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Abstract

Bipedal humanoid locomotion offers great opportunities for the movement of robots in
human environments and interaction with them. It is a challenging control problem for
which many different solution approaches have been developed in research in recent
years. This work tackles the problem of dynamic modelling errors in the form of
constraint violations for inverse dynamics control approaches. A possible constraint
violation is contact loss of the foot to the ground, but also other unforeseen disturbances
may occur. The introduced methods aim to increase robustness and the probability of a
recovery.

This work is based on the idea of controlling relative instead of absolute positions,
specifically the relative position of the center of mass to the foot (RCF). This solves the
problem of uncontrollable degrees of freedom during contact loss when tracking the
absolute position is impossible resulting in potentially dangerous controller behavior.
Instead, the developed relative controller keeps the posture of the robot in a desir-
able configuration during contact loss without compromising on the absolute position
tracking under nominal foot-ground contact.

A passivity based control task is derived for the RCF coordinate. This task is evaluated
with different free-floating robot models and embedded into the whole-body control
framework of the humanoid robot Toro. Two different additional task formulations are
derived for correct tracking of the absolute position reference based on the constrained
foot acceleration and the center of mass behavior with foot-ground contact. An approach
for implicit orientation control via multiple contact point RCF tasks is introduced.
Different passivation approaches are evaluated to suppress short instabilities in the
system. The derived controller is analysed in detail in simulation for the humanoid
robot and then verified in experiments.
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1 Introduction

Technological advancement and research has brought automation into many areas of the
human’s world. While robots were used for a long time mainly in closed manufacturing
settings, their applications have developed into the day to day life in form of vacuum
clean robots, driving assistance and collision avoidance or as assistance robots at home or
in elderly care homes. With a broader field of applications, tasks become more varying
and challenging. Reactions and adaptions to unforeseen changes in the environment
become necessary. Beside cognitive improvements also the mechanical limits have to
be pushed for new applications. One field of research goes to robots with humanoid
locomotion. They provide an entire new set of possible work locations compared to
wheeled robots which can easily be stopped by stairs. With similar locomotion to
humans they can be expected to move in human environments, perform similar tasks
and offer new levels of corporation between robots and humans.

First control approaches for free-floating humanoid robots were using position con-
trolled inverse kinematics approaches [1][2][3]. They were following a preset path of
motion. As for position controlled fixed base robots, their motion is very rigid and they
cannot be controlled in a compliant mode. Similar to fixed-based robots, the recent
development went towards inverse dynamics approaches who offer higher compliance
[4][5][6]. The inverse dynamics approaches, however, have robustness issues and are
susceptible to constraint violations and external disturbances that are not modelled
correctly. Such disturbances as an uneven ground, slippage of the foot, a fall or an
external force like a push lead to failure of the controller and potentially dangerous
uncontrolled motion. Recent developments have been made that tackle problems of
pushes and uneven surfaces [7][8][9].

This work focusses on dynamic modelling errors in form of constraint violations as
a contact loss and seeks to increase the corresponding robustness. Preliminary work
was already presented in [10]. It is inspired by the control of free-floating robots in
space for which the centroidal momentum cannot be controlled. Similarly some degrees
of freedom of freedom of a robot become uncontrollable during a fall or slippage.
Instead, the motion is expressed in terms of relative movements. A controller, tracking
an absolute position in space, may produce large torques when the absolute position
diverges from the reference due to its uncontrollability. This large torque is potentially
dangerous and makes recovery unlikely in case of a reestablishment of the contact
because the posture diverges greatly from the desired posture required for stance or
walking. Instead a new control quantity is introduced, the relative coordinate between
the center of mass and the foot (RCF). The center of mass has been chosen due to its
crucial role in most humanoid locomotion approaches, as the main goal is the movement
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1 Introduction

of the center of mass. If the foot is fixed in the world due to ground contact, the relative
controller tracks the absolute position in space. In case of a contact loss, the foot is kept
in an appropriate position relative to the center of mass such that recovery is more likely.

This work will extend the approach from [10] from 1D to 3D. The developed RCF
task is embedded into the whole body control framework presented in [11] for the
humanoid robot Toro [12]. An approach is introduced for orientation tracking using
multiple (contact) points on the robot. For correct tracking of the center of mass in case
of foot-ground contact, an additional task is derived that is based on the assumption
of zero acceleration of the foot. Simpler 3D models of a free-floating robot than Toro
will be derived to evaluate the controller. The approach is tested in the simulation
for the humanoid robot Toro. An alternative to the zero foot acceleration task with
greater robustness to contact loss will be derived which is based on the center of mass
acceleration. The controller exhibited short instabilities during stance and walk on
the ground. Different approaches of passivation are presented and embedded into
the quadratic programming solver. After satisfying results in the simulation, first
experiments on the real robot Toro were made and the results will be presented.
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2 Robot Models

This chapter is an introduction to robot dynamics and the control of the robot’s behavior.
It introduces the different robot models used in this work. Beside the model of the
humanoid robot Toro, it contains the one dimensional, two degrees of freedom model
presented in [10]. A free-floating 3-joint robot arm is derived that is fully determined by
the introduced 3-dimensional relative position controller. Additionally, a six-dimensional
model that corresponds to one of Toro’s legs is introduced.

2.1 General Robot Dynamics

A robot’s state is expressed using generalized coordinates. Those generalized coordinates
are chosen to describe the state of the robot with the minimal amount of variables. A
vehicle moving on a flat surface is defined by three variables, the 2D position and the
rotation about the vertical axes. A vehicle moving in three dimensions like an airplane
requires three coordinates for the position and three for the orientation. For fixed-base
robotic manipulators with revolute or linear joints, the state is fully defined with one
coordinate for each robot joint describing the joint’s position. The robots investigated in
this work are free-floating robots. Their state is defined by the Cartesian position of the
base of the robot in space and the joint position of the actuators.

These generalized coordinates are summarized in the generalized coordinate vector
q. The change of the robot’s state over time, the robot’s dynamic behavior, is described
by the time derivatives of the generalized coordinates q̇ and q̈, the velocity and the
acceleration respectively.

The dynamics can be denoted as a general equation of motion of the form

M(q)q̈ + C(q, q̇)q̇ + τg(q) = τ (2.1)

It contains the inertia of the robot in form of the mass matrix M, the coriolis effects of the
motion in the Coriolis matrix C, the influence of gravity τg and the generalized forces
τ. These generalized forces consist of the joint torques τj, internal forces τint like joint
friction and external forces τext acting on links connecting the joints. The joint torques
and internal forces are mapped to the generalized coordinates via the joint selection
matrix S and the external forces are calculated with the stack of link jacobians L that
map a six-dimensional wrench acting on that link to the generalized coordinates:

τ = ST ∗ (τj + τint) + LT
allwall (2.2)
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2 Robot Models

Figure 2.1: Simplest Articulated Free-Floating model [10]

2.2 Simplest Articulated Free-Floating Model

This section reintroduces the simplest articulated free-floating (SAFF) model presented
in [10]. The controller introduced in the paper is the base of this work and different
controller formulations will be tested on the model. It is the most simple form of a
free-floating robot in 1D space. It has two degrees of freedom, the position of the base
and the joint position.

2.2.1 Generalized Coordinates and Kinematics

The model shown in 2.1 consists of two point masses that represent a foot and a trunk
of a robot. The vertical direction represents the only coordinate used. The two masses
are connected via one actuator that can apply a force between the two point masses.
Gravity acts on both point masses. In case of contact to the ground, the foot can apply a
force in that direction and the position of the foot is fixed. This constrains one degree of
freedom of the robot. The generalized coordinates are chosen as the absolute position q1

of the trunk to a global point of reference and the distance q2 of the foot to the trunk:

q =
[
q1, q2

]T
(2.3)

The absolute position coordinates of the trunk z1 and the foot z2 can be calculated as

z1 = q1 (2.4)

z2 = q1 + q2 (2.5)

Their time derivative, the velocity is denoted by ż1 and ż2

ż1 = q̇1 (2.6)

ż2 = q̇1 + q̇2 (2.7)
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2.2 Simplest Articulated Free-Floating Model

A third coordinate is introduced: the position of the center of mass zcom. The center of
mass plays a crucial role in this work and other bipedal locomotion control approaches
(references). The position of the center of mass depends on the position of the foot
and the trunk and their respective masses m1 and m2 with a total mass of the robot
m = m1 + m2:

zcom =
m1

m
z1 +

m2

m
z2 = q1 +

m2

m
q2 (2.8)

Differentiation over time gives the velocity żcom

żcom =
m1

m
ż1 +

m2

m
ż2 = q̇1 +

m2

m
q̇2 (2.9)

Due to the linearity of the relation between the generalized coordinates q and the
absolute coordinates z the forward kinematics equals the jacobian and will both be
denoted by J. The forward kinematics describe the relation of the link coordinates to
the generalized coordinates and the jacobians the relation of the link velocities to the
generalized velocities.

J1 =
[
1 0

]
(2.10)

J2 =
[
1 1

]
(2.11)

Jcom =
[
1 m2

m

]
(2.12)

2.2.2 Dynamics

The dynamics of the system is obtained by analyzing each body and the forces on it.
Both bodies are subject to gravity g acting in positive z-direction, a torque τj acting
between the two bodies and a foot wrench w f oot acting in the opposite direction of
gravity on the foot.

m1z̈1 = m1g − τj (2.13)

m2z̈2 = m2g + τj − w f oot (2.14)

This is rearranged to obtain the body accelerations z̈1 and z̈2

z̈1 = g −
τj

m1
(2.15)

z̈2 = g +
τj − w f oot

m2
(2.16)

The center of mass acceleration is obtained by differentiation of its velocity from (2.9)
and using the body accelerations.

z̈com =
m1

m
z̈1 +

m2

m
z̈2 (2.17)

=
m1

m
(g −

τj

m1
) +

m2

m
(g +

τj − w f oot

m2
) (2.18)

= g +
w f oot

m
(2.19)
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2 Robot Models

Multiplying with the total robot mass m gives the CoM dynamics:

mz̈com = mg + w f oot (2.20)

2.2.3 Equation of Motion

We have derived three dynamics equations for a system with two degrees of freedom.
One of the equations is redundant to express the system in terms of generalized
coordinates. The equation for the center of mass and the foot have been chosen because
the relative controller will be expressed in a relation between the foot and the center of
mass. [

m 0
0 m2

] [
z̈com

z̈2

]
+

[
−mg
−m2g

]
=

[
0
1

]
τj +

[
1
1

]
w f oot (2.21)

The foot and CoM accelerations can be replaced using the jacobians from (2.10):[
z̈com

z̈2

]
=

[
Jcom

J2

]
q̈ =

[
1 m2

m
1 1

] [
q̈1

q̈2

]
(2.22)

The foot wrench w f oot and the joint torque τj can be summarized as a generalized torque
vector τ: [

0
1

]
τj +

[
1
1

]
w f oot =

[
0 1
1 1

] [
τj

w f oot

]
=
[
ST JT

2

]
τ (2.23)

with the joint selection matrix S =
[
0 1

]
. The final equation of motion is the given as[

m m2

m2 m2

] [
q̈1

q̈2

]
+

[
−mg
−m2g

]
=

[
0 1
1 1

] [
τj

w f oot

]
(2.24)

This corresponds to a general form with a mass matrix M and gravity vector τg and
generalized torque τ as in equation 2.1.

Mq̈ + τg = τ (2.25)

It can be used to calculate the generalized accelerations of the system:

q̈ = M−1 (τ − τg
)

(2.26)

with the inverse mass matrix

M−1 =

[
1

m1
− 1

m1

− 1
m1

m
m1m2

]
(2.27)

2.2.4 Foot Constraint

The controller is evaluated for its behavior with contact of the foot to the ground and for
contact loss. The contact loss is implemented by setting the foot wrench to zero w2 = 0.
For the constrained case, the velocity and acceleration is fixed to zero. The foot wrench
is calculated from equation (2.14)

w2 = m2 (z̈2 − g)− τj (2.28)

6



2.3 Three Joint Free-Floating Robot

Figure 2.2: Free-floating robot with three revolute joints and six degrees of freedom

2.3 Three Joint Free-Floating Robot

The model for the robot in figure 2.2 was derived to test the introduced three dimensional
relative position controller. It has six degrees of freedom with the minimal amount of
three joints that are required for the controller, similar to the most simple implementation
in 1D with one joint. The linear joint from the SAFF model is replaced by revolute joints
as they are used in the humanoid robot. This introduces coupling between the spatial
coordinates. The equation of motion will be derived using the Lagrangian method.

2.3.1 Generalized Coordinates and Kinematics

The general coordinates consist of the 3D position of the robot base x in the global
reference frame and the three joint positions θ.

q =
[
x θ

]T
(2.29)

Based on these coordinates, the homogeneous transformation can be found. This work
uses the notation from [13] with a simplified notation of hybrid variables referenced to
the world frame 0

hx0,com = xcom. Variables with a spatial or body reference frame will be
indicated. A homogeneous transformation BHA is the transformation from coordinate
system B to coordinate system A including the rotation matrix R between the two
coordinate systems and the position vector p describing the linear location of the base
frame.

BHA =

[BRA
B
h pB,A

01x3 1

]
(2.30)

The homogeneous transformation Hb describes the transformation of the global coordi-
nate system to the base coordinate system. The base frame has the same orientation as

7



2 Robot Models

the global one, therefore the rotation matrix is just the identity matrix. The translation
between the two frames is given as the vector xb.

Hb =

[
I3x3 xb
01x3 1

]
(2.31)

The robot’s points of interest for which homogeneous transformations have to be found
are the three joints, the four links and the endeffector. The center of mass is defined by
only a position vector. The links coordinate frames coincide with their center of mass.
The transformations are found using the Denavit – Hartenberg parameters. This gives
the transformation for each joint, link and the endeffector to the previous joint of the
robot, i.e. j3He f defines the transformation of the endeffector to the third joint. The first
link and joint are relative to the base of the robot. The transformations of each point
of interest to the global coordinate frame is found by multiplication of the individual
transformations leading to that link. Exemplary for the endeffector, the homogeneous
transformation e f

0 H from the global frame to the endeffector frame calculated as

0He f =
0Hb

bH j1
j1 H j2

j2 H j3
j3 He f (2.32)

The center of mass position is calculated from the position vectors, x1, x2, x3 and x4, and
the masses, m1, m2, m3 and m4, of each link.

xcom =
1
4

4

∑
i=1

mixi (2.33)

2.3.2 Dynamics and Lagrangian Function

As mentioned before, the equation of motion is derived using the Lagrangian method.
Unlike the derivation of the dynamics, it is not based on the forces on each body but on
the energy of each body. The Lagrangian function L is given as the difference between
the kinetic energy T and the potential energy V.

L = T − V (2.34)

The kinetic and potential energy has to be derived for each link of the system. The
kinetic energy of link i consists of its linear and rotational part around the center of
mass of the link.

Ekin,i =
1
2

ẋT
i mi ẋi +

1
2

ωT Iiω (2.35)

with the moment of inertia Ii. The linear velocity ẋ and angular velocity ω need to be
calculated for each link. The linear velocity is found by differentiating the position x of
each link. The jacobian of each link is found by differentiating the position of each link
with respect to the generalized coordinates

Ji =


∂x1
∂q1

. . . ∂x1
∂q4

. . . . . .
∂x4
∂q1

. . . ∂x4
∂q4

 (2.36)
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2.3 Three Joint Free-Floating Robot

The jacobian defines the relation between the generalized coordinates and the velocity
of the link

ẋi = Ji q̇ (2.37)

The angular velocity of a link ωi is the sum of each link’s angular velocities prior to the
respective link in the robot.

ωi =
i

∑
n=1

0Rnωj,n (2.38)

The potential energy is calculated from the link position xi and the gravity vector
g =

[
0 0 g

]T

Epot,i = migTxi (2.39)

The energies of all links define the Lagrangian

L =
4

∑
i=1

Ti −
4

∑
i=1

Ki (2.40)

2.3.3 Derivation of the Equation of Motion

The Euler-Lagrange equation defines the equation of motion without external forces.

d
dt

(
∂L
∂ẋ

)
− ∂L

∂x
= 0 (2.41)

From this equation of motion the mass matrix M, the coriolis matrix C and the gravity
vector τg are collected. The coriolis matrix has to be factorized such that the skew-
symmetry property is fulfilled. CT − C must be skew symmetric. The matrices are now
dependant on the robot’s state and the equation of motion is rewritten as.

M(q)q̈ + C(q̇, q)q̇ + τg(q) = 0 (2.42)

The equation is missing the generalized torques τ compared to the general from equation
(2.1). The actuators are the three joint torques τj and the wrench at the endeffector
we f which is a 3D linear force. The actuators u have to be mapped to the generalized
coordinates. The transpose of the joint selection matrix S maps the joint torques and the
transpose of the endeffector Jacobian Je f the wrench

τ = STτj + JT
e f we f (2.43)

The joint selection matrix selects the actuated joints from the generalized coordinates

S =
[
03x3 I3x3

]
(2.44)

The joint selection matrix and endeffector jacobian can be collected to one actuation
mapping matrix U. This actuation mapping matrix maps the stack of actuators u to the
generalized coordinates.

τ = Uu = [ST JT
e f ]

[
τj

we f

]
(2.45)
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2 Robot Models

This yields the final equation of motion of the same form as in (2.1)

Mq̈ + Cq̇ + τg = τ (2.46)

2.3.4 Simulation

The simulation is carried out by numerical integration of the system state with the
acceleration of the generalized coordinates q̈. The acceleration is obtained from the
system’s equation of motion

q̈ = M−1(τ − Cq̇ − τg) (2.47)

The forward Euler method has been used for integration

qt = qt−1 + q̇t−1∆t +
1
2

q̈∆t2 (2.48)

q̇t = q̇t−1 + q̈∆t (2.49)

The variables qt−1 and q̇t−1 correspond the position and velocity of the previous time
step. ∆t is the time between two discrete time steps.

2.3.5 Foot Constraint

The controller will again be evaluated for the two cases where the foot position is
constrained and completely unconstrained. For the case of the unconstrained foot, the
wrench is set to zero, resulting in a free fall.

we f = 03x1 (2.50)

The resulting wrench in the case of a constrained endeffector has to be derived from the
its acceleration.

ẍe f =
d
dt
(

Je f q̇
)
= J̇e f q̇ + Je f q̈ (2.51)

Inserting the generalized acceleration from the system dynamics as in (2.47) yields

ẍe f = J̇e f q̇ + Je f M−1(STτj − Cq̇ − τg) + Je f M−1 JT
e f we f (2.52)

The wrench that constrains the foot in the simulation is found by reordering

we f =
(

Je f M−1 JT
e f

)−1 (
ẍe f − J̇e f q̇ − Je f M−1(STτj − Cq̇ − τG)

)
(2.53)

The constrained foot acceleration ẍe f is set to zero assuming contact to a non-moving
surface. The term can also be used to evaluate a controller’s performance in case of an
accelerating floor like elevators where this term would be non-zero.
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2.4 27 Joint Humanoid Robot Toro

2.4 27 Joint Humanoid Robot Toro

2.4.1 Generalized Coordinates

The humanoid robot Toro has a higher complexity with its 27 joints. Together with the
6D location of the base, the robot has 33 degrees of freedom. The position of the base is
defined by a 3D position vector as for the previous model, but additionally also includes
the orientation of the base coordinate frame located at the hip. The external forces are

Figure 2.3: Contact point model of a foot with polyhedral convex cone approximation

given by the joint torques and the contact forces at the foot. The contact is modeled as
contact force vectors as in 2.3 and friction cones at each of the 4 foot’s corners. A friction
cone represents all force vectors which are allowable without slipping. The allowable
tangential force is defined by the friction coefficient and the normal force.

fT = µ fN (2.54)

With higher friction, the friction cone becomes wider as higher tangential forces are
allowable. As the cone representation is non-linear, it is easier to use a simplified
representation as polyhedral convex cones. The convex property ensures that the
combination of vectors from within the cone also lie within the friction cone. The
polyhedral is chosen to be represented by four linear contact forces out of unit vectors
ui that define the edges of the pyramid and the force magnitude ρi.

fi = u fi ρi (2.55)

The combination of the four linear contact forces define the force applied at that corner
point. With four polyhedral edges per contact point, there are 16 linear contact forces as
external forces per foot making a total of 32 contact force magnitudes for the system.
The contact force vectors can be mapped to a spatial wrench swEE at the foot using the
mapping s Aρ.

swEE = s Aρ ρ (2.56)
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2 Robot Models

Figure 2.4: Model of the humanoid robot in the simulation using OpenHRP

The spatial wrench is mapped to the generalized coordinates with the spatial jacobian
of the endeffector s JEE. The general forces can then be calculated

τ = U u =
[
ST

act s JT
EE s Aρ

] [τj
ρ

]
(2.57)

2.4.2 Simulation

The simulation for the full model of Toro is implemented with OpenHRP [14] (open
architecture humanoid robotics platform) which is built for analysis of humanoid robots
including collision and contact computations. The dynamics of the robot are derived as
in [15][16]. The OpenHRP simulation uses these system matrices instead of the inbuilt
dynamics computation.

2.4.3 Contact Model

The contact model is implemented as in [17]. It uses the forward dynamics of the
system and a collision detector to check whether contact is made between two bodies. If
collision is detected, a normal force is calculated that stops the intrusion and defines
the normal contact force. The collision is checked for the corner points of the foot and
the normal force is calculated if contact is made. The tangential force is evaluated as a
polyhedral friction cone and the external forces as in (2.1).

2.5 Six Joint Free-Floating Robot Leg

This model is a reduced version of the humanoid robot. It consists of one of the robot’s
legs until the hip with 6 joints. This is the minimal amount of joints to control the

12



2.5 Six Joint Free-Floating Robot Leg

position and the orientation of an endeffector. With the 6 coordinates of the robot’s
base position in the global coordinate frame, this model has 12 degrees of freedom. The
generalized coordinates are the six joint positions and the position of the base.

The forces u are the robot’s joint torques τj and a 6-dimensional spatial wrench sw of
the foot to the ground. They are mapped to the generalized torque τ by the actuation
mapping matrix U. It consists of joint selection matrix S and the spatial jacobian of the
foot s J f oot.

τ = U u =
[
ST

s JT
f oot

] [ τj

sw

]
(2.58)

The simulation was adduced to analyse instabilities that occurred during stance of
the robot Toro. The simulation with this model proved to be numerically instable if
the foot was unconstrained, without the influence of a controller. The integration was
carried out using Forward-Euler as for the 3-joint model in section 2.3.4. The model
was therefore only deducted for analysis purposes with a constrained foot. The foot
constraint is implemented similarly to 2.3.5. This model’s foot constraint differs in form
the extension of the wrench we f and the endeffector acceleration ẍe f to 6D.
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3 Controller Design and Modular Passive
Tracking Control

This chapter gives an overview of methods for controller design on which the controller
of this work is based. The modular passive tracking controller (MPTC) introduced in
[11] offers a framework for handling multiple tasks, directly taking into account the
important issue of passivity and thus achieving a high level of robustness. .

3.1 Task Space

Tasks for a robot are often given in terms of spatial coordinates that a part of the robot
should follow. Those spatial coordinates can be six dimensional, but also less in case
only position or orientation are of interest. The general equation of motion from (2.1)
can be projected into task space and a passivity based control law for this task space
derived. The spatial coordinates for a specific task are denoted by xk. A task specific
jacobian Jk maps the time derivative of the generalized coordinates to the time derivative
of the task coordinate ẋk:

ẋk = Jk q̇ (3.1)

The acceleration is obtained by differentiation

ẍk = Jk q̈ + J̇k q̇ (3.2)

The general equation of motion 2.1 for the robot can be rearranged to obtain the
generalized acceleration q̈

q̈ = M−1 (τ − Cq̇ − τg
)

(3.3)

which gives the final task space acceleration

ẍk = Jk M−1(τ − τg)− Qk q̇ (3.4)

with
Qk = Jk M−1C − J̇k (3.5)

The system matrices are transformed into task space with task jacobian and its pseudo-
inverse Tk which maps the generalized torques into the task space

Mk = (Jk M−1 JT
k )

−1 (3.6)

Tk = Mk Jk M−1 (3.7)

Ck = MkQkTT
k (3.8)

(3.9)
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3 Controller Design and Modular Passive Tracking Control

The task force fk is found by mapping the generalized torque into the task space

fk = Tkτ (3.10)

3.2 Passivity Based Control Task

A control law was design in [11] to follow a reference trajectory in that task space which
is defined by a position, velocity and acceleration reference: xk,re f , ẋk,re f and ẍk,re f . The
error of the task between the reference and the actual value can be calculated

x̃k = xk,re f − xk (3.11)
˜̇xk = ẋk,re f − ẋk = ẋk,re f − Jk q̇ (3.12)
˜̈xk = ẍk,re f − ẍk = ẍk,re f − Jk M−1(τ − τg) + Qk q̇ (3.13)

Passivity based control approaches find a Lyapunov function V for the system which
correlates to its energy. A control law is stable if it guarantees that the derivative of
that Lyapunov function is smaller than zero with that controller. A negative Lyapunov
rate correlates to a dissipation of energy from the system and asymptotic stability can
be shown. The task Lyapunov function Vk has to be zero if and only if the task space
quantities xk and ẋk are zero and greater zero if and only if they are unequal zero. The
task Lyapunov function is based on the kinetic and potential energy in the task space.
The kinetic energy is defined by the square of the task space velocity error ˜̇xk and the
task inertia Mk, the potential energy by the square of the task space position error x̃k
and the stiffness matrix of the task Kk.

Vk =
1
2

˜̇xT
k Mk̃̇

T
k +

1
2

x̃T
k Kk x̃k (3.14)

The stiffness matrix is square symmetric and positive definite. A higher task stiffness
leads to a more aggressive movement towards the task reference. Differentiation gives
the Lyapunov rate

V̇k = ˜̇xT
k

(
Mk ˜̈xk +

1
2

Ṁk ˜̇xk + Kk x̃k

)
(3.15)

The goal is to define a desired task force fk,des which ensures that the Lyapunov rate
simplifies to a purely dissipative function V̇k < 0 if the actual task force is equal to the
desired task force.

V̇k = − ˜̇xT
k Dk ˜̇xk + ˜̇xT

k f̃k (3.16)

with the task force error as the difference between the desired and actual task force

f̃k = fk,des − fk (3.17)

The dissipation is defined by the damping matrix Dk of the task. The damping matrix is
also square and positive definite. The desired task force is given by

fk,des = Tkτg + MkQK q̇ + Mk ẍk,re f + (Ck + Dk) ˜̇xk + Kk x̃k (3.18)
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3.3 Stacking of Tasks for Whole Body Control

and the task space error dynamics as

Mk ˜̈xk + (Ck + Dk) ˜̇xk + Kk x̃k = f̃k (3.19)

3.3 Stacking of Tasks for Whole Body Control

For a complex robot with many degrees of freedom, the robot’s behavior is not fully-
defined by one task and multiple tasks become necessary. The overall controller is found
by stacking several different tasks that define the desired behavior of the robot. For
each task a desired task force fk,des is calculated as in the previous subsection and a
task mapping Tk that maps the generalized torque into that task space. The overall
controller can be calculated from those quantities for all tasks. Each task is weighted and
a trade-off between tasks has to be made in case of conflicting tasks or under-actuation
of the system, when more degrees of freedom would be required to fulfill all tasks than
degrees of freedom are available in the system. All desired task forces are stacked into
one vector fdes. The task mapping matrices are multiplied with the actuation mapping
matrix U of the robot model to obtain the actuation to task mapping Tu,k. The mappings
are stacked into one matrix T. Each task is weighted by a positive definite square matrix
Wk. The size of the weighting is equal to the dimension of the task space. For this
work, each task is weighted by one scalar wi. The task weighting matrix is found by
multiplication with the inverse task mass matrix

Wk = M−1
k wi (3.20)

A higher task weight increases the importance of that task and reduces the task force
error in case of a conflict compared to tasks with a lower weight. The weighting matrices
of all tasks form the block-diagonal overall weighting matrix W.

The actual commanded actuation ucmd can be computed analytically or via minimiza-
tion of a cost function using quadratic programming (QP). The analytical solution is
given by

ucmd =
(

TTWT
)−1

TTW fdes (3.21)

Quadratic optimization offers the advantage that constraints and limits of actuators can
be considered. The optimization problem is given by a quadratic cost function G subject
to a linear constraint defined by the boundaries b and the constraint mapping matrix A

min G =
1
2

xTQx + cTx (3.22)

subject to Ax ≤ b (3.23)

The cost function for the control problem is given by

G =
1
2

uT
cmdTTWTucmd − fdesWTucmd (3.24)

The optimization problem is solved with qpOases [18].
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3 Controller Design and Modular Passive Tracking Control

3.4 Overall Passivity Analysis

It has been shown in the MPTC paper [11] that the overall Lyapunov rate of the system
defined by passive tasks is negative even if the lyapunov rate of some tasks is positive
due to conflicting tasks or under-actuation. If the commanded task force is unequal to
the desired task force because of the trade-off the task force error may become larger
than the dissipation in equation (3.16).

3.5 PD Controller Design - Double Diagonalization

The task error dynamics ()3.19) correspond to a mass-spring-damper system if the task
force error is zero. The controller design matrices for the stiffness K and the damping D
will be designed for that nominal case. The damping matrix is calculated accordingly to
achieve a certain damping ratio for the task. In this work, all tasks have been chosen to
be critically damped. Higher damping values are vulnerable to fast oscillations and high
frequency measurement noise. Lower damping leads to overshooting and oscillations
till convergence. A constant damping matrix would lead to varying damping ratios as
the mass matrix of the error dynamics is not constant over time. The damping matrix
has to be adapted accordingly to achieve the desired damping ratio with the desired
task stiffness at all times. This work uses the double diagonalization method presented
in [19]. A non-singular matrix Q is found via decomposition of the mass matrix into
eigenvalues and eigenvectors. The relation of Q to the mass matrix is given by M = QQT

and to the stiffness matrix K = QK0QT with the desired stiffness for each coordinate on
the diagonal matrix K0. The damping matrix is then calculated as

D = 2QDηK1/2
d QT (3.25)

with the desired damping ratio η for each coordinate on the diagonal of the matrix Dη .
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4 Relative Controller - Foot Acceleration
Constraint

This chapter introduces the relative controller presented in [10]. The paper introduced a
controller that tracks the position of the foot relative to the center of mass. This relative
center of mass to foot controller (RCF) proved to be bounded-input, bounded-output
(BIBO) stable for the case of contact imperfections in form of a contact loss while showing
perfect tracking of a reference trajectory for the center of mass if the foot is constraint
by the ground by enforcing an acceleration constraint on the foot. This controller has
been introduced for one dimension for the SAFF model from section (2.2). The first
part of this thesis consists of extending the controller idea of a relative coordinate to 3D
and develop a controller based on that. First, the controller will be evaluated using the
simple 3-joint robot from section 2.3 which is fully determined by the developed RCF
controller. The introduced control tasks will be embedded into a whole body control
framework which is evaluated with the simulation for the humanoid robot in terms of
the walking performance and the robustness to contact loss and also the six-joint robot
leg.

4.1 SAFF Model

A control quantity had to be found that is more robust to position errors due to contact
imperfections than absolute coordinates. The controlled quantity diverges from the
reference due to a missing reactionary force of the ground and is unstable as it is
uncontrollable. In such a falling scenario it is more desirable to keep the robot in a
configuration that increases the probability of a recovery after contact has been regained.
The configuration can be defined by controlling body parts relative to each other. This
lead to the idea of expressing the entire motion as a relative motion between body parts
and controlling their relative position. It has been chosen to control body parts relative
to the center of mass of the robot. The center of mass is chosen due to its crucial role in
humanoid locomotion approaches. The locomotion is implemented by controlling the
foot position relative to the center of mass.

4.1.1 Relative Coordinate

The new coordinate is introduced as the difference of the center of mass position zcom to
the foot position z2.

zR = zcom − z2 (4.1)
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4 Relative Controller - Foot Acceleration Constraint

The relative velocity is obtained by differentiation.

żR = żcom − ż2 = Jcomq − J2q = (Jcom − J2)q (4.2)

From this equation the relative jacobian is found as it maps the generalized coordinates
to the task space velocity

JR = (Jcom − J2)q =
[
0 −m1

m

]
(4.3)

The task space system matrices are derived as in the MPTC framework 3.6. The relative
task inertia is given by

mR = (JR M−1 JT
R)

−1 =
m2

m1
m (4.4)

With the relative task mapping matrix TR

TR = MR JR M−1 =
[

m2
m1

− m
m1

]
(4.5)

and the task force
fR = TRτ = TRUu = − m

m1
τj − w2 (4.6)

4.1.2 Relative Controller Task

The control task is formulated as an MPTC task, which gives the desired task force

fR,des = MR ẍR,re f + DR ˙̃xR + KR x̃R (4.7)

=
m2

m1
mẍR,re f + dR ˙̃xR + kR x̃R (4.8)

with the Coriolis term vanished due to the lack of rotary movements in the system. The
actuator to relative task force mapping yields

TU,R =
[
− m

m1
−1
]

(4.9)

In the paper [10], the commanded joint torque is found by setting the estimated task
force equal to the desired task force and solve for the commanded joint torque.

fR,est = TU,R

[
τj,est
w2,est

]
= − m

m1
τj,cmd − w2,est (4.10)

The estimated task force is equal to the actual task force with a perfect actuator with
τj = τj,cmd and perfect contact of the foot to the ground that the estimated foot wrench
equals the foot wrench from ()2.28)

w2,est = m2(z̈2,est − g)− τj,cmd (4.11)

This leads to the commanded torque of the controller.

τj,cmd = −m1(z̈2,est − g)− mz̈R,re f −
m1

m2
dR ˜̇zR − m1

m2
kR z̃R (4.12)

Furthermore, the assumption has been made that the robot is in the regulation case with
a constrained foot and the estimated foot acceleration z̈2,est is zero.
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4.1 SAFF Model

4.1.3 Foot Acceleration Constraint Task

When extending to a robot with more degrees of freedom, the commanded joint torque
cannot be solved directly from the RCF task force as it has been done in the paper.
A second derivation method of the above control law is found using a second task
in addition to the RCF task. A equivalent task will be derived in 3D and can be
combined with other tasks for a whole body control framework. This task is based of
the assumption of zero foot acceleration as it is in the paper. The foot acceleration is
given from equation 2.14

z̈2
!
= 0 = g +

τj + w2

m2
(4.13)

This equation shows that the foot wrench and the commanded joint torque need to
compensate for the effect of gravity. The actuator to task space mapping is given as

TU,2 = T2U = m2 J2M−1U =
[
1 1

]
(4.14)

The only multibody effect in the foot acceleration is gravity. The desired force is given
by rearranging the foot acceleration equation for the joint and wrench with the task
space mapping

f2,des = J2M−1G = −m2g (4.15)

This task can be stacked with the desired RCF task to the overall desired task force
vector

fdes =

[
fR,des
f2,des

]
(4.16)

and the overall task mapping TU

T =

[
TU,R

TU,2

]
(4.17)

Using equation (3.21), the commanded torque and foot wrench is found. As the two
tasks are non-conflicting and the system fully determined, the weighting matrix is
redundant in the equation and it can be solved without trade-off.

τ = (TTT)−1TT fdes (4.18)

This gives the commanded torque

τj,cmd = m1g − mz̈R,re f −
m1

m2
dR ˜̇zR − m1

m2
kR z̃R (4.19)

which is equal to the commanded torque from the paper in equation (4.12) for the
assumption of zero foot acceleration. The commanded wrench is calculated as

w2,cmd = −m2g − τj,cmd = −mg + mz̈R,re f +
m1

m2
dR ˜̇zR +

m1

m2
kR z̃R (4.20)
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4 Relative Controller - Foot Acceleration Constraint

4.1.4 Analysis

For the 1D model, it was possible to analyse the error dynamics analytically. The relative
task error dynamics was given as

mR ˜̈zR +
m
m2

dR ˜̇zR +
m
m2

kR z̃R = f̃R (4.21)

The task force error f̃R = fR,des − fR vanishes for the constrained foot case, the task force
error becomes zero and equation (4.12) leaves the desired task error dynamics. This
holds, if the commanded foot wrench from equation (4.20) equals the actual applied
foot wrench from the foot constraint in equation (2.28).

mR ˜̈zR + dR ˜̇zR + kR z̃R = 0 (4.22)

In the free falling case, the applied foot wrench is zero and the error dynamics become

mR ˜̈zR +
m
m2

dR ˜̇zR +
m
m2

kR z̃R = w2 + m(g − z̈R,re f ) (4.23)

This term is bounded with a bounded relative acceleration reference as the gravity term
is constant. This error leads to an offset from the reference to which it converges. The
magnitude of that offset is defined by the stiffness of the RCF task in the regulation case

z̃R =
m2(g − z̈R,re f )

kR
(4.24)

After a contact loss happened, the task Lyapunov rate is positive and converges to zero
when the Lyapunov function converges to a constant positive value.

In the paper [10], the controller was compared to an inverse dynamics controller for
center of mass tracking and an MPTC controller with absolute position tracking of the
foot and the center of mass. Both controllers exhibited uncontrolled large joint torques
during free fall, while the introduced controller showed desirable behavior and bounded
joint torques due to the bounded task force error.

4.2 Extension to 3D

This section develops the three-dimensional version of the previously introduced RCF
task. The tracking task from the MPTC framework will be used for the relative task and
additionally introduce the foot acceleration task constraint task formulated.

4.2.1 Relative Coordinate

The relative coordinate xR is given as the difference by the 3D position vector of the
center of mass xcom and the foot xF in the global coordinate frame.

xR = xcom − xF (4.25)
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To obtain the relative task velocity and the jacobian, we differentiate the relative coordi-
nate over time

ẋR = ẋcom − ẋF = Jcomq̇ − JF q̇ = (Jcom − JF) q̇ = JRq̇ (4.26)

This gives the relative jacobian JR

JR = Jcom − JF (4.27)

The relative task acceleration is given as the difference between the center of mass
acceleration and foot acceleration

ẍR = ẍcom − ẍF (4.28)

The relative task references are calculated similarly by the difference of the center of
mass and foot reference.

4.2.2 Relative Control Task

The RCF task is defined as in (3.18). The desired task force is given by

fR,des = MRQRq̇ + MR ẍR,re f + (CR + DR) ˜̇xR + KR x̃R (4.29)

and the task mapping by
TR = MR JR M−1 (4.30)

Compared to the 1D task, this tasks includes additional multibody effects due to Coriolis
effects and the non-constant task Jacobian. The effect of gravity is equal for the center of
mass and foot acceleration, so that its effect is cancelled out for the relative coordinate.

JR M−1τg = 0 (4.31)

This cancelled out gravity term leads to too small commanded actuation forces in case
of foot-ground contact and the additional foot acceleration task becomes necessary.

4.2.3 Foot Acceleration Task

This task uses information about the constraint on the foot enforced by the ground. The
foot acceleration can be derived as in section 2.3.5 for the foot constraint in equation
(2.52) and is assumed zero

ẍF = JF M−1(τ − τg − Cq̇) + J̇F q̇ !
= 0 (4.32)

Solving for the generalized torques splits the equation into the torques and the multibody
effects that have to be compensated by them

JF M−1τ = J̇F q̇ − JF M−1(τg + Cq̇) (4.33)
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4 Relative Controller - Foot Acceleration Constraint

The desired task force and the task mapping is found by premultiplying with the mass
of the foot space MF. The generalized torques are mapped to the task space with the
task mapping TF

TF = MF JF M−1 (4.34)

and the task force is given as

fF,des = MF

(
J̇F q̇ − JF M−1(τg + Cq̇)

)
(4.35)

4.2.4 Analysis

The first analysis of this controller setup is done for the three joint, six degrees of
freedom robot from section 2.3 as it offers the possibility to fully determine the system
and observe the isolated RCF behavior in 3D. For the models with more degrees of
freedom, additional tasks are required to fully determine the system which might lead
to trade-offs and an influence on the RCF behavior. The RCF task setup is first evaluated

Figure 4.1: Behavior of the center of mass and the relative coordinate during stance and
during fall for the 3-joint model

for its behavior during stance with a constant reference with a step response and the
behavior during free fall after contact loss at t = 1 s. Figure 4.1 shows the behavior of the
center of mass and the relative coordinate for that scenario. The initial task reference has
a two centimeter offset in the vertical z-axis from the start position to see the transient
response. Convergence can be observed with the desired error dynamics of a critically
damped system while the foot is in contact to the ground. The relative coordinate has
the same behavior as the center of mass coordinate, so that the desired center of mass
tracking is achieved using the RCF controller. After the contact loss occurs at t = 1 s the
absolute center of mass coordinate follows the natural falling dynamics. The relative
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4.2 Extension to 3D

coordinate however stabilizes and converges to a fix offset. This is similar to the 1D case.
However, a coupling between the axes can be observed even though gravity only acts in
the vertical z-coordinate in the chosen reference frame and offsets occur in the relative x-
and y-coordinate too.

(a) K = 5000

(b) K = 2500

Figure 4.2: Relative task error for different RCF task stiffnesses

Figure 4.2 shows the relative task error x̃R for different task stiffnesses in the same
scenario with a step response in the beginning and the contact loss and free fall after one
second. The task stiffness is halved from the first to the second and again to the third
plot. The damping matrices are chosen to critically damp the RCF task. The system
converges faster for higher stiffnesses as expected, with critically damped behavior for
all three controller gain setups. For the stiffness of ki = 5000, the relative coordinate
error converges to almost 15 mm after approximately 0.8 seconds of free fall. For the
stiffness of ki = 2500, the convergence time increases to two seconds and the offset to
around 38 mm. As expected from the previous 1D chapter, the offset increases for a
smaller task stiffness. The anti-proportional relation from the 1D case between the task
stiffness and the offset is not given in 3D, but can be used as a good approximation.
Close to the singular position, the accuracy of the anti-proportional approximation
reduces.

Figure 4.3 shows the tracking of the relative coordinate and its error for the tracking
of a trigonometric trajectory. Tracking is almost perfect and no error visible during the
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4 Relative Controller - Foot Acceleration Constraint

(a) Relative task position

(b) Relative task position error

Figure 4.3: Tracking of the relative coordinate for sine trajectories for each coordinate
during stance and fall
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4.3 Whole Body Control

Figure 4.4: Joint torques while following a trigonometric trajectory during stance and
free fall

first second of stance. After the contact loss, the relative position diverges from the
reference and stabilizes at a non-constant offset which is periodic with the reference
signal. The desired motion of the robot is continued. When the stiffness is reduced, that
the robot arm gets to a singular position, the controller became instable due to the task
inertia becoming infinitely large.

Figure 4.4 shows the joint torques of the tree motors during stance and fall for the
same scenario as the previous plot. A reduction of the joint torques is visible after the
drop at one second and smooth joint torques are observed.

4.3 Whole Body Control

After the successful extension to 3D, the RCF task will be applied to the more complex
humanoid robot with more degrees of freedom which also requires additional tasks
and control of the foot orientation during swing phases. A general 3D orientation
control task is derived which can be used for the foot, but also to control the upper body
orientation. This improved the walking performance when walking on the ground. An
alternative to the foot orientation task is introduced. The relative center of mass to foot
task is reformulated to a relative center of mass to contact point task which has been
primarily used in this work. By using one position control task for each corner point of
the foot, the orientation of the foot is controlled implicitly. The contact points coincide
with the contact model described in section 2.4.3. To fully define the robot with its 27
joints, many position or orientation tasks would be required. Instead one low weighted
fixed joint posture task is derived to fully define the robot’s joints in addition to the
set of locomotion related tasks. At last, a task that reduces the angular momentum
in the system is added which greatly helped to improve the walking and also lifting
performance, especially in the experiments with the robot.
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4 Relative Controller - Foot Acceleration Constraint

4.3.1 Contact Point RCF controller

The position of at least three points on a body need to be controlled such that the
orientation of the body is also controlled. The points must not be positioned on a line
such that all three rotation degrees of freedom are constrained. It is chosen in this
work to control the foot’s position and orientation using four RCF position control tasks
for each of the corner points of the foot. One foot acceleration task is added to the
controller as it also constrains the acceleration of the corner points. This approach has
the advantage of its simple extendability to arbitrary (contact) points on the robot such
that all tracking tasks in the whole body control might even be carried out by only
cartesian relative tasks. Also it is expected that the corner point RCF approach is more
robust against tipping over when half of the foot is standing over an edge, e.g. on
stair steps. The four relative position tasks give four three-dimensional task forces with
corresponding task mappings. The 12-dimensional stack of task forces is redundant as
it only constrains six degrees of freedom. The tasks are non-conflicting such that the
resulting underactuation does not lead to conflict between the tasks when solving for
the commanded torque.

The contact point RCF task is implemented equally to the relative center of mass to
foot task. The equations will not be repeated, as only the foot task space quantities are
replaced by the contact point quantities which will be derived. The relative positions
of the corner points and the contact forces are given with respect to to the foot center
F
bxF,cp and will be denoted as xF,cp for simplicity.

Foot Corner Jacobians

The foot corner Jacobian Jcp is given by

Jcp = Aα · Jcp (4.36)

with
Aα =

[
I3x3 − RF

[
xF,cp×

]
RT

F

]
(4.37)

I3x3 represents a three by three identity matrix. The skew operator [v×] denotes the
matrix that corresponds to the cross product of a vector v with another vector as in [13].

[v×] =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (4.38)

The time derivative of the contact point jacobian is given by

J̇cp = B Jcp + Aα J̇F (4.39)

with
B = ṘF[xF,cp×]RT

F + RF[xF,cp×]ṘT
F (4.40)

and time derivative of the contact orientation matrix

ṘF = [ωF×] RF (4.41)
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4.3 Whole Body Control

Corner Point State

The corner point position is derived from the homogeneous transformation of the foot
and the relative corner point position

xcp = HF xF,cp

= RF xF,cp + xF
(4.42)

The corner point velocity is calculated with the corner point jacobian

ẋcp = Jcp q̇ (4.43)

Corner Point References

Also the foot’s reference has to be transformed. The position reference is given as the
position state.

xcp,re f = RF,re f xF,cp + xF,re f (4.44)

The velocity reference is calculated from the time derivative and not using the jacobian
as the velocity state

ẋcp,re f = ṘF,re f xF,cp + ẋF,re f (4.45)

The same is performed for the acceleration reference

ẍcp,re f = R̈F,re f xF,cp + ẍF,re f (4.46)

with the time derivate of the rotation matrix defined by the angular velocity reference of
the foot ωF,re f

Ṙcp,re f =
[
ωF,re f×

]
RF,re f (4.47)

and the second time derivative by the angular acceleration reference ω̇F,re f

R̈cp,re f =
[
ω̇F,re f×

]
RF,re f +

[
ωF,re f×

]
ṘF,re f (4.48)

4.3.2 Orientation Task

The orientation control task is derived as a MPTC task that tracks a given orientation
reference used for the upper body and also for the foot as an alternative to the contact
point approach. The reference and the actual orientation are given as quaternions. Other
orientation representations like euler angles or rotation matrices can be transformed
to quaternions. A quaternion consists of a vector part η that defines a 3D vector r in
the reference frame. The target frame is obtained by rotation of the reference frame
by an angle θ about the defined vector. Additionally a quaternion consists of a scalar
part η which is used to normalize the four dimensional quaternion to unit length. The
quaternion is given by

ζ =

[
η

ε

]
=

[
cos( θ

2 )

r sin( θ
2 )

]
(4.49)
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4 Relative Controller - Foot Acceleration Constraint

The error quaternion ζ̃ between the state and the reference quaternion is given by
the quaternion that rotates the state quaternion ζ onto the reference quaternion ζre f .
This error quaternion is found by quaternion multiplication of the conjugate reference
quaternion ζ∗re f with the state quaternion

ζ̃ = ζ∗re f ◦ ζ (4.50)

The conjugate quaternion ζ∗ is given by

ζ∗ =

[
η

−ε

]
(4.51)

The quaternion product of two quaternions q and p can be carried out by transforming
the first quaternion into a quaternion multiplication matrix. This 4 by 4 matrix is
multiplied with the second quaternion

q ◦ p =


η −εx −εy −εz

εx η −εz εy

εy εz η −εx

εz −εy εx η

 p (4.52)

The error quaternion is a four dimensional vector with one redundant entry as it
only holds information about three degrees of freedom. The vector part of the error
quaternion ε̃ is used as the task error x̃k. The length of the vector part is zero for no
error and increases by sin

(
θ
2

)
with the error in θ to a maximum of 1 at a 90deg error.

x̃k = ε̃ (4.53)

The task velocity is the angular velocity ωk of the link in the link’s body frame. The task
velocity error ˜̇xk is given by the difference of the angular velocity reference ωre f and the
actual one

˜̇xk = ωk,re f − ωk (4.54)

The task acceleration is the time derivative of task velocity, the angular acceleration ω̇ in
the link’s body frame. The orientation task space is in the body frame of the respective
link. To derive the task space quantities from (3.6), the rotational part of the body
jacobian of the respective link b Jk,ω is used.

Jk = b Jk,ω (4.55)

The task velocity, the angular velocity, is not the direct time derivative of the task
position, the orientation quaternion. For correct gain design, a transformation of the
desired task stiffness Kdes is required. The new desired task stiffness is given as

Kdes,ζ = 2(ηKdes + [η×]Kdes + ([η×]Kdes)
T) (4.56)

The damping matrix is the calculated as in section 3.5. For the orientation task it is not
necessary to build a relative coordinate as the effect of gravity is cancelled out in the
task space.
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4.3 Whole Body Control

4.3.3 Joint Posture Task

The joint posture task is used to fully define the control problem for joints that are not
primarily used for locomotion and to achieve robustness against singular configurations.
It has a fix reference position for each joint that the task tries to track. The task weight is
chosen to be low such that the free joints are determined but the impact on the joints
required for locomotion is low.

In this work, the joint posture task jacobian Jjp is the joint selection matrix S. As the
task jacobian is constant, the time derivative J̇jp equals zero. The task is then derived
as another MPTC task with the joint positions as task positions which are derived
from the generalized coordinates q as xk = Sq. The fix reference is the robot’s default
standing position. The task velocities reference ẋjp,re f = q̇re f and acceleration reference
ẍjp,re f = q̈re f are zero. Also for this task the gravitational term reduces to zero.

4.3.4 Angular Momentum Task

The angular momentum task is derived as in [13]. The angular momentum l of the robot
around its center of mass is calculated with the centroidal momentum matrix AG from
the generalized velocities

l = AG q̇ (4.57)

For this controller, the reference of the angular momentum and its time derivative are
chosen to be zero. The desired change of the momentum is then given by

l̇des = l̇re f − kl
(
l − lre f

)
= −kl l (4.58)

which corresponds to a damping of the centroidal momentum by a positive gain kl . The
linear movement of the center of mass and the change in angular momentum around
it is only dependent on the wrench applied by the foot and not the joint torques both
for the linear and the angular coordinate. In order to compute the total torque acting
around the CoM, the spatial wrench from each endeffector has to be mapped to the
center of mass. The mapping of the spatial wrench is found using the adjoint transpose
of the homogeneous transformation of the center of mass coordinate frame 0Hcom. The
adjoint of a homogeneous transformation H with the rotation matrix R and the position
vector p is given as

AdH =

[
R [p×]R

03x3 R

]
(4.59)

The wrench mapped to the center of mass is given as

com
sw = AdHcom

nEE

∑
k=1

0
swk (4.60)

The desired task force is given by the desired change of the angular momentum

fdes,l = l̇des = −kl l (4.61)
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4 Relative Controller - Foot Acceleration Constraint

The task mapping is the angular part of the adjoint of the homogeneous transformation.
For the humanoid robot model, the linear contact forces have to be mapped to the spatial
wrench first as in (2.56) to obtain the task mapping.

TU,l = AdHcom,ω

nEE

∑
k=1

s Aρ,k (4.62)

4.3.5 Regularization

A regularization is added to the optimization problem from (3.24). The regularization
is of the form 1

2 uTΛu similar to other optimization problems in machine learning and
used to penalize large values of the optimized quantity, in this case the joint torques and
linear contact forces. It ensures invertibility of the problem and enables the handling of
singular positions. Each joint torque and linear contact force can be penalized with one
individual value. It has been chosen to have one value for all joint torques and one value
for all contact forces. The task is implemented into the cost function (3.24) as a diagonal
matrix with the regularization term on the diagonal for the task mapping TTWT and a
zero vector for the force vector fdesWT.

4.4 Simulation Results with the Humanoid Robot Toro

They main focus of this work lied on the relative contact point controller and not the
single RCF task with additional orientation control. From time to time, tests with RCF
controller in combination with an orientation control task for the foot were carried
out but did not lead to noteworthy improvement and will be neglected in the analysis.
Figure 4.5 shows the images of the robot in the simulation first for the case where the
robot is walking on the ground and second when it is lifted off the ground and floating.
The controller setup consists out of four relative CoM-to-contact-point controllers per
foot, one foot acceleration task for each foot, an angular momentum task, a joint posture
task and a regularization task. The joint posture task is split into three different tasks
with individual weights for the upper body, the legs, and the waist. The stiffness can
be tuned for each joint individually, but was mainly constant throughout this work.
The angular momentum task proved to be a very important factor for success in the
experiments and improvements were also observed in the simulation when applying
the results from the experiments.

The relative controller analysis is carried out in greater detail for the center of mass
approach as described in the next chapter as it showed higher robustness to contact loss
of the foot and more time was spent optimizing the controller.

4.4.1 Walking Performance

The simulation started out at the standing position which is equal to the reference of the
joint posture task. A trajectory is given for the center of mass and the foot during swing
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4.4 Simulation Results with the Humanoid Robot Toro

(a) Toro walking (b) Toro flying

Figure 4.5: Controller behavior in the simulation for the robot Toro

and stance phases. The trajectory contains a contact reliability parameter. The contact
reliability is zero for swing phases and one for the stance phases. This contact reliability
is multiplied with the task weight for the constraint foot acceleration task such that
acceleration of the foot is not blocked by the task during swing phases. The duration of
the simulation was most of the time chosen to be four seconds long consisting of four
steps, two per foot. Errors and problems mostly added up during the first steps and
lead to failure within that time or remained constant after that. The shown controllers
stayed stable with similar performance for longer simulation sequences and additional
steps.

Figure 4.6 shows the tracking of the absolute position of the 3D linear divergent
component of motion ξ (DCM) introduced in [13]. The divergent component of motion
is defined as

ξ = x + bẋ (4.63)

with the 3D center of mass position x and velocity ẋ and the time constant of the
DCM dynamics b > 0. The upper plot 4.6a shows the performance with not optimized
parameters, while the second plot 4.6b shows the performance after tuning the controller
for good walking performance. It can be seen that the tracking in the walking direction
diverges from the reference over time. If the RCF task has a constant error due to
bad tracking, it adds up over time as there is no tracking of the absolute position,
corresponding to a drift in absolute coordinates due to the relative controller formulation.
This can be advantageous that it is robust to perturbations that lead to an offset from the
target position. The second plot exhibits smaller divergence over time which is smaller
due to better tracking. Figure 4.7 shows the tracking of the relative coordinate for one
contact point on the foot that performs step two and four. The relative position tracking
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4 Relative Controller - Foot Acceleration Constraint

(a) Early controller performance

(b) Optimized controller parameters for walking

Figure 4.6: DCM tracking while walking on the ground for differently tuned controller
setups
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4.4 Simulation Results with the Humanoid Robot Toro

Figure 4.7: Relative coordinate tracking

for the four contact points shows similar behavior with biggest resemblance between
the front two contact points and the back two contact points. Very good tracking can be
seen and the difference to the DCM plot where small divergence occurred. The impact
of the foot to the ground causes the errors occurring at t =1.3, 2, 2.7 and 3.4 s which are
especially visible in plot 4.6 in the vertical axes.

Figure 4.8 shows the relative position error from 4.7 and the worse tuned setup. Short
instabilities in form of spikes are visible in plot 4.8a for the worse tuned controller.
They are especially visible in the first part of the plot with both feet standing, but they
reappear after each step when a foot is placed on the ground.

The initial offset in the coordinate originates from an initial 1 mm drop that is necessary
for the contact model to ensure the contact points are above the surface. The error
converges to zero for the better tuned setup, and stays small while the foot is constrained
by the ground, especially compared to the error for the controller in plot 4.8a. The error
is larger for the swing phase of the foot.

4.4.2 Examination of Robustness in Case of Contact Loss

Despite the success of the derived controller in the previous analysis with the SAFF
model and the 3D model, it was impossible to find controller parameters that ensured
stability during a contact loss. It was tested for free fall and being lifted via the pelvis
without contact to the ground. The case of floating is more interesting first, as it is the
scenario which will be tested in real experiments where risking a fall is not an option.
The lifting is implemented by a wrench wli f t that acts at the base of the robot in the hip
with the total gravitational force of the robot

wli f t =
[
0 0 mg 01,3

]T
(4.64)

The wrench is mapped to the generalized coordinates with the transpose of the hip
jacobian JT

hip. (FIX)
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4 Relative Controller - Foot Acceleration Constraint

(a) Early controller performance

(b) Optimized controller parameters for walking

Figure 4.8: Relative contact point position error for differently tuned controller setups

Figure 4.9: Relative coordinate when the robot is lifted resulting in uncontrolled dynamic
behavior
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4.4 Simulation Results with the Humanoid Robot Toro

The plot in figure 4.9 shows the relative coordinate for a lifted up scenario with
a constant reference. The expected behavior would be convergence to a constant
symmetric pose of the robot in the air with an offset in the relative coordinate due to
the non-existent foot constraint. The stability compared to absolute position inverse
dynamics or MPTC approaches has been improved and the system stayed stable for over
1.5 seconds. However the motion of the robot during those 1.5 seconds was not well
defined, leading to random motions and greatly depended on the controller parameters.
Slightly changed parameters lead to different motions which could result in a quicker
instability of the system. The motion can partially be seen in figure 4.5b. There was no
convergence to a constant body posture and the symmetry between the left and right
limbs was broken quickly. Throughout the 1.5 seconds the arms are lifted higher until
they are fully stretched out above the head which is visible in the plot by the increasing
error in the vertical direction because the center of mass moves upwards with the arms
moving upwards. The stretching out of the entire body leads to a singular position and
uncontrolled behavior. This stretching out into a singular configuration seems to be
similar to the oscillation and instability occurring in the simple 3D model from section
2.3 when the stiffness is chosen too low. For Toro, it was not possible to resolve the
problem with higher stiffnesses and the singular position was not caused by the initial
movement after the contact loss rather than uncontrolled slow motions.
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5 Relative Controller - CoM Formulation

After unsuccessful tests with the first relative controller setup a different approach had
to be found. The foot acceleration task was replaced by a new formulation while the
RCF MPTC task unchanged. The new task is designed for perfect tracking of the center
of mass in case of a constrained foot.

5.1 Center of Mass Task

The RCF task from 4.2.2 will be used to extract the center of mass behaviour from
the RCF task. In the design case of a constrained foot, the center of mass achieves
perfect tracking of its reference. If perfect tracking of the RCF task is achieved, the
RCF task force error f̃R is zero and the task dynamics from 3.19 reduce to the nominal
mass-spring-damper system

MR ˜̈xR + (CR + DR) ˜̇x + KR x̃ = 0 (5.1)

By expanding the relative acceleration error ˜̈xR as in (4.28), the center of mass dynamics
for the nominal RCF task dynamics is found

MR ẍcom = MR(ẍcom,re f − ẍF,re f + ẍF,est) + (CR + DR) ˜̇x + KR x̃ (5.2)

By multiplying with mM−1
R , the nominal center of mass dynamics are obtained

mẍcom = m(ẍcom,re f − ẍF,re f + ẍF,est) + mM−1
R ((CR + DR) ˜̇x + KR x̃) (5.3)

The actual center of mass dynamics is given by

mẍcom = s Acom swF − mḡ (5.4)

With the two equations the desired wrench for the center of mass can be calculated

s Acom swF = m(ḡ + ẍcom,re f − ẍF,re f + ẍF,est) + mM−1
R ((CR + DR) ˜̇x + KR x̃) (5.5)

As this formulation has been found under the assumption of a constrained foot, the foot
acceleration and its reference are assumed to be zero

ẍF = ẍF,re f = 0 (5.6)

Which gives the final formulation for the task

s Acom swF = m(ḡ + ẍcom,re f ) + mM−1
R ((CR + DR) ˜̇x + KR x̃) (5.7)
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5 Relative Controller - CoM Formulation

This equation shows the desired task force on the right and the mapping from the
external force, specifically a spatial wrench, to the center of mass.

fcom,des = m(ḡ + ẍcom,re f ) + mM−1
R ((CR + DR) ˜̇x + KR x̃) (5.8)

TU,com =
[
03xnjoints s Acom,rho

]
= TcomU = Mcom Jcom M−1U (5.9)

The acceleration of the center of mass only depends on the wrench applied by the foot as
in the 1D case. Therefore the mapping of the joint torques is zero and the linear contact
forces are mapped by s Acom,rho into the task space. The task maps the effect of gravity,
the center of mass acceleration reference and relative task forces to the foot wrench. The
joint torques are then calculated consistently to the RCF task if nominal foot contact is
made.

5.1.1 SAFF Model Analysis

The new center of mass acceleration task was first evaluated with the 1D SAFF model
from 2.2 and the task derived for that. The nominal relative task error dynamics for the
RCF task are given as

mR ˜̈zR + dR ˜̇zR + kR z̃R = 0 (5.10)

Expanding with the relative coordinate acceleration ˜̈zR = ˜̈zcom − ˜̈z f oot and rearranging
for the nominal center of mass dynamics mz̈com gives

mz̈com = m(z̈com,re f − z̈2,re f + z̈2) +
m1

m2
dR ˜̇zR +

m1

m2
kR z̃R (5.11)

The actual center of mass dynamics is given from (2.20) as

mz̈com = mg + w2 (5.12)

Using both formulations and the assumption about the foot acceleration and the refer-
ence being zero, we find the task formulation

mz̈com = mg + w2 = mz̈com,re f +
m1

m2
dR ˜̇zR +

m1

m2
kR z̃R (5.13)

This equation is rearranged for a desired wrench that is applied to the ground.

w f oot,des = m(z̈com,re f − g) +
m1

m2
dR ˜̇zR +

m1

m2
kR z̃R (5.14)

The control law is found by setting the desired task force from 4.29 FIX equal to the
actual task force

fR = − m
m1

τj − w2
!
=

m2

m1
mẍR,re f + dR ˙̃xR + kR x̃R = fR,des (5.15)
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5.1 Center of Mass Task

The desired foot wrench from (5.14) is used for the foot wrench w2 = w2,des which
holds for the nominal constrained foot case. By replacing the joint torque τj with the
commanded joint torque τj,cmd and rearrange for it, the control law is found

τj,cmd = m1(g − z̈com,re f )− m2z̈R,re f −
m1

m2
dR ˜̇zR +

m1

m2
kR z̃R (5.16)

As in section 4.1.3, the commanded torque could have been found using two task
formulations as it is being done for the 3D controller. By summarizing the two body
masses with the total mass m = m1 + m2, it can be seen that the commanded torque
from the RCF controller with the constraint foot acceleration task is equal to the RCF
controller with the center of mass task from this section. The 1D results are therefore
equal to the ones discussed in section 4.1.4 and will not be repeated here.

5.1.2 Three Joint Model Analysis

(a) Stance (b) Walking motion

Figure 5.1: Controller behavior lifted up for the center of mass approach

The 3D RCF controller setup with the center of mass task is analyzed with the three
joint, six dof model from section 2.3. It was hoped to see differences to the previous
approach in this simple 3D-model to explain the differences for the humanoid robot,
but it exhibited no difference as it was the case for 1D. The only differences were visible
close to the singular position of the robot due to numerical reasons and no advantage of
one approach or the other was apparent.
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5 Relative Controller - CoM Formulation

5.2 Analysis of Robustness against Contact Loss with the
Humanoid Robot Toro

The difference between the approaches became apparent when analyzing the center of
mass task plus relative controller task in the simulation for the humanoid robot. The
controller was tested for different scenarios:

• standing and walking on the ground

• standing and walking while lifted of the ground

• landing after being lifted of the ground in stance and in motion

The performance for walking and standing on the ground will be analysed in the next
section as it proved to be more difficult to achieve stable performance. Stability when
lifted up or falling was possible for a wide range of controller parameters and it showed
general stability to different trajectories for the walking motion in the air or repeated
lifts and drops in one simulation. To find a controller setting with good performance for
motion on the ground as in the air was more challenging. The plots in this section for
contact loss and in the next section for walking were created with one controller setup
that enables both motion in the air and on the ground without change of parameters.
The controller consists of the following tasks:

• Contact point to center of mass relative task

• Center of mass task

• Joint position task

• Angular momentum task

• Regularization

This were the essential tasks for good performance with and without foot contact.
Throughout the work, other tasks were considered as well. Especially a task for tracking
the upper body orientation was useful for improving the walking performance on the
ground but had difficulties with robustness when being lifted up.

Standing without foot-ground contact

Figure 5.2 shows the relative coordinate for the stance scenario in which the controller
failed in the previous chapter. Unlike before, the coordinate converges to a constant
offset in a stable position as it was expected from the analysis with the simpler models.
The converged robot pose can be seen in figure 5.1a. The error is the largest for the
vertical axis in which gravity acts but coupling between the axes is given for this complex
robot.
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5.2 Analysis of Robustness against Contact Loss with the Humanoid Robot Toro

(a) Relative center of mass to contact point position

(b) Relative center of mass to contact point position error

Figure 5.2: Controller performance in the relative coordinate for a constant trajectory
without foot-ground contact
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(a) Relative center of mass to contact point position

(b) Relative center of mass to contact point position error

Figure 5.3: Controller performance in the relative coordinate for a walking trajectory
without foot-ground contact
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5.2 Analysis of Robustness against Contact Loss with the Humanoid Robot Toro

Walking without foot-ground contact

The controller was then evaluated for motion without foot-ground contact. The same
walking motion from the previous section was used again for that evaluation. Figure 5.3
shows the relative coordinate and its error. Two steps of the respective foot are visible in
the plot. The error is very similar for both steps and stayed constant for further steps.
The asymmetry of the walking motions introduces rotary movements which have to be
compensated by the arms as there no external force can be applied by the robot. The
compensation is achieved mostly in form of arm movements. The joint posture task has
to constrain the motion to avoid collision between bodies.

(a) Joint torques with tuned controller setup

(b) Large joint torques due to proximity to singular leg position

Figure 5.4: Joint torques of the controller without foot-ground contact during a walking
motion
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Figure 5.4 shows the joint torques for the walking motion in the air. The first figure is
for the well tuned controller from the plots before. It shows smooth torques with one
initial spike at the beginning when the initial convergence to the offset occurs which
stays within the range of the rest of the walking motion. Afterwards multiple higher
torques are visible when a step is performed. Due to the expected counter force from
the ground, a torque is applied in the legs similar to the one when foot-ground contact
exists. As the counter force is missing, a joint torque opposing the previous peak is
visible and corrects the error by the too large joint torque. The second figure shows
the joint torque behaviour when the robot comes close to a singular position in the leg
when it is too stretched out. This can be achieved by lower stiffness in the RCF task
as discussed for the simpler 3D case. The joint torques become excessively large and
also potentially dangerous torques even if they don’t lead to an overall instability of the
system as in this case. The magnitude of the error is not only dependent on the stiffness
of the relative task but also on the joint posture task. The joint posture task tries to move
the robot away from the singular position back to the initial position. By increasing the
stiffness or the task weight of the joint posture task for the legs, singular positions can
be avoided. It showed that having a lower stiffness in the relative task was more robust
on impacts due to falls and increasing the task weight for the joint posture of the legs
led to stable dynamics in the air. Increasing the task weight of the joint posture task is
only possible to a certain extend as it also inhibits motion on the ground.

Falling and landing on the ground

After the successful simulation in the air the robustness to falls with an impact on
ground was looked at, first for the behaviour in stance and then for the walking motion.
For both cases no changes to the controller and the trajectory have been made and
the controller is not aware of existence or timing of the impact. Figure 5.5 shows the
absolute center of mass and relative coordinate for a fall from a height of 50 cm to the
ground. During the fall, the error is caused by the overstretching of the legs and then
recovers and the sign of the error changes as the robot bends the knees to compensate
the impact. This recovery can be seen in figure 5.6a.

The controller also proved to be robust to falls in the middle of the walking motion.
Figure 5.7 shows the absolute center of mass and the relative coordinate for the walking
motion with a fall from 30 cm. The drop occurred during the second step and the robot
landed on one foot first. The timing of the landing became important for higher falls
and recovery from the impact was only possible if the robot lands on both feet. Landing
on one foot induces angular momentum into the system which became too large to
compensate with larger heights. In the image in figure 5.6b it can be seen how the
angular momentum is compensated by the left arm after the impact.

The plot in figure 5.7a shows no change in the absolute center of mass position (except
a small drift in the vertical axis) while the robot is lifted up and then follows the walking
motion once it has landed. In the lower plot 5.7b the relative coordinate follows the
trajectory in the air and on the ground. The difference in the quality of the tracking is
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(a) Absolute center of mass position

(b) Relative center of mass to contact point position

Figure 5.5: Controller performance when the robot is falling 0.5 m to the ground

(a) Stance (b) Walking motion

Figure 5.6: Recovery from a fall to the ground from a height of 0.5 and 0.3 m for stance
and walking
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(a) Absolute center of mass position

(b) Relative center of mass to contact point position

Figure 5.7: Controller performance during a walking motion when the robot is falling
0.3 m to the ground
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visible between the first part without contact and after the impact in the second half.
Note how the angular momentum by the landing on one foot leads to an error in the
y-axis perpendicular to the walking motion.

Figure 5.8: Joint torques of the legs during a walking motion when the robot is falling
0.3 m to the ground

The plot in figure 5.8 shows the joint torques of the legs for the walking drop. The
large spikes are caused by the impact on the ground. They are larger than the real joint
torque limits of the robot Toro but have been disabled for the simulation to inspect the
controllers behaviour in these scenarios. For tests with falls from that height changes to
the mechanics and actuators would be necessary.

Difference between free fall and lifted floating position

(a) Floating (b) Falling

Figure 5.9: Difference in the stabilized body pose with constant reference
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The controller proved to be stable both during free fall and when the robot was lifted
up by a force. Figure 5.9 shows the stabilized position of the robot after the initial
movement. The pose is very similar to the initial standing pose during free fall. For the
floating case with the external force, the pose has diverged a lot. When deriving the
RCF task in section 4.2.2, it has been shown that the effect of gravity is cancelled out and
which holds for the free fall. If the external force to hold the robot’s weight is applied,
full gravitational force acts on all links and as an additional disturbance to the controller.
Also the impact on the orientation tracking of the foot is large. This impact was smaller
for the approach with the single RCF task for the foot with the orientation control task.

5.3 Walking Analysis - Short Instabilities

The developed controller was also overall stable for standing on the ground and follow-
ing the walking trajectory. Finding a configuration which performed well in most of
the above test scenarios for contact loss and was also able to walk on the ground was
relatively easy. It was a bit more complicated to find a suitable controller parameters for
the fall in motion onto the ground. The biggest issue however, were short instabilities
with large torque spikes in the actuators. They did not affect the stability in terms of
failure of the controller and trajectory following was possible for a big range of controller
parameters.

Figure (5.10) shows the divergent component of motion tracking for the familiar four
second walking trajectory. The disturbance is visible in all three axes. They already
occur in the beginning when both feet are on the ground and the robot not in motion.
The disturbance is reinduced by the impact of the foot to the ground but also appears
randomly in the middle of the motion. The lower plot in the figure shows a close up of
the vertical axes and it can be seen that the instabilities occur in form of short spikes not
in form of periodic oscillations. The spikes result in large joint torques which had to be
reduced to be able to test the controller on the real robot.

5.3.1 Passivation

Passivation by Foot Power Limitation

The external forces which increase the system’s energy are external forces, the joint
torques and the wrench at the foot. The power of the two forces into the system have
been investigated.

The power of the foot is given by the product of the velocity and spatial wrench which
are given in the spatial frame.

Pf oot = s ẋEE swEE = s ẋEE As,ρ ρ (5.17)

Figure 5.11 shows the foot power of one foot during the walking motion. Large spikes
are visible at the same time as the spikes in the DCM plot. Also they are mostly positive,
such that energy is added to the system and may cause the instabilities. The power
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Figure 5.10: Divergent component of motion
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Figure 5.11: Foot power under the influence of short instabilities

exerted by the foot required to perform the walking movement is by a few powers
smaller than the spikes such that they are not visible in the plot. The foot power will be
limited to a degree where the desired motion is not affected but the large spikes will be
removed. The limitation is implemented with a QP-constraint as in (3.22). The linear
mapping matrix A maps the actuators τj and the linear contact forces to the power. The
mapping of the linear contact forces ρ is given in equation (5.17) and the influence of
the joint torques is zero.

A = s ẋT
EE

[
06xnjoints As,ρ

]
(5.18)

One constraint was added to the optimization for each foot. The bias vector b is zero for
this constraint. Figure 5.12 shows the DCM for the vertical axis and a large reduction in
spikes. Clipping of the positive spikes at 1 W compared to the 200 W in the plot in 5.11
lead to the largest reductino in spikes. Limiting the foot power in the negative direction
positively influenced the behavior too. Reducing the foot power further influenced the
motion while walking and especially the ability to recover from falls as in section 5.2
where higher power is required to compensate the impact. Figure 5.13 shows the
iterations of the QP-solver during the walking motion that were required to solve the
problem while fulfilling the constraints. In the first plot, the power is unlimited and
a high number of conflicts is visible during the occurrence of the short instabilities.
Adding the additional constraint did not lead to an increase of iterations but rather
simplified the problem by suppressing the spikes.

This constraint was implemented using the absolute velocity of the foot and is
influenced by larger velocities during fall like the absolute position controllers which is
not the goal of this controller. High velocities lead to a high power even with a small
foot force. This leads to a smaller allowed forces in the foot during free-fall that the
impact of using the absolute velocity is not fatal as for the absolute position controllers

52



5.3 Walking Analysis - Short Instabilities

Figure 5.12: Vertical coordinate of the divergent component of motion after limiting the
foot power

where high absolute velocities lead to high forces and torques.
The spikes were also visible when mapping the foot force into the relative coordinate

task space and calculating the power using the relative velocity. The impact of this
constraint was significantly smaller than with the absolute foot velocity. It was also
tested to constrain the power in single Cartesian directions of the foot. Especially the
vertical axis was expected to be the main cause of the spikes, but constraints had very
little effect compared to the total foot power constraint.

Passivation by Joint Power Limitation

Figure 5.14a shows the power exerted by the joints into the system. The total joint power
is given by the sum of the joint torques multiplied with the joint’s velocity

Pjoint = (Sq̇)TSτ (5.19)

Again spikes are visible but their magnitude is not as large as it was for the foot power
and power required for motion is clearly visible. By constraining the joint power outside
of the range of the motion the spikes especially in the periods of the movement when
standing with both feet on the ground at the beginning and the end of the plot would
not be affected. In the plot the difference of the joint power from one control step to the
next is shown. It is proportional to the time derivative of the joint power for constant
control step intervals it. Here the spikes are visible and a QP constraint was constructed.
The mapping is then given with the joint selection matrix S

A = (Sq̇)TS (5.20)

and the bias is the negative joint power from the previous step to form the difference.
This limitation did not lead to a clear improvement of the controller and a reduction of
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(a) Original controller with short instabilities

(b) Power limitied

Figure 5.13: QP solver iterations
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(a) Joint power

(b) Joint power change

Figure 5.14: Joint power under the influence of short instabilities
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spikes without limiting the motion as well.

Passivity Based High Pass Rate Limiter as QP Constraint

The high pass rate limiter (HPRL) introduced in [4] was reformulated as a QP constraint
as already the simple linear QP constraint improved the controller. Figure 5.15 shows
the original implementation of the high pass rate limiter which consists of a low-pass
filter and a rate limiter and aims to reduce the noise and also rapid changes in a signal
while minimizing delay. The rate limiting is carried out as a QP constraint.

A signals s from the previous control step is denoted by s−. The output of the high
pass rate limiter sHPRL is given as the sum of the low pass filtered signal slp f and the
rate limited (bounded) high frequency signal shp,b

sHPRL = slp f + sh f ,b (5.21)

The first order IIR-filter with n filter samples is used as a low pass filter

slp f =
n − 1

n
s−lp f +

1
n

s+ (5.22)

The high frequency part of the signal is then calculated as

sh f = s − slp f (5.23)

and the high frequency delta signal as

∆sh f = sh f − s−h f ,b (5.24)

The new bounded high frequency signal is

sh f ,b = s−h f ,b + ∆sh f ,b (5.25)

where simple limits have been used as boundaries instead of a sigmoid limiter in the
original implementation to obtain the bounded delta high frequency signal ∆sh f ,b

smin ≤ ∆sh f ≤ smax (5.26)

This leads to the filters output signal

sHPRL =
n − 1

n
s−lp f +

1
n

s + s−hp,b + ∆shp,b (5.27)

The limited signal is not available as the limiting is carried out as a QP-constraint.
Instead the equation is rearranged for it to obtain an expression for the boundaries.

∆shp,b = sHPRL −
n − 1

n
s−lp f −

1
n

s − s−hp,b (5.28)
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Figure 5.15: High Pass Rate Limiter of a signal s

As the output of the filter sHPRL is not known, an assumption is made that the output of
the filter is similar to the actual signal s

sHPRL ≈ s = slp f + sh f ,b (5.29)

using this assumption the equation simplifies to

∆shp,b =
n − 1

n
s +

1
n

s−lp f − s− (5.30)

Expanding with the limitation from equation 5.26 the boundaries are introduced

smin ≤ n − 1
n

s +
1
n

s−lp f − s− ≤ smax (5.31)

By rearranging for the signal s the lower and upper boundaries are found.

n
n − 1

(smin + s−)− 1
n − 1

s−lp f ≤ s ≤ n
n − 1

(smax + s−)− 1
n − 1

s−lp f (5.32)

In contrast to the above limitation where the total joint power was limited, this was used
for the signal of individual joints. The rate of the joint torque was limited based on
whether the change of the torque leads to an increase or decrease of power. Passivating
torque changes are permitted completely while torque changes that lead to higher
increase of the energy in the system are limited. Figure 5.16 shows this behavior where
for the a positive joint velocity the upper limit is small while the full joint power
(normalized to one) is allowed. When the joint velocity becomes negative, negative joint
torques are limited. The intermediate phase is determined by a weight wτ,max given by a
sigmoid function based on the motor velocity θ̇.

wτ,max =
1

1 + exp(θ̇/θ̇crit)
(5.33)

The weight for the lower bound is found from wτ,min = 1 − wτ,max. θ̇crit determines
the slope of the function around the zero motor velocity. No significant improvement
was made to the controller with this method of passivating the joint power in terms of
suppressing the spikes, but it’s functionality was demonstrated.
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Figure 5.16: Passivity based bounding of the joint torque based on the joint velocity

5.3.2 Alternative Control Tasks

No stable controller behavior was achievable with the measures taken so far. Instead
of limiting the power or passivating the system, ideas to modify the existing controller
tasks or creating new ones were considered after further analysis of the problem.

Figure 5.17 shows a comparison of the actual and the desired task force for the RCF
and the center of mass task during the occurrence of several spikes. The plot uses the
task force of one contact point of the left foot in the vertical axis. The plot has high
similarity to the other axes and the other contact points of both feet and was chosen as a
representative example for the analysis. It can be seen that the actual task force is similar
to the desired task force for the relative task during the spikes. For the center of mass
task however, the actual task force is diverging from the desired value and opposing the
desired change of the task force. This indicates a conflict of the center of mass task with
the others during the spikes and that the assumption about the consistency with the
relative task is not given. This lead to the idea of modifying the center of mass task.

Reduction of Feedback in the Center of Mass Task

The desired task force of the center of mass task was derived as

fA,com,des = m(ḡ + ẍcom,re f ) + mM−1
R ((CR + DR) ˜̇x + KR x̃) (5.34)

The first part of the task force is the constant gravitational force mḡ on the center of
mass and the center of mass acceleration ẍcom,re f which is zero in case of stance reference.
The desired task force of the center of mass task was reduced to only those two terms to
obtain a plain feed forward task

fA,com,des = m(ḡ + ẍcom,re f ) (5.35)

For a constant center of mass acceleration reference (i.e. during stance), this is a constant
term and bounded with a bounded center of mass reference for the walking motion. It
aims to suppress the effect of the spikes as they have no effect in this task. By having a
constant or bounded task, the error without contact is also expected to be constant or
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(a) Relative foot to cp task

(b) Center of mass task

Figure 5.17: Desired task force compared to the actual task force in the vertical axis
during short instabilities
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Figure 5.18: Reduction of spikes in the vertical axis due to the removal of feedback in
the center of mass task

Figure 5.19: Desired vertical task force for the center of mass when lifted off the ground

bounded and not affected by the change of the task in a way that it leads to instability.
Figure 5.18 shows the divergent component of motion and a great reduction in spikes in
the plot can be seen, although some short instabilities can still be seen. The simulation
results for contact loss however, were similar to the constrained foot acceleration task
and no stability of the system could be achieved. For the simpler 3-joint robot from
section 2.3 the system was stable like for the foot acceleration task. The removal of the
feedback removes the mapping of the RCF influence on the center of mass and therefore
an incorrect mapping to the linear contact forces. This discrepancy can be clearly seen in
the tracking error starting at t = 1.5 s. For the foot power limitation in 5.12 that tracking
error did not occur. It was also tested to keep the Coriolis effects in the desired task
force.

fA,com,des = m(ḡ + ẍcom,re f ) + mM−1
R CR ˜̇x (5.36)

Results were similarly unsuccessful as without the Coriolis effect for contact loss.
Figure 5.19 shows the desired task force of the original center of mass task when lifted

up with a constant reference for standing. It can be seen that the desired task force
reduces greatly in the beginning and switches the sign when the foot moves downwards
due to the lack of the counter force by the ground. For the modified center of mass
task without feedback, this term would remain at the starting point of a positive vertical
force which would lead to further extension of the leg. Also three of the four desired
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vertical task forces are negative after convergence. The difference in task forces is caused
by the orientation of the foot that is visible in 5.9a and the therefore different heights of
the corner points

Center of Mass MPTC Task

A different idea was to derive the center of mass task not from the error dynamics of
the RCF task but as a center of mass MPTC task as in 3.2. The task mapping is equal to
the above center of mass task TU,com. The desired task force is given as

fcom,des = Jcomτg + McomQcomq̇ + Mcom ẍcom,re f + (Dcom + Ccom) ˜̇xcom + Kcom x̃com (5.37)

It is assumed that for the constrained foot, the center of mass coordinate xcom behaves
equal to the relative coordinate xR from section that a new formulation is found

fcom,des = Mcom(ḡ + ẍcom,re f ) + McomQcomq̇ + (Ccom + Dcom) ˜̇xR + Kcom x̃R (5.38)

This equation is similar to the first center of mass with different controller parameters,
especially a differently calculated damping matrix Dcom. The difference of the controller
parameters can be seen as a form of transformation of the controller design matrices
between the relative and the center of mass space

Dcom = mM−1
R DR (5.39)

It was suspected that the spikes originate in an amplification of controller responses of
the relative controller or the foot-ground contact by the term mM−1

R ≥ 1. This task lead
to a reduction in spikes while walking or standing on the ground but again to instability
after contact loss. This task also proved to be instable in case of an unconstrained foot
for the simple 3D model from section 2.3, showing that this approach leads to conflicts
between the relative and the center of mass tasks caused by the missing mass matrix
transformation term.

5.3.3 Improvement by Tuning

The previous approaches of improving the controller performance did not lead to a
stable result that allowed contact loss with a stable response leaving the original center
of mass task formulation as the only one working for both contact loss and walking
despite the short instabilities. Figure 5.20 shows the commanded Lyapunov rate of the
left foot combined of all RCF tasks. For almost all spikes the Lyapunov rate is negative
throughout the spike. This lead to the idea that the commanded joint torques lead not
to the expected response of the system as they lead to excitation instead of the expected
passivation. A cause for this could be a difference of the foot-ground contact and its
model difference between simulation and controller. Figure 5.21 shows the difference of
the expected foot acceleration commanded by the controller to the actual acceleration.
The actual foot acceleration is calculated as

ẍ f oot,real = J̇ f ootq̇ + J f ootq̈ (5.40)
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Figure 5.20: Lyapunov rate of the left foot for the walking motion

with the generalized velocity and acceleration given by the OpenHRP simulation where
the actual foot wrench is determined. The commanded acceleration is given by

ẍ f oot,cmd = J f oot M−1τcmd −
(

J f oot M−1(τg + Cq̇)− J̇ f ootq̇
)

(5.41)

where τcmd is given by the actuation from the QP-optimization. For consistent assump-
tions about the foot constraint, this term should be zero. The plots show large differences
occurring during spikes and a reduction of them in the second plot which was created
using the above passivation of the foot power. The passivated plot shows that spikes
almost only happen during the impact of the feet to the ground and the initial impact
after the 1 mm fall. This is explainable as the exact timing of the impact is not mod-
eled perfectly in the controller due to tracking errors and instead a smooth landing is
expected. The unexpected response by the foot-ground contact may be the cause of
the instabilities and the inconsistency between the tasks. By limiting the foot power,
the magnitude of the inconsistency is limited. Therefore also the magnitude of false
commanded torques and spikes get suppressed. Why the relative controller would be
more sensible to the foot-ground contact than the MPTC controller which also controls
the foot position during stance is unclear.

At this point experiments with the six-joint model from section 2.5 was adduced to
check for inconsistencies with the different foot constraint and the spikes could not be
observed. Further analysis of the contact model was not conducted due to available time
for this thesis and improvements by additional tuning. The focus lied on experiments
with the real robot for validation. For further research, the contact model of OpenHRP
from [17] could be implemented for the simpler models. Additional effort was put into
tuning the original version of the controller with the center of mass task and reducing
the short instabilities to an extent that the controller can be tested on the real robot. The
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(a) Non-passivated

(b) Passivated

Figure 5.21: Difference between the expected and the actual foot acceleration
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previously introduced and analysed simpler 3D models were deducted at this point of
the thesis. No spikes could be observed. With further analysis of the short instabilities it
was not possible to clearly locate the source of the spikes in the derived tasks.

The final setup of control tasks consisted of

• One relative center of mass to contact point task per contact point per foot

• One center of mass task per contact point per foot from 5.1

• Joint posture task with a fix reference

• Angular momentum task

• Regularization task

The influence of each task and the changes which lead to the removal of the short
instabilities will be explained in the following.

Regularization Task

The regularization task was primarily used for guaranteeing invertibility in the analytical
or QP computation of the actuators. To keep the influence low, the values for both the
joint torques and the linear contact forces was chosen to be very low compared to the
other tasks. The theory of the cause of the instabilities by the foot-ground contact lead
to the idea of using the regularization to penalize large commanded foot wrenches. It
was seen above that the positive effect of the power passivation to the short instabilities
was most effective when limiting the wrench applied by the foot. The regularization for
the linear contact force was increased by factors of 103 to 105. This change was the major
improvement and the other tasks were adapted to achieve robustness after contact loss
and good tracking on the ground.

Relative Center of Mass to Contact Point Task

The RCF task was weighted very high compared to the other tasks as it is the main task
for locomotion of the robot. Walking was possible for a big range of different stiffness
values. A higher stiffness led to better tracking while walking on the ground and
also higher robustness against singularities in the legs. The weakness of high stiffness
was during the impact of the robot after a fall while in motion. With lower controller
gains, recovery was more likely. The goal of the RCF controller is the improvement of
robustness for contact loss but also other unforeseen impacts so that the lower stiffness
seems desirable and was chosen for the controller.
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Center of Mass Task

The center of mass task has the only task weight as a parameter. As it was seen in
the previous section, changing the impact of the feedback in the center of mass task
improved the stability in terms of the spikes but also reducing the weight had a positive
influence. The weight was chosen to be 10% of the weight of the RCF task. Reducing
the task weight further led to worse tracking of the walking trajectory.

Joint posture Task

The task weight of the leg posture was increased to compensate for the lower RCF
stiffness and avoid singularities during contact loss. Also the hip task weight was
increased to avoid strong rotations of the upper body. These rotations occurred during
walk but also after the falls in motion to generate required angular momentum. These
body rotations led to potentially dangerous configurations of the robot and failure of
the controller. By increasing this weight compared to the weight for the arms, angular
momentum was compensated stronger by the arms than the entire upper body.

Angular Momentum Task

The angular momentum task was not changed in the tuning effort before the real
experiments on the robot. During the experiments, this task proved to be indispensible
and an increase of the task gain was necessary. This increase of the damping also had
positive effects on the performance in the simulation and the insight of this information
was used in the controller that was used for the plot generation.

Upper Body Orientation Task

The controller has no task for control of the orientation of the upper body. For successful
walking for longer times an upright posture is essential as mention in the joint posture
task. By controlling the upper body orientation with an additional task, the walking
performance was increased especially in the beginning of this work when the rest of
the controller was not tuned perfectly. This task prevented overstretching of the hip
when stepping forward and too strong bending in the hip when moving the center of
mass forward. The relative coordinate not only depends on the foot placement but by
the center of mass position whose position is influenced by upper body movements.
With too low task weights for the angular momentum task and joint posture task
this undesirable behavior occurred which can be seen in figure 5.22. The upper body
orientation task exhibited its weakness without foot-ground contact. The only way to
control the orientation when lifted up or falling is by rotation of limbs specifically the
arms as the legs are constrained by the RCF task. Longer time in the air lead to excessive
arm movements which resulted in collision and also failure of the controller. Therefore
the task was not used in the controller to generate the plots for this analysis. For a real
life application this task should be considered as long falls are an unlikely scenario. For
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(a) (b)

Figure 5.22: Too strong upper body movements due to bad tuning

short periods of contact loss, controlling the upper body orientation during that time as
well might increase the probability of recovery after contact has been regained.

High Pass Rate Limiter

The final version included the original high pass rate limiter from [4]. It was used on
the output of the relative and the center of mass task. While not crucial for stability
in the simulation, it was necessary in the experiments with the real robot. A slight
improvement was also visible in the simulation and it helped removing the short
instabilities.

Results

Figure 5.23 shows the number of iterations of the QP-solver for the final controller. It
can be seen that the solver conflicts are removed almost entirely except when higher
forces occur during the placement of the foot on the ground which is expected and
equally existing in the absolute position controllers. Also in the divergent component of
motion in figure 5.24, the improvement is clearly visible compared the spikes in 5.10

5.4 Orientation Tracking of the Foot

Figure 5.25 shows the orientation tracking of the presented contact point approach. The
foot and its reference tilt during the swing phase of the foot. It can be seen that the
desired orientation around the y-axis is not reached perfectly and also errors occur in
the other two axes. The error about the vertical stays remains during stance, as the foot
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Figure 5.23: QP solver iterations for the presented controller setup

Figure 5.24: Vertical coordinate for the DCM tracking with the final controller setup

Figure 5.25: Orientation tracking of the foot with the multiple contact point approach
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cannot be moved. Little focus of this work lied on optimizing for perfect orientation
tracking, but the functionality of the introduced implicit orientation tracking method
via multiple RCF tasks is verified.

5.5 Comparison of Walking Performance

In this section the walking performance of the controller setup that was used for plots
for the ground contact loss will be compared to absolute position controllers from the
works in [11] and [4]. It should be noted that the RCF controller was not optimized for
best walking performance but for robustness in the different test scenarios of falling and
lifting in which the other controllers fail. The inverse dynamics and MPTC controller
have been tested for walking with the real robot. The controllers will be compared for
the tracking of the divergent component of motion, the tracking of the foot and the
center of mass and the emerging joint torques during the walking motion.

The plots in 5.26 show the tracking of divergent component of motion for the three
controllers. Very good tracking can be observed in all plots. Differences occur during
the touch-down of the foot onto the ground. The inverse dynamics controller shows the
smoothest reaction to the impact of the step. The RCF controller has a visible offset,
indicating a harder impact. Another difference can be observed at the beginning of the
plot when the robot drops 1 mm onto the ground. The RCF controller recovers faster
than the other two controllers which have an addition linear centroidal momentum
task similar to the angular momentum task, only applied to the linear motion as well.
This faster adaption is advantageous after a drop onto the ground for faster recovery.
Implementing the linear momentum task similar to the other controllers is not possible
as it uses the absolute velocity of the center of mass. A reformulation to a relative
coordinate would be required for implementation in the RCF controller setup.

For the subsequent plots, it has been decided to only show tracking errors between
the reference and the actual value due to the bad visibility of differences in the plot with
the absolute coordinate. Figure 5.27 shows the tracking error of the absolute coordinate
for one foot in the same walking motion. The steps of the foot occur at t = 0.7 - 1.3 and
seconds and t = 2.1 - 2.7 seconds. In the other time, the foot’s position is constrained by
the ground. It can be seen that movement is not restricted entirely and small slippage
occurs, especially for the inverse dynamics controller. The tracking of the RCF controller
is worse during the swing phase of the foot, allowing an error of up to 3 mm during
the first step. For the other two controllers, the error stays smaller than 1 mm. In all
three plots an initial error of 1 mm can be observed in the vertical z-axis after the initial
impact on the ground. The error is caused by the trajectory generator which uses the
initial height of 1 mm above the ground as reference. For the inverse dynamics and the
MPTC controller, the height has been reset for the first step. For the RCF controller this
reset was turned off and the 1 mm error stays throughout the motion.

Figure 5.28 shows the absolute position tracking error of the center of mass. A slower
convergence to the target in the vertical direction can be seen for the inverse dynamics
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(a) RCF

(b) Inverse Dynamics

(c) MPTC

Figure 5.26: Divergent Component of Motion
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(a) RCF

(b) Inverse Dynamics

(c) MPTC

Figure 5.27: Foot tracking error

70



5.5 Comparison of Walking Performance

(a) RCF

(b) Inverse Dynamics

(c) MPTC

Figure 5.28: Center of mass tracking error
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and MPTC controller. This was observed in the DCM comparison as well indicating a
lower stiffness of the task. The chose task stiffness was confirmed as practical in the
real experiments. An offset of 1 mm is visible in the vertical coordinate for the RCF plot.
This is caused by the 1 mm offset of the foot as discussed above. The perfect tracking of
the relative coordinate leads to the same error in the center of mass coordinate. The total
tracking error apart from that offset is actually smaller than for the other controllers
despite the fact, that the controller is not aware of its actual absolute position and good
relative coordinate tracking leads to perfect tracking of the absolute coordinate as well.
Again the impact of the foot placement is visible stronger in the vertical axis of the RCF
plot.

Figure 5.29 shows the joint torques during the walking motion with the three different
controllers. The presented RCF controller shows similar performance to the other two
controllers in terms of magnitude and smoothness of the torques. The similarity of the
singular joint torques is greater between the other two controllers. Spikes occur stronger
during impact of the foot, but are not visible throughout the rest of the motion.
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5.5 Comparison of Walking Performance

(a) RCF

(b) Inverse Dynamics

(c) MPTC

Figure 5.29: Joint torques
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6 Experimental Results

The next step was the experimental validation of the derived controller with the hu-
manoid robot Toro. Only three days of testing were possible due to mechanical problems
with the robot. On top, the internal measurement unit (IMU) failed at the end of the
second day and the experiments on the third day had to be carried out with a worse
IMU that exhibits higher measurement noise and delay.

Figure 6.1: The humanoid robot Toro in a stabilized position during stance and in the
air without foot-ground contact

On the first day it was possible to find two different configurations of the controller,
one that proved to be stable standing on the ground and one lifted off the ground as it
can be seen in 6.1. On the second day the two setups were merged. The robot could
be lifted off the ground and lowered back on its feet without changes to the controller
parameters. The controller was robust against disturbances in the lifted and standing
configuration. The experiments on the thirds day were not successful for the walking
motion.

6.1 Tuning of the Controller Parameters

Two major changes in the controller parameters were crucial for the successful experi-
ments. The task weight of the center of mass task had to be reduced by a large factor.
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6 Experimental Results

Figure 6.2: The humanoid robot Toro lifted up and lowered back down to the ground.
An increase of the leg stretch can be observed as load ist taken off the robot
and an increased knee bent due to the additional load when landing on the
ground

Higher weights lead to vibrations in the system during stance. Another factor was an
increase of the task weight and gain of the angular momentum regulation. It increased
the robustness against disturbances on the ground and suppressed vibrations.

The task stiffness and weight of the RCF task were chosen similar to the simulation. A
wide range of parameters was possible for this task which demonstrated its compatibility
and robustness.

6.2 Verification of Lifting Robustness

Figure 6.2 shows the time series of the robot being lifted off the ground and then placed
back to the ground. This experiment will be analysed in this section. The load was taken
of the robot in small steps to reduce swinging caused by the abrupt movement of the
lifting mechanism. Lowering the robot back to the ground was carried out carefully to
protect the hardware. The step by step lifting can be seen in figure 6.3 of the desired
and the actual foot wrench. The actual foot wrench reduces all the way to zero and
then back to the starting value after the robot is back on its feet. In contrast to that, the
commanded wrench expected by the controller does not reduce to zero as it always
expects foot-ground contact. Unlike in the simulation, the external force for lifting
the robot is applied near the shoulders. This leads to some stabilization of the robot’s
orientation in the air, but still significant swinging occurred. Figure 6.4a shows the
divergent component of motion throughout the experiment and the swinging can be
seen in the horizontal axes in the time from 8 to 17 seconds. It can be seen how the
vertical coordinate increases gradually when the robot is lifted until the ground contact
is lost. The impact of the touch-down of foot is also visible in the plot for the DCM,
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6.3 Cartesian Tracking Without Foot-Ground Contact

Figure 6.3: The desired and actual foot wrench in the vertical axis during the experiment
of lifting the robot

but also for the actual wrench in 6.3 in form of a peak of 200 N. Very good tracking
of the absolute position can be observed with established foot-ground contact in the
beginning and end of the plot of the DCM and the relative coordinate in figure 6.4b. It
can be seen that the controller stays stable throughout the time it is lifted despite the
swinging of the robot. The commanded joint torques in figure 6.5a show the reduction
of the load on the robot until it is lifted. The reaction of the controller lead to smooth
joint torques despite the noise in the estimate of the relative velocity visible in figure
6.5b. The noise is large in the horizontal axes while the foot has ground contact and
its movement should be constrained. This noise might be the cause of the vibrations
induced by a center of mass acceleration task with higher task weight and further test
are required to evaluate that influence. Applying a low pass filter or the HPRL to the
estimate might lead to an improvement in the controller performance.

6.3 Cartesian Tracking Without Foot-Ground Contact

Figure 6.6 shows the reaction of the robot when it is disturbed by a force at the foot. The
external force induces a momentum about the vertical axis which would lead to rotation
of the robot and its foot. It can be seen that the controller holds the desired orientation
of the foot and compensates the momentum with a stronger rotation of the upper body.
This verifies the introduced contact point approach for orientation tracking also in a
scenario without foot-ground contact. The rotation is stopped in the second image with
a force applied at the arm.
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6 Experimental Results

(a) Divergent Component of Motion

(b) Relative coordinate for one contact point

Figure 6.4: Absolute DCM and relative position tracking during stance and lift of the
robot
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6.3 Cartesian Tracking Without Foot-Ground Contact

(a) Joint torques

(b) Relative velocity

Figure 6.5: Joint torques of the legs and the relative velocity of one foot during the
experiments. Noise is observed in the horizontal axes of the relative velocity
with established foot-ground contact
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6 Experimental Results

Figure 6.6: The humanoid robot Toro compensating a disturbance at the foot with the
upper body to maintain the Cartesian foot position

6.4 Walking Attempts

It was planned to perform walking motions with the robot on the third day, but the
necessary switch to the worse IMU caused a setback. It was tried to reach the same
performance as on the previous test day. Lifting and standing was again possible, but
stable slow oscillations occurred in the lifted position that were impossible to suppress
due to the increased delay in the angular rate measurement. This reduced the time
available for walking attempts and no successful experiment was carried out. The
upper body control task was added to the controller setup for the walking attempts.
The task improved the behavior of the controller on the ground and made the robot
more robust against pushes. Figure 6.7 shows the divergent component of motion
and the corresponding joint torques. It can be seen that the vibrations are stronger in
the standing position compared to the plots from the previous test day due to noisier
measurements. At approximately 2.3 seconds, the robot starts to shift its weight onto the
right foot and takes the left foot off the ground at 4.25 seconds. The walking motion has
been slowed down compared to the simulation. During the shifting of the weight, the
vibrations increase and become visible in the DCM in figure 6.7a. The sideways motion
was not stopped by the controller and the robot fell in that direction after the left foot
was lifted of the ground. Figure 6.8 shows the tracking of the relative coordinate for one
contact point of each foot. It can be seen that the tracking is very good while standing
with both feet on the ground and remains good while the weight is being shifted. When
the left foot is lifted of the ground, the tracking becomes worse for the right relative
coordinate (6.8b) and the motion in the horizontal direction is not stopped as it was
visible in the DCM plot. The tracking of the relative coordinate (6.8a) for the lifted foot
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6.4 Walking Attempts

(a) Divergent component of motion

(b) Joint torques of the legs

Figure 6.7: Failed walking attempt and vibrations due to a different IMU
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6 Experimental Results

(a) Contact point on right foot

(b) Contact point on left foot

Figure 6.8: Relative coordinate tracking during a walking attempt with failure during
the first step
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6.4 Walking Attempts

remained good until the controller was shut off by the safety for collision avoidance.
The bad tracking was caused by the too low task weight of the center of mass task.

The joint posture task was weighted relatively high and restricts motion with its constant
reference. The trade-off between the tasks favored the joint posture task and therefore
inhibited the walking motion with incorrect joint torques. No conflict occurs in the
standing position of the robot as both the center of mass task and the joint posture task
have a constant reference.
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7 Conclusion

The goal of this thesis was the derivation of a three-dimensional position controller for
humanoid locomotion which is robust against contact loss without compromising on
the absolute position tracking under nominal foot-ground contact. A passivity based
control task was introduced that is based on the relative position of the center of mass
to the foot. If the foot’s absolute position is constrained in the world frame when it is
placed on the ground, the relative control task tracks the absolute position of the center
of mass.

As the developed task does not account for effects of gravity, an additional control
task had to be derived to achieve the desired tracking of the absolute coordinate with
nominal foot-ground contact. Two different formulations have been found for this task,
one based on the foot acceleration constraint applied by the ground to the foot and
one based on the nominal center of mass dynamics of the RCF task. Both formulations
proved to be stable for the SAFF model and the three joint free-floating robot for contact
loss and achieved perfect tracking with foot-ground contact. The tasks were embedded
into the whole-body control framework of the humanoid robot Toro. Unexpectedly, the
controller setup with the foot acceleration constraint task was instable in the simulation
for the humanoid robot. The then introduced center of mass task lead to the desired
behavior and robustness in the case of contact loss. The tracking of a walking motion in
the relative coordinate without foot-ground contact was possible with a bounded error.

Short instabilities in the form of spikes were observed for the controller when standing
or walking on the ground. The instabilities were tackled with different passivation
approaches. A quadratic programming constraint was derived which limited the foot
power. This lead to a big reduction in spikes but did not resolve the problem entirely.
The limitation can lead to instability when the desired motion requires higher foot
power than allowed by the constraint as it may be necessary during recovery from a fall
or accelerating the motion with faster movements for bipedal running. This constraint
used the absolute velocity of the foot and a similar formulation with the relative velocity
did not have the same positive effect. In addition it was tested to limit the joint power
and the joint power rate as well without observable improvements. A new formulation
of the high pass rate limiter with additional passivity based bounding was introduced
as a QP-constraint. Again, no significant improvement was observed and concluded that
an unstable controller can not be transformed into one with desirable behavior using
limitation methods.

Instead, adaptations of the center of mass acceleration task were considered. The
adaptations reduced the instabilities in the system with ground contact but did not
prove to be stable in the case of contact loss. Further analysis of the instabilities was
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7 Conclusion

carried out using a reduced six joint model of one of Toro’s legs where no instabilities
were observed during stance. This indicated an interplay of the controller with the foot
constraint of the simulation with OpenHRP.

A stable controller setup was found after further analysis of the instabilities by
regularization of the linear contact forces at the foot. The controller was compared to
absolute position controllers developed at the institute in terms of the absolute position
tracking with nominal foot-ground contact in the simulation. Similar performance could
be observed to the other controllers and it was demonstrated that absolute position
tracking is possible with good tracking of the relative coordinate. The controller was
evaluated for different scenarios with loss of foot-ground contact. It was stable when
being lifted off the ground entirely and during free fall. Also recovery from falls from
significant heights were possible without any adaptations or knowledge about it in the
controller or trajectory.

This controller setup was then tested on the real robot. The available time for
experiments was limited due to hardware problems and an IMU failure. The robustness
of the controller in the case of contact loss could be verified for a standing position.
The robot was lifted off the ground from a standing position, remained stable in the air
and lowered back to the ground into the standing position. The controller’s reaction
to disturbances in the form of pushes was robust, both on the ground and when lifted
up. The controller compensated for an external force applied at the foot by upper body
movements and maintained the Cartesian orientation of the feet in space. The relative
MPTC task can also be used as a stable alternative to the joint posture task when the
use of Cartesian is advantageous. The task showed great overall compatibility with
previously developed control tasks for humanoid locomotion.

The controller could not be verified for a walking motion on the ground. The main
cause of this result was the low weighted center of mass acceleration task compared to
the joint posture task which inhibits motion due to its constant reference. This low task
weight was necessary due to high frequency vibrations caused by a higher weight center
of mass task. It could not be determined if the cause of the vibrations was because of
the noisy velocity signal in the relative coordinate or induced by the short instabilities
that were previously observed in the simulation analysis. Further investigations have to
be conducted in this direction. For tests on the ground, the introduced center of mass
acceleration formulation with removed feedback would be very useful, as the noisy
relative velocity signal has no impact on this task. Another approach for further analysis
would be the implementation of the contact model from the OpenHRP simulation in the
simplified three- or six-joint robot models and check for occurrence in them.
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