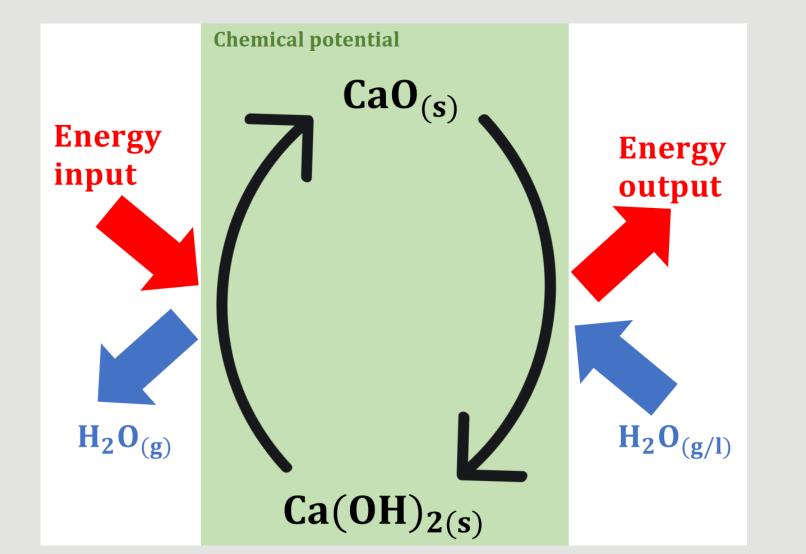

Seasonal Power-to-Heat Storage based on $Ca(OH)_2$ - Development of Pilot Plant

V. E. Sourmelis Terzopoulos^{*1}, M. Linder² and M. Schmidt¹

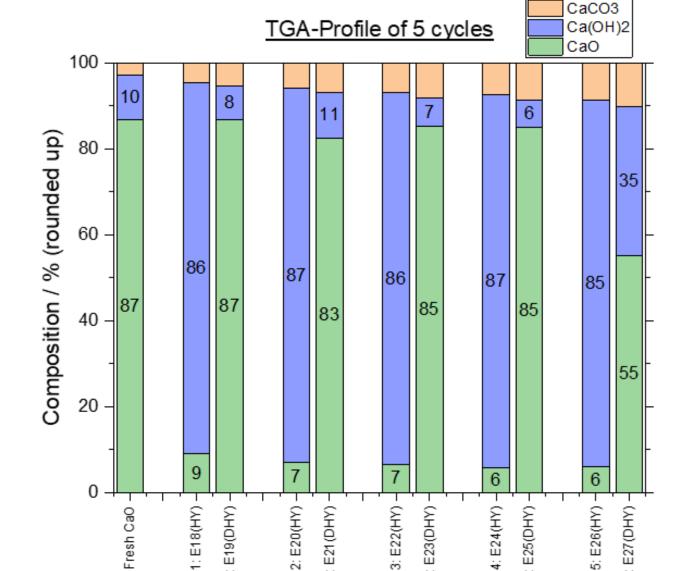
¹German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Cologne, Germany ²German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Stuttgart, Germany *Venizelos.SourmelisTerzopoulos@dlr.de


Over 80 % of the energy requirements of an average German household account for heating, a demand still covered mainly by the combustion of fossil fuels [1] Renewable energy production limited in winter/excess in summer Seasonal energy storage required

- Discharging 40 °C hot water ($\Delta T = 30$ K)
- Constant thermal power 1 kW for 45 min

5-AUTOMATED-CYCLES

2. <u>Thermochemical Energy Storage</u>



with summer excess Charging renewable electricity \rightarrow CaO (quicklime)

- Novel reactor concept developed and • experimentally verified
- thermal Electrical charging • and discharging
- Heat transfer coefficient of 150 250 $\frac{W}{m^2 K}$ proven [2]
- Mitigated agglomeration of powder lime lacksquarevia mechanical fluidization

4. Pilot Plant Development

- Successful demonstration five of consecutive, automated cycles with same batch of storage material in our lab
- Reproducible full charging & discharging reaction under same operating conditions

6. <u>Outlook</u>

- Exothermal, reverse reaction in winter with liquid water \rightarrow Ca(OH)₂ (hydrated lime) + Heat
- Storage without thermal losses
- High energy density $\left(\approx 215 \ \frac{\text{kWh}}{\text{m}^3}\right)$
- Inexpensive, environmentally benign and globally abundant limestone
- Development of whole system with separated power and capacity
- Storage 100 kWh thermal energy
- Reactor 10 kW thermal power
- efficiency Energy optimization and development of automation control
- Integration and field demonstration in a high-rise building by 2023

[1] M. Schmidt, M. Linder, Frontiers in Energy Research, 2020, <u>https://doi.org/10.3389/fenrg.2020.00137</u> [2] K. Risthaus et al., Applied Energy, 2022, <u>https://doi.org/10.1016/j.apenergy.2022.118976</u>

