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Model Predictive Approaches for Cost-Efficient Building Climate Control with Seasonal Energy
Storage
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• Two concepts for model predictive control of a building system with seasonal thermochemical energy storage are
presented

• The control concepts distinguish in the way a superior optimal generation scheduling trajectory is followed: objective
or constraint-based reference tracking

• The impacts of different building envelopes, heat supply configurations, electricity price fluctuation ranges, control
parameter sensitivity and conceptual control robustness with respect to different weather and electricity price data are
also analysed

• One control approach enables best annual operation costs and does not require a higher-level scheduling hierarchy
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A B S T R A C T
In order to store the surplus summer electrical energy supply and satisfy the winter heat demand, a
seasonal energy storage system with a high capacity is required. The aim of this work is the control
integration of a novel thermochemical seasonal energy storage concept into a building energy system.

In this work a state based model is developed consisting of a building, a water buffer and a heat
supply. In order to elaborate the effects of long-term storage long-term weather forecasts are applied
and the heat supply is varied. Since public weather forecasts are reliable in the time range of several
days, test reference year data are used to approximate the weather forecast beyond the public forecast
period.

On this basis, two Model Predictive Control (MPC) concepts are designed to efficiently operate the
system over one year. The hierarchy is comprised of a superordinate optimal generation scheduling
(OGS) and a subordinate MPC. The concepts follow the scheduled long-term lime storage trajectory
and realise possible short-term yields based on the current public forecast. The trajectory tracking is
formulated either in the objective function or the constraints.

The integration of the novel lime storage module into the heat supply of a building allows a re-
duction of operating costs of 18% in the realistic scenario and up to 80% in case of highly fluctuating
electricity prices. This reduction potential is fully exploited by the developed control approaches, but
it is very sensitive to the change of the controller parameters, the fluctuation of the electricity price
and the weather data. Moreover, by applying the best possible control approach and parameter set,
the higher-level scheduling hierarchy could be avoided.

1. Introduction
Climate change is one of the biggest challenges of mod-

ern human history. For this reason, 195 countries joined to-
gether in 2016 aiming to limit global warming to at most 2 ◦C
compared with the pre-industrial age [1]. The German Fed-
eral Government has also joined the Paris Agreement and
laid down goals of greenhouse gases reduction by 65% and
a share of renewable energies of 65% until 2030. The intro-
duction of a minimum price for CO2 and the phasing out of
coal-fired power generation by 2038 should initiate complete
climate neutrality by 2045 [2]. According to a recent study,
53.2% of the final energy consumption in Germany is used
for space heating, hot water supply and process heat [3]. Fur-
thermore, the increasing share of renewable energies causes
a growing fluctuation of energy production [4]. Energy stor-
age systems separate the generation and consumption of en-
ergy and thus create flexibility in the energy system. The use
of energy storage systems for the heating of buildings thus
has enormous potential to help achieve climate neutrality.

There are many suitable materials for thermal energy
storage. The latest comprehensive analysis and comparison

∗Corresponding author
simon.weber@iabp.uni-stuttgart.de (S.O. Weber)
www.iabp.uni-stuttgart.de (S.O. Weber)

ORCID(s): 0000-0002-6268-8547 (S.O. Weber); 0000-0003-3077-4245
(M. Oei); 0000-0003-2218-5301 (M. Linder); 0000-0002-6290-5783 (M.
Böhm); 0000-0002-6910-2473 (O. Sawodny)

can be found in the following review [5]. They can be cat-
egorised into sensible (hot water), latent (phase change ma-
terials) and thermochemical (sorption or chemical reaction
based) storage materials. "Thermochemical materials have
the advantage of high heat storage density, a significant tem-
perature increase, and the possibility of storing the reactants
(sorbent and sorbate) at ambient temperature and with no
self-discharge" [6]. Compared to latent thermal energy stor-
age, thermochemical materials have more than twice the en-
ergy density and up to 10 times the energy density of sensible
energy storage materials. The storage technology considered
in this work is based on the material cycle Ca(OH)2 (slaked
lime) / CaO (burnt lime). The material is promising due to its
high energy density as well as low cost of 0.15e per kWh of
storage capacity [7]. To fully utilise the potential of thermo-
chemical storage on the seasonal scale, the material should
not only go through a single cycle (summer/winter), but also
take advantage of short-term fluctuations in ambient condi-
tions for intermediate loading. This task requires a capa-
ble trajectory planning and model based control approach.
While a rule-based approach can very easily follow a pre-
viously calculated lime storage trajectory, it cannot identify
the advantages and disadvantages of an anticipated storage
due to low electricity prices and high heat demand. For this
purpose, model predictive control schemes have to be estab-
lished.

Model predictive control is a well-studied control con-
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Nomenclature

Abbreviations

AOC annual operation cost

BRCM Building-Resistance-Capacitance-Modelling

COP coe�cient of performance

CORT constraint-based reference tracking

EPS expanded polystyrene

HP pure heat pump heat supply con�guration

LS pure lime storage heat supply con�guration

LSHP hybrid heat supply con�guration

MDF medium density �berboard

MPC model predicitve control

OGS optimal generation scheduling

ORT objective-based reference tracking

SHGC solar heat gain coe�cient

TRY test reference year

Chemical Formulas

Ca(OH)2 calcium hydroxide

CaO calcium oxide

H2O water

Latin Symbols

𝛼 heat transfer coe�cient (Wm−2 K)
�̇� mass �ow (kg s−1)
�̇� heat �ow (W)

𝛾 solar absorption factor (−)
𝜆 heat conduction coe�cient (Wm−1 K)
𝜌 density (kgm−3)

𝜗 temperature (◦C)
𝜁, 𝜉 e�ciency parameters lime storage ()

𝐴 area (m2)

𝐴,𝐵𝑢, 𝐵𝑣 state, input, disturbance matrix

𝐵𝑥𝑢, 𝐵𝑣𝑢 state-input, disturbance-input bilinearity matrix

𝑐𝑝 speci�c heat capacity at constant pressure (J kg−1 K)
𝐻 enthalpy (J)
𝐼 solar radiation power on facade (Wm−2)

𝐾 constant model value

𝐿 stage cost (EUR)
𝑃 electrical power (W)

𝑟𝑑𝑒𝑣 relative deviation (−)
𝑇 temperature (K)
𝑈 heat transmission coe�cient (Wm−2 K)
𝑉 volume (L)
𝑤𝐵 mass based energy density quicklime (kJ kg−1)
𝑤𝐶 volumetric energy density water (kJ L−1)

𝑥, 𝑢, 𝑣 state, input, disturbance vector

Subscripts

16 2016

ACR air change rate

AMB ambient

B blind

BD building

BS bu�er storage

by base year

CH chiller

ch charging

cl,vl constant loss, variable loss

cy current year

dc discharging

DHW domestic hot water

E,N,S,W east, north, south, west

EP electricity price

EW external wall

IG internal gain

IW inner wall

LS lime storage

OP occupancy

RD radiatior

Z zone

cept for building energy systems in general. It belongs to the
optimal control methods where the system inputs are step-
wise calculated by optimizing an objective function under
constraints. A recent review about MPC within the build-
ing sector is supplied by Drgoňa et al [8]. Both the simula-
tive [9, 10, 11, 12] and the experimental implementation of
MPC [13, 14] have been a focus of recent research. In one
practical MPC implementation, a reduction of energy con-
sumption by up to 29% as well as better comfort compared to
an operation mode by heating curve could be achieved [14].
Finck et al. applied MPC to a system consisting of a build-
ing, heat pump, and thermal energy storage and found that
the sensible hot water storage tank offers a higher poten-
tial to provide short-term (i. e. intra-day) energy flexibility
when compared to a thermochemical storage [9]. Previously,
the same research group carried out a single cost optimi-
sation and considered the operating costs of different heat
supply configurations over an entire year [15] for test ref-

erence year data (TRY). In combination with a heat pump, a
solar-powered phase change or thermochemical storage tank
reduced the operating costs by 13% and 8%, respectively,
compared to a configuration without storage. Research has
also been conducted on the control of long-term thermal stor-
age systems based on insulated water tanks. Xu et al. [11]
focus on the detailed dynamics description of solar heated
borehole storage with a prediction horizon of 5 days whereas
Jonin et al. [12] focus on the inertial behaviour of different
layers within a seasonal solar heated water tank over a whole
year.

Hierarchical approaches to model predictive control have
been developed for microgrids [16] and building energy sys-
tems [13, 10, 17]. They have in common that they divide the
calculation into two hierarchies. In the long-term predic-
tion horizon mostly the system states, for example the bat-
tery state of charge and the hydrogen level [16], the PCM
enthalpy [10] are considered. For this purpose, a predic-
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tion horizon between 7 hours [17] and 3 days [16] is used.
The objective is defined as pure operating cost [10, 17] or
scenario-weighted operating cost [16]. In the short-term pre-
diction horizon, the calculated states and inputs are more or
less followed. In the work of Touretzky et al.[10] a pure
tracking objective and a pure economic objective are com-
pared with each other. In contrast, the objective in the work [16]
consists of empirically weighted power variables, power rates,
and tracking parts of the storage states. The short-term pre-
diction horizon is between ten seconds [16] and one hour [13].

Within this literature review, none of the considered works
has integrated a seasonal thermochemical energy storage into
a building system from a control perspective. Accordingly,
two hierarchical MPC concepts are established, which fore-
cast more than one year forward on the long-term prediction
level. Furthermore, for the short-term prediction level it has
not yet been investigated whether it is better to formulate a
weighted approach between economic and tracking objec-
tive and common constraints or a economic objective and
trajectory tracking within the constraints.

Based on the current state of research, the following hy-
potheses are formulated:

1. By integrating a thermochemical energy storage sys-
tem into the building system, the operating cost and
energy consumption of the overall system can be re-
duced.

2. The cost saving by integrating the seasonal energy stor-
age system depends on the fluctuation of electricity
price.

3. The system of building and seasonal energy storage
can be efficiently controlled by integrating the trajec-
tory tracking into the objective function instead of defin-
ing it as a constraint.

4. To the extent that the trajectory tracking is integrated
into the objective criterion, there is an optimal weight-
ing between the short-term energy consumption in the
system and the long-term energy storage.

5. To successfully operate a seasonal energy storage sys-
tem, a prediction horizon greater than that of public
weather forecasts must be applied.

6. The energy consumption of a building depends on the
building envelope and is higher for lightweight con-
structions than for standard façade constructions.

The last hypothesis basically arises within the Collaborative
Research Centre SFB1244 and is investigated as a secondary
hypothesis. To clarify these hypotheses, a simple model of
a thermochemical energy storage system and a water buffer
storage system is set up and connected to the validated model
of a building. Three different heat supply configurations are
compared to investigate the effects of long-term storage. In
the HP configuration, heat is provided exclusively by a heat
pump. In the pure lime storage configuration LS, the heat is
provided exclusively by the lime storage module. The hybrid
configuration combines the heat pump with the lime storage
module. Consequently, two MPC concepts are set up based
on a two-layer hierarchical approach. In the long-term pre-
diction level optimal lime storage trajectories are calculated

Building
System (BD)

Lime
Storage
System
(LS)

Buffer
Storage
Tank (BS)

Figure 1: Flow diagram of the total energy system. Heat sup-
ply con�guration HP blue, LS orange, LSHP in green frame.

based on TRY weather data and averaged electricity price
data. The two approaches differ in the short-term prediction
horizon as one considers the trajectory tracking in the objec-
tive function and the other considers it in the constraint. All
approaches aim to minimise the yearly operating cost while
ensuring comfortable built environment. An investigation
on robustness of the best control approach is conducted.

Sections 2 to 3 present the system model and introduce
two distinct control concepts. The results of the electricity
price fluctuation, different heating supply configurations and
control parameter variation are presented and discussed in
section 4. The work is summarised and open questions, as
well as further research topics, are discussed in section 5.

2. System Model
In this work, an energy system is considered that con-

tains a building, a water buffer storage and a heat supply.
Three different configurations for the heat supply are inves-
tigated. The heat supply configurations HP, LS, LSHP are
depicted in fig. 1. The total system dynamics
�̇�=(�̇�𝐵𝐷, �̇�𝐵𝑆 , �̇�𝐿𝑆 )𝑇 is composed of the building, buffer stor-
age and lime storage dynamics, respectively.
2.1. Building System

The thermal model of the building is created using the
validated Building-Resistance-Capacitance-Modelling
(BRCM) toolbox [18]. "Over the five-day period, the zone
air temperature difference was within 0.5 ◦C" difference to
the zone temperature predicted by EnergyPlus [19]. Despite
being less accurate for times with high solar radiation, this
modelling approach has the advantage of providing access
to gradients and thus simplifying convex optimisation [19].

The building zone is designed as one floor of an office
S. Weber, M. Oei et al.: Preprint submitted to Elsevier Page 3 of 14
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Figure 2: Thermal zone as one �oor of an o�ce building.

Table 1

Constructions of the building walls.

Type Wall Material Thickness [𝑐𝑚]

Heavy Internal walls M1 25
External walls M2,M3,M1 2,14,16

Light Internal walls M2 12.5
External walls M2,M3,M2 2,14,2

Table 2

Material properties of the building walls. Source [21, 22]

Name Identi�er 𝑐𝑝[J∕kgK] 𝜆[W∕mK] 𝜌[kg∕m3]

Concrete M1 1000 1.65 2200
MDF M2 1700 0.10 400
EPS M3 1210 0.03 10

building, with a floor area of 100m2 and a ceiling height
of 3m as depicted in fig. 2. The heat exchange of the floor
downwards and the ceiling upwards is considered adiabatic.
The facades have the ambient temperature as outside bound-
ary condition. The inner and outer wall combined radia-
tive and convective heat transfer coefficients were taken from
the EN ISO 6946 standard [20] with 𝛼𝑖=7.7Wm−2 K−1 and
𝛼𝑒=25Wm−2 K−1, respectively. Since resource-efficient
ultra-lightweight construction methods are being researched
in the Collaborative Research Centre SFB1244, this work
compares the system efficiency of a lightweight and heavy-
weight building envelope construction in addition to the con-
cepts for seasonal energy storage control. The employed
heavy and light envelope construction and material proper-
ties are according to table 1 and table 2. Every external wall
on each facade side consists of three layers. The ceiling and
the floor are the internal walls and consist of one layer.

Each external wall contains a window of the same type.
Its window and frame area as well as the combined heat
transfer coefficient of frame and glass 𝑈 and the Solar Heat
Gain Coefficient (SHGC) were set according to table 3.

The building thermal model is influenced by external
heat flows. These are due to external disturbances such as
outdoor air temperature and solar irradiation or by internal

Table 3

Speci�cation parameter of the building windows.

𝐴𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡[m2] 𝐴𝑓𝑟𝑎𝑚𝑒[m2] U [W∕m2K] 𝑓SHGC [−]

6 2 1.3 0.6

gains. Heat flows caused by internal gains such as heat gen-
erated by occupants, lighting, and computers, directly im-
pact the room temperature and are scaled with the occupancy
density. The total daily internal gain heat flux is
�̇�𝐼𝐺=102Whm−2 d, equivalent 8 occupants in the office
with additional appliances, computers and lightning accord-
ing to the standards [23, 24].

The air handling unit applies further heat flows directly
to the zone. It provides the heating and cooling power to
control the temperature of the room and ensures sufficient
supply of fresh air to occupants.

The solar radiation on the outer walls is multiplied with
the absorption factor (𝛾=0.5) to yield the radiant heat flow.
The solar radiation part that passes through the window glaz-
ing and is converted into heat is described by the solar heat
gain coefficient 𝑓SGHC. The convective part of the transmit-
ted heat acts directly on the zone, which is described by sec-
ondary heat gain coefficient (𝑓secHG=0.1), the radiative part
is distributed equally among the wall elements.

After defining the input files, the BRCM toolbox pro-
vides the building model matrices. Corresponding to the
procedure in VDI 6007-1 [25], the order of the detailed build-
ing model is now reduced. To this end, the energy balance of
the ceiling and the floor are merged into one inner wall and
all layers of the outer walls with the same structure into one
layer. The reduced building model eq. (1) is bilinear due to
the interactions between the blinds and solar radiation, and
between air exchange rate and the zone and ambient tem-
perature. The state vector eq. (2) of the reduced building
model 𝑥𝐵𝐷 now includes only the temperature of the zone
𝑇𝑍 , the inner wall 𝑇𝐼𝑊 and each layer of the external wall
𝑇𝐸𝑊 ,𝑗 . The building’s manipulated variables 𝑢𝐵𝐷 eq. (3) are
the blind positions in each facade’s window 𝑢𝐵,𝑖, the air ex-
change rate 𝑢𝐴𝐶𝑅 as well as the heating and cooling power
�̇�𝑅𝐷 , �̇�𝐶𝐻 . The disturbance inputs 𝑣 as well as the state and
input constraints are given in the section 2.4 and section 2.5.

�̇�𝐵𝐷 = 𝐴𝐵𝐷𝑥𝐵𝐷 + 𝐵𝑢,𝐵𝐷𝑢𝐵𝐷 + 𝐵𝑣,𝐵𝐷𝑣

+
𝑑𝑖𝑚𝑢
∑

𝑖
(𝐵𝑥𝑢,𝑖𝑥 + 𝐵𝑣𝑢,𝑖𝑣)𝑢𝑖 (1)

𝑥𝐵𝐷 = (𝑇𝑍 , 𝑇𝐼𝑊 , 𝑇𝐸𝑊 ,1, 𝑇𝐸𝑊 ,2, 𝑇𝐸𝑊 ,3)𝑇 (2)
𝑢𝐵𝐷 = (𝑢𝐵,𝐸 , 𝑢𝐵,𝑁 , 𝑢𝐵,𝑆 , 𝑢𝐵,𝑊 , 𝑢𝐴𝐶𝑅, �̇�𝐶𝐻 , �̇�𝑅𝐷)𝑇(3)

2.2. Buffer Storage Tank
The model for the water buffer tank eq. (4) was derived

from the enthalpy balance assuming isothermal and spatially
homogeneous conditions at storage temperature 𝜗𝐵𝑆=55 ◦C.
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It is supplied by the heat pump �̇�𝐻𝑃 , the heat flow during
lime storage charging �̇�𝐿𝑆,𝑐ℎ and discharging �̇�𝐿𝑆,𝑑𝑐 . The
last two heat flow parts are derived in the next section 2.3.
The COP of the heat pump and chiller is assumed to be con-
stant at COPHP=4.0, COPCH=7.1, respectively, according
to the Bosch Climate 5000 RAC 5.3 [26] specification. The
required radiator heat �̇�𝑅𝐷 and domestic hot water supply
�̇�𝐷𝐻𝑊 as well as heat losses reduce the energy in the stor-
age tank. The occupancy dependant domestic hot water heat
flow was set to �̇�𝐷𝐻𝑊 =506W𝑣𝑂𝑃 according to the stan-
dards [24, 27]. Constant heat losses �̇�𝐵𝑆,𝑐𝑙 occur at the walls
of the storage tank and hot water supply pipes according to
standards [24, 27] and are set to �̇�𝐵𝑆,𝑐𝑙=579W. Variable
heat loss �̇�𝐵𝑆,𝑣𝑙 is enabled by draining water from the tank,
as suggested by Schmidt [28]. The current stored volume of
water eq. (5) is given by the volume-related energy content at
storage temperature 𝑤𝐶=227.0 kJ L−1. Equations (6) to (9)
describe the open entries of the water buffer model eq. (4).

�̇�𝐵𝑆 = 𝐵𝑢,𝐵𝑆𝑢𝐵𝑆 + 𝐵𝑣,𝐵𝑆𝑣𝑂𝑃 +𝐾𝐵𝑆 (4)
𝑥𝐵𝑆 = 𝑉𝐵𝑆 (5)
𝑢𝐵𝑆 = (�̇�𝑅𝐷, �̇�𝐵𝑆,𝑣𝑙, �̇�𝐻𝑃 , 𝑃𝐿𝑆,𝑐ℎ, �̇�𝐿𝑆,𝑑𝑐)𝑇 (6)

𝐵𝑢,𝐵𝑆 =
(

−1 −1 1 𝜁 𝑤𝐵
)

∕𝑤𝐶 (7)
𝐵𝑣,𝐵𝑆 = −506W∕𝑤𝐶 (8)
𝐾𝐵𝑆 = −�̇�𝐵𝑆,𝑐𝑙∕𝑤𝐶 (9)

2.3. Lime Storage System
The concept of the novel lime storage module and the

system equations were taken from the publication by
Schmidt [28]. For a detailed insight and their in-depth deriva-
tion of the concept, please refer to this publication. The
plow share mixer generates a mechanically assisted fluidized
bed. This reactor concept allows a high energy input within
a compact design and is well suited for building applica-
tions. Within the Collaborative Research Centre SFB1244
this concept is currently implemented into the demonstrator
high-rise building. In principle, either surplus photovoltaic
electricity in summer or time-independent low-cost electric-
ity is stored within the reaction enthalpy of the material com-
bination calcium hydroxide (slaked lime Ca(OH)2) / calcium
oxide (burnt lime CaO). However, a photovoltaic model is
not included in this work. The thermochemical energy stor-
age can be assumed to be loss-free over a seasonal period.
During the charging cycle (ch), slaked lime reacts at temper-
atures of 450 ◦C to form quicklime eq. (10). The enthalpy of
condensation of the water vapour released in this process as
well as a part of the sensible energy could be directly used
for space conditioning. In the discharge cycle (dc) eq. (11)
quicklime reacts with water back to slaked lime. The energy
released in this process is likewise used for space condition-
ing. For simplicity, the heat transfer at the heat exchanger is
assumed to be lossless.

Ca(OH)2 + 104.4 kJ∕mol
ch

←←←←←←←←←←←←←←←←←→ CaO + H2O(g) (10)
Ca(OH)2 + 65.1 kJ∕mol

dc
←←←←←←←←←←←←←←←←←← CaO + H2O(l) (11)

The lime storage model is derived from the isothermal
energy balance eq. (12) on the quicklime component 𝑚𝐿𝑆with the given energy density𝑤𝐵=1162.5 kJ kg

−1 according
to Schmidt et al. [28]. They propose that 58% of the elec-
trical power input is available for long-term storage eq. (13)
and 42% for direct space conditioning eq. (14). The heat
flow released during discharge �̇�𝑑𝑐 eq. (15) acts lossless on
the water buffer tank. Equations (16) to (18) describe the
total subsystem model, the subsystem state as mass of lime
and the subsystem inputs, respectively.

�̇�𝐿𝑆 = �̇�𝑐ℎ − �̇�𝑑𝑐 (12)
�̇�𝑐ℎ = 𝜉𝑃𝐿𝑆,𝑐ℎ 𝜉 = 0.58 (13)

�̇�𝐿𝑆,𝑐ℎ = 𝜁𝑃𝐿𝑆,𝑐ℎ 𝜁 = 0.42 (14)
�̇�𝐿𝑆,𝑑𝑐 = �̇�𝑑𝑐 = 𝑤𝐵�̇�𝐿𝑆,𝑑𝑐 (15)

�̇�𝐿𝑆 =
(

𝜉∕𝑤𝐵 −1
)

𝑢𝐿𝑆 (16)
𝑥𝐿𝑆 = 𝑚𝐿𝑆 (17)
𝑢𝐿𝑆 = (𝑃𝐿𝑆,𝑐ℎ, �̇�𝐿𝑆,𝑑𝑐)𝑇 (18)

2.4. Disturbances
The system disturbance

𝑣 = (𝑣𝑂𝑃 , 𝑇𝐴𝑀𝐵 , 𝐼𝐸 , 𝐼𝑁 , 𝐼𝑆 , 𝐼𝑊 )𝑇 (19)
is composed of the current occupancy density 𝑣𝑂𝑃 of the of-
fice’s zone, the ambient temperature 𝑇𝐴𝑀𝐵 , and the vertical
radiation intensities 𝐼𝑖 on each facade. The disturbance in-
put 𝑣𝐸𝑃 is the hourly electricity price and only influences
the objective function.

The occupancy density profile 𝑣𝑂𝑃 is equal to that in
Finck’s work [29] and applied for each weekday of the year
without holidays. The weather data stems from the Euro-
pean Union PVGIS database [30] at the SFB1244 high rise
building demonstrator location (N 48.749◦, E 9.112◦) on the
University of Stuttgart campus. The electricity costs 𝑣𝐸𝑃 are
spot market prices accessible via the online platform of the
German Federal Network Agency [31]. The mean value of
the electricity price was adjusted such that the relative stan-
dard deviation related to the mean value matches a defined
value. This adjustment is justified in more detail in the re-
sults section 4.1. The disturbance inputs of the so called base
year were created from typical meteorological weather data
(2005–2016) and hourly averaged electricity prices (2015–
2018). The occupancy density data were not averaged and
the same profile was used for both the base year and the cur-
rent year. The current year weather and electricity price data
were single year data of the year 2015 and 2016. Figure 3
depicts the ambient air temperature and electricity price for
2016.
2.5. Constraints

The system variables are subject to time variant con-
straints. Within the presence of at least one person the room
temperature must be between 21 ◦C and 24 ◦C according to
the standard [24]. Otherwise the constraint is relaxed to
17 ◦C and 28 ◦C. The buffer storage tank has a capacity
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Figure 3: Ambient temperature and daily mean electricity price
for the current year 2016.

of 1000 L whereas no upper limit is imposed on the lime
storage tank.

𝕏(𝑡) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜗𝑍 ∈

{

[21; 24] 𝑣𝑂𝑃 (𝑡) > 0
[17; 28] else

𝑥 ∈ ℝ7 ∶𝑉𝐵𝑆 ∈ [0; 1000]
𝑚𝐿𝑆 ≥ 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(20)

The blind position values are continuous within zero (fully
closed) and one (fully open). Based on the standard [24],
the air exchange rate is constrained by 2 h−1 to 3 h−1, if a
person is in the office. The air exchange rate may be within
0 h−1 to 6 h−1 outside the operating hours, to enable efficient
overnight cooling. The upper bounds of the chiller, radiator,
and heat pump power are set according to the specification
data sheet of the Bosch Climate 5000 RAC. The power input
to the lime reactor is limited to 10 kW. The variable heat
loss from the buffer storage �̇�𝐵𝑆,𝑣𝑙 as well as the discharging
quicklime mass flow �̇�𝐿𝑆,𝑑𝑐 must naturally be greater than
zero.

𝕌(𝑡) ∶=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑢𝐵,𝐸 ∈ [0; 1]
𝑢𝐵,𝑁 ∈ [0; 1]
𝑢𝐵,𝑆 ∈ [0; 1]
𝑢𝐵,𝑊 ∈ [0; 1]

𝑢𝐴𝐶𝑅 ∈

{

[2; 3] 𝑣𝑂𝑃 (𝑡) > 0
[0; 6] else

𝑢 ∈ ℝ11 ∶ �̇�𝑅𝐷 ∈ [0; 4100]
�̇�𝐶𝐻 ∈ [0; 5200]
�̇�𝐵𝑆,𝑣𝑙 ≥ 0
�̇�𝐻𝑃 ∈ [0; 4100]
𝑃𝐿𝑆,𝑐ℎ ∈ [0; 10000]
�̇�𝐿𝑆,𝑑𝑐 ≥ 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(21)

2.6. Discretisation
The continuous dynamic model equations are discretised,

analogue to the work [18], using the exact discretisation of
the state and zero-order hold assumption for the manipulated
and disturbance input at an interval length of 𝑑𝑇 = 1 h.

3. Model Predictive Control Concepts
All model predictive control concepts are hierarchically

integrated into the plant management layer. Thus, they spec-
ify setpoints for the control loops at the automation layer, as
depicted in the review diagram [8, fig. 11]. The control ap-
proaches provide a two level hierarchy consisting of a super-
ordinate whole-year optimal generation scheduling (OGS)
and subordinate dynamic MPC. The OGS not only passes
the reference trajectory to the dynamic MPC but also serves
to analyse the heat supply configurations.

The calculations of OGS and MPC simulations were car-
ried out with the algorithmic differentiation Matlab toolbox
CasADi using the interior point optimization implementa-
tion IPOPT [32]. The calculations where carried out on a
Lenovo P14s with AMD Ryzen 7 PRO 5850U and 32.0 GB
RAM. The long-term prediction is calculated with a time
step of 1 h, a time horizon of 365 days and is not updated af-
ter a certain control horizon as usual, because the computa-
tional effort would be excessive and the annual lime storage
curve would remain the same due to the periodicity of the
weather data. The MPC approaches are applied with a time
step of 1 h, a control horizon of 60 h and a time horizon of
5 days.
3.1. Optimal Generation Scheduling

The optimal lime storage trajectory is previously deter-
mined by the OGS algorithm eq. (23) based on the chosen
disturbance input. It is the result of a single optimisation
of the annual operating costs (AOC), while satisfying the
aforementioned state and input constraints and the provided
discretised system model. The second condition reflects the
periodicity of the disturbance data. The stage costs 𝐿(𝑘)
eq. (22) are non-linear and result from the AOC. The AOC
are determined by the current electricity price as well as the
electrical power for cooling, the heat pump, and the charging
power of the lime storage module.

𝐿(𝑘) = 𝑣𝐸𝑃 (𝑘)
(

�̇�𝐶𝐻 (𝑘)
COPCH

+
�̇�𝐻𝑃 (𝑘)
COPHP

+ 𝑃𝐿𝑆,𝑐ℎ(𝑘)
)

(22)

min𝑢

𝑛−1
∑

𝑘=0
𝐿𝑏𝑦(𝑘)𝑑𝑇

s.t.
𝑛 = 8760,

𝑥(0) = 𝑥(𝑛),
𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘), 𝑣𝑏𝑦(𝑘)) ∀𝑘 ∈ [0, 𝑛 − 1],

𝑢(𝑘) ∈ 𝕌(𝑘) ∀𝑘 ∈ [0, 𝑛 − 1],
𝑥(𝑘) ∈ 𝕏(𝑘) ∀𝑘 ∈ [0, 𝑛]

(23)

3.2. Dynamic MPC
The goal of the dynamic MPC approaches is an optimal

path following of a long-term reference storage level tra-
jectory while reacting to short-term conditions in the cur-
rent year. The basic assumption behind both concepts is
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Figure 4: Summarising illustration of proposed control ap-
proaches and disturbance data approximation.

that the efficient operation of a seasonal energy storage sys-
tem requires a larger horizon than that of public weather
forecasts. Therefore, the planning horizon is divided into
two time periods, the control and restoration period. Fig-
ure 4 illustrates the basic principle. In the control period
𝜏 ∈ [𝑡0, 𝑡0 + 𝑡𝑐𝑦], the current public weather, occupancy,
and electricity price forecast 𝑣𝑐𝑦 is applied. In the restora-
tion period 𝜏 ∈ [𝑡0 + 𝑡𝑐𝑦, 𝑡0 + 𝑡𝑐𝑦 + 𝑡𝑏𝑦], the weather data
of the so-called base year are used. The generation of this
disturbance data was explained in section 2.4. The control
concepts differ in the formulation of the objective and con-
straints in the restoration period. By definition, within the
second period the lime storage mass at its end must follow
the OGS reference more or less flexibly.

The control concepts are analysed for various values of
their flexibility parameters as well as the system configura-
tions LS and LSHP. Thus, the central criterion for compar-
ison is the relative deviation 𝑟𝑑𝑒𝑣 of the annual operation
costs of the MPC controller compared to the best possible
trajectory OGS16. This trajectory is the result of the OGS
algorithm not using the base year but the single year 2016
disturbance data.

𝑟𝑑𝑒𝑣 =
AOC − AOC[OGS16]

AOC[OGS16]
. (24)

Objective-based reference tracking (ORT)
In this approach eq. (25) the objective function consists

of a weighted mixture between the economic cost within the
current year prediction horizon and the trajectory tracking.
Only the amount of lime stored at the end of the current
year prediction horizon is tracked. This approach was de-
rived from the fact that possible deviations of the lime stor-
age mass from the reference at the end of the current year
prediction horizon should decrease linearly towards the end
of the base year prediction horizon. Further details and the
derivation of this control concept are presented in the under-
lying reference work [33]. The control parameters varied are

the prefactor 𝑝 and power 𝑚.

min𝑢

𝑛1−1
∑

𝑘=0
𝐿(𝑘)𝑑𝑇 +

(

𝑝(𝑚𝐿𝑆,𝑏𝑦(𝑛1) − 𝑚𝐿𝑆 (𝑛1))
)𝑚

s.t.

𝑛1 =
𝑡𝑐𝑦
𝑑𝑇

= 120,

𝑥(0) = 𝑥(𝑡0),
𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘), 𝑣𝑐𝑦(𝑘)) ∀𝑘 ∈ [0, 𝑛1 − 1],

𝑢(𝑘) ∈ 𝕌(𝑘) ∀𝑘 ∈ [0, 𝑛1 − 1],
𝑥(𝑘) ∈ 𝕏(𝑘) ∀𝑘 ∈ [0, 𝑛1]

(25)

Constraint-based reference tracking (CORT)
The objective of the second MPC approach includes the

economic costs within both the control and restoration pe-
riod (variables marked with tilde). Accordingly, it is a purely
economic objective function. In contrast to the first approach
the states, inputs and constraints within the restoration pe-
riod are explicitly formulated. The trajectory tracking is ful-
filled as a lower bounded final state constraint. The 𝜖 fac-
tor shifts the lower limit of the lime storage capacity to the
end of the restoration phase and ensures minimum build-up.
The control concept is also analysed for various values of the
flexibility parameter sets (𝜖, 𝑡𝑏𝑦) as well as the system con-
figurations LS and LSHP.

min
𝑢, �̃�

𝑛1−1
∑

𝑘=0
𝐿(𝑘)𝑑𝑇 +

𝑛2−1
∑

𝑙=0
�̃�𝑏𝑦(𝑙)𝑑𝑇

s.t.

𝑛1 =
𝑡𝑐𝑦
𝑑𝑇

= 120,

𝑥(0) = 𝑥(𝑡0),
𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘), 𝑣𝑐𝑦(𝑘)) ∀𝑘 ∈ [0, 𝑛1 − 1],

𝑢(𝑘) ∈ 𝕌(𝑘) ∀𝑘 ∈ [0, 𝑛1 − 1],
𝑥(𝑘) ∈ 𝕏(𝑘) ∀𝑘 ∈ [0, 𝑛1],

𝑛2 =
𝑡𝑏𝑦
𝑑𝑇

,

�̃�(0) = 𝑥(𝑛1),
�̃�(𝑙 + 1) = 𝑓 (�̃�(𝑙), �̃�(𝑙), 𝑣𝑏𝑦(𝑙)) ∀𝑙 ∈ [0, 𝑛2 − 1],

�̃�(𝑙) ∈ 𝕌(𝑙) ∀𝑙 ∈ [0, 𝑛2 − 1],
�̃�(𝑙) ∈ 𝕏(𝑙) ∀𝑙 ∈ [0, 𝑛2],

�̃�𝐿𝑆 (𝑛2) ≥ 𝜖𝑚𝐿𝑆,𝑏𝑦(𝑛2)

(26)

4. Results & Discussion
The computational time of annual simulation of the ORT

approach does not strongly depend on the control parameter
values and is about two minutes. In contrast, one annual
simulation with the CORT approach took between two min-
utes and 25 h (LSHP) or 16 h (LS), depending on the base
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year prediction horizon. The differences in computing time
between the configurations LS and LSHP are due to the ad-
ditional heat pump input. This reveals that for general prob-
lems that require a much more detailed description of the
energy system and additional control inputs, a much longer
calculation time is to be expected. To reduce the solution
complexity, model reduction procedures like Krylov sub-
space methods or the addition of another control hierarchy
level are sensible approaches.

The focus of the subsections is as follows: In section 4.1,
the impact of electricity price fluctuation on the cost bene-
fit of the lime storage module is examined. In section 4.2,
the heat supply configurations are analysed for their impact
on the overall system. In sections 4.3 to 4.4, we examine
the sensitivity of the controller parameters to the annual per-
formance for both control approaches. In addition, in sec-
tion 4.3 the suitability of the base year lime storage trajec-
tory is evaluated. Finally, in section 4.5, the robustness of
the ORT approach to different weather data and electricity
price signals is investigated.
4.1. Analysis on the electricity price fluctuation

At the beginning of the study, it was found that the fluc-
tuation range of the electricity price has a decisive influence
on the benefits provided by the lime storage module. For
this purpose, the mean value of the 2016 spot market elec-
tricity price including taxes and levies was varied and OGS
simulations of the system with different heat supply config-
urations were performed. Figure 5 shows the cost savings of
the configurations with the lime storage module compared
to the heat pump configuration against the relative fluctua-
tion range 𝑟𝑠𝑡𝑑 of the electricity price signal. This is defined
by the quotient of the annual standard deviation by the mean
value of the electricity price signal. Accordingly, the sav-
ings and the maximum stored lime quantity increase rapidly
from a relative fluctuation range of 30%. Negative values of
cost reduction mean annual operating cost increase and vice
versa. Accordingly, the heat supply configuration LS is in
neither case more economical than the heat pump configura-
tion. However, it will continue to be pursued, as it probably
offers advantages in the consideration of life cycle costs.

Including taxes and levies, the relative fluctuation range
of the electricity price for industrial customers in Germany
is approx. 6-9% apart from 2021. Figure 6 therefore de-
picts the relative fluctuation range of the electricity price in-
cluding taxes and levies of other European countries. The
standard deviation of the electricity signals were taken from
the data of the Federal Network Agency [31] and the an-
nual mean price with taxes and levies from EUROSTAT [34]
data. It is shown that seasonal energy storage with lime is
better suited in Eastern European countries due to their lower
tax burden resulting in higher relative fluctuation range 𝑟𝑠𝑡𝑑.
In addition, a recent publication [4] concludes that the rela-
tive fluctuation range of the electricity price in Germany will
increase by 20% to 54% by 2030, depending on the scenario.
Applied to the high relative fluctuation range of the elec-
tricity signal in other European countries, a value of 30%
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Figure 5: Cost reduction compared to HP con�guration AOC
and maximum lime storage capacity due to hybrid lime storage
LSHP (solid) or pure lime storage con�guration LS (dashed)
against the relative �uctuation range 𝑟𝑠𝑡𝑑.
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Figure 6: Relative �uctuation range of the electricity spot mar-
ket price for di�erent European countries.

seems very likely and represents a significantly beneficial
setting for the hybrid configuration LSHP. Accordingly, all
electricity price signals used were raised upwards by a con-
stant value such that the specified relative fluctuation range
of 30% is maintained. These results support the hypothesis
2 that the fluctuation of the electricity price in particular the
fluctuation range is crucial to successfully operate a seasonal
energy storage system.

Figure 7 depicts the relative deviation of the electric-
ity price during charging from the annual mean electricity
price against the relative fluctuation range. The solid lines
are those deviations of the mean charging prices (frequent
prices) and the dashed lines are the mean plus standard devi-
ation prices (seldom prices). Compared to the lower limit of
the relative electricity price fluctuation (black line), the lime
storage charging starts significantly below it. As the elec-
tricity price fluctuation increases, the price during charging
increases. Probably, more lime cannot be stored to the same
extent in the narrow time range of increasingly sharp price
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Figure 7: Relative deviation of the frequent (solid) and seldom
(dashed) electricity price during storage loading to the annual
mean electricity price versus the relative �uctuation range of
the electricity price signal. The results are shown for the pure
LS and hybrid LSHP con�guration. Lower electricity price
�uctuation range as black line.

Table 4

Results of OGS simulations for varying heat supply con�gura-
tions.

Con�guration HP LS LSHP

light AOC[e] 92 251 76
AEU[kWh𝑒𝑙] 2749 10959 3305
𝑐𝐻𝑃 [ct∕kWh𝑒𝑙] 3.4 - 3.3
𝑐𝐿𝑆 [ct∕kWh𝑒𝑙] - 2.3 -1.1
𝑚𝑆,𝐵,𝑚𝑎𝑥[kg] - 9769 1030

heavy AOC[e] 91 247 74
AEU[kWh𝑒𝑙] 2718 10829 3287
𝑐𝐻𝑃 [ct∕kWh𝑒𝑙] 3.4 - 3.3
𝑐𝐿𝑆 [ct∕kWh𝑒𝑙] - 2.3 -1.0
𝑚𝑆,𝐵,𝑚𝑎𝑥[kg] - 9814 1117

dips. This should be addressed in future work. These results
could lead to further stochastic control approaches.
4.2. Comparison of System Configurations

The OGS algorithm with 2016 data is employed to in-
vestigate the heat supply configurations under perfect pre-
diction conditions. Table 4 depicts the resulting annual op-
eration cost (AOC), annual energy usage (AEU) as well as
the mean electricity price during heat pump or charging op-
eration, 𝑐𝐻𝑃 and 𝑐𝐿𝑆 for a system configuration with light
and heavy building respectively. Additionally, the maximum
stored lime mass is evaluated as an indication for the required
storage capacity.

As expected, the operating costs of the LSHP hybrid con-
figuration with a light building construction are 17% lower
than those of the HP configuration and 70% lower than those
of the LS configuration. In contrast, the energy consumption
is 20% higher than that of the HP configuration and 70%
lower than that of the LS configuration. The higher energy
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Figure 8: Annual lime storage tank levels for the year 2016
with perfect prediction. The results are shown for the pure LS
and hybrid LSHP con�guration.

consumption of the lime storage module can be explained
by the fact that the heat pump can provide more heat than
the lime storage module from the electrical power due to its
COP. It should be noted that the actual heat pump efficiency
may be lower in the winter due to the lower ambient tem-
peratures. Thus, the assumed constant heat pump COP of
4.0 is a rather generous estimate. However, the electricity
price during charging of the lime storage tank within the hy-
brid configuration LSHP is significantly lower than the elec-
tricity price during heat pump operation, which leads to an
overall reduced cost despite the increased energy consump-
tion. It is even negative due to the applied relative fluctua-
tion range. Referring to the first hypothesis, the operating
costs are lower due to the integration of the seasonal lime
storage, but the energy consumption is higher. The power
consumption by the lime storage module can only be lower
if the lime storage module equivalent to the heat pump could
supply more reaction heat from the electrical energy. The
use of high-temperature heat pumps may be an option here.

Furthermore, fig. 8 reveals the resulting lime storage tra-
jectories of both heat supply configurations. In addition to
the different maximum stored mass, there is also a lower
fluctuation of the trajectory in the hybrid configuration. This
is due to the rarer times at which lime is stored.

Within the configurations with heavy building envelope,
the deviations are almost identical. There is very little differ-
ence between individual configurations with light and heavy
building envelopes. The energy consumption with a heavy
building envelope is about 1% lower than with a light build-
ing envelope. These findings support the last study hypoth-
esis to a very small degree. Compared to life cycle energy
reductions, they could further favour ultra-lightweight con-
struction methods and the goal of the Collaborative Research
Centre SFB1244.
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Figure 9: Results of the relative deviation 𝑟𝑑𝑒𝑣 for pure LS
and hybrid LSHP con�guration for exponents 𝑚 = 1(solid),
𝑚 = 2(dashed) and OGS weights 𝑝.

4.3. Analysis of the ORT approach
The analysis on the first control approach is carried out

by varying the prefactor 𝑝 and the power 𝑚 of the ORT ob-
jective. For a prefactor of 𝑝=0, the curves in fig. 9 align
with each other depending on the configuration, since the
influence of the tracking component in the objective func-
tion is withdrawn. Seasonal control does not play a role in
this choice of the prefactor. In the negative prefactor range
the deviation remains constant with single power 𝑚=1, since
the changing of the sign of the tracking fraction leads to the
direct minimization of lime storage mass. With a quadratic
exponent 𝑚=2, the curves are the same as with a positive
prefactor. With increasing prefactor, the deviations forms a
flat minimum with the quadratic power and a sharp mini-
mum with linear power at different minima. In the best case,
the right choice of the prefactor activates the seasonal con-
trol and thus minimizes the operating costs by up to 18%
for pure lime storage and up to 3% for hybrid configuration.
Following the minimum, the deviation with linear power in-
creases abruptly to values beyond 𝑟𝑑𝑒𝑣=5e3, with quadratic
power it converges to a limit value. The increase in the slope
of the deviation with linear power to very high values is
due to the fact that the tracking part is now overweighted
and the minimization of the cost function corresponds to
the maximization of the lime storage mass. This increase
is limited by the maximum power 𝑃𝐿𝑆,𝑐ℎ of the lime stor-
age module, which is now continuously applied. This is
not the case with a quadratic power of the tracking fraction.
In this case, the seasonal control with strict tracking of the
base year trajectory minimizes the operating costs by still
5% for pure lime storage but increases the operating costs
by 10% for hybrid configuration. The deviation minimum
𝑟𝑑𝑒𝑣(𝐶𝑜𝑛𝑓 , 𝑚, 𝑝)𝑚𝑖𝑛 for the ORT approach applied on both
configurations are negative 𝑟𝑑𝑒𝑣(LS, 1, 10.46e−3)=−4.2%,
𝑟𝑑𝑒𝑣(LSHP, 2, 1.59e−3)=−0.33%. The MPC16 and OGS16curve in appendix fig. 14a equal in the initial state but dif-

Table 5

Results of MPC ORT simulations relative deviation 𝑟𝑑𝑒𝑣 for
parameter tuple {𝑎, 𝑏} and potency parameter m.

Conf m {1,0} {0.6,0} {0,0} {0,1}

LS 1 -4.2 -4.2 -4.2 -4.2
LS 2 1.7 5.6 19.2 19.0
LSHP 1 0.8 0.8 0.8 0.8
LSHP 2 -0.3 1.1 2.3 1.2

fer in the final state. This is why the minimum is negative.
A correction of the relative deviation by the final state dif-
ference is not made, since no comprehensible unambiguous
conditions for the final state change could be established. In
general, the choice of prefactor has a very sensitive effect on
operating costs. These results confirm hypothesis 4, suggest-
ing that there is an optimal weighting between the short-term
economic criterion and the long-term tracking criterion.

Finally, the influence of the base year lime storage curve
on the relative deviation was investigated. Thereby, the lime
storage trajectory was scaled and raised by the factor tu-
ple {𝑎, 𝑏}. The base year lime storage trajectory applied
(𝑚𝐿𝑆,𝑏𝑦,𝑛𝑒𝑤) was derived from the respective trajectory
(𝑚𝐿𝑆,𝑏𝑦,𝑜𝑙𝑑) in fig. 8 as follows:

𝑚𝐿𝑆,𝑏𝑦,𝑛𝑒𝑤=𝑎𝑚𝐿𝑆,𝑏𝑦,𝑜𝑙𝑑+𝑏𝑚𝑒𝑎𝑛(𝑚𝐿𝑆,𝑏𝑦,𝑜𝑙𝑑) (27)
The results in table 5 pertain to simulations with the respec-
tive optimal parameter 𝑝. The factor tuple {𝑎, 𝑏}={1, 0} does
not change the lime storage curve𝑚𝐿𝑆,𝑏𝑦. On the other hand,
the tuples {0.6,0},{0,0},{0,1} lead to a compressed curve or
to a complete lowering to the zero line or to a raised and
constant curve, respectively. All these different parameter
tuples influence the control behaviour only if the quadratic
power was applied. In the case of linear power, the lime
storage curve over the year is controlled in the same way,
independent of the choice of the factor tuple. Two main
statements result from this. First, the linear power approach
can do without higher-level lime storage information. It best
fits the ideal lime storage trajectory at reference free condi-
tions. All decision information for seasonal storage charg-
ing and discharging must thus be available inside the current
year prediction horizon of 5 days. Second, for the quadratic
power approaches the best control behaviour is revealed with
the OGS-generated lime storage trajectory instead of a ran-
domly chosen trajectory. The results show that hypothesis 5
does not hold for this control approach because, at least with
a linear power, the current year prediction horizon alone is
sufficient to operate the system optimally. A further analy-
sis of the annual lime storage trajectory resulting from dif-
ferent control parameters and heat supply configurations is
discussed in the appendix section 7.
4.4. Analysis of the CORT approach

The analysis of the second control approach is carried
out varying the final state constraint bound 𝜖 and the base
year prediction horizon 𝑡𝑏𝑦 as depicted in fig. 10 and fig. 11.
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Figure 10: Results of the relative deviation 𝑟𝑑𝑒𝑣 for various
bounds 𝜖 and base year prediction horizons 𝑡𝑏𝑦 applying the
CORT approach on the con�guration LS .
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Figure 11: Results of the relative deviation 𝑟𝑑𝑒𝑣 for various
bounds 𝜖 and base year prediction horizons 𝑡𝑏𝑦 applying the
CORT approach on the con�guration LSHP.

Therefore, the parameters where varied with a step width of
at least 0.1 for the bound 𝜖 and 30 days for the prediction
horizon 𝑡𝑏𝑦.

In general, the value 𝜖=0, lowers the final state constraint
to zero. This corresponds to a reference free MPC approach.
An adjustment of the base year prediction horizon 𝑡𝑏𝑦=300d
leads to minimal relative deviations. The original lime stor-
age trajectory is followed with increasing lower bound to
𝜖=1. Compared to the reference-free condition, a base-year
prediction horizon 𝑡𝑏𝑦=10d for pure lime-storage supply and
𝑡𝑏𝑦=300d for hybrid supply now leads to minimal relative
deviations. The results at 𝑡𝑏𝑦=0d correspond to those of the
ORT approach at high prefactor. As the lower bound 𝜖>1 in-
creases further, a raised lime storage trajectory is followed.
For the heat supply configuration LS fig. 10 the relative de-
viation results reveal a distinct minimum progression up to

prediction horizons of 170 days. The position of the mini-
mum shifts to midrange values around 𝜖=1.6. Accordingly,
increasing the lime storage quantity at the end of the base-
year prediction horizon has a beneficial effect on flexibil-
ity and full-year performance. This shows that hypothesis 5
holds at least for the CORT approach and thus a prediction
horizon above that of public weather forecasts is needed for
efficient operation. The global minimum
𝑟𝑑𝑒𝑣(Conf , 𝜖, 𝑡𝑏𝑦)𝑚𝑖𝑛 shows up at 𝑟𝑑𝑒𝑣(LS, 1.6, 50)=−1.3%.
Accordingly, midrange values of the flexibility parameters
are optimal. For the heat supply configuration LSHP results
in fig. 11 depict a very slightly pronounced minimum gradi-
ent. The global minimum shows up at
𝑟𝑑𝑒𝑣(LSHP, 0.7, 300)= − 1.0%. Due to the progression, no
further points were sampled for values 𝜖>1.3. Compared
to the LS configuration, this difference could be due to the
lower amount of lime stored. As depicted in fig. 7 (solid
lines), since the hybrid configuration stores lime seasonally
at much lower electricity prices than the pure configuration,
these times are easier for the controller to hit. Compared to
the ORT approach, this deviations are higher and the compu-
tational costs several times higher as discussed in section 4.
According to this, integrating reference tracking into the ob-
jective function instead of the constraints not only leads to
lower operating costs but also to significantly lower com-
putation time. This fully confirms hypothesis 3. A further
analysis of the annual lime storage trajectory resulting from
different control parameters and heat supply configurations
is discussed in the appendix section 7.
4.5. Robustness analysis of the ORT approach

Finally, the best possible MPC approach for seasonal lime
storage control, the ORT approach with linear power was
applied on different weather and electricity price signals by
varying the prefactor 𝑝 to access the robustness of the ap-
proach.

Figure 12 and fig. 13 show the relation of the relative
deviation depending on the value of the prefactor 𝑝, the year
of the weather data and the relative fluctuation range of the
electricity price signal. As the relative fluctuation range in-
creases, the difference between the relative deviation at a
prefactor 𝑝=10e − 4 and at the optimal prefactor increases.
This comparison indicates a significant improvement due to
the seasonal control with increasing relative fluctuation range
𝑟𝑠𝑡𝑑. It reveals, depending on the relative fluctuation range,
savings between 3-50% for the LS configuration and 0-72%
for the LSHP configuration. In addition to the shift of the
minimum to lower values 𝑝, the slope of the minimum in-
creases with increasing fluctuation range. This is making
the proper choice of the controller parameter more signifi-
cant. The curves at different weather data differ significantly
less than at different relative fluctuation range. The results
reveal that the choice of the prefactor very sensitively influ-
ences the optimal control of the seasonal energy storage sys-
tem. Accordingly, the value of the prefactor 𝑝 must always
be readjusted to the current weather and electricity price de-
velopment within a certain period.
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Figure 12: Results of relative deviation versus di�erent values
of prefactor 𝑝, years of weather data (2015 solid, 2016 dotted)
and di�erent relative �uctuation ranges rstd of electricity price
signals (20%, 30%, 40%, 50%) for the con�guration LS.
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Figure 13: Results of relative deviation versus di�erent values
of prefactor 𝑝, years of weather data (2015 solid, 2016 dotted)
and di�erent relative �uctuation ranges rstd of electricity price
signals (20%, 30%, 40%, 50%) for the con�guration LSHP.

5. Conclusion
In this work, models of an energy system consisting of a

building, a water buffer and three different heat supply con-
figurations were developed. In addition, two model predic-
tive control concepts were devised to operate the system over
a period of one year with the objective of minimizing op-
erating cost. The control approaches include a higher-level
annual scheduling and a lower-level dynamic MPC control
for flexible trajectory tracking. To approximate weather and
electricity price data beyond the public forecast period, TRY
weather and mean electricity spot market price data were
used in conjunction with a perfectly predicted occupation
profile.

The key findings of the study are as follows:

The hybrid integration of a heat pump and a novel lime
storage module into the heat supply of a building allows a
reduction of operating costs of 18% in the realistic scenario
and up to 80% in case of highly fluctuating electricity prices.
The pure lime storage system LS without a heat pump is not
economical in any case but could bring other advantages in
terms of life cycle costs. Hypothesis 1 can be fully con-
firmed.

The reduction in AOC associated with seasonal lime stor-
age strongly depends on the relative fluctuation range of the
electricity price. Hypothesis 2 needs to be extended to state
that weather data and control parameters also influence cost
reduction. The robustness of the AOC is distinctly lower
with the ORT approach than the CORT approach. It is there-
fore essential that future control concepts accurately predict
the electricity price and weather data to precisely locate op-
timal control parameter values. For this purpose, a scenario
based economic model predictive control approach is pro-
posed which periodically adjusts the controller parameters
to the weather and electricity price data.

Compared to the constraint based approach CORT, the
objective based approach ORT has a significantly lower com-
putation time (1-2min compared to 1min-30h) and shows at
least for the LS configuration a better performance compared
to the optimal curve with the OGS algorithm 𝑂𝐺𝑆16. The
AOC resulting from the application of the ORT approach
are −4.2% below the optimal cost, those from the CORT
approach are −1.3%. For the hybrid configuration LSHP,
the best possible results are closer, −0.33% ORT and −1%
CORT.

As far as the tracking condition is formulated in the ob-
jective function, like in the ORT approach, a unique param-
eter was established, which describes the weighting between
the short-term economic part and the seasonal storage bene-
fit. This weighting parameter is a central component within
the approach and influences the AOC very sensitively.

The building with light construction without concrete
has a slightly increased energy and cost compared to the con-
crete construction but has enormous potential savings in life
cycle costs and thus supports the objectives of the Collab-
orative Research Centre SFB1244. Future models should
represent the performance of the heat pump in more detail
and should include greenhouse gas emissions in the objec-
tive function to further investigate the value of the lime stor-
age module, which does not use harmful refrigerants.

Hypothesis 5 applies only to the CORT approach, ac-
cording to which a prediction horizon greater than that of
public forecast periods of about 5 days is needed to success-
fully operate a seasonal energy storage system. The central
conclusion of this work is that the ORT approach can even
completely dispense with the application of a two-layer con-
trol hierarchy. Future work on the control of seasonal energy
storage should take this into account.
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7. Appendix
Figure 14 depicts the annual lime storage trajectories MPC16of different control approaches, system configurations and

control parameters. Optimal trajectories OGS𝑏𝑦 and OGS16
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(a) Approach ORT, configuration LS, parameter 𝑚=1
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(b) Approach CORT, configuration LS, parameter set {𝜖, 𝑡𝑏𝑦}
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(c) Approach ORT, configuration LS, parameter 𝑚=2
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
0

0.5

1

1.5

2

L
im
e
st
or
ag
e
le
ve
l
m

L
S
/
to
n
s

{0,0}

{0.7,300}

{1,0}

(d) Approach CORT, configuration LS, parameter set {𝜖, 𝑡𝑏𝑦}
Figure 14: Annual lime storage trajectories MPC16 of di�erent control approaches, system con�gurations and control parameters.
Optimal trajectories OGS𝑏𝑦 (dotted) and OGS16 (dotted)

are generated by the OGS algorithm with 2016 and base year
disturbance data, respectively.

Figure 14a depicts the results for ORT approach and pure
lime storage configuration LS at linear power parameter. For
a prefactor of 𝑝=0, due to the undervaluation of the lime stor-
age mass within the objective function no lime is stored dur-
ing the year. The maximization of the lime storage mass at
𝑝=1 is shown by the rapid increase of the lime storage mass.
The curve with an optimally selected parameter 𝑝=10.46𝑒−3
clearly breaks away from the base year curve follows the
OGS16 curve. In contrast, the best possible trajectory in
fig. 14b based on the CORT approach rises significantly above
the OGS16 curve at the beginning of the year and drops be-
low it in October. The increase is due to the choice of the
parameter 𝜖, which raises the curve. This difference leads to
higher annual operating costs.

Figure 14c depicts the results for ORT approach and hy-
brid configuration LSHP at quadratic power parameter. The
trajectory at 𝑝=0 corresponds to that of the pure configura-
tion LS. The curve at 𝑝=1 in conjunction with the quadratic
power parameter ensures a strict trajectory sequence. The

two equally coloured curves in fig. 14d show the same pro-
gression. The two optimal trajectories are similar to each
other because the annual operating costs are approximately
the same.
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