THE IMPACT OF INCREASING AUTOMATION ON RAILWAY STAFF AND THEIR WORK

Dr. Jan Grippenkoven

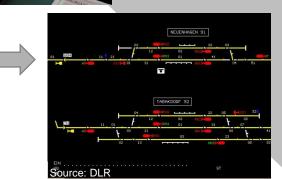
Human and Organisational Factors Conference, 2022

Valenciennes, 6-7 December 2022

Introduction: Braunschweig 1966

Braunschweig Hbf Gleis 1. Mit dem Dampfzug durch die Winternacht nach Goslar - Alltag 1966.

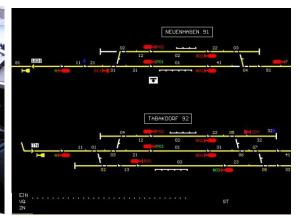
Foto: Bebensee, Slg. Stiftung Eisenbahn Archiv Braunschweig



Introduction: Braunschweig 1966

Source: ETR-Eisenbahntechnische Rundschau, 1961

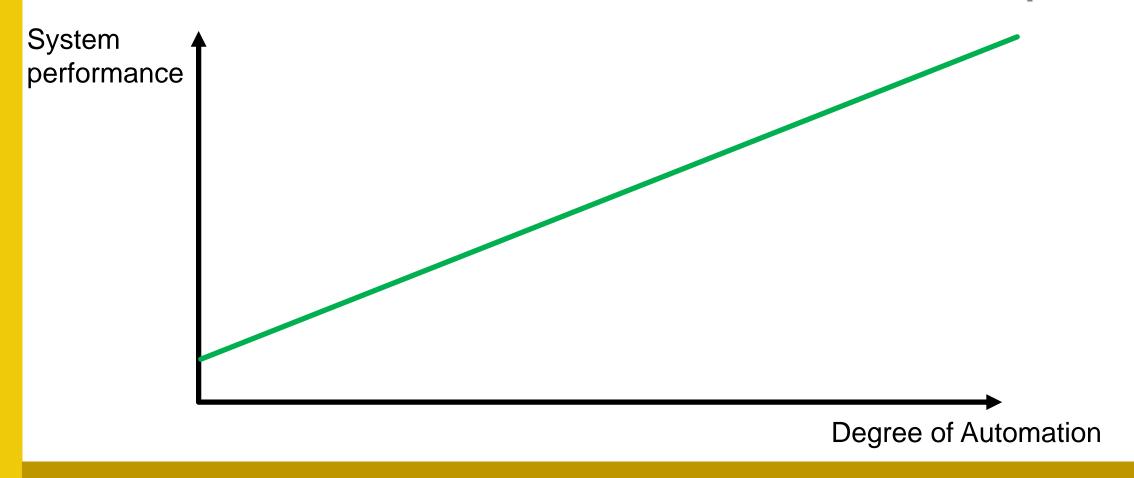
Trends in Work



Trends in Workplace Design

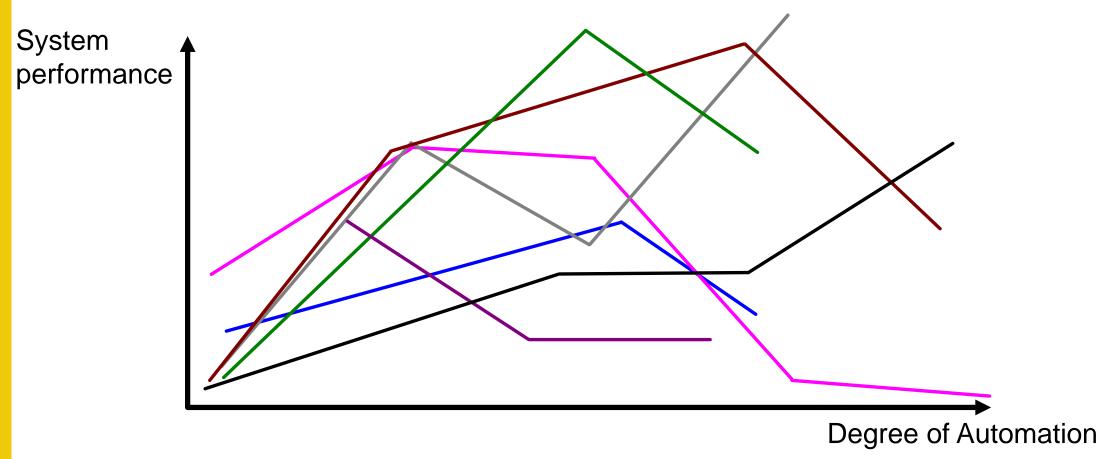
- Highly Digital
- Automated
- Remote
- Transition in work from active steering towards more and more supervision
 - → What is next?

What is next?



The future of work does not happen somewhere far in the future – in the planning of future workplaces we are creating future work right now!

Automation in human-machine interaction: The Assumption



"The higher the degree of automation, the more pressure is taken off the operator. As a result, the overall system performace will increase."

Automation in human-machine interaction: The facts

Confirmation of inconsitent effects in meta-analyses (Onnasch et al., 2014; Wickens et al., 2010)

DLR – Studies in the train driving simulator RailSet

Grade of Automation (GoA)1:

Manual operation by train driver

GoA2:

 Driver supervises train, automated regulation of speed and stopping

GoA3/4:

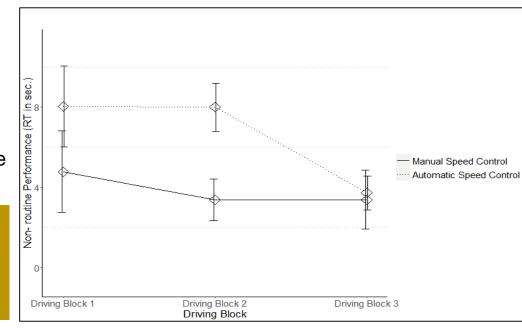
 Driver does not have to be in the cab anymore, someone has to intervene in case of irregularities

Grade of Automation	Type of train operation	Setting the train in motion	Stopping train	Door closure	Operation in event of Disruption
Grade of Automation 1	ATP with driver	Driver	Driver	Driver	Driver
Grade of Automation 2	ATP + ATO with driver	Automatic	Automatic	Driver	Driver
Grade of Automation 3	Driverless	Automatic	Automatic	Train attendant	Train attendant
Grade of Automation 4	Unattended train operation (UTO)	Automatic	Automatic	Automatic	Automatic

Source: International Association of Public Transport, 2012

What do the different grades of automation mean for the train train driver?

Human Performance in GoA 2

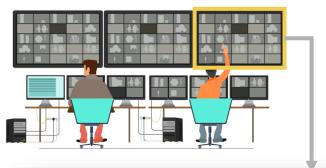

- In three simulator studies the influence of ATO over ETCS Level 2 (GoA2) was investigated from the perspective of the train driver, compared to German PZB (GoA1).
- 75 train drivers took part in the studies.
- Tasks of drivers in GoA2:
 - Relatively few speed andjustments
 - Visual supervision of environment and displays
 - Few but critical diagnoses and interventions

Results:

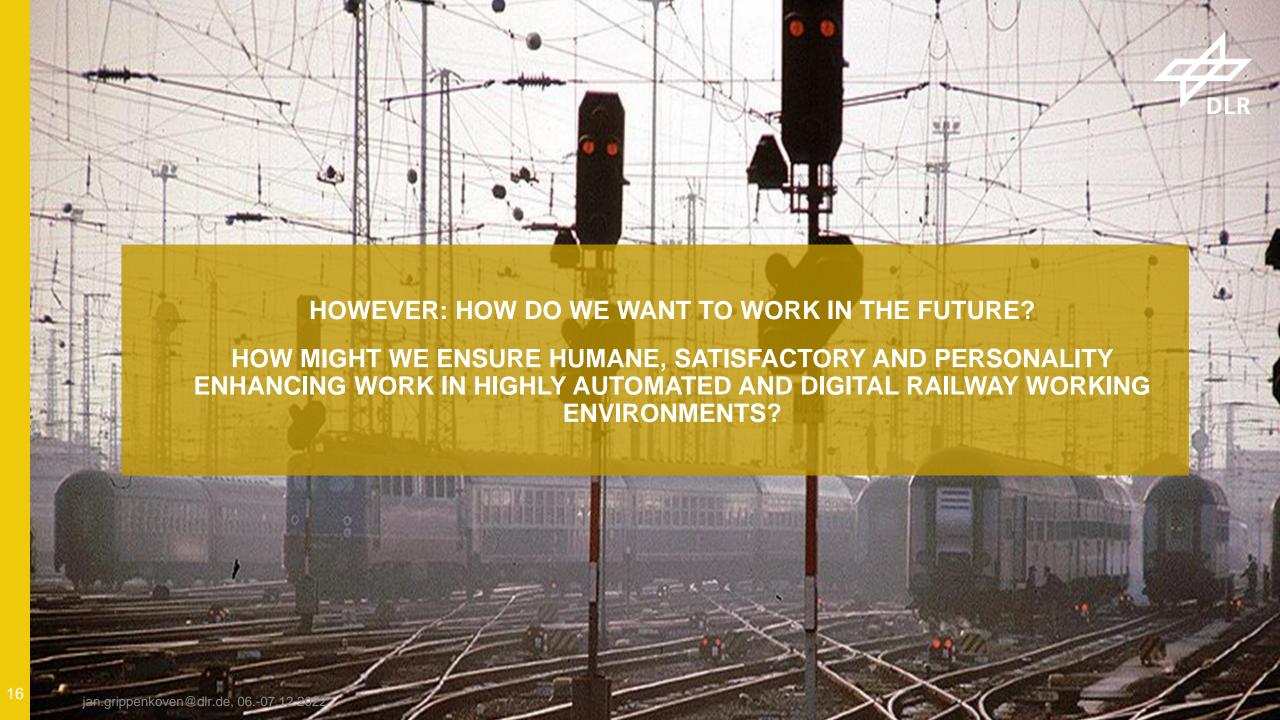
- Level of workload was reduced to a suboptimal level in routine activities
- Fatigue increased significantly
- Reaction time was significantly longer (=worse) compared to baseline condition (GoA1)
- Further Reading: <u>Brandenburger</u>, <u>Niels (2021)</u> <u>Remote Control of Automation: Workload</u>, Fatigue, and Performance in Unattended Railway Operation.
- Grippenkoven, J., Rodd, J., & Brandenburger, N. (2018). DLR-WAT: Ein Instrument zur Untersuchung des optimalen Beanspruchungsniveaus in hochautomatisierten Mensch-Maschine-Systemen.

Out of the Loop Performance Problem

- The probability of a mistake is increased, when the human operator has no own, active role in human-machine interaction anymore. (Bainbridge, 1983)
- In the case of the train driver this problem does already occurs in relatively low Grades of Automation!

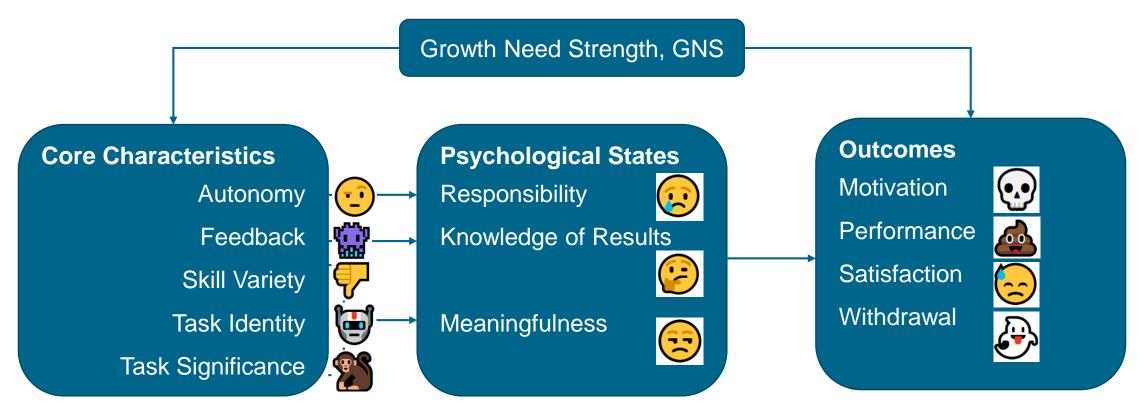

Ongoing Work: **Project ATO-Cargo**

- Design and testing of a human centered working environment for remote train operations
- Functional demonstration on Betouweroute in 2025


- Links for further reading:
- Jacob (2022) Project ATO Betuweroute
- DLR (2021) Projekt ATO-Cargo: Erprobung automatisierter
 Güterzüge

Job Characteristics Model

(Hackman and Oldham, 1976)



Job Characteristics Model → Risks of Automation

(Hackman and Oldham, 1976)

- A decrease in automation of railway systems and parts of it is changing job characteristics
 Job profiles that might be arising should be analysed and optimized regarding potential *characteristics* and outcomes that can be anticipated.

Credits: Gina Schnücker

Conclusions

- Automation has the potential to enhance the efficency of railway operations, but it entails a great risk to lead to horrific job-profiles, e.g. train"driving" in GoA2
- 2. Expertise from the field of Work and Organisational Psychology should be taken into account to create meaningful workplaces
- Human Factors need to be taken into account in the design of tasks and interfaces to counteract overload and underload as well as job-induced fatigue
- Outlook: The Human Factors and Ergonomics Society (HFES) published a <u>Human Readiness</u>
 <u>Level Scale</u> for the System Development Process. This HRL-Scale might be of great value as a quality to ensure human readiness parallel to technological readiness in developments

References

- Bainbridge, L. (1983). Ironies of automation. Automatica, 19, 775–779
- Brandenburger, N., Hörmann, H. J., Stelling, D., & Naumann, A. (2016). Tasks, skills, and competencies of future high-speed train drivers. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. doi:10.1177/0954409716676509
- Brandenburger, N. (2021). Remote Control of Automation: Workload, Fatigue, and Performance in Unattended Railway Operation. . Braunschweig: Dissertation, Technische Universität Braunschweig.
- Calhoun, G. L., Draper, M. K., & Ruff, H. A. (2009). Effect of level of automation on unmanned aerial vehicle routing task. In Proceedings of the Human Factors and Ergonomics Society 53rd annual meeting (pp. 197–201). Santa Monica, CA: Human Factors and Ergonomics Society.
- Cummings, M. L., & Mitchell, P. J. (2007). Operator scheduling strategies in supervisory control of multiple UAVs. Aerospace Science and Technology, 11, 339–348.
- Endsley, M. R., & Kiris, E. O. (1995). The out-of-the-loop performance problem and level of control in automation. Human Factors, 37, 387–394.
- Grippenkoven, J., Rodd, J., & Brandenburger, N. (2018). DLR-WAT: Ein Instrument zur Untersuchung des optimalen Beanspruchungsniveaus in hochautomatisierten Mensch-Maschine-Systemen. In AAET- Automatisiertes & vernetztes Fahren. ITS Automotive Nord.
- Hackman, J. R., & Oldham, G. R. (1976). Motivation through design of work Test of a theory. Organizational Behavior and Human Performance, 16.
- Human Factors and Ergonomics Society. (2021). ANSI/HFES 400/2021 Human Readiness Level Scale in the System Development Process. Washington, DC 20036 USA:
 Human Factors and Ergonomics Society.
- International Association of public Transport (2012) Metro automation facts, figures and trends: a global bid for automation: UITP observatory of automated metros confirms sustained growth rates for the coming years. Retrieved from www.uitp.org/metro-automation-facts-figures-and-trends. Accessed 23 Aug 2019
- Kaber, D. B., Onal, E., & Endsley, M. R. (2000). Design of automation for telerobots and the effect on performance, operator situation awareness, and subjective workload.
 Human Factors and Ergonomics in Manufacturing, 10, 409–430.
- Manzey, D., Reichenbach, J., & Onnasch, L. (2012). Human performance consequences of automated decision aids: The impact of degree of automation and system experience. Journal of Cognitive Engineering and Decision Making, 6, 57–87.
- Metzger, U., & Parasuraman, R. (2005). Automation in future air traffic management: Effects of decision aid reliability on controller performance and mental workload. Human Factors, 47, 35–49.
- Onnasch, L., Wickens, C., Li, H., & Manzey, D. (2014). Human Performance Consequences of Stages and Levels of Automation: An Integrated Meta-Analysis. *Human Factors*, 56(3), 476–488. https://doi.org/10.1177/0018720813501549
- Wickens, C., Li, H., Santamaria, A., Sebok, A., & Sarter, N. (2010). Stages and Levels of Automation: An Integrated Meta-analysis. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 54(4), 389–393. https://doi.org/10.1177/154193121005400425
- Wright, M. C., & Kaber, D. B. (2005). Effects of automation of information-processing functions on teamwork. Human Factors, 47, 50–66.

Thank you!

Contact:

Dr. Jan Grippenkoven Institute of Transportation Systems jan.grippenkoven@dlr.de 0531 295 3507