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Abstract. We review and compare two techniques to get entropy stability for nodal Discontin-
uous Galerkin Spectral Element Methods (DG) in compressible flows. One technique is based
on entropy split-forms, e.g., [8, 15, 5] and one is based on a direct algebraic correction [1].

We have implemented the Flux Differencing methodology for both, Legendre-Gauss-Lobatto
(Lobatto) and Legendre-Gauss (Gauss) based spectral element basis functions. While the Lo-
batto operators belong to the class of diagonal norm summation-by-parts (SBP) operators, the
Gauss operators belong to the generalized class of SBP operators, where it is not necessary
that the boundary nodes are included. To reach entropy stability, respectively guaranteed en-
tropy dissipation, a key ingredient is an entropy conserving numerical flux function. With this
ingredient, only the volume integral term of the DG method has to be modified accordingly.

We have also implemented an alternative technique, which is in general applicable for a wide
range of discretizations. Abgrall [R. Abgrall, A general framework to construct schemes satisfy-
ing additional conservation relations. Application to entropy conservative and entropy dissipative
schemes. Journal of Computational Physics, vol 372, 2018] introduced an algebraic correction
term that retains conservation of the primary quantities and is furthermore constructed such,
that an entropy (in-) equality can be shown. The second technique is at first sight a simpler
alternative to the split-form based approach. Hence, questions regarding its advantages and
disadvantages naturally come up.

1 INTRODUCTION

In engineering applications, Discontinuous Galerkin methods (DG) have been proven to be a
powerful and flexible class of high order methods for the direct numerical simulation of turbulent
flows in the low Mach regime. DG schemes can be interpreted as a mixture of high order Finite
Element methods with local polynomial basis functions and Finite Volume methods, in the sense
that the ansatz space is discontinuous across mesh element interfaces enabling the use of Riemann
solvers based numerical surface fluxes [19, 18, 21]. High order DG methods are appreciated
for their very low dispersion and dissipation errors, e.g., [2, 12]. Low numerical dissipation is
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important to reduce artificial damping and heating, in addition, low dispersion errors are equally
important as it guarantees high fidelity for wave propagation and wave interaction.

Driven by the success of DG in the engineering disciplines, a growing interest in the as-
trophysics community arises with the wish to apply high order DG to their problems. DG
implementations with focus on astrophysical fluid dynamics and related applications are for in-
stance presented in [25, 29, 3, 17]. In astrophysical simulations, irregular solutions are a common
issue, since by today’s standards most numerical models are gravely under-resolved considering
the vast amount of scales in the Universe. However, high order DG methods are not renowned
for their robustness [20, 22] regarding under-resolved flows. We consider a scheme robust when
its behavior is verifiable and predictable for a broad range of flow configurations and the scheme
is able to finish the simulation without crashing.

Making DG stable for under-resolved solutions without compromising the highly accurate
wave propagation properties and losing its data locality is subject of current research and no
“golden” way has been found so far. It is hoped that the key to universally robust high order
methods are entropy stable (ES) schemes [9] faithfully obeying the second law of thermodynamics
on a discrete level.

Abgrall [1] developed a general framework to construct numerical schemes satisfying ad-
ditional conservation constraints, such as entropy conservation. Algebraic (anti-)diffusion-like
terms correct the entropy erroneously produced/destructed by the numerical scheme at each
timestep, making it another interesting - so far not broadly investigated - approach to achieve
entropy stability for DG.

Provable entropy stable high order split-form DG schemes based on summation-by-part (SBP)
operators [8, 14] allow to successfully stabilize unsteady flow simulations in engineering appli-
cations. Stabilized high order DG schemes are capable of directly simulating viscid, weakly
compressible turbulence models with considerably elevated accuracy, at lower resolution and
with better performance compared to traditional fluid solvers, e.g., [13, 4, 11, 10].

However, the successful application of high order DG for highly compressible, transonic to
supersonic turbulence is still uncharted territory - a problem domain which is of great interest
for applications especially in astrophysics. Hence, as a first step, we want to find out if we can
successfully run high order DG in transonic compressible regimes for inviscid flows. We propose
an initially smooth and subsonic weakly-magnetized Kelvin-Helmholtz-Instability (KHI) setup,
which pushes a number of high order DG variants to their limits since locally the simulations de-
velop challenging transonic flow configurations usually bringing un-stabilized high order schemes
to a crash.

The structure of the rest of this article is as follows. In Section 2 we briefly introduce the
governing equations together with a short discussion on their entropy relations. The investigated
numerical schemes are reviewed in Section 3, where we introduce the concept of local surplus
entropy production. In Section 4 we discuss the results regarding the scheme’s performances of
the aforementioned KHI simulations and Section 5 draws the conclusion.
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2 GOVERNING EQUATIONS

We generally consider an initial value problem for hyperbolic partial differential equations
(PDE) of the form

∂tu(~x, t) +∇ ·
↔
F (u(~x, t)) = Q(u) · ∇u, u(~x, t = 0) = u0(~x), (1)

with the multivariate flux function
↔
F depending only on the vector u of m state variables and

an optional non-conservative PDE term Q(u) · ∇u. Furthermore, we assume that the inviscid
equations (1) are equipped with a family of entropy-entropy flux pairs (S, ~F) adhering to the
mathematical entropy inequality

∂t S(u(~x, t)) +∇ · ~F(u(~x, t)) ≤ 0, (2)

which we understand in a weak sense. State flux
↔
F and entropy flux ~F are related by(

∇u
~F(u)

)T
= wT (∇u

↔
F (u)−Q(u)) (3)

with w = ∇uS(u) being the vector of m entropy variables and ∇u

↔
F being the usual flux

Jacobians.

2.1 Ideal Generalized Lagrange Multiplier Magnetohydrodynamics

For our simulations we adopt the ideal generalized Lagrange multiplier magnetohydrodynam-
ics (GLM-MHD) equations [7]

∂t


ρ
ρ~v
E
~B
Ψ


︸ ︷︷ ︸

u

+∇ ·


ρ~v

ρ~v ⊗ ~v + P 1− ~B ⊗ ~B

(E + P )~v − (~v · ~B − cH Ψ) ~B
~B ⊗ ~v − ~v ⊗ ~B + cH ψ 1

cH
~B


︸ ︷︷ ︸

↔
F

= −(∇ · ~B)


0
~B

~v · ~B
~v
0


︸ ︷︷ ︸
ΦPowell

−(∇Ψ)


~0
0
~vΨ
0
~v


︸ ︷︷ ︸
ΦGLM

, (4)

where ρ is the density, ~v = (v1, v2, v3)T is the velocity, E is the total energy, ~B = (B1, B2, B3)T is
the magnetic field vector and Ψ is the hyperbolic divergence correction field. Note, we assumed
the magnetic permeability to be µ0 := 1. 1 represents the 3 × 3 identity matrix and the total
pressure P is the sum of thermal and magnetic pressure, i.e. P = p+ 1

2
~B 2. The total energy E

is related to the thermal pressure p via the equation-of-state

p = (γ − 1)
(
E − ρ

2
~v 2 − 1

2
~B 2 − 1

2
Ψ2
)
, (5)

where γ as the ratio of heat capacities for constant volume and pressure. If not stated otherwise,
we set γ = 5/3. Furthermore, we identify the divergence correction speed cH with the maximum
wave speed λmax given in [7]. The set of physically permissible states is defined by

Π =
{

permissible states
}

=
{
∀u

∣∣ ρ > 0 ∧ p(u) > 0
}
. (6)
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In order to symmetrize the system of equations (4), two non-conservative source terms are
added, labeled Powell and GLM, which tend to zero in case of vanishing divergence error, i.e.
∇ · ~B → 0. The family of entropy-entropy flux pairs is then of the form

S(u) = − ρ s

γ − 1
and ~F(u) = S(u)~v with s = log(p)− γ log(ρ). (7)

The corresponding entropy variables w are given by

w(u) =

(
γ − s
γ − 1

− β ~v 2, 2β ~vT , −2β, 2β ~BT , 2βΨ

)T
with β =

ρ

2 p
. (8)

The entropy potential ~θ is given by

~θ = ρ~v + β ~B 2 ~v + 2β cH Ψ ~B. (9)

We refer to [7] for the detailed entropy analysis.

3 NUMERICAL SCHEME

3.1 Collocation Scheme

We briefly outline the construction of the Discontinuous Galerkin Spectral Element Method
(DGSEM) in 2D. Detailed derivations can be found for example in [21]. Here, we use DG and
DGSEM synonymously. To derive the N -th order 2D DG scheme within Q non-overlapping
elements Ωq ⊂ Ω of the Cartesian domain Ω ⊂ R2, we start with the general hyperbolic PDE
(1) and omit the non-conservative terms for now. For the variational form, we multiply by the
test function φ(~χ), apply integration-by-parts in space and transform to the reference element

~χ ∈ I2 =
[
−1

2 ,
1
2

]2
. We get

|Ωq|
∫
I2

(
∂tu(~χ, t)

)
φ(~χ) d~χ =

∫
I2

↔
F (u(~χ, t))∇φ(~χ) d~χ−

∮
∂I2

↔
F (u(~χ, t))φ(~χ)~n(~χ) d(∂I2) (10)

with the outward facing normal vector ~n(~χ) and the element volume |Ωq| = ∆x∆y. Next, we
identify the test function with the Lagrange polynomials, i.e. φ(~χ) := `i(~χ), which allows us to
conveniently construct the so-called DG operators for quadrature, differentiation and boundary
evaluation:

Mij := δi,j ωi
lump
≈
∫
I
`j(χ)`i(χ) dχ, Dij := ∂χ`j(χ)

∣∣
ξi
, B±i := `i

(
±1

2

)
, i, j = 1 . . . N. (11)

If we make the polynomial tensor product ansatz with N interpolation nodes ξi ∈ I, u(~χ) ≈∑N
i,j,k=1 u(~χ) `i(χ1)`j(χ2), and collocate quadrature and interpolation, we get the semi-discrete

weak-form DG scheme:

u̇ij =− 1

ωi ∆x

(
B+
j (F ∗x )+

j −B−j (F ∗x )−j −
N∑
l=1

ωlDli (Fx)lj

)
− 1

ωj ∆y

(
B+
i (F ∗y )+

i −B−i (F ∗y )−i −
N∑
l=1

ωlDlj (Fy)il

)
−Υij (12)
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with volume fluxes Fx|y =
↔
F x|y

(
u
)

and numerical fluxes (F ∗x|y)
± = F ∗x|y

(
u±L ,u

±
R

)
. The inner el-

ement boundaries in x-direction read u±j =
∑N

i=1 B
±
i uij and in y-direction u±i =

∑N
j=1 B

±
j uij .

In this work, we use Legendre-Gauss (Gauss) and Legendre-Gauss-Lobatto (Lobatto) collocation
nodes.

We added the non-conservative source terms Υ = −ΥPowell −ΥGLM, which are analogously
discretized by the DG approach (see, e.g., [27] for details):

ΥPowell
ij =

(
1

ωi ∆x

(
B+
j {{B1}}+j −B−j {{B1}}−j −

N∑
l=1

ωlDli (B1)lj

)
+

1

ωj ∆y

(
. . .
))

ΦPowell
ij , (13)

ΥGLM
ij =

(
(v1)ij
ωi ∆x

(
B+
j {{Ψ}}

+
j −B−j {{Ψ}}

−
j −

N∑
l=1

ωlDli Ψlj

)
+

(v2)ij
ωj ∆y

(
. . .
))

ΦGLM
ij . (14)

The element interface averages read {{·}}± = 1
2

(
(·)±L + (·)±R

)
. The terms implied by “. . .” for the

y-direction are constructed analogously to the x-direction and were left out for brevity.
For time integration we use an explicit strong-stability preserving, fourth order Runge-Kutta

scheme (SSP-RK(5,4)) [16]. A stable timestep ∆t is estimated by the usual CFL condition as

∆t :=
CFL

d

Q

min
q

min(∆xq,∆yq)

N λmax
q

, (15)

where d = 2, CFL := 0.4, N is the number of quadrature nodes in each direction in the element,
and λmax

q is the maximum wave speed estimate for the equations (4) in element q.

3.2 Surplus Entropy Production

In physics, entropy production arises from transfer processes across system boundaries, such
as friction (viscosity), heat exchange, and matter diffusion. But also numerical schemes produce
entropy via their inherent numerical diffusion. Suppose we have a semi-discretization u̇ of our
conservation law (1) and by the same discretization mechanism we can derive an entropy residual
Ṡ measuring the correct entropy exchange rate across element boundaries ∂Ωq. The numerical
scheme’s contribution to the local entropy production at time t is then given by the surplus
entropy production rate

∆̇S(t)
∣∣∣
Ωq︸ ︷︷ ︸

surplus entropy prod.

= w(t) · u̇(t)
∣∣∣
Ωq︸ ︷︷ ︸

local entropy prod.

− Ṡ(t)
∣∣∣
∂Ωq

.︸ ︷︷ ︸
entropy exchange

(16)

For our 2D DG scheme (12) the entropy exchange rate Ṡ reads

Ṡij = − 1

ωi ∆x

(
B+
j (F∗x)+

j −B−j (F∗x)−j

)
− 1

ωj ∆y

(
B+
i (F∗y )+

i −B−i (F∗y )−i

)
(17)

with entropy projected numerical entropy fluxes (F∗x|y)
± = F∗x|y

(
ũ±L , ũ

±
R

)
. States at inner ele-

ment boundaries, for example in x-direction, are computed as ũ±j = u
(∑N

i=1 B
±
i w(uij)

)
. Of
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course, for quadrature rules with nodes at boundaries, e.g. Lobatto quadrature, the entropy
projection step is not necessary.

The numerical entropy flux for system (4) is given by

F∗(uL,uR) = {{w}} · F (uL,uR)− {{θ}}+
1

2

(
wL ·Υ(uL,uR) + wR ·Υ(uR,uL)

)
(18)

with the non-conservative two-point source term

Υ(uL,uR) = {{B}}ΦPowell(uL) + vL {{Ψ}}ΦGLM(uL). (19)

Note, we purposely omitted any (·)± to avoid notational clutter.
The local surplus entropy production rate per element is finally computed by summing over

all nodes, i.e.

∆̇S =
N∑
ij=1

(
wij · u̇ij − Ṡij

)
ωi ωj . (20)

Obviously, above surplus element production rate must always give zero or negative results,

∆̇S ≤ 0, in order to fulfill the entropy inequality (2). However, we cannot deduce if the measured
amount of surplus entropy (besides the sign) is adequate in any physical or numerical sense.

3.3 Provable Entropy Stable Schemes

Ensuring the correct sign of entropy production, namely entropy dissipation, is a crucial
property of any numerical scheme. Our derived Standard DG scheme (12) does not necessarily
fulfill the entropy inequality. Hence, additional modifications are required in order to achieve
provable entropy dissipation, resp. entropy stability. In the following, we briefly introduce two
different paths for such a modification.

The first approach is to correct any spurious entropy increase with an algebraic correction
term by subtracting surplus entropy production in a conservative and entropy consistent manner.
We coin this approach Entropy Corrected DG. The second approach is called Flux Differencing
DG and builds on the (generalized) SBP property of the DG differentiation operator.

3.3.1 Entropy Corrected DG

The algebraic correction approach is introduced in [1] for a broad range of numerical schemes.
The idea is intuitive, applicable for a wide class of equations, and is straightforward to implement.
Key element is to find a correction term r if subtracted from the residual of the standard scheme,
i.e.

u̇′ = u̇− r, (21)

such that u̇′ satisfies the element entropy inequality (20), but does not break primary conser-
vation. The two requirements define a linear system with always at least two unknowns. The
algebraic solution, according to [1], reads

rij =
wij −w

ε+
∑N

kl=1 (wkl −w)2 ωk ωl
max

(
0, ∆̇S

)
(22)
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with w =
∑N

ij=1 wij ωi ωj and the element entropy production rate ∆̇S given by (20). The

correction term (22) is conservative. The parameter ε := 10−20 prevents division by zero in case
of constant states.

3.3.2 Flux Differencing DG

Chan et al. [5] introduced a provable entropy stable DG scheme for general quadrature rules
based on the construction of generalized SBP operators [26]. Based on our DG operators (11)
they read

(DM) + (DM)T =
(
B−|B+

)(−1 0
0 1

)(
B−|B+

)T
(23)

where (B−|B+) ∈ RN×2 is the matrix of the two boundary evaluation operators in (11). The
SBP property is a direct restatement of integration-by-parts in the continuous case. Equipped
with relation (23), the the semi-discrete, weak-form DG (12) is rearranged as follows:

u̇ij = − 1

ωi ∆x

(
B+
j (F%

x )±ij −B−i (F%
x )±ij −

N∑
l=1

Sli (F#
x ){l,i}j

)
− 1

ωj ∆y

(
. . .
)

(24)

where S = DM − (DM)T is the skew-symmetric flux differencing matrix and the volume flux

operation is a telescopic sum defined by
∑N

l=1 Sli (F#
x ){l,i}j =

∑N
l=1 Sli F

#
x

(
ulj ,uij

)
. The terms

implied by “. . .” for the y-direction are constructed analogously to the x-direction and were left
out for brevity. The special surface flux reads

(F %
x )±ij = F ∗x

(
(ũ±L )j , (ũ

±
R)j
)

+ F#
x

(
ũ±j ,uij

)
−

N∑
l=1

B±l f#
x

(
ũ±j ,ulj

)
, (25)

where as before the terms at boundaries are evaluated on entropy projected states.
To obtain a provable entropy stable scheme for our system (4) we use the kinetic en-

ergy preserving and entropy conservative (KEPEC) numerical flux function given in [7] as
the central-like base flux both for the volume flux f# := fKEPEC and for the surface flux
f∗ := fKEPEC−∆Rusanov with added Rusanov-type dissipation. The non-conservative two-point
source term (19) is integrated by simply extending fKEPEC as follows [28]: fKEPEC

(
uL,uR

)
→

fKEPEC
(
uL,uR

)
+ Υ

(
uL,uR

)
.

It is important to note that in the case of Lobatto collocation nodes, the generalized Flux Dif-
ferencing scheme (24) reduces to the commonly known Flux Differencing scheme with diagonal-
norm SBP operators with a lot less computational overhead.

4 ROBUSTNESS INVESTIGATION

For the stress test of the aforementioned entropy stable DG schemes we devised our own
weakly-magnetized 2D MHD Kelvin-Helmholtz (KHI) instability setup [23]. This setup has
proven to be useful for our purposes since it starts with a smooth well resolved initial state and
gradually develops vortical, turbulent-like structures with increasingly smaller scales. Although,
the setup is generally subsonic, it locally develops transonic regions, which are very challenging
for the investigated schemes.
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The weakly-magnetized 2D MHD KHI setup is initialized in a squared and periodic domain
Ω = [−1, 1]2 and reads

ρ0(~x) =
1

2
+

3

4

(
tanh(15 (y +

1

2
))− tanh(15 (y − 1

2
))
)

(v1)0(~x) =
1

2

(
tanh(15 (y +

1

2
))− tanh(15 (y − 1

2
)) + 1

)
(26)

(v2)0(~x) =
1

10
sin(2π x), (v3)0 = 0, p0 = 1, ~B0 = (10−2, 0, 0)T ,Ψ0 = 0.

We compute the setup (26) with six variants of fourth order (N = 4) DG schemes: Standard
DG, Entropy Corrected DG, and Flux Differencing DG each with Lobatto and Gauss collocation
nodes. They are also listed in Table 1. Besides the two Standard DG variants, all schemes are
provably entropy stable. Explicit time-stepping is carried out with the SSP-RK(5,4) [16] method.
We let the simulations run on a uniform grid of 1282 elements á 42 nodes till final time T = 10.
Most schemes, however, crash beforehand, which we identify by the occurrence of nonphysical
data according to the permissible set of states given in (6). All schemes have been implemented
and run within the open source CFD framework nemo [24] written in modern Fortran.

In Figure 1 we plot the minimum and maximum surplus element entropy production rates
(20) in the whole computational domain Ω over simulation time t for all six investigated schemes.
Clearly, both Standard DG variants reveal spurious positive production rates (dashed lines) and
are the least robust schemes since they crash first at around t ≈ 3.2. Curiously, the emergence
of an unstable condition eventually leading to a crash is accompanied by extreme volatility in
entropy production. Entropy correction according to (21) successfully suppresses any spurious
entropy increase in the whole domain and at all times. Especially the variant with Gauss
quadrature becomes substantially more robust keeping the simulation running well over t > 5.
On the other hand, the Lobatto DG variant does not show significantly increased robustness
compared to Standard DG and crashes at t ≈ 3.5. A similar conclusion can also be drawn for
the Flux Differencing DG scheme with Lobatto quadrature. Contrarily, Flux Differencing with
Gauss quadrature is robust enough to successfully complete the simulation at final simulation
time.

All results are compactly summarized in Table 1, where we also compare the elapsed runtimes
the schemes consumed on a single compute core (serial execution) in order to reach simulation
time t = 2.5. Our baseline is also the fastest scheme, namely the Standard DG with Lobatto
quadrature, closely followed by the Standard DG with Gauss nodes. The costs of Entropy
Correction amounts to a reasonable increase of up to 80% in runtime while Flux Differencing
is a couple of times more expensive than the baseline. The biggest contribution to the runtime
costs for the Flux Differencing schemes are the repeated evaluations (telescopic sums) of the
rather expensive entropy conservative KEPEC flux, especially for the Gauss variant with its
tight coupling of the surface fluxes with the inner states.
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Table 1: Results of the robustness investigation for the six investigated DG variants simulating the 2D
MHD-KHI setup (26). The second column lists the time of crash according to the settings described in
the text while the third column compares the elapsed runtimes to reach simulation time t = 2.5. The
benchmark was carried out with a uniform grid of 642 elements on a single compute core (#core = 1). All
simulations took a total number of iteration steps of #steps = 1263×5 (SSP-RK(5,4)). The performance
measure throughput (TP) is defined as TP = (#steps×DOF)/(#cores× runtime).

numerical scheme time of crash runtime [s] TP [106 DOF/s] slowdown

Std. DG (Lobatto) 3.1 72.652 5.696 1.00
Std. DG (Gauss) 3.2 100.143 4.132 1.38

Entr. Corr. DG (Lobatto) 3.45 108.929 3.799 1.50
Entr. Corr. DG (Gauss) 5.3 131.164 3.155 1.80

Flux Diff. DG (Lobatto) 3.5 209.307 1.977 2.88
Flux Diff. DG (Gauss) >10 435.082 0.951 6.00

5 CONCLUSION

We have briefly derived a nodal collocation DG method for the ideal GLM-MHD equations
with special focus on the entropy balance. In order to ensure provable entropy dissipation we
introduced two alternative entropy stabilization techniques, namely, Entropy Correction and
Flux Differencing, which we investigated with regard to their robustness in simulating a two
dimensional weakly-magnetized KHI setup. Although the setup is initially smooth and subsonic
it gradually develops transonic regions of high compressibility. Such flow features are known to
be a challenge for high order schemes of low dissipation. Entropy stabilization is considered a
promising path towards improved robustness in such scenarios. In order to quantify and also
to check the correct sign of the local entropy production we introduced the concept of surplus
element entropy production.

Furthermore, we investigated the Standard DG variants with Lobatto and Gauss quadrature
rules as well as their entropy stabilization via the two aforementioned approaches. All DG
variants were fixed to fourth order in spatial accuracy and not “repaired” by any limiters such
as lifting states a-posteriori into positivity. We observed that all DG variants with Lobatto
quadrature rule are unacceptably fragile for these kind of simulations. Entropy stable DG
schemes with Gauss quadrature rules, on the other hand, are noticeably more robust.

The Entropy Correction for Gauss DG is provable entropy stable and significantly increased
the robustness in our tests. But it eventually crashed before reaching the final simulation time.
One possible explanation might be the un-boundedness of the algebraic correction terms adding
forceful source terms to the residual in case of challenging flow conditions. This might lead
to a very stiff system, whose eigenvalues lie beyond the stability region of our applied explicit
Runge-Kutta scheme. The entropy stable Flux Differencing DG with Gauss quadrature is the
only unlimited DG variant capable to successfully finish our stress test simulation, which is
remarkable! Chan et al. [6] gives further insights into the robustness properties of this scheme.

Apparently, Flux Differencing is two to three times more expensive than the algebraic cor-
rection approach. Hence, an interesting direction for future research might be to investigate the
robustness properties of Entropy Correction for weakly compressible turbulence simulations as
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2D Weakly-magnetized MHD-KHI | Evolution of Local Entropy Production Rates
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Figure 1: Evolution of minimum (solid lines) and maximum (dashed lines) surplus entropy production
rates computed by the six investigated DG variants for the weakly-magnetized MHD-KHI setup (26).

already done extensively for entropy stable Flux Differencing schemes.
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