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Three-body bound states in antiferromagnetic spin
ladders
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Stable bound quantum states are ubiquitous in nature. Mostly, they result from the inter-

action of only pairs of particles, so called two-body interactions, even when large complex

many-particle structures are formed. We show that three-particle bound states occur in a

generic, experimentally accessible solid state system: antiferromagnetic spin ladders, related

to high-temperature superconductors. This binding is induced by genuine three-particle

interactions; without them there is no bound state. We compute the dynamic exchange

structure factor required for the experimental detection of the predicted state by resonant

inelastic X-ray scattering for realistic material parameters. Our work enables us to quantify

these elusive interactions and unambiguously establishes their effect on the dynamics of the

quantum many-particle state.
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B inding phenomena were at the origin of the development of
quantum mechanics. The quest to understand why elec-
trons flying around positive nuclei form stable entities,

namely atoms, has led to a completely new foundation of physics
over hundred years ago. The formation of the structures from
nuclei and electrons over atoms, small and large molecules to
macroscopic liquids and solids is founded on quantum
mechanical binding. But also down to smaller and smaller length
scales binding is crucial in the formation of the atomic nuclei
formed by protons and neutrons due to the strong force and of
heavy particles in the Standard Model of high-energy physics
leading to hadrons, namely mesons, bound states of two ele-
mentary quarks, and baryons, bound states of three elementary
quarks.

Binding effects are especially dominant in correlated anti-
ferromagnetic spin system in low dimensions. Such systems have
already revealed some fascinating binding phenomena before. A
chain of localized spins S= 1/2 coupled on adjacent sites and
subjected to a magnetic field displays fractional excitations ((anti-)
psinons) of half-integer quantum numbers, spin flips (magnons)
with integer spin number, and in particular bound states of n
magnons (n-strings). These states were theoretically predicted up
to 90 years ago1–4, but have been verified experimentally only
recently5,6. Spin ladders, in particular, are solid state systems
which are intensively studied due to their relation to high-
temperature superconductors7. Moreover, they represent a para-
digm for an entangled magnetic many-body systems without long-
range order8. Two-body bound states in spin ladders have been
measured for S= 0 mediated by a phonon in infrared absorption9

and for S= 1 by inelastic neutron scattering10.
In spite of the abundance and complexity of bound states most

of the binding phenomena are induced by two-body interactions.
This means that the underlying potential only depends on the
positions and properties of pairs of particles. This is particularly
obvious in chemistry where all atoms and molecules are held
together essentially by Coulomb potentials. It is the paradigm of a
two-body interaction which can bind not only two, but almost
infinitely many particles.

In this communication, we show that there are also existing,
realistic solid state systems where a genuine (irreducible) three-
body interaction provides the vital extra for the formation of a
bound state. This bound state would not exist if only two-body
interactions were present. The key point is that an irreducible
three-body interaction acts only if three particles are present. It
has no effect on two particles or a single particle. We explicitly
calculate the effect of this bound state for dynamical correlations
in spin ladders using continuous unitary transformations (CUT).
We find an effect stronger than 50% for experimentally relevant
observables that can be measured with resonant inelastic X-ray
scattering (RIXS).

Results
Theoretical model. We consider the antiferromagnetic spin
ladder7,8

H ¼ Jrung ∑
N

i¼1
Si;1 � Si;2 þ J leg ∑

i;τ¼0;1
Si;τ � Siþ1;τ ð1Þ

where Si,τ denotes the vector spin operator at rung i along the leg and
on site τ= 0, 1, see Fig. 1a. Spin ladders with x≔ Jleg/Jrung≿ 1 are
realized in cuprates to a high degree of accuracy7 so that experi-
mental verification of our predictions is possible.

For x= 0, the excitations are local S= 1 triplets above the
S= 0 singlet ground state (Fig. 1b). For x > 0, the elementary
excitation is no longer localized on one rung only, but it is
smeared out over a number of rungs, the size of which is given by

the correlation length (Fig. 1c). It is now called a triplon11–15.
Note that triplon excitations are typical also in other dimerized
systems, such as in Shastry–Sutherland magnets16. In contrast to
the number of triplets, the number of triplons is conserved also
for finite x and therefore, triplons provide a natural basis for the
description of dimerized systems17,18. For clarity, we distinguish
in this article between the initial non-conserved triplets and the
conserved triplons. In literature, this distinction is not always
used17–19.

We stress that the original triplets are not the appropriate
elementary excitations because already in the ground state there is
an infinite number of them admixed. Hence, it does not make
sense to refer to a one-, two- or three-triplet state since any eigen
state comprises an infinite number of them. Instead, we have to
use the elementary excitation resulting from renormalization.
This is analogous to the vacuum fluctuations in quantum field
theories. The observed and measurable elementary particles are
quasiparticles, dressed by vacuum fluctuations, whose properties
stem from renormalization.

The leg coupling also leads to an attractive interaction between
pairs of triplons which are not far apart from each other, see
Fig. 1d. The competition between attractive interaction and
kinetic energy determines the formation of bound states in the
spin ladders. As triplons are equivalent to mobile S= 1 spins that
interact antiferromagnetically on the spin ladder, it is expected
that the energetically lowest bound state is in the total
S= 0 sector. Two-body bound states with total spin S= 0 and
S= 1 induced by the two-triplon attraction are established
theoretically11,12,14 and have been measured in experiments9,10.
The aim of the present communication is to show that three-
triplon bound states occur, see Fig. 1e, which are essentially due
to genuine three-triplon interactions.

The occurrence of the three-triplon interactions results from a
mechanism very analogous to the attractive interaction between
electrons resulting from the exchange of phonons which
eventually leads to the formation of Cooper pairs and super-
conductivity. The propagation of an electron excites a phonon
which is captured by another propagating electron inducing their
attraction20,21. Similarly, Fig. 2b illustrates that the creation of a
pair of triplons, triplon propagation and subsequent pair
annihilation induces a genuine three-triplon interaction. Besides
pair creation and annihilation, i.e., the vacuum fluctuations, the
hardcore property of triplons, excluding more than one per
dimer, generates the interaction involving three triplons on three
dimers. Otherwise the interaction would be a single-particle
irreducible one, see Fig. 2a. We stress that this mechanism is not
specific to one dimension, but applies in any dimension to
systems of coupled dimers16,22,23 and, even more generally, to any
system with finite Hilbert space dimension at each site because
the latter implies a hardcore property, i.e., for spin flips.

To obtain a quantitatively correct description of the elementary
excitations in the spin ladder we express the original model (1) in
terms of triplet creation and annihilation operators, see Methods.
Then, by a systematically controlled change of basis, the model
can be mapped to one in which the number of triplons is
conserved. This is a vital step to make further analysis feasible
and it is achieved by means of a CUT21,24–27. The CUT is defined
by the infinitesimal generator η which is classified by a label
indicating whether the 2-triplon subspace is separated from all
subspaces with n > 2 triplons (label (2:n)) or even the 3-triplon
subspace (label (3:n)) is separated as well. The resulting set of
differential equations describes the renormalization flow of the
dispersion and the interactions. These differential equations are
truncated in some order in x to keep their number finite and
finally solved numerically. In the course of the CUT the
interactions of the triplons are renormalized and novel types of
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interactions are generated. In particular, the two-triplon interac-
tion is modified and three-triplon interactions are induced. This
is the mechanism how a genuine, irreducible three-body
interaction comes into play. The possibility to distinguish the

influence of the genuine two-triplon interactions from the one of
the genuine three-triplon interactions is the crucial ace of the
CUT approach. An extensive derivation of the applied methods
can be found in the Supplementary Methods.

Fig. 1 Multi-triplon states in spin ladders. a The spins S= 1/2 at each vertex of the ladder are coupled by leg (Jleg), and rung (Jrung), couplings. The black
arrows indicate spin-up and the red arrows indicate spin-down. b For Jleg= 0, the spins on each rung form singlets (blue ellipses) in the ground state and
local S= 1 triplet excitations (orange ellipsis). c Non-local triplons (wide orange ellipse) are the elementary excitations in spin ladders. They exist in the
ΔS= 1 sector and can be detected via inelastic neutron scattering. d Two-triplon interactions lead to the formation of two-triplon bound states (red double
ellipse) in the ΔS= 0, 1 sectors. e Three-triplon interactions are strong enough to form three-triplon bound states in the ΔS= 0 sector. f n-strings of
triplons can emerge; they are predicted in strongly frustrated spin ladders with additional diagonal couplings (not shown) in each plaquette.

Fig. 2 Origin of three-triplon interactions. The term is depicted in real space at dimer r and interdimer distances δ; δ0; δ00; note that this term arises in any
dimension and for any lattice model with finite dimensional local degrees of freedom. Finite x implies hopping, pair creation and annihilation processes
during the renormalization by CUT. The blue arrows indicate the incoming triplons, red the scattered triplons and the black arrows internal triplon
propagation. For normal bosons (a), the combined process is single-particle irreducible and corresponds to an effective hopping. For triplons (b), the hard-
core constraint (black circles) induces three-triplon interactions in leading order x3. The explicit expression for δ ¼ 1; δ0 ¼ 2; δ00 ¼ 3 is given in
the Supplementary Methods.
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Theoretical description of RIXS response. To identify the effect
of three-triplon interactions the symmetries of spin ladders help
greatly: reflection about the centerline defines even and odd parity
and the spin isotropic model conserves the total spin. Since tri-
plons are of odd parity11,12,14 the excitations in the odd channel
consist of one or three or five triplons and so on. If in addition
one uses a spin conserving (SC) probe the total spin of the excited
states is zero as in the ground state. A triplon has spin S= 1,
hence in the odd S= 0 channel the leading contribution is the one
formed by three triplons only. This channel can be addressed by
light scattering, for example RIXS28, or absorption in the ter-
ahertz (THz) range5,6. RIXS has the advantage of substantial
momentum transfer due to the high energy of the scattered
photons, in particular for hard X-rays as used for the Cu K-edge,
while THz absorption provides high energy resolution, but stays
at zero momentum. RIXS spectra can be resolved into spin-
conserving (ΔS= 0) and spin non-conserving (ΔS ≠ 0) at the Cu
L3-edge of cuprates29,30. The spin-conserving channel can be well
captured by the dynamical exchange structure factor (DESF). In
contrast to the Cu L-edge, the channels at the Cu K-edge and
oxygen K-edge in cuprates are purely spin conserving31,32, which
is advantageous for experimental verifications of our predictions.
RIXS resolution for hard X-rays has also improved considerably
in the recent past33,34.

To compute the RIXS response at the Cu K- and L-edge of
cuprates, we use the dynamical correlation functions given by the
ultra-fast core-hole liftime (UCL) approximation35,36. We focus
on the SC channel, not accessible by inelastic neutron scattering
which measures the dynamics structure factor (DSF). For data of
the DSF see Supplementary Note 1. The SC channel is captured
by the DESF given by

Sexðq;ωÞ ¼ 1
N
∑
f

f ∑
i;τ
eiqRi;τOex

i;τ

�
�
�
�

�
�
�
�
g

� ��
�
�
�

�
�
�
�

2

δðEf � Eg þ ωÞ ð2Þ

where Oex
i;τ ¼ Si;τ � ½J legðSiþ1;τ þ Si�1;τÞ þ JrungSi;�τ � (with �τ ¼ 1� τ)

is the spin exchange observable, jgi and jf i are the ground and final

states with energies Eg and Ef, respectively, and ω is the energy loss to
the system. Usually, the DESF is evaluated by exact diagonalization
(ED)35,37–39 or by density matrix renormalization group40. These
approaches provide spectra consisting of a multitude of finite-size
peaks. But they do not allow to trace back the physical origin of the
spectral features. The distinction between continuous scattering
contributions and peaks from bound states can also be challenging.

Scattering states of two or more triplons lead to a continuous
contribution to the DESF at fixed total momentum transfer q.
This holds also for a two-triplon bound state scattering with a
single triplon. Only a bound three-triplon state yields an infinitely
sharp δ-peak in Sex(q, ω) at given q. Thus this is the smoking gun
feature we have to look for. For rendering purposes we will
broaden it slightly; but in experiments it will show up as sharp
peak limited only by the resolution of the apparatus.

Three-triplon bound states. We provide data for x= 1.2 and
x= 2 because these values represent the experimentally relevant
range in cuprates9,38,41 and the telephone number ladder
La5.2Ca8.8Cu24O41 in particular. Figure 3 depicts the DESF at
(qx, qy)= (π/(2a), π/a). Panels (a) and (b) show the three-triplon
bound states that appear separated below the three-triplon con-
tinuum for x= 1.2 and x= 2.0. The DESF of the bound state is
plotted in red and the continuous DESF in orange. The latter
stems from three asymptotically free triplons and from scattering
of a S= 1 two-triplon bound state with a single triplon.

We highlight that the three-triplon bound states have significant
weight compared to the continua: for x= 2.0 over 50% of the
spectral weight resides in the three-triplon bound state. The energy
separation between the bound state and continuum is small for
x= 1.2 while it is becomes substantial for x= 2. This makes
compounds with higher ratios x interesting for the experimental
verification of bound three-triplon states. For reference, CaCu2O3

is known to be a host for a spin ladder with large ratio x42.
To explicitly show the effect of the genuine three-triplon

interactions panels c and d of Fig. 3 display the DESF but without

Fig. 3 RIXS response in the S= 0 channel for (qx, qy)= (π/(2a), π/a). The groups of three ellipses with the letter ‘T’ denote three-triplon states.
Asymptotically scattering triplons are colored orange and bound triplons are colored red. a, b Result from the mixed deepCUT calculations: (2:n)-generator
in order 10 for the single- and two-triplon matrix elements, (3:n)-generator in order ≥5 for the three-triplon matrix elements (see Supplementary
Methods). The effective observable was computed with the (3:n) generator. c, d Results from the (2:n) deepCUT calculations in order 10 excluding
irreducible three-triplon interactions. a, c Depict a system with x= 1.2; panels b and d with x= 2.0.
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the three-triplon interactions. Then, only a square-root diver-
gence of the DESF appears at the lower band-edge. For x= 2.0
there may exist an extremely weakly bound state. But the
distinctive three-triplon bound states, clearly separated from the
continuum only occurs as a consequence of the irreducible three-
triplon interactions. This is the key result of our investigation.

Figure 4 depicts the DESF at qy= π/a as function of qx. Because
of the symmetry S(qx, qy, ω)= S(−qx, qy, ω) it is sufficient to show
the positive half of the Brillouin zone. In all cases, the total weight
is largest around qx= π/(2a). While Fig. 4a and b depict the full
calculation with all interactions, Fig. 4c, d exclude the irreducible
three-triplon interactions. The solid white line shows the lower
edge of the three-triplon scattering continuum if only the one-
triplon dispersion is considered, i.e., three asymptotically free
triplons are involved. The dashed white lines depict the actual
lower continuum edge including scattering states from an S= 1
two-triplon bound state and a single triplon. Hence the difference
between the solid and the dashed line for qx < 0.65π (x= 1.2) and
qx < 0.75π (x= 2.0), respectively, stems from the irreducible two-
triplon interactions. We emphasize that only binding can induce
states at lower energies. Without binding, interactions can shift
spectral weight, but only between the edges of the continua. This
is indeed one effect of the irreducible three-triplon interactions:
they shift the weight significantly towards the lower band edge as
can be clearly discerned by comparing Fig. 4a with Fig. 4b, c with
Fig. 4d.

The energy of the bound state formed from three triplons lies
below the lower continuum edge for qx < 0.65π/a (x= 1.2) and
qx < 0.75π/a (x= 2.0), respectively. These bound states are close
to the lower continuum edges as expected from Fig. 3. Their
dependences on qx have a similar shape.

Figure 3 indicated that the spectral weight of the bound state is
significant relative to the weight in the adjacent continuum. This
feature holds generally for most values of qx as shown
comprehensively in Fig. 5 for four different values of x as
function of qx. The ratio of the spectral weight of the bound state

to the spectral weight of all scattering states Ibound/Icont is plotted.
We stress that the weight of the scattering states is integrated up
to the highest energies far beyond the energy of the three-triplon
bound state. The maximum of the relative spectral weight moves
to higher qx upon increasing x, i.e., increasing Jleg. Also the
relative weight increases with increasing x. Even for low values of
x, the maximum of the weight of the bound state is never an order
of magnitude below the weight in the continuum. For x= 2.0, the
bound weights even exceed the continuum weights.

For completeness, the Supplementary Note 1 provides further
data for the DESF and Supplementary Note 2 provides an
estimate of the importance of the contributions of four triplons
and a comparison to data for finite spin ladders obtained by ED.
Comparison to the sum rule obtained from ED also shows that
the three-triplon sector contains almost all of the spectral weight

Fig. 4 RIXS response in the S= 0 channel for qy= π/a. Three red ellipses with the letter ‘T’ denote bound three-triplon bound states. a, b Result from the
mixed deepCUT calculations, (2:n) generator in order 10 for the single- and two-triplon matrix elements, (3:n)-generator in order ≥5 for the three-triplon
matrix elements (see Supplementary Methods). The effective observable was computed with the (3:n)-generator. c, d Results from the (2:n) deepCUT
calculations in order 10 excluding irreducible three-triplon interactions. a, c Depict data for x= 1.2 while b and d for x= 2.0.

Fig. 5 Ratio of bound to continuum excitations weight. The ratio is
computed using the spectral weight Ibound of the three-triplon bound state
and the weight Icont of the continuum of three-triplon scattering states for
qy= π/a. The groups of ellipses with the letter ‘T’ denote three-triplon
states. Asymptotically scattering triplons are colored orange and bound
triplons are colored red.
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for all considered x. Additionally, data for the standard dynamic
structure factor is shown which is relevant for inelastic neutron
scattering.

Discussion
Binding effects are fundamental to understand the structure of
the surrounding matter ranging in length scale from femtometers
to meters. Most bound states stem from two-body interactions
such as the Coulomb potential. But in the present study, we have
shown that in a realistic, correlated condensed matter system
genuine (irreducible) three-body interactions between the ele-
mentary excitations are crucial as well. This is achieved for a
generic antiferromagnetic spin ladder as it is realized in cuprates
well-known from the field of high-temperature superconductivity,
but the underlying mechanism applies to wide classes of lattice
systems in any dimension.

We systematically derived the three-body interactions of the
elementary triplons by CUTs. We identified a probe channel (odd
parity and S= 0) in which the three-triplon states represent the
leading contribution. We established that this channel can be
probed by RIXS and computed the DESF relevant for RIXS. A
particular asset of the CUT approach is that one can switch on or
off the genuine three-body interactions. In this way, we showed
that it is the three-triplon interactions which induce a significant
shift of spectral weight in the DESF to lower energies. Most
notably, a bound state formed from three triplons appears in a
large part of the Brillouin zone—but only if the three-triplon
interaction is taken into account. Although it is close in energy to
three-triplon scattering states its weight is significant and partly
dominates over the weight of the scattering states.

We highlight the fundamental difference of our finding to
completely frustrating, antiferromagnetic diagonal couplings in
spin ladders, where the number of triplets is already conserved so
that triplets and triplons coincide. The complete frustration leads
to an enhanced attraction of adjacent pairs of triplons such that
three-triplon bound states (Fig. 1e) and even states of n-triplon
strings (Fig. 1f) are predicted43. These local bound states stem
from two-triplon interactions; no three-body interactions are
involved. The key observation for unfrustrated spin ladders is that
even for small x the three-triplon interaction is sufficiently strong
for the formation of a three-triplon bound state with small energy
separation from the continuum. For x≳ 1 this state gains sig-
nificant spectral weight with a clear energy separation.

These results suggest that an experimental detection of the
effects of three-body interactions is possible. Next-generation
RIXS facilities with improved energy resolution should be able to
tackle this challenge. Most promising candidate materials should
have an intermediate to large leg over rung coupling x, such as
La5.2Ca8.8Cu24O41

9, CaCu2O3
42, and La4Sr10Cu24O41

10, with the
strongest response at qx= π/(2a) in the Brillouin zone. Alter-
natively, we point out that verification is also conceivable by THz
absorption which has a very high resolution in energy. Here the
challenge is that THz light hardly has any momentum ℏk so that
only states with zero momentum are probed where no significant
effects of the three-triplon interactions appear. But if a spin ladder
material showed a slight distortion with periodicity of four rungs,
the states at qx=mπ/(4a) with m∈ {1, 2, 3} are folded to the
center of the Brillouin zone and three-triplon binding would
become detectable44,45, as for instance shown for screwed spin
chains5. In these systems, the oxygen K-edge, which probes spin-
conserving channel exclusively, can also be used in spite of it
having access to restricted momentum transfer32,39.

The theoretical results open up the stage for the study of the
effects of genuine three-body interactions occurring in generic
lattice models for condensed matter. In one dimension in

particular, where quantum effects are typically strongest, they
could be an important ingredient for the formation of n-triplon
strings (Fig. 1(f)) generalizing the previously detected Bethe
strings5,6 to a much broader class of solid state systems not
restricted to integrable systems such as spin chains. Our results
open perspectives for ways to investigate complex bound states,
connecting to various cross-boundary efforts with the same aim,
such as the discovery of three-body correlations in ultracold
atoms46, the formation of topological bound states in non-
Hermitian systems of photonic lattices47 and bound states for
quantum computation in superconducting nanowires48. With
recent improvements in experimental techniques, we are hopeful
of verification of our findings in the near future.

Methods
Further details on the methods and numerical details can be found in the Sup-
plementary Methods.

Triplet and Triplon representation. Starting from the regime of strong rung
couplings, we reformulate (1) in terms of triplet creation operators tα;yi sj i ¼ jtαi i
where sj i is the singlet ground state for x= 0 and jtαi i is an S= 1 triplet state of
flavor α∈ {x, y, z} on rung i. The triplet annihilation operator tαi annihilates the
specific triplet at rung i and restores the singlet on this rung. The triplet operators

satisfy the hardcore boson algebra ½tαi ; tβ yj � ¼ δi;jðδα;βð1�∑γ2fx;y;zgt
γ y
i tγi Þ � tβ yi tαi Þ.

Representing the spin operators by the triplet operators allows us to map the spin
systems onto an interacting quasiparticle problem21. In the course of the CUT, the
triplet operators are gradually converted to conserved triplon operators. Note that
we distinguish between unconserved triplets and conserved triplons here. This
distinction is not always utilized in literature. Explicit expressions for the Hamil-
tonian and the observables in the triplet language are given in the Supplementary
Methods.

Foundation of CUT. The basic idea of a dedicated unitary transformation is to
change the basis such that the problem under study becomes easier to tackle. The
continuous transformation has the advantage to perform the basis change in a
renormalizing fashion, i.e., processes linking large energy difference are trans-
formed most quickly and processes with smaller and smaller energy differences are
eliminated slower and slower in the flow of the renormalization parameter ℓ→∞.
This is important because one can never track the complete Hamiltonian along the
unitary flow, but truncations are necessary. The renormalizing property helps to
obtain robust effective models21,24,26,49–51.

We use CUTs here to eliminate the terms in the Hamiltonian which change the
number of particles, i.e., the number of triplons. In this way, this number becomes
a conserved quantity, the ground state is the vacuum of triplons and hence the
calculations of dynamic zero-temperature correlations are simplified to tractable
few-particle calculations. To evaluate the spin conserving contributions to the RIXS
spectra we decouple the interacting multi-triplon sectors from each other by
applying the CUT to the Hamiltonian and to the relevant observables. The
resulting effective Hamiltonian consists of n-particle irreducible parts, i.e., the one-
triplon dispersion, the two-triplon interaction, and the three-triplon interactions
which are of particular interest here. Irreducible higher triplon interactions, e.g., of
four triplons, also occur, but only matter if four or more triplons are considered.

CUT generator scheme. The CUT provides a set of differential equations for the
prefactors of a large number of interactions which proliferate exponentially with
system size. Hence truncations are required which systematically control the
accuracy of the obtained effective Hamiltonian and effective observables. Here we
employ two concepts. First, we do not separate all m-triplon states from all n-
triplon states with m ≠ n, but use either the (2:n) or the (3:n) generator. The
generator (m: n) separates the 0, 1,…m triplon states from all higher states with
n >m27, i.e., we decouple either the zero, one, and two triplon states from the rest
or we decouple the zero, one, two, and three triplon states from the remaining
states. The latter, however, does not work up to very high order in x, see below.

Second, we use the expansion parameter x= Jleg/Jrung to classify the various
processes. We keep all processes which influence the effective Hamiltonian up to a
certain order in x. The physics behind this idea is that a larger order translates to a
larger range in space, i.e., to a larger distance between the interacting triplons on
the rungs. This concept leads to large, but tractable sets of differential equations
which then are integrated numerically. The whole procedure is dubbed directly
evaluated enhanced perturbative CUT or deepCUT for short and has proven to be
reliable and efficient21 up to x= 3. The (3:n)-generator was used to calculate the
irreducible three-triplon contributions. If the highest robust order was smaller than
10, the (2:n)-generator was used to calculate the irreducible two-triplon and one-
triplon contributions in order 10.
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The accuracy of the CUT approach is examined by comparing it to lower order
CUT calculations as well as to results from ED on finite systems in the
Supplementary Note 2.

Details on dynamic structure factors. Based on the effective observables obtained
from the CUT we use Lanczos tridiagonalization to compute the continued fraction
expansion of the DSF and the DESF, see Supplementary Methods. This renders
finite-size effects negligible. At the same time we can identify the physical processes
that contribute to the spectral functions. A square-root terminator was employed to
terminate the continued fraction so that the contribution of the scattering states is
found as continuous function without resorting to artificial broadening52.

The bound states are mathematically δ-distributions in the spectral densities,
i.e., they are infinitely sharp, which prevents a graphical representation. Thus, the
bound states (and only them) are artifically broadened in our plots. They are
displayed as Lorentzians of width 5 ⋅ 10−4 Jrung.

The lower edge of the three-triplon scattering states including two-triplon
interactions is calculated from the converging values of the Lanczos coefficients52.
The lower edge at wave number q without any interactions is calculated directly
from minq¼k1þk2þk3

ðωðk1Þ þ ωðk2Þ þ ωðk3ÞÞ where ω(k) is the triplon dispersion.

Data availability
The calculated spectral weights and Lanczos coefficients in the main text and in the
Supplementary Notes are available at https://doi.org/10.24435/materialscloud:k8-v6. All
other data is available from Gary Schmiedinghoff (gary.schmiedinghoff@tu-dortmund.de)
on reasonable request.

Code availability
The code used to generate the numerical results presented in this paper can be made
available by Gary Schmiedinghoff (gary.schmiedinghoff@tu-dortmund.de) upon
reasonable request.
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