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Abstract—The research community is puzzled with words like
skill, action, atomic unit and others when describing robots’
capabilities. However, for giving the possibility to integrate
capabilities in industrial scenarios, a standardization of these
descriptions is necessary. This work uses a structured review
approach to identify commonalities and differences in the
research community of robots’ skill frameworks. Through this
method, 210 papers were analyzed and three main results
were obtained. First, the vast majority of authors agree on
a taxonomy based on task, skill and primitive. Second, the
most investigated robots’ capabilities are pick and place. Third,
industrial oriented applications focus more on simple robots’
capabilities with fixed parameters while ensuring safety aspects.
Therefore, this work emphasizes that a taxonomy based on task,
skill and primitives should be used by future works to align
with existing literature. Moreover, further research is needed in
the industrial domain for parametric robots’ capabilities while
ensuring safety.

Index Terms—PPR, HMLV, task, skill, primitive, robot,
review, survey

I. INTRODUCTION

Detailed a-priori planning of manufacturing processes de-
fined in nowadays industry is going to be soon outdated with
”high mix - low volume” (HMLV) manufacturing driven by
heterogeneous demand for product variants [1], [2]. There-
fore, capability-based engineering envisioned in Industrie 4.0
is slowly entering the domain of manufacturing to ensure
business continuity [3]. Through this concept, factories of
the future (FoF) will be able to adapt their production plans
during order execution as long required capabilities will
be used to describe production processes instead of actual
resources [3]. However, for the implementation of capability-
based production, resources (e.g., robots, CNC machines)
will need to provide descriptions of their capabilities (e.g., 3-
axis milling, Cold Metal Transfer (CMT) welding) to ensure
correct planning by linking their capabilities with manu-
facturing requirements [3]. One approach to link resources
to requirements was initially introduced in the standardized
Product Process and Resources (PPR) model described in [4].
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Since then, different Product Lifecycle Management (PLM)
systems started using the model for their simulations. How-
ever, such definitions have not widely reached the robotics
community and different varieties of definitions and nomen-
clature have been proposed [5]. Therefore, an alignment be-
tween robotic research literature and PPR literature is needed
to overcome one of the adoption barriers of capabilities in
manufacturing [6]. To bridge this gap, this research presents a
structured literature review which focuses on definitions used
when describing robots’ capabilities considering industrial
scenarios. More specifically, this work aims to answer the
following research questions:

RQ1: Which nomenclature is most frequent in robotics
when describing capabilities? And with which taxon-
omy?
RQ2: What are the most investigated robots’ capabili-
ties?
RQ3: What distinguishes industrial robotics applications
using robotic capabilities from academic ones?

To provide a clear description of the research done for an-
swering these questions, this work is structured as follows. At
first, in Sec. II, definitions for a capability based architecture
are given. Second, in Sec. III, the structured review criteria
are outlined. Third, in Sec. IV, the results from the review
are presented. Finally, in Sec. V and VI, the conclusions with
future outlooks are given. Moreover, all the data used for this
review is available in the supplementary on GitHub1.

II. ARCHITECTURE AND DEFINITIONS OF TERMS

To conduct the research, the systematic literature review
approach defined by [7] was employed. Therefore, categories
for the classification had to be defined. In this section, such
terms are defined. The designated expressions come from
two research topics. On one hand, from the manufacturing
domain where the concept of Plug-and-Work based on PPR
[8] describes capabilities at the shop floor. On the other
hand, from the robotics domain, where ontologies have been
defined to represent robots’ capabilities necessary to solve
complex steps like the assembly of a chainsaw as described
in the FoF ontology [9]. This resulted in the architecture
shown in Fig. 1.

A. Process
A Process is defined as an ensemble of different

Skills and depicts an abstract description of steps in a
workflow to reach a certain desired outcome as defined by
[5], [11]. Definition of a Process finds its roots in the
definitions of the enterprise-control system integration in the
well known ANSI/ISA95 [13]. However, in this context the
definitions of Process as defined in PPR is used. Therefore,
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Figure 1: Architecture of the capability-based framework
used in this review work to conduct the systematic literature
review. The figure shows the hierarchy and the relations
between the expressions. The expressions were obtained
analyzing the literature on PPR and the domain of robotics
research.

a Process is solution neutral and its execution depends on
the type of resources involved and their capabilities [5], [8].

B. Task
A Task is defined as an ordered ensemble of different

Skills and depicts a concrete representation of steps in
a workflow to solve a specific goal by interfacing with
operators, control systems and programs [14]. Therefore, it
could be seen as a more specialized version of a Process.
For the sake of clarity, a Task can be a easily described as a
sequence of Skills that have been properly parameterized
upon the resources involved and their capabilities.

C. Skill Group
A SkillGroup is defined as a collection of Skills,

which allows to group similar ones together. Such grouping
has been used in [5], [11] to structure a large variety of
Skills into meaningful groups that are understandable to
the user (e.g. move, connect, compare). The SkillGroup
is not considered during execution, but it has a descriptive
character when a user is searching for available Skills.

D. Skill
A Skill is a predefined robot’s capability that can be

parameterized to solve a specific goal. A Skill can be either
a physical capability or a perception capability [14]. Skills
that execute physical actions are able to alter the physical
world state, for example picking an object. Skills with
perception capabilities can update only a world representation
based on the made observations but do not alter the physical
world. An example is the measurement of an object’s pose.

E. Parameterized Skill
A ParameterizedSkill can be the instance or be

implemented as inherited class of a Skill equipped with
parameters that are Task and resource specific, hence, it
can be executed on robot hardware to accomplish a goal.

F. Parameter
Parameters are used to configure a Skill for a spe-

cific Task [10], [15]. Parameters can be specified by
different methodologies, for instance manually defined and
interpretable by the user, or automatically extracted by the
system and non-human interpretable [16]. This difference
is denoted by calling them respectively Parameter and
DerivedParameter.

G. Primitives
A Primitive is the closest atomic unit to the hardware-

level, also know as atomic function that can perform a distinct
operation. It can be depicted as building block when com-
posing Skills, for instance opening a gripper [14], [17].
Similarly to Skills, Primitives can be parameterized
to solve a precise task and could provide output informa-
tion, for example, the location of an object. Additionally,
Primitives can be grouped as Skills in SkillGroups,
however, this is not considered in this survey.

H. Example of how the architecture can be used
To demonstrate the proposed architecture an example of

an automation process that is solved by a robotic task
and how it could be depicted using the above nomencla-
ture is here presented. The example is shown in Fig. 2.
Imagine that the Process of a gearbox assembly shall
be automated. Therefore, the user identifies, via a pro-
gramming method (e.g., learning from demonstration), ap-
propriate robot Skills (i.e., Pick and Place, Pick and
Insert and Pick and Screw) from different SkillGroups,
such as Manipulation. Afterwards, to execute it, resources
are matched to the Process via a task planning algo-
rithm or by a capability-based manual assignment on a
Manufacturing Execution System (MES) considering that
a Transmission gearbox needs to be assembled. There-
fore, the actual gearbox assembly becomes a Task
consisting of a sequence of ParameterizedSkills.
These ParameterizedSkills are the instances of the
Skills equipped with their parameter values. For ex-
ample, Pick and Place(Shaft, Housing) denotes
a Pick and Place skill that involves the SHAFT and
HOUSING Parameters which are digital artifacts rep-
resenting properties of the physical objects. The infor-
mation within these artifacts is then used to assign pa-
rameters to the underlying Primitives, for example
Move(target=pos_4). Furthermore, a Move primitive
could also have a DerivedParameter as used within the
Pick and Insert skill, for example the Dynamic Movement
Primitive (DMP) [18] weights of the represented motion,
Move(target=pos_4, traj=dmp_weights).

III. REVIEW PROCESS

Due to the research bulk on the topic, this review used
a systematic research method (SRM) as outlined in Sec. II.
This section highlights how the expression previously defined
were used along with exclusion criteria, search strategy and
the research protocol.

A. Literature search
To collect candidate papers, an automatic search on the

Scopus digital library database2 was performed on 6th Oc-
tober 2021. The search terms targeted the industrial usage

2https://www.scopus.com/
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Figure 2: Example of a transmission gearbox assembly. On the left, the general gearbox assembly Process is shown,
which is not parameterized and resource independent. The process is composed by the Skills Pick and Place, Pick and
Insert, and Pick and Screw. To the right, a specialized task for a particular transmission gearbox assembly is shown. The
task is created by matching resources to a process and specifying parameter values for Skills and Primitives. In this
case, an object centered representation is used [10]–[12], the Skill parameter represents the digital artifact of a physical
object which contains object specific information (i.e., position). SHAFT and HOUSING are passed as parameters to Pick and
Place. GEAR WITH BEARING is passed to Pick and Insert and SCREW to Pick and screw. The artifact’s properties can be
used to assign parameters also to the underlying Primitives, for example passing an object’s target position to a move.

of robots’ capabilities published between 2014 and today as
long this time span presented the largest amount of research
publication on the field. This resulted in the following Scopus
search string:

[(robot AND skill) OR (robot W/15 skill)]
AND (industrial OR manufacturing)

The query was applied to the research fields: title, abstract
and keywords and resulted in a total of 210 papers.

B. Selection
Afterwards, an exclusion criterion on the abstract and

title, filtering out papers that were not fitting due to topic
irrelevance was applied (i.e., skills in the workforce required
for usage of robotics) and 149 papers were discarded. The
remaining 61 papers were fully read and analyzed. During the
process, 27 other publications were added as long they were
describing relevant previous works of authors identified in the
previous step. This resulted in a total of 88 fully analyzed
papers.

C. Classification
To understand how and which nomenclature the research

papers used to define robotic capabilities, these classification
criteria were created:

• Skill model. Evaluation whether the authors define what
a skills is and how a skill model is structured.

• Similarity. Understanding if the proposed capability-
based skill framework is similar to the one presented in
order to evaluate the proposal of this work. This criteria
recorded if the framework showed the same structure as
the one presented in this work.

• Industrial. To know if the research was more industrially
focused or not is important to understand the technical
readiness level (TRL) of the technology. Therefore, it
was marked if the research work was conducted on a
use case of a real-manufacturing scenario.

• Industrial requirements. Knowing if the requirements
for industrial application that are necessary to enter a

specific market are met is another important insight
to understand the TRL of the technology. Considering
that large amount of the literature on capabilities is
from Europe [6], the criteria for accessing the European
market were used to asses the development level of the
frameworks 3 (the full list of the requirements can be
found in the supplementary material).

• Implementation. Knowing the implementation technolo-
gies is important to understand the applicability in other
scenarios. In this term, the frameworks and program-
ming languages were recorded if implementation details
were provided.

• Parameters. Assigning parameters to skills enables gen-
eralization capabilities. If parameters were used, their
type was reported.

• Definitions. To understand how the definitions provided
in Sec. II were used, the nomenclature used in the
reviewed works was mapped to the definitions provided
above using a review table (the full review table can be
found in the supplementary material).

IV. ANALYSIS OF THE RESULTS

To analyze the results the semantic properties and frequen-
cies of the terms were analyzed. This section describes the
results obtained from this analysis.

A. Classifications results
By applying the classification criteria on the 88 papers the

following results were obtained:
• Skill model. 26 papers out of 88 proposed a clear skill

model used in their skill framework.
• Similarity. 57 papers out of 88 used a capability-based

skill framework similar to the one proposed in Sec. II.
• Industrial. 45 papers out of 88 were dealing with an

industrial use case.
• Industrial requirements. 61 papers out of 88 considered

some of the requirements needed for industrial usage.

3similar requirements however, apply also to other markets



• Implementation. 49 papers out of 88 clearly explained
the used tools and frameworks for the implementation.

• Parameters. 32 papers out of 88 defined and explained
the parameters used for their skill frameworks.

• Definitions. Considering the definitions in Sec. II, the
research papers could be summarized as follows. The
categories which had the most amount of information
were skill (79 out of 88), task (65 out of 88) and
primitives (49 out of 88). The remaining categories were
used much less frequently, skill group (14 out of 88),
parametrized skill (17 out of 88) and process (31 out of
88).

B. Nomenclature

Within the definitions in Sec. II, also the types of skills,
tasks and primitives were recorded. To study which names
were most common across the research works, and provide
data for RQ1 and RQ2, the data was preprocessed and the
most common terms identified.

1) Preprocessing: In order to prepare the extracted data
for clustering, a number of preprocessing steps to the man-
ually extracted definitions obtained from the analysis per-
formed in Sec. III were applied. For the sake of clarity the
denomination of a task, skill, or primitive is defined as label
in the following paragraphs. First, the labels from the review
table under the definitions column were extracted. Whenever
authors provided labels in camel case, they were resolved
to words with underscores, for instance MoveTo resulted in
Move To. Next, labels were converted to lowercase. Then,
lemmatization was applied on each of the words. Here,
inflectional endings were removed, i.e., ”moving” would
result in ”move”. Hereby, the WordNetLemmatizer from the
natural language toolkit (NLTK) [19] was used and 526 labels
were obtained for the subsequent steps.

2) Identified Common Terms: A search about common
terms was applied using a wordcloud4 based on the label’s
frequency (bar plots are also available in the supplementary
materials). The results for task, skill and primitive are visu-
alized in Fig. 3. The naming task, skill and primitive are the
most used by the research community therefore answering
to the first part of RQ1. However, other nomenclatures like
action seem to be frequently used in robotics [20]. Moreover,
the most investigated types were: assembly for task (also in
line with the identified most required capability by [21]), pick
and place for skill and motion primitive, and open gripper
for primitive.

3) Semantic similarities with K-means clustering: To in-
vestigate if researchers had a similar focus on action types,
a K-means clustering was applied after removing duplicate
terms. This section reports the cumulative analysis on prim-
itives, skills and tasks. Initially, the terms were encoded in
feature vectors using sentence transformers (SBERT) [22]
with the pre-trained model all-mpnet-base-v2, known
for its good performances in general purpose tasks. After-
wards, a K-means clustering on the encoded features was
applied with the parameters of 10 clusters and dimensionality
reduction to 2 for visualization purposes. Finally, for each of
the obtained clusters, a keyword search was applied. The two
words scoring the best cosine similarity with all the words
present in that cluster were identified. The identified clusters

4http://amueller.github.io/word cloud/

are denoted in Table I (visual results are also available in the
supplementary material). From these results, the following
insights can be drawn. Firstly, it can be perceived that the
research focuses mostly on the group pick-placement, there-
fore answering to RQ2. This can be related to the tasks that
industrial use cases commonly face [23], [24]. The groups
motion-movement and grip-gripper are implemented by the
researchers mostly as primitives like in [25], underlining
that those simple capabilities are the building blocks to
create different skill types. This is also reflected by the
most occurring primitives (motion primitive, open gripper)
identified in Sec. IV-B2. The groups button-press, clean-
wipe, navigate-circular, object-registration, placement-pick,
rotate-spin and spray-paint are mainly implemented by the
researchers in the skill level like in [26] and they represent
several robots’ capabilities necessary to accomplish tasks
(i.e., clean-wipe for the task of cleaning a room). Finally,
the machine-code group is integrated in the task level due to
the large amount of necessary capabilities when robots have
to interface with machines. For example in [10], the task ma-
chine feeding is identified where the robot should be capable
of interacting with the machine (e.g., set inputs/outputs) and
handle objects of different sizes and shapes (e.g., picking,
placement, locate).

C. Industrial and non industrial scope

A frequency analysis was performed to identify most
common terms in the two sub-sets given by filtering the
Industrial criteria for identifying data regarding RQ3. The
overall analysis can be seen in Fig. 4.

1) Implementations: Industrial scenarios show a diverse
set of frameworks closer to the automation domain (i.e.
programmable logic controller (PLC) language, Automa-
tionML (AML)) [5], [32]. Additionally, the Robot Operating
System (ROS) also finds its way into such scenarios [14],
[87]. In comparison, non-industrial applications rely quite
often on ROS with the python programming language, such
as in [25]. Hereby, ROS has the main purpose to serve
as a communication middleware between so-called nodes
but it also defines interfaces in the form of standardized
message formats. However, ROS is not used to implement
knowledge itself, which is an important requirement for non-
industrial applications. Thus, some works rely on ontological
representations. Ontologies can be implemented in the W3C
Web Ontology Language (OWL), and some of them were
already standardized, such as the IEEE 1872 Core Ontology
for Robotics and Automation (CORA) first proposed in [88]
and validated in [89].

2) Industrial requirements: The requirements regarding
type of hardware used, software version and robot intended
behaviour were equally considered both for the industrial and
the non-industrial scenarios like in [63], [86]. The major
difference is that some of the industrial scenarios consider
also the requirements related to safety aspects of the appli-
cation like in [38], [73]. This has been always a major point
of difference between industrial and non-industrial research
[21], and this is reflected also in this review concerning
skill frameworks. Therefore, to increase market adoption
of skill frameworks in the industrial domain, safety should
be addressed either by having inherently safe skills or by
conducting a risk analysis behind each robotic skill.
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Figure 3: Wordcloud representing the occurrence of words in the classification table. On the top the names given for task
(A1), skill (B1) and primitive (C1). On the bottom the most referred tasks (A2), skills (B2) and primitives (C2). The most
common task was assembly, the most common skills pick and place and the most common primitives motion primitive and
open gripper.

Table I: Review table associated to the different works. The table shows the classified research works on the cluster level
and on the robot’s capability complexity. From the table it is easy to perceive that the placement-pick group is the most
investigated by the researchers.

Cluster name Task Skill Primitive
button-press [27], [28], [29], [30], [31] [32], [33], [29], [34], [27], [35], [36], [37], [38], [39], [40], [41], [31], [42], [43], [44],

[11], [45], [12], [46], [47]

[26], [48], [11], [5], [12], [49]

clean-wipe [50], [14] [42], [51], [52], [37], [33], [53], [29], [11], [44], [38], [54], [55], [31], [46] [26], [12], [56], [11], [32]

grip-gripper [41], [35], [57] [12], [35], [37], [40], [58], [52], [59], [27], [60], [61], [62], [55], [54], [46], [63], [33],

[57]

[11], [12], [14], [35], [25], [24], [33], [54], [64], [65], [45],

[30], [66], [32], [48], [15], [11], [34], [16]

machine-code [48], [50], [14], [10], [67], [68], [43],

[31], [51], [42], [64], [63], [65], [69], [61],

[26]

[70], [48], [71], [52], [5], [38], [61], [63], [60], [68], [56], [44], [12], [72] [51], [70], [69], [64], [65], [5], [56], [12], [33], [24], [63],

[48], [10], [30]

motion-movement [73] [38], [47], [34], [74], [11] [75], [48], [30], [43], [10], [56], [45], [29], [64], [65], [25],

[76], [16], [69], [77], [63], [31], [67], [78], [79], [11]

navigate-circular [44], [54], [15], [63], [51], [71], [11], [5], [56], [59], [72], [58], [36], [41], [38], [34], [80],

[81], [32], [76], [66]

[26], [56], [5], [14], [32], [11], [54], [24], [66], [70], [64],

[76]

object-registration [14] [5], [54], [11], [71], [14], [42], [34], [31], [66], [44], [60], [72] [65], [5], [38], [44], [11], [66], [10]

placement-pick [41], [10], [29], [23], [59], [25], [66],

[55], [57], [81], [42]

[32], [5], [56], [10], [54], [29], [16], [69], [79], [15], [72], [78], [57], [61], [44], [11], [45],

[27], [64], [23], [28], [58], [63], [43], [66], [24], [42], [65], [14], [51], [52], [38], [46],

[41], [81]

[5], [32], [11], [65], [66], [56], [14], [33], [24], [45], [54],

[64]

rotate-spin [28], [14] [5], [56], [23], [38], [67], [46], [43], [82], [11], [81], [53], [80], [37], [58] [35], [56], [32], [12], [65], [61], [5], [11], [24], [38]

spray-paint [83], [50], [84], [77], [27], [59], [85] [76], [86], [26], [49], [68], [85], [11], [82], [16], [74], [43], [81], [77], [27], [73] [76], [5], [49], [11]
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Figure 4: Diagram showing the differences in capability-
based skill frameworks between works with industrial scope
and non-industrial scope. The leaves on the right hand side
are the most frequently appearing words.

3) Parameters: In the industrially focused works, the
parameter scope of a skill is closer to hardware functions and
physically measurable data. The most used parameters were
height, position, offset, and robot speed. These parameters
appear to allow only minor adaptions to the robotic task and
appear to take rather hardcoded values such as the absolute
position of an object provided by the programmer [14],
[87]. In comparison, the complexity of parameters in the
non-industrial scenarios is considered to be higher. The most
commonly used parameters were goal, target, world, and
robot. Parameters of this scope allow major modifications
of the skill’s behavior. A skill that is parameterized with an
abstract target instead of an absolute position could adapt
its behavior significantly by exploiting further information
from a knowledge base like in [11], [34]. Parameters can be
also seen as function arguments that can be either passed
to a skill or a primitive. Considering different programming
layers, parameters would describe the input ports of a skill
visible to the user, while parameters could also describe the
function arguments of a primitive, which are visible only



to the system designer. In both industrial and non-industrial
cases, the parameters were mostly found to be associated
with a skill. The internal logic of the skill is then meant to
extract meaningful values that are shared with the underlying
primitives. Examples of this structure can be also found
in [15], [43].

With these findings it is possible to find the answers to
RQ3. Industrial usage of robot capabilities distinguishes itself
from non-industrial usages on two areas. First, its focus is
on simple skills with often hard-coded parameters. Second,
the implementation uses frameworks close to the automation
domain while always respecting the safety of the application.

D. Approaches to capability-based skill frameworks

Finally, from the review it was possible to see that 57 out
of 88 papers used a similar architecture as the one proposed
here. Therefore, a tree-like structure where primitives are
the closest units to the hardware level and the tasks the
farther away from the hardware seems to be a concept that
most researchers agree on, both for the industrial and the
non-industrial cases. Therefore, answering to the second part
of RQ1. The best examples on the usage of the identified
architecture can be found in [14], [15], [65]. In these works,
also a common skill model is presented. Often this model is
dependent on the resource which provides certain function-
alities (i.e., primitive) and the input/output variables which
can parameterize the functionality. The best example of such
modelling can be seen in [5].

V. TRENDS AND OUTLOOKS

During the review, the necessity to accommodate market
demands leading to HMLV productions has been underlined
as also identified by [6]. To adapt automation in such
production scenarios, robots with skill frameworks were
seen as enabling technology within Industrie 4.0 [90], [91].
The aim of this technology is to avoid the high costs of
manual processes on the one hand and the limitations of
fully automatic, poorly customizable processes on the other
hand. To properly exploit the advantages of skill frameworks,
however, skill hardware and vendor independence is a key
factor as long as it guarantees wide skill applicability [8] and,
for example, skills could be used across multiple plant sites of
manufacturing companies [49]. To enable such independence,
primitives will need to be properly mapped to skills accord-
ing to the available hardware functionalities. Therefore, an
automatic primitive to skill mapping is worth investigating
[61]. However, such mapping would require an universal
information representation among all employed skills [51].
To lay a foundation for that, skills and their primitives could
be defined in industrial standards such as AML like in [5] or
definitions like the FoF ontology [9]. Within this aspect, it
is worth noting that industrial applications initially preferred
AML as information representation and this is also visible
in Fig. 4. However, in the last years, OPC UA has become
more common [15] and none of the surveyed works report to
use AML in the last three years. Apart from skill definitions,
parameters are important to enable skills’ reusability. In many
industrial applications, skill parameters are still manually
defined [38]. However, recent works consider automatic
parameterization techniques, where the skill sequence and
skill parameters are defined either by an autonomous planner

or extracted from human demonstrations [27], [28]. Also, the
complexity of parameters is changing. From simple, physical
quantities such as positions, parameters are moving towards
more abstract ones, such as object IDs or even interfaces
to world models which are passed as parameters [5]. This
shows that the responsibility of interpreting a parameter is
being shifted from the human to the skill itself.

VI. CONCLUSIONS

This work presented the review of several papers on the
field of capability-based skill frameworks by focusing on the
robotic industrial domain. The review was performed via a
structured approach and the research works were classified
according to some predefined criteria. The results obtained
were then analyzed using semantic clustering or frequency of
appearance. Through this methodology, the following results
were obtained. Firstly, the analysis showed that the research
practitioners, when referring to capabilities, use often the
names task, skill and primitive, where primitive is the closest
to hardware, tasks the furthest and skills represent robots’
capabilities. Secondly, several research areas defined by the
type of robotic capability have been identified. From this
classification it was discovered that pick-placement is the
most researched capability and that motion-movement, grip-
gripper are common groups of primitives used to create
different skills. Finally, some differences have been found
between industrial (I) and non-industrial (NI) research. I uses
parameters that are close to the hardware, whereas NI uses
high level ones. Considering implementation frameworks,
I prefers PLC languages while NI others (e.g., ROS). For
industrial requirements, it was found that I considers more the
safety aspects when compared to NI. Apart from these main
findings, the review also showed an increasing interest on
the usage of robots and skills to accommodate requirements
of a HMLV production and that information representation
is essential to enable skill reusability, either via OPC UA or
other standards. While performing the review, a major pitfall
was identified on the research query. Such query was largely
biased towards industrial scenarios and might better represent
this domain compared to non-industrial one. Therefore, future
work could focus more on the review of purely academic
works in robots’ capabilities to give a bigger picture of the
field.
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