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Abstract

Inspired by human stereo vision, dense matching technique is used to reconstruct depth
information from overlapping images. Dense matching locates corresponding pixels in both
stereo images. The image coordinate difference, termed as disparity in computer vision, can
then be calculated and transformed to the depth value via known sensor orientation param-
eters, which is further simplified as the column difference for rectified images. The tech-
nique is widely applied in the field of remote sensing to create the digital surface models,
reconstruct the 3D geometry of the landscapes, detect and monitor the surface deformation,
etc., considering the sufficient data supply from advanced airborne and satellite platforms
and the increasing demands in earth observation.

The central step of the stereo method is the correspondence determination. Through the
last decades, the matching technique was developed from simply comparing single pixels or
small image patches to additionally introducing a smoothness term for a globally consistent
depth distribution, solving ambiguous correspondence assignments in difficult situations,
for example, textureless, occluded or noisy image areas, but leading to higher computational
cost. A major step forward was the introduction of Semi-Global Matching in 2005, which
takes into account pixel similarity and spatial smoothness together at linear runtime. Due
to its efficiency and robustness, it is widely used in many close range and remote sensing
applications.

Deep learning brings a new concept for vision tasks, by learning from annotated samples in
a supervised manner to acquire experience before tested on relevant data. Thus, it leads to
new possibilities for dense matching, via deeply interpreting the stereo pair and extracting
high-level features for pixel comparison and adaptive disparity determination. On the other
hand, Semi-Global Matching consists of a sequence of fixed but replaceable modules, hence,
the method leaves interfaces to be combined with a learning scheme for higher performance
in dense matching. The thesis extends Semi-Global Matching by using recently machine
learning techniques at different stages of the matching algorithm. With a main focus on
remote sensing problems, three strategies have been designed.

As mentioned above, a learning based pixel comparison for matching cost calculation is
the most intuitive attempt to enhance Semi-Global Matching. In remote sensing scenarios,
however, the reference data collection is difficult to train a neural network, especially in
challenging area with dynamic scene composition. To handle this problem, a self-supervised
strategy is proposed to train a state-of-the-art matching cost network.

Semi-Global Matching simplifies the procedure to pursue two dimensional smoothness, via
multiple one dimensional scanline optimization which could be finished within reasonable
runtime consumption. The final fusion of the scanlines is, nevertheless, an ad-hoc step with-
out a theoretical background. Therefore, we leverage a random forest to select only the most
relevant scanlines, leading to improved disparity estimation.

State-of-the-art learning based stereo algorithms acquire high accuracy for disparity pre-
diction. However, the efficiency normally cannot support the stereo processing of remote
sensing data, considering the large disparity ranges and image dimension of typical remote
sensing images. Regarding this dilemma, we design a pyramid architecture to approximate
Semi-Global Matching within an end-to-end neural network. The disparity is estimated
from coarse to fine, which highly enhances the efficiency and allows processing of big im-
ages with large disparity ranges.



ii

Zusammenfassung

In Anlehnung an das menschliche binokulare Sehen werden Methoden des maschinellen
Stereosehens verwendet um Tiefeninformation aus überlappenden Bildern zu berechnen.
Beim Dense Matching werden die einander entsprechenden Pixel in beiden Stereobildern
lokalisiert. Die Bildkoordinatendifferenz, die in der Bildverarbeitung als Disparität bezeich-
net wird, kann dann berechnet und mittels bekannten Kameraparametern in den Tiefenwert
umgewandelt werden.

Diese Technik wird in der Fernerkundung häufig eingesetzt, um digitale
Oberflächenmodelle zu erstellen, die 3D-Geometrie von Landschaften zu rekonstru-
ieren, Oberflächenverformungen zu erkennen und zu überwachen usw., da die Daten von
modernen luftgestützten und satellitengestützten Sensoren in ausreichender Menge zur
Verfügung stehen und die Bilddaten in immer höherer Qualität aufgenommen werden.

Der zentrale Schritt der Stereomethode ist die Lösung des Korrespondenzproblems.
Im Laufe der letzten Jahrzehnte wurde die Matching-Technik vom einfachen Vergleich
einzelner Pixel oder kleiner Bildausschnitte durch Einführung eines räumlichen Regu-
larisierungsschrittes einer global konsistenten Tiefenschätzung weiterentwickelt, wodurch
mehrdeutige Korrespondenzzuweisungen in schwierigen Situationen, z. B. bei texturlosen,
verdeckten oder verrauschten Bildbereichen, gelöst werden konnten, was jedoch zu höheren
Rechenzeiten führte. Ein großer Schritt nach vorn war die Einführung des Semi-Global
Matching (SGM) im Jahr 2005, das die Pixelähnlichkeit und die räumliche Regularisierung
bei linearer Laufzeit gemeinsam berücksichtigt. Aufgrund seiner Effizienz und Robustheit
wird es in vielen Nahbereichs- und Fernerkundungsanwendungen eingesetzt.

Auf Deep Learning basierte Algorithmen lernen anhand von Trainingsdaten die Lösung
von Bildverarbeitungsaufgaben. Damit können auf Deep Learning basierte Verfahren zur
dichten Stereokorrespondenzschätzung auch übergeordnete Information und Strukturen in
den Daten erkennen und für die Disparitätsbestimmung verwenden. Semi-Global Matching
besteht aus mehreren Einzelschritten, welche unabhängig voneinander implementiert wer-
den können. Ein oder mehrere Schritte im SGM Algorithmus können nun durch Deep oder
Maschine Learning basierte Verfahren ersetzt werden. Diese Dissertation untersucht ver-
schiedene Möglichkeiten zur Verbesserung des SGM durch Deep Learning basierte Module
mit einem Hauptaugenmerk auf die Anwendung für Fernerkundungsprobleme.

Ein erster, erfolgreicher Schritt war die Berechnung der Matching-Kosten für durch Neu-
ronale Netze. In der Fernerkundung ist jedoch die Sammlung für eine erfolgreiches Training
nötigen, hochgenauen Trainingsdaten insbesondere für dynamischen Szenen schwierig. Um
dieses Problem zu lösen, wird ein selbstüberwachte Trainingstrategie entwickelt, mit der ein
modernes Netzwerk zur Matchingkostenberechnung auf selbständig auf neue Datensätze
adaptiert werden kann.

Semi-Global Matching approximiert eine 2-dimensionale Regularisierung durch mehrfache
1D Scanline-Aggregation aus unterschiedlichen Richtungen und erreicht damit eine lin-
eare Laufzeit bezogen auf das rekonstruierte Volumen. Die Kombination der verschiedenen
Aggregationsrichtungen wird durch eine einfache Addition erreicht, wodurch auch Scan-
linien mit fehlerhaften Schätzungen mit einbezogen werden. Daher wird in dieser Arbeit
ein Multi-Class Random-Forest Klassifikator vorgeschlagen, der die korrekten Aggrega-
tionsrichtungen bestimmt, um fehlerhafte Richtungen auszuschliessen und somit zu einer
verbesserten Disparitätschätzung führt.

Moderne lernbasierte Stereo-Algorithmen erreichen eine hohe Genauigkeit bei der Dis-
paritätsvorhersage, benötige aber eine viel GPU-Speicher für die verarbeitung relativ
kleiner Bilder. Angesichts der großen Disparitätsbereiche und Bilddimensionen typischer
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Fernerkundungsbilder sind sie deshalb normalerweise nicht für die Stereoverarbeitung von
Fernerkundungsdaten geeignet. In Anbetracht dieses Dilemmas entwerfen wir eine Pyra-
midenarchitektur zur Annäherung an das Semi-Global Matching innerhalb eines Ende-zu-
Ende neuronalen Netzes. Die Disparität wird von grob bis fein geschätzt, was die Effizienz
erheblich steigert und die Verarbeitung großer Bilder mit großen Disparitätsbereichen
ermöglicht.
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1 Introduction 1

1 Introduction

Dense stereo matching aims at estimating the depth of every single pixel of the images for
3D reconstruction. The technique is broadly applied in the field of computer vision and re-
mote sensing, since it complements the information gap from 2D imagery with complete
3D knowledge of the world, providing additional clues to assist vision tasks (d’Angelo and
Reinartz, 2012; Yang et al., 2018; Song et al., 2020b). On the other hand, the depth informa-
tion could be acquired simply via images rather than the active sensing sensors, e.g. Light
Detection and Ranging (LiDAR), structured light projection, etc., which are more expen-
sive and demanding for data collection especially when high point density is required. The
depth of the object can be naturally perceived by humans according to the visual differ-
ence perceived between two eyes, thus 3D stereo information is acquired for better under-
standing the scene rather than utilizing the pure 2D information. Inspired by human visual
perception, dense matching exploits two cameras (or a single camera capturing the scene
at different positions) to obtain image sequences with overlap in between, from which the
displacement between the corresponding points is computed to recover the object depth.
Accordingly, the central step is locating the dense correspondences between stereo images,
which remains to be an open problem through decades due to the practical difficulties such
as lack of distinguishable texture, occlusion induced by different view points, radiometric
noises, etc. (Bleyer and Breiteneder, 2013).

1.1 Motivations and Research Challenges

With known camera intrinsic and extrinsic parameters, the stereo image pair can be rectified
such that the corresponding points lie on the same row (epipolar line) of the left and right
images. Thus, locating the correspondence is simplified as a 1D problem, leading to a stereo
result containing the horizontal displacement of each corresponding pixel pair, namely dis-
parity. In the field of computer vision, the term disparity is mostly used which is inversely
proportional to the distance of the corresponding object point from the camera (Bleyer and
Breiteneder, 2013). Hence in this thesis, we also mainly utilize disparity instead of depth
since the former is more straightforward from the matching results, simply the coordinate
difference between corresponding points. The transformation in between is simple if the
camera focal length and the stereo baseline are available. Also, we regard the input stereo
pair as rectified to exclude extra complexity and focus on the matching strategies. Stereo
matching has been applied in various fields to compute the parameters of interest, e.g. the
land height via subtracting the object depth from the flight height for Digital Surface Model
(DSM) generation in geodesy, the 3D coordinates of the scene points to create delicate object
models in virtual reality, the pose estimation for navigation and obstacle evasion in robotics
and self-driving, etc. A disparity map of an indoor tree is shown in Figure 1.1, for which the
color represents the disparity value of each point. The disparity map makes it intuitive to
perceive the distance of each leaf to the viewing camera, from long range to close position
with the color from blue to yellow.

Stereo matching is broadly applied in practice, due to its simple device setup requiring in-
expensive hardware (Murray and Little, 2000; Hirschmüller, 2011). Off-the-shelf cameras or
even smart phones can already supply the stereo input for 3D sensing. On the other hand,
the passive sensing principle makes this technique independent from other sensors with-
out interference. Therefore, the integration of multiple information sources is possible for
data fusion based estimation (Schmid et al., 2013). Among the decades, stereo matching
was firstly applied as a stereo plotter (Kelly et al., 1977), which naturally exploited its 3D
attributes to better understand the landscapes in cartography. As time goes by, the tech-
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Fig. 1.1. Stereo results of an indoor tree. The two images on the left constitute a rectified stereo pair, in which the corre-
sponding points lie on the same row. The stereo disparity map is displayed on the right, from which the depth of the scene
can be perceived. The color bar at the bottom represents the disparity range.

nique was also used to support large scale object detection for smart monitoring (Hengstler
et al., 2007) or digital surface/terrain model generation in topography mapping until re-
cent years (Gehrke et al., 2010; Shean et al., 2016). Along with the development of related
research areas including navigation, SLAM, etc., stereo matching was also utilized for arti-
ficial intelligence. German Aerospace Center (DLR) proposed the DLR crawler, which em-
ployed a synchronized stereo sensor to guide the robots in extreme terrains for search and
rescue (Görner et al., 2010). Schmid et al. (2013) combined the stereo estimation from a
Field-Programmable Gate Array (FPGA) based matching algorithm and an Inertial Mea-
surement Unit (IMU), to provide the environmental knowledge for flying robots, so that
autonomous navigation was realized for path planning and obstacles evasion. The stereo
correspondences could be further extended to the complete scene flow information for self-
driving (Menze and Geiger, 2015). In addition to the explicit depth products, stereo match-
ing can also be combined with other advanced vision tasks for more robust prediction, e.g.
semantic segmentation (Yang et al., 2018), edge detection (Song et al., 2020b), etc.

Although the dense matching technique has obtained a broad and promising practical sig-
nificance through numerous fields, it should be admitted that the disparity estimation can
still be erroneous even when assisted by powerful learning strategies (Laga et al., 2020;
Poggi et al., 2020). Locating the correspondences is natural for human vision, however,
challenging for computers considering different imaging issues especially when the stereo
acquisition is sub-optimal. As one of the most heavily studied topics in computer vision
(Scharstein and Szeliski, 2002), dense matching draws research attention to disclose the fac-
tors restricting the algorithms’ performance. Starting from the object space, photometric
or geometric matching ambiguities may happen depending on the object materials. Firstly,
the target region could be textureless, e.g. a white wall, or reflective/specular surface, e.g.
windows or mirrors, from which there is no distinctive clues to compare and locate the cor-
responding pixels of the same object. Besides, the texture can be uniform, repetitive or pe-
riodic. Thus the neighboring pixels may have similar appearance to confuse the correspon-
dence determination. It can be imagined that even humans feel difficult to judge the scene’s
depth in above situations. In addition, the object could be visible only in one image of the
stereo pair due to different viewing angles, which leads to occlusion and further increases
the matching difficulties. The visualization of the mentioned challenges is displayed in Fig-
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Textureless

Repetitive
Texture

Reflective
Surface

Occlusion

Fig. 1.2. Challenges in stereo matching, including repetitive texture as the grids on the flag, part of which is occluded by
the tree crown (occlusion also happens among leaves), reflective surface on the window, and textureless region on the wall.

ure 1.2. Moreover, problems emerge during the data collection, such as the sensor noise
which contaminates the image intensity. It is also possible that the pixels from a certain tar-
get have varied values among multi-view images, if the illumination or exposure conditions
cannot be rigidly controlled between the stereo acquisition, or simply caused by different
camera gains and biases or reflectance properties. Last but not the least, it could be dilem-
matic to decide the stereo strategies. Traditional matching algorithms (Hirschmüller, 2008;
Rothermel, 2017) have steady and robust performance across diverse data types and prac-
tical scenarios, however, suffer from challenging regions, e.g. shadows, occlusions, depth
discontinuities, etc. Better stereo results are obtained by learning based methods, including
pure data driven models such as (Dosovitskiy et al., 2015; Mayer et al., 2016) or hybrid of
learning and engineered algorithms (Kendall et al., 2017; Seki and Pollefeys, 2017; Chang
and Chen, 2018). Nevertheless, a large amount of well-annotated training data is needed to
reach the network’s best performance, which is cumbersome and time-consuming. It should
be mentioned that the top-ranking methods on Middlebury benchmark (Scharstein et al.,
2014) are still conventional ones, when limited training data are available.

1.2 Objectives

In order to promote the development of dense stereo matching, the thesis stays with the
machine/deep learning (Mitchell, 1997; Goodfellow et al., 2016) side to utilize its powerful
data representation ability for better feature extraction, cost aggregation, etc, to search the
dense correspondences between the stereo pair. Following the pipeline of a general stereo
algorithm (see Chapter 2), the thesis aims at improving the state-of-the-art methods regard-
ing each stereo unit or an overall optimization, with a focus on remote sensing applications.
The objectives of the thesis are summarized as follows:

� Learning based matching cost optimization
Matching cost calculation is the first step in stereo matching, which measures the

photometric consistency between potentially matching points. With learning based algo-
rithms, high level features are extracted for pixel comparison leading to much better per-
formance than using pure image intensity. However, suitable training data is not always
available to supervise a well-performed model, especially in the field of remote sensing.
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Therefore, a self-supervised strategy is promising to train a learning based matching cost
algorithm, without the need of cumbersome ground truth data collection.

ForDroughtDet is a research project (FKZ: 22WB410602), which concentrates on
detecting the physiological and morphological status of trees under drought stress
according to the geometric deformation. The research target is wild trees, thus common
3D detection technique such as LiDAR is not feasible for a continuous laser scanning to
acquire the point cloud, due to possible shaking of the leaves caused by wind. Hence,
the project raises a practical challenge, to construct 3D models of wild trees, for which a
self-supervised stereo matching strategy is appropriate.

� Learning based cost regularization
In addition to measuring the similarity of the target pixels, the disparity distribution

within the neighborhood should also be considered to guarantee a smooth result.
Semi-Global Matching (SGM) well approximates a 2D Markov Random Field (MRF) via
multiple 1D scanline optimizations. However, the quality of each scanline’s prediction
varies a lot, depending on the specific scene structure. SGM empirically sums up the en-
ergy of all the scanlines without a theoretical background, which can result in inaccurate
depth prediction, e.g. at slanted surfaces, disparity discontinuities, etc. Hence, a learning
based algorithm should be proposed to adaptively select better performing scanlines and
ignore the others, for further disparity estimation.

� Learning based end-to-end stereo matching
The whole stereo matching pipeline can be approximated as a differentiable and train-

able deep neural network, to directly predict a disparity map from a stereo pair. With ev-
ery single stereo module supervised, the performance is further enhanced, even achieving
accurate depth estimation in ill-posed regions. Nevertheless, most state-of-the-art end-to-
end methods are only tested on close-range data, for which the great performance is not
well generalized in remote sensing for airborne and spaceborne stereo tasks. Considering
the large data amount and wide stereo baselines, the stereo matching can be memory-
hungry and time-consuming. Therefore, an efficient end-to-end neural network is promis-
ing to handle large scale remote sensing data with reasonable runtime consumed.

Considering the above mentioned problems of lacking training data for learning strategies,
a self-supervision scheme, a simple model with low training data demand, and a highly
efficient neural networks trained by synthetic or automatically annotated ground truth are
proposed. In addition, a remote sensing project is used as a case study to support the thesis
from a practical point of view.

1.3 Dissertation Organization

The dissertation is based on the Ph.D’s research work in dense stereo matching, which is
tested and applied in the fields of remote sensing and computer vision. 3 published peer-
reviewed journal papers support the dissertation:

� Xia, Y., d’Angelo, P., Tian, J., Fraundorfer, F. and Reinartz, P., 2019. Self-supervised
convolutional neural networks for plant reconstruction using stereo imagery. Pho-
togrammetric Engineering & Remote Sensing, 85(5), pp.389-399.

� Xia, Y., d’Angelo, P., Tian, J., Fraundorfer, F. and Reinartz, P., 2020. Multi-label learning
based semi-global matching forest. Remote Sensing, 12(7), p.1069.

� Xia, Y., d’Angelo, P., Fraundorfer, F., Tian, J., Fuentes Reyes, M. and Reinartz, P., 2022.
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GA-Net-Pyramid: An efficient end-to-end network for dense matching. Remote Sens-
ing, 14(8), p.1942.

The publications are attached in the appendix. In Chapter 2, the theoretical background of
dense matching is provided, with an emphasis on binocular stereo, and a brief introduction
of monocular and multi-view stereo. Chapter 3 reviews the state-of-the-art stereo matching
techniques and the corresponding stereo datasets for benchmarking the algorithms. Then
the Ph.D’s work is summarized in Chapter 4, which keeps promoting the development of
dense matching, from matching cost optimization, adaptive cost aggregation, to full end-to-
end depth estimation based on neural networks. At last, Chapter 5 concludes the thesis and
points out the future research.
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2 Basics

This chapter introduces the basics in dense matching, from theoretical processing steps to
concrete schemes in practice. Classical stereo techniques are introduced, followed by recent
learning based research. The fundamentals guide the Ph.D’s work to propose new methods
and strategies for dense matching. At the end, monocular and multi-view stereo are briefly
reviewed, as the main focus is on binocular methods.

2.1 Binocular Stereo

In computer vision, stereo images could be obtained using two cameras with a certain dis-
placement in between as the stereo baseline. Binocular dense matching basically locates the
stereo correspondences between two images, which are essentially the projections from the
same object points. Based on assumptions of camera calibration and epipolar rectification,
the term disparity is proposed as the horizontal relative displacement of corresponding pix-
els. Thus, a disparity map is calculated containing the disparity values of all the pixels,
which can be easily transformed to the depth of the scene as Equation 2.1 (Hartley and
Zisserman, 2004). Accordingly, a virtual 3D view could be obtained for better scene under-
standing as shown in Figure 2.1.

Depth =
Baseline ×Focal Length

Disparity
. (2.1)

Fig. 2.1. Binocular stereo 3D reconstruction (Bleyer and Breiteneder, 2013). Stereo matching locates the corresponding
pixels from two 2D images. The disparity is thus calculated as the relative displacement in between, from which a 3D view
of the scene could be recovered.
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Specifically, a disparity space image (DSI) is defined in which a probability is assigned to
each element (x0, y0,d0) within the disparity space, to represent the likelihood of a match
between (x0, y0) in the reference frame and (x0 − d0, y0) in the target frame. Dense stereo
matching aims at estimating a surface within the DSI to best fit the geometric state of the
object as displayed in Figure 2.2, either based on the lowest matching cost locally or addi-
tionally considering a spatial (piecewise) smoothness globally. However, a series of stereo
rules should be assumed and obeyed to pursue the theoretically optimal disparity arrange-
ment (Intille and Bobick, 1994). For each point from a frame, its corresponding point in
the other frame should be located on a certain line and vice versa as shown in Figure 2.3.
The line is termed as epipolar line (L1 and L2), which is the intersection of the image plane
and the epipolar plane containing the object point (T) and the baseline (O1O2). Thus, the
correspondence search is simplified from 2D to 1D. Depending on the scene depth, the dis-
parity is limited to a certain range. In addition to this hard constraint, there are several soft
constraints in stereo matching, which should be followed in general but could be violated in
special situations. Firstly, corresponding points should have similar pixel intensities as they
originate from the same object point. However, this rule is not valid if different illumination
or exposure conditions are applied on each image, or noise exists. Secondly, neighboring
pixels should have the same or similar disparities to ensure the smoothness of the recon-
structed surface, except for regions with depth discontinuities. Thirdly, each image point
should have up to one corresponding point in the other image, with the exception that oc-
clusions occur that lead to no matches. Besides, this rule cannot hold when several object
points lie along the same projection axis. In Figure 2.3, the pixel q1 could be matched to any
pixel among q2, p2 and t2. Finally, points from a certain surface should be projected onto
both image frames in the same order. In Figure 2.4 (a), the projections of Q, P and T on the
left image q1, p1 and t1 have the same order as on the right image q2, p2 and t2. This rule,
nevertheless, cannot be applied on transparent targets as in Figure 2.4 (b) or violated by
occlusions resulting in missing image points.

(x0-d0, y0)(x0, y0)

(a) Disparity space (b) Object space (c) The dispairty along a row of
the reference frame

x

y

d

x

d

x0

d0

(x0, y0, d0) (X, Y, Z)

reference target

Fig. 2.2. Disparity determination through the disparity space for locating the correspondences. The element (x0, y0,d0) in
the disparity space should have the highest probability within the DSI, assuming (x0, y0) and (x0 − d0, y0) are the corre-
sponding projections from the object point (X,Y ,Z) on the reference and target frame, respectively.

With the above stereo rules or constraints, diverse strategies have been designed to locate
the dense correspondences between the stereo pair. For a better study of the stereo problem
and to facilitate the algorithm design, the dense matching procedure is detached as a series
of standard processing units (Scharstein and Szeliski, 2002), from which the overwhelming
majority of stereo matching methods could find its own prototype.

2.1.1 Matching Cost Computation
The first step is to calculate the matching cost, which measures the photo consistency or
similarity between potentially matched points to locate the corresponding pair. An intuitive
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Fig. 2.3. Stereo epipolar geometry. The corresponding point for q1 could be located exclusively through the epipolar line
L2 in another image. Thus, the stereo matching is highly simplified from 2D to 1D.
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Fig. 2.4. The ordering rule in stereo matching. Normally, the order of the image points from the same targets should be
consistent in each of the image, as (a). However, the rule is not valid for transparent objects, e.g. in (b).

measurement could be absolute intensity differences (AD) (Kanade et al., 1995), squared
intensity differences (SD) (Hannah, 1974; Anandan, 1989; Matthies et al., 1989; Simoncelli
et al., 1991), or normalized cross-correlation (Hannah, 1974; Ryan et al., 1980; Bolles, 1993).
Computing the similarity metrics using the above standards is straightforwad, nevertheless,
the performance is drastically affected in practice by non-Lambertian reflectance, radiomet-
ric inconsistency, imaging noise, etc. A simple modification is to calculate the gradient of
the intensity or color before comparing the pixels, or applying more advanced metrics such
as mutual information (MI) (Viola and Wells, 1995) to compare the image entropy, Rank and
Census transforms (Zabih and Woodfill, 1994) using robust non-parametric measures, etc.
For example, Census models the intensity varieties within the neighborhood surrounding
each pixel for comparison. The neighbors with lower intensities than the central pixel are
assigned with a number of 0, otherwise with 1. A bit string is thus constructed for each pixel
from the surrounding patch, to be compared with the string of other pixels for matching cost
computation which is more insensitive to radiometric differences.

2.1.2 Cost (Support) Aggregation and Disparity Computation
For each pixel p from the reference frame, a naive strategy to find its corresponding point
would be searching within the target frame pixel by pixel along the epipolar line, until the
pixel resulting in the lowest matching is located, as Equation 2.2.

dp = argmin
dmin≤d≤dmax

C(p,p − d). (2.2)

In the above equation, C measures the matching cost between p in the reference frame and
p − d in the target frame, under the disparity constraint as d ∈ [dmin,dmax]. This strategy is
named as winner-take-all (WTA). However, the resultant disparity map could be very noisy,
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since the information from a single pixel cannot exclusively locate its corresponding pixel
from another image. Given the data ambiguity, matching outliers may occur as more than
one pixel could result in a local minimum of the matching cost.

Hence, a stereo matching pipeline also extracts the neighboring information within a sur-
rounding region for each pixel, to aggregate the cost and execute a region or window based
comparison. It should be noted that a matching cost algorithm normally considers this spa-
tial aggregation already, to explicitly include the neighboring pixels for the cost calculation
as Equation 2.3, or propose a feature to represent the surrounding patch for further process-
ing, e.g. Census.

dp = argmin
dmin≤d≤dmax

∑
q∈Np

C(q,q − d). (2.3)

In the above equation, all the pixels q contained by the window Np centered at p, as a sup-
port region, are taken into consideration for the cost aggregation. However in practice, it
should be noted that the neighboring pixels cannot equally contribute to the central pixel
to aggregate the matching cost, since they may originate from multiple depth planes lead-
ing to contradictive disparity determination. Regarding to this problem, a solution could be
designed via two strategies. Firstly, setting an appropriate size and shape for the support
region to include pixels from the same category, limiting pixels from other categories. A
small surrounding window can limit the influence from uncorrelated points, nevertheless,
resulting in a noisy depth estimation as the naive strategy in Equation 2.2. On the other
hand, a large support region might lead to a blurred disparity map, with edge fattening or
lost details. Hence, Fusiello et al. (1997) directly check nine square windows at different
image locations, in order to avoid covering pixels from a different category through at least
one window. Hirschmüller et al. (2002) cut the support window into 5 (or 9) sub-regions,
with one of them at the center and the other 4 (or 8) sub-windows outside. At last, only
the central sub-window and 2 (or 4) outer sub-windows with the best correlation scores are
used for the cost aggregation. In Veksler (2002), the size and shape of the support window
are simultaneously optimized using a large amount of compact windows, with a low ratio
of perimeter to area.

Besides determining a suitable size or shape for the support window, it is also feasible to
assign a weight to each neighboring pixel for the cost aggregation as:

dp = argmin
dmin≤d≤dmax

∑
q∈Np

ωq ·C(q,q − d), (2.4)

in which ωq indicates the contribution from a neighboring pixel q to determine the central
pixel’s disparity estimation. Thus, the cost aggregation within a homogeneous region can be
satisfied by adjusting the weight of each neighbor from the support window. The support
weight of each neighboring pixel is defined according to its relationship with the center. An
intuitive clue could be the pixel intensity (or color) difference and spatial distance (Yoon
and Kweon, 2005). It is natural to believe that homogeneous pixels would share similar
appearances and close coordinates within an image, as they belong to a common target from
the scene. Hence, ωq is formulated as:

ωq = exp
(
−
(
|I(p)− I(q)|

ρI
+
||p − q||
ρD

))
. (2.5)

In Equation 2.5, |I(p)−I(q)|measures the intensity difference between the central pixel p and
one of its neighbor pixels q, while ||p − q|| represents the Euclidean distance in between. ρI
and ρD can be additionally defined by users to balance the two terms. From the equation, the
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spatially more close neighboring points owning similar intensity values will acquire higher
importance to determine the central pixel’s disparity.

Hosni et al. (2009) argue that the rule on the pixel intensity and spatial distance might be
violated, if a neighboring point originates from another object on a different depth plane
but with a similar appearance, e.g. the neighboring leaves in Figure 1.1. Therefore, they
propose their geodesic stereo by selecting homogeneous neighbors via the spatial connec-
tivity. Homogeneous neighboring pixels would be ensured, if a path, constituted by pixels
with similar intensity or color, exists to connect the central and the neighboring pixel. Ac-
cordingly, the weight of each neighbor is calculated as:

ωq = exp

−minG∈Gp,q I(G)

ρG

 with I(G) =
∑∣∣∣I(q)− I(q′)

∣∣∣ . (2.6)

In the above equation, G is one of the possible geodesic paths from Gp,q, which connect the
center p and the neighbor q within the support region in all possible cases. ρG is also a user-
defined parameter for controlling the smoothness of the disparity map. I(G) computes the
path cost, via summarizing the intensity differences between all the neighboring pixels q
and q′ along the path. The method is tested on the Middlebury data and proven to achieve
a superior performance (Hosni et al., 2009).

Locating the corresponding pixel with the support from certain neighboring pixels is nom-
inated as local stereo methods, since only one surrounding patch is considered for each
pixel to determine the disparity. Based on the strategy to adaptively set the support win-
dow size and support neighboring weights, the local methods promote the stereo match-
ing techniques and produce high quality 3D results on stereo benchmarks, e.g. Middlebury
(Scharstein and Szeliski, 2002). However, local methods might achieve very poor results in
practice, e.g. for large textureless area, due to that a support window can only provide local
and regional information. In addition, occlusions which are hard to process in local meth-
ods, have to be handled in the post-processing. Therefore, another category of stereo meth-
ods, global methods, are proposed to globally sense the scene and estimate the disparity.
Finding a disparity value leading to low matching cost is only part of the optimization tar-
get in global methods, besides, the spatially neighboring pixels should also acquire similar
disparity predictions in order to achieve the spatial smoothness. The two targets are named
as data term and smoothness term, respectively, which are jointly considered in global stereo
methods so that a global cost or energy minimization is obtained from all the pixels. Local
methods essentially also consider the smoothness term implicitly within the support win-
dow, via assuming a common disparity value shared among the neighbors. Global methods,
nevertheless, emphasize the smoothness explicitly in the optimization function as:

E(D) =
∑
p∈I

C(p,D(p)) +λ ·
∑
{p,q}∈N

S (D(p),D(q)) , (2.7)

in whichD denotes a disparity map for the reference frame I . The first term on the right side
of the equation is the data term, which calculates the accumulative matching cost of all the
pixels p, assuming D as the disparity results. The second term, smoothness term, penalizes
(increases) the energy function if the smoothness requirement is disrupted by a pairwise
neighboring pixels {p,q}. Similar to the scheme of support weights setting in local methods,
the penalization can be adjusted according to the difference between the neighboring points’
intensity. Thus, the optimization is capable of encouraging varying disparities over poten-
tially heterogeneous pixels, rather than an overall smoothing leading to blurred results. λ
adjusts the influence of the smoothness terms. With λ = 0, the optimization degenerates to
local methods.
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A global method thus aims at computing a disparity map D, for which Equation 2.7 will
find its minimum. In practice, the optimization considering the smoothness term in 2D is an
np-complete problem (Boykov et al., 2001), since that the disparity determination of every
pixel will affect every other pixel causing the ”Knock-on” effect. A disparity map optimally
satisfying Equation 2.7 cannot be solved in polynomial time, however, there are different
strategies to approximate the global energy minimization.

Graph cuts (Boykov et al., 2001) is a commonly used technique to approximate the energy
minimization. A graph is constructed with its nodes and edges formed by the image pix-
els and the corresponding relationship among them. In stereo matching, the optimization
starts from an initial disparity map, which could be randomly initiated, and then iteratively
converges towards the global minimum via a sequence of moves. Each move adjusts the dis-
parity value of each pixel and has to result in a reduced or at least unchanged energy. By
computing the minimum cut or maximum flow within the graph, the moves correspond-
ing to the largest energy reduction can be found. Graph cuts achieves great performance in
optimization problem, nevertheless, the calculation is time-consuming. Geman and Geman
(1984) attempt to protect the disparity discontinuities via a Markov Random Fields (MRFs)
based energy function. The global energy minimization is pursued via Maximum a Poste-
rior estimate of the image. The global optimization can also be approached based on Belief
Propagation (BP) (Felzenszwalb and Huttenlocher, 2004), which passes messages between
neighboring pixels to express a pixel’s belief for its neighbor’s disparity assignment.

The np-complete problem in the general form of global methods (Equation 2.7) is caused by
mutual influence among pixels for the respective smoothness requirement. Hence, an intu-
itive solution to approximate the energy minimization would be simplifying the optimiza-
tion from 2D to 1D, by only considering neighbors along a directed 1D path as a scanline
optimization task (Scharstein and Szeliski, 2002). Thus, each pixel can be processed inde-
pendently through the scanline it belongs to for the smoothness term. However, this strategy
also leads to an independent disparity estimation line by line, which breaks the 2D spatial
relationship and causes the streaking problem.

Since that 1D scanline optimization is computationally possible, researchers attempt to ap-
ply it in multiple directions, which doesn’t increase the theoretical complexity but better
approximates the 2D smoothness expected by global methods. This idea led to the develop-
ment of Semi-Global Matching (SGM) (Hirschmüller, 2008), a milestone of stereo matching
algorithms. The algorithm constructs the energy function in form of global stereo methods
containing both data and smoothness term, however, summarizes the energy along multiple
1D scanlines with different directions, typically 8 or 16 canonical scanlines in horizontal,
vertical or diagonal direction, to determine the disparity results according to the minimum
summarized energy as WTA in local stereo methods. Hence, a good compromise is obtained
between accuracy and efficiency.

The schematic visualization of SGM is shown in Figure 2.5. For each pixel p, the disparity is
determined according to the corresponding matching cost together with the disparity result
from its previous neighbor along a scanline. Thus, 1D smoothness is satisfied via scanning
through the path, pixel by pixel, from the image border to the target point. With multiple
1D scanlines visited, the 2D smoothness is approximated. In Equation 2.8, the energy of
traversing a scanline in direction r for a pixel at image location p is defined.

Lr(p,d) = C(p,d) + min(Lr(p − r,d), Lr(p − r,d − 1) + P1,

Lr(p − r,d + 1) + P1, mini Lr(p − r, i) + P2 ) .
(2.8)

Lr(p,d) denotes the energy for a disparity candidate d. C(p,d) is the data term under the
current parallax, which could be computed using different matching cost algorithms, e.g.
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Fig. 2.5. The cost aggregation along a single scanline and the strategy in SGM to visit each pixel through multiple scanlines,
assuming 16 scanlines are used (Hirschmüller, 2008). From the image border, the disparity is continuously predicted for
each pixel to support the next pixel’s estimation along a directed path for smoothness. With the same procedure repeated
along multiple scanlines, the 2D smoothness is approximated for each pixel.

Census or MI, and adjusted according to the specific scenario. The rest of the equation rep-
resents the smoothness term. With different options to aggregate the previous pixel p − r,
the minimum energy is calculated from either a consistent disparity estimation, or a con-
flicting disparity selection with an additional penalty term for smoothness. Depending on
the magnitude of the disparity inconsistency, P1 or P2 is applied for punishing only 1 or
larger disparity difference, respectively (P2 > P1). By summarizing the energy via multiple
1D scanlines, the disparity corresponding to the minimum summarized energy will be the
final result, using the WTA strategy.

dp = argmin
dmin≤d≤dmax

S(p,d) with S(p,d) =
∑
r

Lr(p,d). (2.9)

SGM is widely applied in computer vision and photogrammetry, thanks to its high robust-
ness and its good accuracy-efficiency balance. However, there is still space to improve the
algorithm. For example, the penalty terms applied in Equation 2.8 prefer fronto-parallel
surface, which is not always present in the scene and might lead to a biased estimation.
Therefore in Banz et al. (2012), an adaptive strategy to adjust the penalty functions is sug-
gested, according to the gradients of the image intensities. Facciolo et al. (2015) construct
a more compact 2D scanline aggregation, by additionally using the 1D scanlines visited
already. Rothermel (2017) proposes tSGM, which uses a dynamic search range of dispar-
ity based on a pyramid architecture, achieving higher efficiency. Lu et al. (2021) design an
efficient architecture for real-time SGM implementation.

2.1.3 Post-Processing
The matching cost computation provides an initial dissimilarity measurement between po-
tentially matched pixels under a disparity candidate. Then, before further disparity esti-
mation, neighboring pixels are included in the calculation so that the context around the
target pixel is perceived to avoid mismatch due to ambiguous pixels. In addition, the spa-
tial smoothness is guaranteed by limiting the disparity differences between neighboring
points. The obtained disparity map, however, may still need refinement via a series of post-
processing steps (Scharstein and Szeliski, 2002).

Firstly, the disparity prediction is essentially a selection from a set of pre-defined candidate
values, which satisfies the WTA principle leading to the lowest matching cost, or globally
achieves the best balance between matching cost and depth consistency. Thus, the corre-
sponding disparity map is discretized. In order to obtain continuous depth values with sub-
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pixel accuracy, a quadratic curve can be used to fit the cost values with respect to certain
disparity candidates, at least 3, and locate a more precise disparity value at the curve’s bot-
tom.

Besides, occlusions could happen when only one of the stereo images captures the target
point. The occluded pixels can be detected via a left-right consistency check (Cochran and
Medioni, 1992; Fua, 1993). A cross-check between the disparity results regarding the left
and right image as the reference frame, respectively, would indicate the occluded regions
with inconsistent estimation. Hence, the disparity prediction of the corresponding regions
is removed. An interpolation using neighboring pixels with valid disparity estimation can be
implemented to compensate these ”disparity holes”. In addition, median or bilateral filters
are also used as post-processing to correct noisy estimation, e.g. caused by mismatches.

2.2 Machine/Deep Learning Assisted Stereo

As the development of machine and deep learning (Mitchell, 1997; Goodfellow et al., 2016),
the dense matching technique has boosted its performance with a better understanding of
the data, a deeper representation of the features, a improved parameterization of the opti-
mization function under a trainable framework, etc. The learning capability can be applied
to stereo matching in two forms: replacing a conventional matching step with a supervised
module as Figure 2.6 or pure learning based end-to-end architecture as Figure 2.7 (see de-
tails in Chapter 3).

Matching Cost
Computation

Cost Aggregation & 
Disparity Computation

Post-Processing

MC-CNN

SGM-Forest

SGM-Net

Detect, Replace, Refine

Collaborative Regularizer

Fig. 2.6. Deep learning assisted stereo matching (Zbontar and LeCun, 2016; Gidaris and Komodakis, 2017; Seki and Polle-
feys, 2017; Schönberger et al., 2018; Knöbelreiter and Pock, 2019). Along the conventional processing pipeline, each mod-
ule can be supervised for better feature representation to calculate the matching cost, smarter strategy to aggregate neigh-
boring pixels and penalize disparity inconsistency, and learning based post-processing to refine the results.

In the first category, certain stereo matching steps can be substituted by a learning unit and
integrated into a conventional algorithm. For example in Zbontar and LeCun (2016), the
pixel comparison is built on features extracted by a network for matching cost computa-
tion. Thus, a trained model is capable of automatically locating an appropriate surrounding
region of the target pixel for similarity measurement and providing high level features to
calculate the matching cost. Afterwards, SGM is applied for cost aggregation and disparity
estimation. A very important advantage for this hybrid of conventional wisdom and deep
learning is that less data are needed to train a well-performed model, thanks to the relatively
simple structure focusing on a certain sub-task. For the same reason, overfitting is less likely
to happen, e.g. in Xia et al. (2018) the pre-trained MC-CNN model on Middlebury dataset
is directly used for plant stereo reconstruction.

Recently, state-of-the-art deep learning techniques (He et al., 2016; Chen et al., 2018) and
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Feature Extraction Cost Aggregation Disparity Computation

Fig. 2.7. Representative end-to-end neural networks for stereo matching (Kendall et al., 2017; Chang and Chen, 2018;
Zhang et al., 2019). The entire stereo matching procedure is fully differentiable and trainable, from feature extraction,
cost volume generation and regularization, to disparity prediction at the end. Thus, a disparity map can be output directly
from a stereo pair.

abundant well-annotated training data (Mayer et al., 2016) have built a solid basis to con-
struct a full end-to-end neural network for stereo matching. From an input stereo pair, a
network can be supervised to predict the disparity values directly. In Figure 2.7, we list
some representative end-to-end algorithms, including GC-Net (Kendall et al., 2017), PSM-
Net (Chang and Chen, 2018), GA-Net (Zhang et al., 2019). These neural networks mainly
include a feature extraction module, a cost regularization module and a disparity regres-
sion module. From each stereo pair, the features are learned and compared to generate a
cost volume. The cost can roughly indicate the probability of each disparity candidate to
be correct, for which an encoder-decoder is usually exploited to further regularize the cost
volume so that a larger receptive field is obtained and the spatial relationship within the
neighborhood is utilized. Thus, the disparity is calculated as the weighted summation of
each disparity candidate according to its corresponding probability. It should be mentioned
that the post-processing can also be included within an end-to-end architecture, such as
Pang et al. (2017), with a disparity map predicted and refined together.
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2.3 Monocular and Multi-View Stereo

Binocular stereo matching simulates human eyes to perceive the scene depth with two cam-
eras pointing towards the object, from which a stereo image pair is acquired and a dispar-
ity map indicating the displacement of corresponding pixels is calculated to represent the
depth. However, the stereo input could vary when only one or multiple images of the scene
are available, depending on the specific imaging situation in practice as shown in Figure 2.8.
Accordingly, the technique of monocular and multi-view stereo matching is developed.

(a) Monocular stereo (b) Multi-View stereo

Fig. 2.8. Monocular and multi-view stereo acquisition. In monocular stereo, only a certain view of the scene is obtained,
which makes the depth sensing an ill-posed problem. In multi-view stereo, a sequence of images (at least two) are captured
around the target scene or object. Detailed 3D reconstruction can be achieved with fewer occlusions and reduced stereo
errors thanks to additional views.

Monocular stereo matching is theoretically an ill-posed problem, since that the geometric
setup to triangulate the target is broken with one of the stereo images removed. As dis-
played in Figure 2.3, the image point q1 might correspond to any of the object points Q,
P and T along the optical axis, without the support from the second frame. Monocular
depth inference is traditionally realized with the aid of active depth sensors, such as RGB-D
cameras and LiDAR scanners (Zhao et al., 2020). The practical use of these sensors, never-
theless, can be harmed due to complex environmental factors such as varying illumination,
large depth ranges as in aerial and satellite altimetry, or dense depth estimation require-
ment, etc. Hence, current researches focus on solving the problem via a data-driven strategy
(Garg et al., 2016; Fu et al., 2018; Chakravarty et al., 2019; Facil et al., 2019; Wang et al.,
2019). A network can be trained to perceive the monocular depth according to the scene
logic, structure information, relative positions and orientations among objects, etc. (Hoiem
et al., 2005). The supervision clues could be obtained either from the differences between
the predicted and ground truth depth values, or the geometric constraints on the camera
pose when the ground truth is not available or expensive to collect (Zhao et al., 2020). In
addition, multiple sub-tasks can be constructed to assist the depth prediction according to
the relationship among the tasks, such as the joint estimation of monocular depth, optical
flow and ego-motion in Yin and Shi (2018).

Given that multiple images of a certain scene or object, it is natural to believe that a higher
quality of 3D reconstruction can be achieved with additional knowledge acquired from ex-
tra views. Besides, occlusions are less likely to happen. Thus, multi-view stereo matching
is proposed to build a more complete 3D model with better details. Regarding one of the
stereo images as the reference frame, an intuitive scheme would be computing the match-
ing cost of a reference pixel with respect to the pixels from the other images according to
each depth candidate (Okutomi and Kanade, 1991). The final prediction can be the depth
corresponding to the minimum sum of matching cost scores. Also, a series of depth planes
can be defined, on which each input image is projected. The optimal depth is thus the one



16

leading to the most harmony stack of projections (Collins, 1996), e.g. acquiring the lowest
pixel value variance (Yang and Pollefeys, 2003). In order to better organize and study multi-
view stereo, Seitz et al. (2006) extract the core properties of different algorithms to construct
a guideline. Firstly, a format should be decided to represent the multi-view reconstruction,
e.g. via voxels, meshes, level-sets, or simply depth maps as binocular stereo. Afterwards,
an optimization target is defined to check the quality of the resultant 3D models, such as
photo-consistency and silhouette-consistency (Kutulakos and Seitz, 1999). The visibility is
modelled to consider certain views for measuring the consistency. Similar to binocular dense
matching, some prior requirements are imposed on the shape of the reconstructed models,
e.g. minimal surfaces preference (Tasdizen and Whitaker, 2004), together with the consis-
tency check. Thus, a more precise geometry can be recovered even for low-textured regions.
At last, an optimization strategy should be designed to minimize the cost/energy function,
so that an optimal surface is extracted (Seitz and Dyer, 1997; Kolmogorov and Zabih, 2002;
Vogiatzis et al., 2005) or iteratively fitting to the constructed 3D volume (Kutulakos and
Seitz, 1999; Slabaugh et al., 2004). It should be mentioned that, many algorithms enforce
some pre-requirements on the geometry of the objects or scenes for a better reconstruc-
tion, e.g. a bounding box (Kutulakos and Seitz, 1999; Slabaugh et al., 2004), foreground and
background segmentation (Vogiatzis et al., 2005) or limited depth ranges (Kolmogorov and
Zabih, 2002; Zitnick et al., 2004), etc.
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3 State-of-the-Art in Learning based Dense
Matching

This chapter reviews the state-of-the-art dense matching techniques. As stated in Chap-
ter 2, SGM provides a balance between the quality of the reconstructed stereo images and
the computational complexity, so this algorithm (and the corresponding variants) is used
in numerous scenarios. However, with the continued introduction of machine learning and
deep learning into the computer vision field, much higher performance is being achieved
than was the case a few years ago. The combination of classical algorithms with deep learn-
ing based pixel comparison lead to the first breakthrough (Zbontar and LeCun, 2016). In
the last few years, learning based stereo methods evolved from replacing parts of the tra-
ditional matching pipeline with learning based methods to end-to end networks. The data
driven end-to-end approach enables the networks to learn the processing strategy and au-
tomatically adapt to the training data. Hence, this chapter mainly focuses on machine/deep
learning based methods. Finally, several benchmark datasets for training and testing the
AI-based dense matching algorithms are presented.

3.1 Enhancement of existing algorithms through Ma-
chine/Deep Learning

Early use of machine and deep learning still follows the traditional dense matching pipeline,
in which only certain individual steps (as described in Chapter 2) are replaced by a learning
module. With the aid of a supervised processing unit, the stereo information flow is bet-
ter transferred leading to higher reconstruction quality. The subsequent sections follow the
traditional pipeline and introduce the state-of-the-art learning based modifications.

3.1.1 Learning based Matching Cost
Through the pipeline, the similarity measurement in pixel- or patch-level is the first step
to determine the correspondences between the stereo pair. A good similarity measurement
provides the basis to estimate the matching cost, for following cost optimization and dis-
parity computation. As the method only targets on extracting the feature of the patches for
comparison, a simple network architecture is often applied, as shown in Figure 3.1.

Since in stereo matching, each input image or patch of the pair is processed using the fea-
ture extraction method to allow a uniform representation and feature comparison. Thus,
a Siamese structure (Bromley et al., 1993) is appropriate, which is constructed by sub-
networks containing the same layer composition, to symmetrically extract feature from
patches for following comparison. At the end, a similarity score is calculated and super-
vised by the prepared labels. The hinge loss and the cross-entropy loss are normally used
(Zbontar and LeCun, 2015; Luo et al., 2016; Zbontar and LeCun, 2016; Shaked and Wolf,
2017). The former expects a larger similarity of a positive match than a negative match that
appears in pair by a certain margin, while the latter requires higher/lower similarity score
of the positive/negative matching example.

Zbontar and LeCun (2016) propose a representative model for early CNN based matching
cost algorithms, MC-CNN. Up to five convolutional layers, with each of them followed by
a rectified linear unit, constitute the feature extraction module. Afterwards, the outputs
of each sub-network are transmitted to a comparison sub-network for the similarity score
calculation. Regarding the comparison module, a lightweight structure is designed for a
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Fig. 3.1. Basic network architecture for matching cost computation. A Siamese network is usually used as a backbone,
with two branches sharing the same architecture and weights to extract features from each of the patches. Afterwards, the
feature can be directly compared for matching cost calculation, e.g. via a correlation layer, or concatenated together to feed
a comparison sub-network to adaptively learn a similarity measure.

faster prediction, which uses only the dot product of the normalized feature vectors as the
similarity score. Besides, the feature vectors can also be concatenated and passed through
a sequence of fully-connected layers (as a trainable unit) to adaptively learn a similarity
measure, leading to another architecture with higher accuracy. Meanwhile, other matching
cost methods are also proposed, in which a deeper module is built based on ResNet for
a better performance. The feature extraction and comparison units are merged to directly
output a similarity score for each patch, etc. (Han et al., 2015; Zagoruyko and Komodakis,
2015; He et al., 2016; Shaked and Wolf, 2017).

Luo et al. (2016) adopt the same idea. Instead of training a model on a series of patch pairs to
measure the degree of similarity, they regard the stereo matching problem as a multi-class
classification task. Specifically, they aim at directly executing an overall comparison among
all the disparity candidates and finding the best one, rather than determining the similarity
between patches with certain displacements in sequence. Hence, the forward process is ap-
plied only once for each point to process all the disparities, thus achieving better efficiency.

Shaked and Wolf (2017) attempt to deepen the feature extraction module of the matching
cost network, in order to unravel more profound information when comparing pixels and
patches. However, it is shown in (Zbontar and LeCun, 2016) that simply adding more lay-
ers is not capable of enhancing the performance. Therefore, they resort to residual blocks
with skip connection to enable deeper networks. Through their experiments, unfortunately,
stacked residual blocks increase the difficulty level to make the training converge, while not
achieving improvement. Hence, a weighted skip connection is introduced as:

Y = F(X) +µ ·X. (3.1)

Compared with the normal skip connection, µ is additionally defined to determine the con-
tribution of the input, so that the stacked residual blocks can adaptively adjust the influence
of the shallower or deeper feature representation. As for the comparison sub-network, they
design a hybrid measurement using a simple dot product of the feature vectors, and a more
complex similarity learning through a fully connected network, which is basically a combi-
nation of the fast and accurate architecture of MC-CNN.

Zhang and Wah (2018) focus on the two most important factors, consistency and distinc-
tiveness, for matching cost computation. The former expects a constant representation of
a point from different views, while the latter emphasizes the discrepancy for non-matched
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pixels. Therefore, they build up a multi-objective frame to simultaneously optimize the two
targets based on the principle of Pareto optimality (Zitzler and Thiele, 1999). The Pareto
optimality seeks an optimal resource allocation state, so that no reallocation could be made
to improve any objective without influencing others. Good features could be extracted on
the Pareto frontier for matching cost calculation.

Traditional local methods suffer from selecting a suitable window size, for which a small
window cannot include enough context, while a large window may blur the details. Accord-
ingly, Chen et al. (2015) propose a deep embedding model to extract multi-scale features.
They design a ”double” Siamese network, which processes the original and a downsam-
pled image, respectively. Thus, the corresponding feature contains multi-scale information,
leading to a more reasonable expression for untextured regions, depth discontinuities, etc.
Finally a similarity score is estimated for each scale, which are then merged based on an en-
semble voting system as the result. Similarly, Zagoruyko and Komodakis (2015) also exploit
a multi-scale feature extraction, in order to combine the feature of each scale to determine
the similarity measure.

Ye et al. (2017) apply multi-size and multi-layer pooling to obtain a feature pyramid across
multiple scales. Thus, a variant receptive field is acquired with both rich context contained,
and local details preserved. Park and Lee (2017) also leverage spatial pyramid pooling lay-
ers, so that their proposed matcher is able to see a wider neighborhood around each point
with more hints to search the corresponding point. However, they use the pyramid pool-
ing in the comparison sub-network (see Figure 3.1), causing multiple computations of the
pooling operations for each pixel, depending on the number of disparity candidates.

Moreover, Schuster et al. (2019) attempt to enlarge the receptive field via dilated convolu-
tions and propose their stacked dilated convolutions (SDC) module. The definition of di-
lated convolution originates from signal processing (Holschneider et al., 1990; Chen et al.,
2018), for which holes (zeros) are inserted into the convolutional kernels in order to in-
crease the receptive field. SDC stacks multiple modules, each containing several parallel
dilated convolutional layers with different dilation rates. Thus, multi-scale features can also
be generated. Besides, with the same kernel and shared weights among dilated convolu-
tional layers in parallel, the network is highly efficient. Similar strategies are adopted in (Fu
et al., 2018).

Instead of designing a purely learning based algorithm, Batsos et al. (2018) resort to classi-
cal methods and propose their ”Coalesced Bidirectional Matching Volume (CBMV)”. They
train a random forest (Breiman, 2001) to collect all the important evidence from four con-
ventional matchers, normalized cross correlation (NCC), census (Zabih and Woodfill, 1994),
zero-mean sum of absolute differences (ZSAD) on intensities and SAD on filtered intensities
via a horizontal Sobel operator. As the matching cost for a certain disparity hypothesis may
differ, when the left or right image is regarded as the reference frame, the feature vector
for feeding the random forest includes bidirectional similarity or likelihood from the basic
matchers, with both left-to-right and right-to-left matching considered. The random forest
predicts the confidence of each disparity candidate resulting in a robust matching volume,
that is invariant to affine intensity transformations, camera gain or bias, image sampling etc.

The above methods require supervision by labeled data, which is not always available or
costly to collect. Hence, Tulyakov et al. (2017) argue that task-specific constraints could be
used to apply a weak supervision on the model, with no need of a well annotated dataset.
Furthermore, even when training on labeled data, the constraints are able to provide ex-
tra knowledge to make robust feature metrics. As shown in Figure 3.2, five terms are con-
sidered, namely epipolar constraint, disparity range constraint, matching uniqueness con-
straint, smoothness constraint and ordering constraint.
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Fig. 3.2. Matching constraints along an epipolar line (Tulyakov et al., 2017), including epipolar constraint, disparity range
constraint, uniquiness constraint, continuity constraint and ordering constraint.

According to the figure, correspondences should be searched along the epipolar line within
a certain disparity interval. The best match should surpass all the other alternatives. More-
over, neighboring pixels should have consistent disparities and the order of the points on
the reference frame should keep the same on the matching frame. Based on the above con-
straints, the corresponding weakly trained matching cost measurement can achieve compa-
rable performance with a supervised model.

As the matching cost network mainly targets at image patches to measure the similarity, a
small and sparse dataset can already provide enough training samples, e.g. in (Zbontar and
LeCun, 2016) 25 million, 17 million and 38 million training examples could be extracted
from KITTI-2012 (Geiger et al., 2012), KITTI-2015 (Menze and Geiger, 2015) and Middle-
bury (Scharstein and Szeliski, 2002; Scharstein and Szeliski, 2003; Scharstein and Pal, 2007;
Hirschmuller and Scharstein, 2007; Scharstein et al., 2014) dataset, respectively.

3.1.2 Learning based Cost Aggregation and Regularization
With the above learning based similarity measurements, an initial matching cost is obtained,
which is essentially still a local region based comparison, despite that certain techniques
are applied to extend the receptive field. This initial cost cube could be noisy, especially
for occlusions, low-texture or non-texture areas, and repetitive patterns. Therefore, the cost
volume should be optimized, in order to carry out a global regularization to better guide the
disparity estimation.

SGM is typically used to regularize the cost volume, e.g. in (Chen et al., 2015; Luo et al.,
2016; Zbontar and LeCun, 2016), as it can provide a good trade-off between accuracy and
efficiency. However, the method contains manual setting of penalty terms and empirically
accumulates the cost of all the scanlines before WTA, which cannot satisfy different scene
structures. Hence, some researchers attempt to determine a smart scheme with the aid of
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machine/deep learning techniques (Michael et al., 2013; Park and Yoon, 2015; Poggi and
Mattoccia, 2016; Seki and Pollefeys, 2016; Seki and Pollefeys, 2017; Schönberger et al., 2018;
Xia et al., 2020).

Park and Yoon (2015) explore a strategy to modulate the data term in SGM and global meth-
ods, so that the influence of unreliable pixels is confined. Hence, they train a random forest
to select the most trustworthy measures from twenty-two basic matching costs, including
image gradients, matching scores, left-right differences, etc. Afterwards another random
forest is trained to estimate the confidence of each pixel, according to the selected mea-
sures. Based on the confidence, reliable pixels keep a similar matching cost as before, while
the other pixels with low confidence will be flattened, so that the following disparity esti-
mation is dominated by confident pixels, leading to more robust results even in challenging
regions.

SGM tends to avoid inconsistent disparities among neighboring points, via penalizing the
current disparity candidate that is different from the previous pixel’s estimation. This
fronto-parallel smoothness assumption causes inappropriate estimation for slanted plane,
particularly in untextured regions. Scharstein et al. (2017) propose their SGM-P to alleviate
the problem. They compute the surface orientation priors based on a fast stereo matching on
downsampled image, so that the determination of the penalty terms could be guided by the
surface shape and adjusted according to the specific situation. The surface’s geometry could
also be perceived by drawing a surface normal map via Manhattan-world priors (Lee et al.,
2009). Compared with the pure SGM, SGM-P achieves a noticeable improvement towards
the theoretical upper bound of the performance, for which the surface orientation priors is
directly acquired from the ground truth. SGM-P is essentially not a supervised algorithm,
however, the surface orientation is promising as an extra information source to be integrated
into other learning based strategies for more reasonable depth estimation.

Similarly, SGM-Net proposed by (Seki and Pollefeys, 2017) is the first neural network based
SGM optimization. A normalized image patch and its position are fed to the network, in
order to predict the penalty terms for each pixel along different scanline directions. The
network is trained with an aim to minimize two costs, path cost and neighbor cost. The
former searches a path, along which the traversing cost should be the smallest, while the
other one requires that the correct disparity pass through two consecutive pixels must have
smaller cost than any other options. Different situations are considered, including depth
border, flat and slanted plane. Moreover, they design a signed parameterization to differ-
entiate positive and negative disparity change, e.g. the disparity is more likely to increase
along a road towards the camera. With the aid of CNNs, SGM-Net outperforms the basic
SGM with handcrafted penalties. SGM-Net is a more complete and automatic version of
their previous work (Seki and Pollefeys, 2016), which simply exploits a CNN to estimate a
confidence for manually adjusting the penalty terms.

After the cost aggregation along the scanline, a smart strategy is expected to fuse each scan-
line’s estimation more reasonably instead of a simple summation. For this purpose, Michael
et al. (2013) assign a weight to each scanline for deriving a weighted summation. They are
inspired by the fact that the disparity map estimated by each single scanline presents vary-
ing qualities, depending upon the specific global structure of the scene. Due to the favor
on fronto-parallel smoothness, the scanline direction may influence the disparity predic-
tion. In Figure 3.3, the raw estimation of the ”left to right” scanline is better than the ”top
to bottom” one (see the roof and the truck marked by the red rectangle), because only the
former satisfies the fronto-parallel smoothness. Therefore, they apply the covariance ma-
trix adaptation evolution strategy (CMA-ES) (Beyer, 2007) to automatically predict a weight
and a couple of penalty terms for each scanline. The algorithm accomplishes better accuracy
without hurting the efficiency.
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Image

Raw scanline (left -> right) estimation Raw scanline (top -> bottom) estimation

Fig. 3.3. The disparity estimation using a single scanline. Although the raw estimation from each single scanline is noisy,
it can be found that the results from the ”left to right” scanline is slightly better than ”top to bottom”, within the marked
region. The reason is that the depth distribution is more stable horizontally than vertically.

Poggi and Mattoccia (2016) also focus on applying a weighted sum of the cost along each
scanline. A disparity map is firstly estimated using each single scanline, from which a fea-
ture vector is extracted for each pixel and the corresponding surrounding patch to repre-
sent the statistical dispersion of the depth. Five metrics constitute the feature, including the
disparity agreement, disparity scattering, median disparity, variance of the disparity and
median deviation of the disparity. The disparity agreement is quantized by counting the
number of neighboring pixels with the same disparity estimation as the center, while the
disparity scattering records the number of different disparity hypotheses within the patch.
A random forest classifier is then trained to predict a confidence value for the corresponding
scan line, which is used to determine the aggregate cost value through weighted summation

Some researches directly discard scanlines with bad estimations. Schönberger et al. (2018)
attempt to approach the theoretical upper bound accuracy of SGM by always selecting the
best scanline for disparity prediction. Therefore, they also train a random forest to find the
best scanline, named SGM-Forest. Instead of using a handtuned feature to feed the random
forest as (Poggi and Mattoccia, 2016), they simply use the disparity proposal of each scanline
together with the cost for applying the disparity on all the scanlines to construct the feature
vector. Thus the feature is built more efficiently with a straightforward delivery of each
scanlines’ estimation. At last, only the selected scanline and others with close prediction are
accumulated for a confidence based weighted average of disparity. Xia et al. (2020) enhance
the algorithm’s robustness by setting the goal of the random forest as selecting all possible
good scanlines, since in many cases there can be multiple well behaved choices. A single
best target may confuse the forest’s decision.

Besides SGM, there are also methods directly assisting the optimization of Markov Random
Field (MRF) to balance the data and smoothness terms. Spyropoulos et al. (2014) attempt
to guarantee the reconstruction density by correcting bad matches with the aid of reliable
matches, instead of simply removing them. Thus, they train a binary classifier based on
random forest to differentiate between good and bad matches, according to how close the
estimation is to the ground truth value. Regarding the feature composition to feed the ran-
dom forest, eight metrics are measured, which are the minimum matching cost among all
the disparity candidates, the difference between the lowest and second lowest cost, the at-
tainable maximum likelihood conversed from the cost curve, the distance to the nearest
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image border, the distance to the depth discontinuity, the difference between the disparity
of the center and the median disparity of the surrounding patch, and two left-right con-
sistency measures. In the test phase, the selected reliable matching points are regarded as
Ground Control Points (GCPs), and integrated as constraints into an MRF to correct wrong
matches and optimize the target energy function. They impose soft constraints by setting
GCPs’ cost on non-selected disparities as a constant and large number (instead of infinity),
which is experimentally proven to be more effective.

Due to the fact that the WTA strategy in traditional algorithms suffers from challenging
situations, Shaked and Wolf (2017) design a Global Disparity Network (GDN) to replace
WTA and estimate the disparity. The matching cost from their highway network is firstly
regularized by a Cross based Cost Aggregation (Mei et al., 2011) and SGM. Afterward the
cost volume is fed to GDN, which composes of several convolutional and fully-connected
layers to predict the disparity. Besides, two extra fully-connected layers are added to con-
struct another path for measuring the confidence of the prediction. Thus, GDN is jointly
supervised by a cross-entropy loss by comparing the prediction with the ground truth, and
a newly defined reflective loss which determines the quality of the prediction according to
how close it is to the ground truth. The confidence can be used to support the following
disparity refinement in left-right consistency check.

3.1.3 Learning based Post-Processing
After matching cost calculation and aggregation, an initial disparity map is obtained, via
assigning an appropriate disparity value to each pixel so that an attainable minimum cost
is acquired with spatial smoothness. Then some post-processing steps are added to refine
the disparity results, e.g. classical methods may apply the sub-pixel enhancement to accom-
plish continuous depth prediction, detect occlusions via a cross-check between left-to-right
and right-to-left matches, correct mismatches or invalid points using interpolation or plane
fitting, etc. These steps can also be aided or substituted by learning based techniques.

Schönberger et al. (2018) improve their results obtained by SGM-Forest based on a confi-
dence based spatial filtering. According to the prediction of the selected scanline by the
random forest, other scanlines with a close estimation are also considered to fuse their dis-
parity proposals via a confidence based average, and the sum of their confidence will be
regarded as the correctness of the estimation. In a circular neighborhood with a radius of 5
pixels, disparity values of pixels with similar intensity and high correctness are selected. The
disparity is determined by the median of these values. Thus, a spatially smoother disparity
map is acquired.

Ye et al. (2017) argue that the WTA selected disparity could be a sub-optimal estimation,
while the ground truth may lie closer to the disparity candidate associated with the second
minimum cost. Therefore, they take the two disparity maps, which are corresponding to the
minimum and second minimum cost, respectively, as input to a network for refining the
raw estimation. The two disparity maps are firstly fused using convolutional layers with-
out bias, and then (together with the master epipolar image) passed to an error detection
module, which assigns a probability to each pixel indicating the likelihood of wrong match-
ing. Afterwards, a parallel-replace module is designed to replace the erroneous estimation
with new disparity labels, according to the previously computed probability. At here, two
parallel networks are constructed inspired by ensemble learning (Liu et al., 2009), so that
the spatial smoothness and local details are simultaneously considered. Finally, an overall
refinement is applied based on residual learning.

Gidaris and Komodakis (2017) categorize the existing architectures for labeling refinement
as hard refinement and soft refinement, which directly provides new estimation or correct
the current results incrementally via adding an residual, respectively. However, they believe
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that both solutions are sub-optimal. The hard refinement is essentially more complex, due to
that a new label should be predicted. Moreover, the samples with correct initial estimation
already, have to be considered in addition and revised with an identity transformation. On
the other hand, the residuals based soft refinement can barely fix larger errors. Therefore,
they subdivide the refinement procedure into the following subtasks: error detection, bad
estimation replacement, and overall refinement finally. At first, an error map indicating the
probability of each pixel with wrong prediction is obtained, which guides the following
replacement task to assign new labels to erroneous regions (high error probability) with
the aid of reliable estimation (low error probability). Then a refinement is further applied
on all the points to enhance the overall labeling quality. The whole detection, replacement
and refinement pipeline is fully trainable as end-to-end, which is compatible with multiple
labeling scenarios. In case of stereo matching, a noticeable improvement is achieved by their
proposed architecture, using the master image and an initial disparity estimation as input.

Instead of decomposing the refinement into a sequence of sub-tasks, Batsos and Mordohai
(2018) exploit a residual based recurrent neural network (RNN), called RecResNet, to pro-
gressively modify the initial estimation. Given the reference image and a disparity map,
RecResNet is able to correct large errors as the prediction is recursively improved. Further-
more, the residuals are estimated at different scales, which entitles the network to handle
ill-posed regions in both large scale, e.g. large untextured areas, and small scale, e.g. fine
structures, depth discontinuities, etc. Similarly, Jie et al. (2018) also use RNNs to iteratively
refine the matching results. However, they integrate the disparity estimation and refine-
ment within a common framework, which takes the matching cost calculated by (Shaked
and Wolf, 2017) as input, and directly outputs a high quality disparity map without further
post-processing. They focus on simulating the conventional left-right consistency check with
neural networks, to avoid handcrafted setting, and propose their Left-Right Comparative
Recurrent (LRCR) model. Concretely, a symmetrical architecture constructed by stacked
convolutional Long-Short Term Memory (ConvLSTM) networks, is exploited to process the
left-to-right and right-to-left matching cost, respectively. Within each ConvLSTM unit, rich
context is encoded to obtain a disparity map for the left/right view and compared with the
other (right/left) in order to calculate an error map. The error map (and the matching cost)
for each view is then passed to the next ConvLSTM module for another iteration, which
provides a soft attention map indicating the mismatched left and right regions, which is in
turn used to recursively improve the estimate.

Knöbelreiter and Pock (2019) develop a collaborative regularizer to denoise the rough stereo
matching results. Only a cost volume is needed as input, from which an initial disparity map
is calculated simply via WTA, and an initial confidence map is acquired by transforming the
cost to a matching probability distribution. Afterwards, the model learns a joint statistics
among the image, the disparity and the confidence, so that a clean disparity map is gener-
ated. Multi-scale information is considered in their work based on a pyramid architecture.

3.2 End-to-End Neural Networks

Aided by machine learning, conventional stereo matching algorithms achieve higher per-
formance with a supervised module to better deliver information through the pipeline, and
avoid purely utilizing empirical strategies in each step which is essentially a shallow func-
tion with rigid definition. However, these methods still suffer from ill-posed regions, e.g.
under occlusions, in large homogeneous areas without textures or only with repetitive pat-
terns. Learning based matching cost algorithms are normally using a patch based similarity
measure, requiring multiple forward passes to consider each disparity candidate. A smart
feature extraction is applied, while only the surrounding neighbors are compared leading to
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limited receptive fields. The following cost aggregation introduces more global clues, nev-
ertheless, a well performed learning algorithm depends on a thorough training that could
be time-consuming. Regarding the post-processing, modern CNN/RNN techniques could
replace the hand-engineered steps, however, extra efforts are involved and the refinement
relies more or less on the initial estimation.

Subsequent research focus on integrating each stereo matching step into an end-to-end net-
work, including jointly extract feature from images, regularize the corresponding cost vol-
ume, and directly create a high quality disparity map. Instead of predicting a similarity
score for each patch separately, the feature maps with the same size as the stereo pair are
obtained, and a cost cube is created by shifting the feature map of the slave image along
the epipolar line and concatenating it with the master feature map. The disparity range de-
termines the number of horizontal displacements, assuming rectified stereo, and the size
of the cost cube. Afterwards, a regularization strategy is applied to optimize the cost and
predict the disparity map. The network is trained end-to-end to efficiently deliver the inter-
mediate results to each module, and automatically adapt itself to produce a more reasonable
solution.

The first end-to-end neural network for dense matching is FlowNet (Dosovitskiy et al.,
2015). The network is not designed exclusively for dense matching, but for the more gen-
eral optical flow estimation, which detects both the scene depth and the object motion. How-
ever, it represents the prototype for the following methods as it combines feature extraction,
similarity measurement, and depth/motion estimation in a unified framework. Dosovitskiy
et al. (2015) propose two architectures, FlowNetSimple and FlowNetCorr. The former di-
rectly stacks the input stereo pair as a ”thicker” feature map to feed a generic network for
an adaptive motion prediction. The latter uses a sub-network with two branches to extract
feature from two images separately, and applies a correlation layer to compare the feature
as:

c (p1,p2) =
∑

m∈[−k,k]×[−k,k]

〈
fL (p1 +m) , fR (p2 +m)

〉
, (3.2)

in which p1 and p2 are the reference and target point from the left fL and right fR image,
respectively. m denotes the neighboring points to be considered within a (2k + 1) × (2k + 1)
patch. This correlation resembles a convolution, but it basically ”convolves” a patch with
another, without a trainable filter. Afterwards, a series of convolutions are used to extract
high-level information, and then the feature is passed to a refinement module containing
so called ”upconvolutions”, each of which consists of an unpooling and a convolution, to
recover the resolution. Among them, an intermediate flow map is estimated and upsampled
to be concatenated with the upconvolved feature map, together with the corresponding en-
coder’s feature at the same resolution, so that the context is delivered with local details
provided in next refinement. Finally, a full resolution flow map is obtained.

Regarding the subsequent development of end-to-end dense matching networks, 3D or 4D
cost volumes could be generated, depending on each algorithm’s specific strategy to compare
the feature of the left and right image, e.g. feature correlation, feature concatenation and
feature distances/differences. For example, FlowNetCorr produces a 3D cost volume as the
stack of the correlation maps according to each disparity candidate, considering that the
search of 2D optical flow is limited to 1D disparity between rectified image pair in dense
matching.

3.2.1 3D Cost Volume (2D Convolution based Networks)
Following FlowNetSimple, DispNet (Mayer et al., 2016) is proposed specifically for
dense matching. The network also exploits an encode-decoder structure, which they call
contractive-expanding part, in order to enlarge the receptive fields through convolutions
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with strides to observe larger disparities, and then upsample the features via upconvolutions
to recover the resolution. Extra convolutions are applied in the expanding part (decoder)
achieving smoother results than FlowNet. Besides, inspired by FlowNetCorr, DispNetCorr
is designed to extract feature from each input image separately, and use a correlation layer
to compare the extracted feature maps for further disparity prediction. As only 1D correla-
tions are necessary to measure the horizontal displacements, DispNetCorr is computation-
ally more efficient and allows finer disparity sampling rate. Mayer et al. (2016) initiate a
new era for end-to-end dense image matching.

Knöbelreiter et al. (2017) also add a correlation layer in their network to build a 3D cost
volume. However, the cost regularization is carried out using the conditional random field
(CRF) (Lafferty et al., 2001) instead of a convolution based encoder-decoder. The calculated
matching cost naturally becomes the unary term of the CRF, while the pairwise term is
parametrized as the edge weights by a contrast sensitive model or a pairwise CNN. The
structured support vector machine (SSVM) (Tsochantaridis et al., 2004) is used to train this
hybrid of CNN and CRF as an end-to-end architecture. Comparable performance is achieved
with higher efficiency, as the network is shallow without additional post-processing.

Pang et al. (2017) extend DispNet with an additional stage to learn a residual in order to
improve the initial estimation. They apply DispNet to predict a full resolution disparity
map as the first stage, from which an error map is computed by comparing with the ground
truth. In addition, a synthesized left image is obtained via warping the right image accord-
ing to the initial disparity estimation. Afterwards, they concatenate the left image, right im-
age, disparity map, error map and the synthesized left image together to feed the following
residual block. The residual block is also an hourglass (encoder-decoder) structure, which
calculates multi-scale residuals. Each residual is added to the corresponding downscaled
initial disparity map, so that multiple disparity maps are acquired for a joint supervision
across scales. The two stages could be cascaded for end-to-end training, hence the algorithm
is called cascade residual learning (CRL). With an extra residual learning to modify Disp-
Net’s estimation, better results are achieved especially for ill-posed areas, e.g. textureless
regions, occlusions, etc.

Liang et al. (2018) define a feature constancy term to determine the correctness of the dis-
parity estimation for further refinement. The feature constancy contains two metrics: fea-
ture correlation and reconstruction error. The feature correlation is basically the matching
cost computed by a correlation layer. The reconstruction error is computed as the absolute
difference between the left feature and the warped right feature according to the disparity
estimation using a DispNet. Thus the initial disparity map and the feature constancy term
are passed to their disparity refinement module, so that a residual is calculated to improve
the estimation. Since the refinement could be performed iteratively until the expected small
differences are acquired between two consecutive iterations, the network is named as iRes-
Net (iterative residual prediction network).

In order to better handle occluded areas, Ilg et al. (2018) propose a network to jointly es-
timate disparity and detect occlusions. Based on an encoder-decoder structure as FlowNet
and DispNet, the disparity (or optical flow depending on the demand) together with the
occlusions and depth boundaries are estimated, which are refined continuously by the fol-
lowing refinement network. They define several network modules. For example, a residual
module is designed to improve the estimation following (Pang et al., 2017). The occlusions
are detected by applying the correlation layer twice, which matches the feature from the
left frame to right and right to left, respectively. Thus, the inconsistent matches could be
regarded as occlusions. The proposed algorithm is capable of achieving much better results
in occluded regions with good efficiency. Besides, the scene flow can be estimated via com-
bining a flow and a disparity network.
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Some researches focus on unsupervised learning to avoid cumbersome data annotation for
applications without training data. Inspired by the traditional left-right consistency check
to remove outliers, Zhou et al. (2017) design a network to adaptively select confident pre-
dictions to supervise the training with no need of ground truth. They start from a randomly
initialized network to extract features, create a correlation based cost volume, and predict
disparity. It should be mentioned that they concatenate the cost volume with the feature
maps, in order to incorporate the information from input for better cost regularization. Af-
terwards, disparity maps are predicted for both left and right frames, in which a left-right
consistency check is applied to exclude outliers and use the inliers to train the network it-
eratively. As more iterations are finished, the selected confident set becomes larger until a
well-performed model is obtained. Finally, a left-right consistency check and a median filter
are used to refine the network estimation. The proposed unsupervised architecture achieves
comparable performance with other supervised models, e.g. DispNet, MC-CNN, etc. The
left-right consistency check can also be applied to calculate an error map, so that the net-
work is guided to focus more on unreliable regions for refinement (Zhang et al., 2019).

The above networks are built based on elaborate architecture design. As the development
of Automated Machine Learning (AutoML) (Hutter et al., 2019), Saikia et al. (2019) attempt
to automatically determine an optimized network structure for higher performance. Hence,
they regard DispNet as the backbone and optimize the encoder-decoder architecture using
an AutoML technique, DARTS (Liu et al., 2018). A search space is firstly defined, so that a
series of cells (meta structures) are available to compose the network. Then the continuous
relaxation is implemented on the search space to make the cells differentiable, in order to
enable the gradient descent based training. Thus, a training and a validation dataset could
be generated to alternatively adjust the network parameters and find the final optimal set-
ting. Finally, the BOHB (Falkner et al., 2018) method is used to tune the hyperparameters.
Their AutoDispNet outperforms the baseline achieving SOTA performance.

3.2.2 4D Cost Volume (3D Convolution based Networks)
The above methods mainly use the correlation layer to construct 3D cost volumes, which
somehow still relies on the traditional correlation metrics to measure the similarity between
the left and right feature. Moreover, the feature dimension of the input is flattened in the
cost volume, and the following 2D convolutions only aggregate the local context along the
height and width of the volume, rather than the disparity dimension. Hence, the subse-
quent researches attempt to concatenate the feature maps of the stereo input to build up
the cost volume with absolute representation (instead of an explicit definition: correlation),
so that more freedom is left to the network for adaptively learning the correspondences.
The feature maps from the left and right image are concatenated along the channel dimen-
sion, with a horizontal shift along the row indicated by a disparity candidate, resulting in a
4D cost volume with a dimension of height×width×Ndisp×2C. In addition to the height and
width of the volume, Ndisp denotes the number of disparity candidates and C is the channel
length. Correspondingly, a 3D convolution based encoder-decoder is used to regularize the
cost volume, in order to learn the stereo across the height, width and disparity, respectively,
for better learning the geometry and context. GC-Net (Geometry and Context Network) is
proposed accordingly (Kendall et al., 2017). As the extra dimension of the cost volume and
the corresponding 3D convolutions bring additional computation burden, the cost volume
is downsampled by a factor of 32 in the encoder. Thus, the receptive field is also enlarged
to perceive a larger context. Afterwards, a series of deconvolutions are used to gradually
recover the resolution. A skip connection is added between feature maps at the same res-
olution from the encoder and decoder, respectively, in order to include detailed structures
for a better estimation. At last, they define a soft argmin to regress the disparity using the
regularized cost, which achieves sub-pixel accuracy and enables end-to-end training as a
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differentiable operation. The soft argmin is defined as:

d̂ =
Dmax∑
d=0

d × σ (−Cd) , (3.3)

in which σ transforms the cost to a normalized probability of each disparity candidate. Then
the final result d̂ is computed as the probability based weighted summation within the dis-
parity range [0,Dmax]. GC-Net achieves SOTA performance by leveraging both geometry and
context. In following content, the soft argmin is utilized as the default disparity regression
method by all the introduced networks, unless otherwise specified.

The pyramid architecture is also exploited to generate 4D cost volumes for including multi-
scale information. Chang and Chen (2018) propose their pyramid stereo matching network
(PSMNet) using a spatial pyramid pooling (SPP) module, in order to extract region-level
features across scales. Thus, each target is better understood especially for ill-posed regions.
PSMNet uses residual blocks to extract unary features from the input images, with dilated
convolutions added to further extend the receptive field. Afterwards, a SPP module with
four average pooling blocks in fixed sizes, 64 × 64, 32 × 32, 16 × 16 and 8 × 8 , are used to
obtain multi-scale features. The acquired feature from each pooling block is upsampled to a
unified resolution, based on bilinear interpolation, and concatenated together to generate a
cost volume. Two architectures are designed for the cost aggregation. The basic one simply
applies residual blocks with twelve 3D convolutional layers to regularize the cost, while the
other advanced structure uses three encoder-decoder modules to repeatedly learn the global
context in a top-down/bottom-up manner. Besides, a disparity map is computed for each
hourglass unit to allow for intermediate supervision. The use of multi-scale feature and the
stacked hourglass cost regularization grant PSMNet the best performance on KITTI-2012
and KITTI-2015 benchmarks in 2018.

PSMNet has been further improved by many researches in accuracy and efficiency. For ex-
ample, based on PSMNet’s SPP module to merge multi-scale features, Nie et al. (2019) de-
sign a multi-level context ultra-aggregation (MCUA) strategy to produce a more discrimina-
tive representation of the matching cost. As for the cost aggregation, the previous techniques
for fusing multi-level context information, such as DenseNets (Huang et al., 2017) and DLA
(Yu et al., 2018), only accomplish intra-level combination of features without enough low-
level details. Hence, the proposed MCUA scheme adds an independent child branch, which
additionally takes a downsampled input via average pooling to enlarge the receptive field,
so that inter-level features could be fused explicitly with the main branch. With MCUA
introduced into PSMNet, the performance is increased by a notable margin. Cheng et al.
(2020) modify the spatial propagation networks (SPN), which is a SOTA linear propaga-
tion module, by executing the propagation with a series of recurrent convolutions. Thus,
a convolutional SPN (CSPN) is achieved to better learn the affinity within each patch to
aggregate features. The combination of CSPN and PSMNet dominate the KITTI-2012 and
KITTI-2015 benchmarks for quite a certain period. Also, Chabra et al. (2019) utilize vortex
pooling (Xie et al., 2018) to replace the SPP in PSMNet, which increases the utilization ratio
exponentially to perceive more pixels for feature extraction. Besides, the dilated convolu-
tion is used to enlarge the receptive field in cost regularization. They also design a disparity
refinement module. By warping the right image to the left frame, according to the initial
disparity estimation, an image reconstruction error map can be computed as the difference
between the left and warped right image. Similarly, a geometric consistency error map is
obtained from the left and warped right disparity map. They feed the left image, left dis-
parity map, image reconstruction and geometric consistency error map to the refinement
module, which outputs a disparity residual map for refinement. Guo et al. (2019) improve
PSMNet by constructing a group-wise correlation cost volume and propose the group-wise
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correlation stereo network (GwcNet). As for the group-wise correlation, the channels of the
feature map are divided into several groups, after which a correlation map is calculated
for each group only using the contained features. Afterwards, the correlation map for each
group is concatenated along the channel dimension, thus, leading to a 4D cost volume with
the channel length equal to the number of groups. The reason for this design is to make
a compromise between a full correlation and a concatenation based cost generation. The
former loses too much information for producing only one correlation value for each dispar-
ity candidate, while the latter cannot explicitly support the similarity measurement. They
prove that, the group-wise correlation based cost volume requires less parameters for the
following cost aggregation, to achieve similar performance as PSMNet using the concate-
nation based volume. Furthermore, several modifications are applied on PSMNet’s stacked
hourglass structure for cost aggregation. First of all, a pre-hourglass unit is added at the
beginning, which consists of four 3D convolutions, in order to let the network learn fea-
tures at shallower layers via the intermediate supervision. Besides, the residual connection
across different hourglasses is removed, so that certain hourglasses can be excluded in test
for saving time. At last, a 3D convolution with kernel size as one is added to the residual
connection within each hourglass module. Experiments show that GwcNet performs better
than previous methods on several close-range benchmarks.

Duggal et al. (2019) also exploit SPP to extract multi-scale information. However instead of
constructing the cost volume using all the disparity candidates, they prune the full search
range to a narrower but more confident range to save memory and runtime. By referring to
the PatchMatch method (Barnes et al., 2009), a particle sampling layer is designed to pre-
dict k random disparity candidates as an initial estimation. It is mentioned in the paper
that, the full disparity search range is divided into k intervals and each initial selection is
forced to happen in a certain interval to keep the selected disparity candidates covering
the full range. Afterwards, an iterative processing is applied between a propagation and a
evaluation layer, in order to continuously refine the selection. For every evaluation, a small
subset of disparities is defined around each selected disparity candidate. A similarity score
is calculated for each disparity within the subset, which is used for a weighted summation
as a refined disparity. Thus, k new disparity candidates are available from each subset for
further estimation. The selected disparity candidates can be propagated to the target pixel’s
four neighbors. Based on the above strategy, a narrow disparity range is predicted to confi-
dently include the ground truth, from which a pruned cost volume is generated for efficient
disparity estimation.

Tulyakov et al. (2018) find that the concatenation of the left and right image descriptors for
constructing the cost volume, may allow more context to be learned in following 3D con-
volutions based encoder-decoder. However, this causes costly memory usage which should
be avoided in handling higher resolution data. Therefore, they refer to (Zagoruyko and Ko-
modakis, 2015; He et al., 2016; Mayer et al., 2016; Pang et al., 2017) and design a ”bottle-
neck” architecture to compress the concatenated feature into a more compact matching sig-
nature for further regularization. Moreover, they argue that the normally used soft argmin
for disparity regression returns a sub-optimal estimation, if the posterior disparity distribu-
tion from the regularized cost is multi-modal. Thus, a weighted average through the whole
disparity range could be far from the ground truth. Hence, they empirically set a small range
centered at the disparity candidate with maximum posterior probability, and apply the soft
argmin only on the disparities contained by the range. Regarding the training, a sub-pixel
cross-entropy loss is proposed to substitute the typically used L1 loss, for faster convergence
and higher accuracy.

Also aiming at reducing the computational effort, Khamis et al. (2018) regularize a very low
resolution cost volume (typically 1/8 or 1/16 of the original resolution) to directly predict
a disparity map. They believe that most runtime and memory are spent on processing the
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higher resolution cost, while usually lower resolution matching provides the largest per-
formance gain, as it contains richer context information relevant to the task. Besides, they
suspect that other methods with a decoder to gradually recover the resolution, may overfit
to the training data, as the stereo matching is essentially a pixel-to-pixel mapping. Hence,
they determine to use the input image for the refinement of the low resolution disparity
map, with the high frequency details added along with the recovered resolution. Their im-
plementation achieves the first real-time architecture for dense matching.

As the current SOTA networks either require long runtime and large memory to produce
a high quality disparity map, or increase the algorithm’s efficiency with reduced accuracy,
Wang et al. (2019) decide to grant the users the freedom to make a trade-off. They pro-
pose AnyNet, which generates improved disparity results as time goes by and provides the
temporally best estimation. Thus, the algorithm is able to adaptively adjust itself for better
efficiency or accuracy according to the specific scenario, e.g. a self-driving car in a open or
crowded field. The network exploits a pyramid architecture, in which the top utilizes the
downsampled feature maps for a coarse depth estimation as the first available stereo re-
sult. Afterwards, if time permits, the disparity map is passed to the next higher resolution
pyramid level for refinement. AnyNet is the first network providing anytime estimation. In
addition, thanks to its hierarchical estimation from coarse to fine, the algorithm is highly
efficient even always pursuing the best results. Similarly, Yang et al. (2019) also propose
a network for anytime on-demand prediction, named hierarchical stereo matching (HSM)
network. However, they focus more on high resolution stereo data processing for more pre-
cise depth estimation, since the same disparity error would cause quadratically larger depth
error for farther objects. Accordingly, a pyramid architecture for coarse-to-fine estimation
is designed. Multi-scale features are firstly extracted from the input stereo pair. Afterwards,
a cost volume is constructed for each scale, by computing the differences between the cor-
responding feature maps. The coarsest volume is firstly processed by their volume decoder
via a series of 3D convolutions and a volumetric pyramid pooling, which is an extension of
SPP to additionally consider the disparity dimension. Thus, the cost volume is regularized,
for predicting an intermediate disparity map for practical use. Besides, the volume could
also be upsampled and merged with the volume on the next pyramid level with higher reso-
lution, for finer disparity estimation. The anytime setting of HSM allows relatively accurate
depth estimation for closeby targets, with low latency up to 30 ms. Moreover, they deliver
two high resolution stereo datasets, one synthetic and one real data, for training and test.

SGM is widely used to aggregate the cost volume, with neighboring points considered for
smoothness along multiple scanlines. This inspires Zhang et al. (2019) to learn the context
in a ”semi-global” manner as SGM, instead of the normally used encoder-decoder as a pure
learning module. Thus, the success of SGM naturally becomes the foundation to design
a new model. Specifically, they propose the guided aggregation network (GA-Net), which
approximates the scanline optimization as a differentiable layer (semi-global guided aggre-
gation (SGA) layer) to automatically learn the penalty imposed on disparity discontinuities.
In this way, no human intervention is needed to define the penalty terms and each pixel
can be treated independently according to the specific situation. Moreover, the use of the
computationally expensive 3D convolutions is reduced, leading to higher efficiency. They
also design a local guided aggregation (LGA) layer to further filter the cost volume, such
that thin structures are recovered. GA-Net can be trained end-to-end, achieving SOTA per-
formance. Besides, it brings a new thought to build a learning architecture by referring to
the conventional algorithms which has been proven effective through decades.

Yu et al. (2018) argue that more attention should be paid on the cost aggregation step in an
end-to-end stereo system, thus propose an embedding sub-architecture to generate multiple
aggregation proposals and adaptively select the most reasonable one. In this way, the cost
regularization is reformulated as an explicit learning task, rather than a black box solely
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from the encoder-decoder. Their network owns a similar backbone as GC-Net for feature
extraction and concatenation to form the cost volume, and a 3D convolution based encoder-
decoder is utilized for an initial regularization. Afterwards, a sub-network is added to gen-
erate potential aggregation proposals. 3D convolutions with rectangle kernels are applied
on the cost volume, which are in size of 3 × 1 × 1, 1 × 3 × 1 and 1 × 1 × 3, to aggregate the
information along the disparity, height and width, respectively. Thus, each dimension is
processed separately, reducing the computational complexity compared to full 3D convolu-
tion. The resultant cost volume is in 4D with its channel length representing the number of
aggregation proposals. On the other hand, a series of convolutions is applied on the refer-
ence input image to create a guidance map containing low-level structured information. A
matrix multiplication is carried out between the aggregated cost and the guidance map, and
the maximum calculated value is selected for each disparity candidate as the best proposal.
A soft argmin could then be applied on the cost to predict a disparity map. Their learning
based cost aggregation strategy obtains support from the reference frame as a global view
guidance, leading to SOTA results on several benchmarks.

3.2.3 Multi-Task Learning
In the field of artificial intelligence, we normally guide a model towards a fixed target ac-
cording to the specific tasks. It is, however, gradually demonstrated that some related tasks
may provide clues to better supervise the model to generalize on our original task, which
leads to multi-task learning (Ruder, 2017). Multi-task learning is also applied in stereo
matching, for example adding a sub-task to extract the semantic information for locating
the depth edges.

(Zhan et al., 2019) attempt to combine the semantic segmentation and stereo matching into
a unified framework. Since the two tasks could support each other, a common semantic
encoder is shared to extract both semantic and disparity features, achieving a lightweight
model named DSNet. The training is separated into three steps. Firstly the semantic sub-
task is learned which could provide auxiliary feature for the stereo sub-task. In order to
balance among classes, a weight is assigned to each class according to the corresponding
pixel quantity. Afterwards the semantic network is frozen to train the disparity network
specifically, in which DispNet is referred to estimate the disparity. It should be noted that
both feature correlation and concatenation are exploited to generate the cost, with an at-
tention mechanism (Xu et al., 2018) introduced to combine the cost volume. Finally, a joint
supervision is applied to train both tasks. As only one (left) image owns semantic labels, the
calculated disparity is used to warp the right image into the left frame so that both images
are included within the semantic loss for a more robust estimation. The combination of the
two tasks promotes both scene parsing and stereo matching.

Likewise, SegStereo (Yang et al., 2018) also suggests to incorporate semantic feature into
stereo matching pipeline. With ResNet-50 (He et al., 2016) as the backbone to extract fea-
tures from the input image pair, a cost volume is constructed via a correlation layer. In
addition, a segmentation network is used to acquire semantic feature maps. Afterwards,
the disparity feature from the left image is transformed by a convolution block to preserve
details, and then concatenated with the cost volume and left semantic feature, which is
then feed into the encoder-decoder based disparity estimation. Thus, the semantic clues
are embedded as a high-level guidance, to provide more robust representation for better
locating the stereo correspondence in ill-posed regions. Furthermore, the calculated dispar-
ity map can be used to warp the right semantic feature map, so that the ground truth of
the segmentation labels for the left image could supervise both frames. SegStereo supports
both unsupervised and supervised training, based on photometric loss and regression loss,
respectively, achieving SOTA performance. In the algorithm, however, only unidirectional
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support is obtained from semantics to stereo. Similar work is found in SegFlow (Cheng et al.,
2017) for joint estimation of video segments and optical flow.

Inspired by PSMNet Net and SegStereo, Wu et al. (2019) propose their SSPCV-Net to build
up a pyramidal cost volume to contain multi-scale features, and simultaneously carry out
a semantic segmentation sub-task to assist the disparity boundary estimation. Compared
with PSMNet which produces a single cost volume from multi-scale feature maps, how-
ever, SSPCV-Net constructs a cost volume for each scale separately. Meanwhile, the highest
resolution features are also used to generate a semantic cost volume, via concatenating the
semantic feature maps of the left and right image which are acquired based on PSPNet
(Zhao et al., 2017). From here, a 3D multi-cost aggregation module is applied to fuse the
spatial cost volumes from the lowest resolution to the highest, together with the semantic
cost volume. As for each fusion, the cost volume at lower resolution is upsampled to the
same size as its immediately higher scale for a summation in between. Afterwards, a 3D
feature fusion module (FFM) is designed, which consists of a 3D adaptive pooling and a
fc-ReLU-fc-sigmoid structure (Hu et al., 2020), in order to predict a weight for a weighted
summation of the two cost volumes. Thus, all the cost volumes could be aggregated together
for the final disparity estimation. Their FFM well integrates multi-scale spatial information
and semantic clues, achieving much better results than previous SOTA methods.

The stereo correspondence search is usually hampered by textuerless areas and boundaries.
Therefore, the edge information is promising to guide the matching procedure for more rea-
sonable disparity assignment. Accordingly, EdgeStereo is proposed in (Song et al., 2020b) to
construct a multi-task network for both disparity estimation and edge detection. The net-
work consists of two branches for the two tasks, which share the shallow part for feature
extraction. Afterwards, the features from both images are connected by a correlation mod-
ule to build a cost volume, while the left feature goes deeper for edge detection. Then the
detected edge feature is incorporated into the stereo matching branch, as the first support,
by concatenating the edge map with the cost volume. Thus, the geometric information is
considered in further disparity estimation. After a convolution based encoder for deep rep-
resentation and context perception, a residual pyramid decoder is designed to recover a full
resolution disparity map from coarse to fine. A disparity map at the lowest resolution is
firstly computed, which is continuously upsampled and refined in higher resolution pyra-
mid level via a residual learning. At here, the second support from edge information is
acquired, via defining an edge-aware smoothness loss to penalize the disparity discontinu-
ities, such that a more semantic meaningful optimization is realized. Regarding the train-
ing, three stages are carried out. The first stage solely trains the edge detection branch based
on a class-balanced cross-entropy loss (Liu et al., 2019). Then the stereo branch is trained
with fixed weights of the other branch. At last, both branches are optimized, except the
shared shallow backbone. In the paper, they prove that the two target tasks could promote
each other. The disparity map acquires sharper boundaries, while the model after multi-
task training predicts better edges than previous model purely trained on edge detection
dataset.

The data labelling remains to be a problem in the field of computer vision, as cumbersome
annotation is needed to provide dense and accurate labels for training. Jiang et al. (2019)
propose a multi-task network, Shared Encoder Network for Scene-flow Estimation (SENSE),
to simultaneously estimate disparity and optical flow, detect occlusions and segment the
scene. Thus, the interaction among different tasks can support each other even with partially
labelled ground truth. For example, the semantic information is able to assist the disparity
or optical flow estimation, which in turn help to locate the occlusions. Accordingly, three
losses are defined as supervised loss, distillation loss and self-supervised loss. The super-
vised loss is naturally based on pixels with ground truth labels, while the self-supervised
loss is measured by the photometric consistency or semantic consistency via warping the
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images or semantics onto a common frame. The distillation loss uses the model pre-trained
on well labelled data, e.g. synthetic data, to train the network on real data with scarce la-
bels. Furthermore, one encoder is shared by all the tasks for a compact network design and
interaction.

El-Khamy et al. (2019) design an interesting end-to-end network to estimate the scene
depth, which is captured by two cameras with different field of views (FOVs). One camera
uses a tele zoom lens, with its FOV contained within the other camera’s FOV equipped with a
wide angle lens. The overlapped FOV between the cameras could provide the stereo dispar-
ity results. However, predicting the depth of the surrounding area outside the narrow FOV
but within the wide FOV is difficult. Accordingly, they propose three architectures, named
tele-wide stereo matching network (TW-SMNet), single image inverse depth estimation net-
work (SIDENet) and multi-task tele-wide stereo matching network (MT-TW-SMNet). TW-
SMNet is able to process the overlapping FOV, which is basically from the tele zoom lens,
however, obtains bad results on the outer region with incomplete binocular stereo infor-
mation. As SIDENet is trained to understand the scene for monocular disparity prediction,
better results are acquired on the outer region than TW-SMNet. Hence, it inspires the au-
thors to combine TW-SMNet and SIDENet to construct MT-TW-SMNet. The two branches
(TW-SMNet and SIDENet) could assist each other, leading to further improved estimation.
For example, the disparity estimation from TW-SMNet refines the prediction of SIDENet,
by providing the disparity results of the overlapped FOV, as prior knowledge of the scene’s
depth. The proposed methods can be applied to blur the background for esthetically better
effects in image Bokeh.

3.3 Confidence Measurement

Although the SOTA deep learning based methods have achieved high quality stereo re-
sults, which outperform the conventional methods by a large margin, a confidence mea-
sure should be available to indicate the correctness of the estimation. Besides acting as a
self-evaluation about the results, the confidence is particularly important in applications
aiming at providing accurate prediction for reliable machine guidance, e.g. self-driving, in
order to avoid disastrous consequences (Kendall and Gal, 2017). Therefore, some studies
focus on the confidence measurement to complement modern algorithms, so that a more
complete stereo product can be delivered.

Some algorithms design a module to specifically estimate the confidence of the disparity
map, which is obtained from an independent pipeline. Fu and Fard (2018) propose several
CNN based models for stereo confidence estimation, which take the initial disparity map
and the corresponding reference RGB image as input. The designed models are categorized
into two types, basic models and effective models. The former alternatively merges the ini-
tial disparity map and the RGB image as a four channel input, or organizes two branches
to process the disparity and RGB, respectively, before a further decision sub-network to
estimate the confidence. The latter adjusts the two-branches version, by utilizing dilated
convolutions to increase the receptive field in either of the two branches or both, or in an-
other separate branch to additionally process RGB information. Both basic and effective
architectures achieve SOTA performance, while the latter could generalize better as larger
receptive field is observed. However, the algorithm is patch based and can only consider
a small neighborhood around each pixel for confidence measure. Hence, Tosi et al. (2018)
add a ConfNet in addition, which absorbs global information from the disparity map and
the reference image, such that a far larger receptive field is perceived and a smoother con-
fidence map is obtained. The ConfNet uses an encoder-decoder structure to process the
concatenated feature extracted from the disparity map and the image, and outputs a confi-
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dence map with the same resolution. Then they cascade the ConfNet and a local approach
such as (Poggi and Mattoccia, 2016) and (Fu and Fard, 2018), so that local and global in-
formation is fused for the final confidence estimation. They nominate the method as Local
Global Confidence Network (LGC-Net), which outperforms the previous local approaches.
Kim et al. (2017) emphasize the spatial consistency in confidence estimation by extracting
confidence features from both pixel-level and superpixel-level. Thus, unreliable estimation
on textureless or occlusion areas is alleviated. The pixel-level confidence feature vector is
constructed using a series of metrics from (Park and Yoon, 2015), according to the matching
cost volume and the disparity map. On the other hand, the confidence measure within each
superpixel is obtained via a GMM clustering model (Biernacki et al., 2000). A superpixel
map could be generated from the color image based on an off-the-shelf superpixel segmen-
tation algorithm, e.g. the SLIC method (Achanta et al., 2012) used in the paper. Afterwards,
the combination of pixel-level and superpixel-level confidence features is fed to a random
regression forest to predict a confidence map. In addition, they design a hierarchical con-
fidence map aggregation (HCMA) strategy to further enhance the confidence estimation in
test period, based on K-Nearest Neighbor (KNN). The proposed method achieves SOTA per-
formance.

The work from (Kim et al., 2017) is extended in (Kim et al., 2019) via a CNN to estimate
the stereo confidence, according to the cost volume and initial disparity map. The network
consists of two sub-networks, a matching probability construction network (MPCN) and a
confidence estimation network (CEN). The former transforms the matching cost volume to
a matching probability volume, which can better handle the scale variation problem. The
latter is capable of learning a mapping from the matching probability and disparity esti-
mation, to a confidence measurement, by searching the top-k matching probability and the
corresponding disparity. In order to better train the network with sparse ground truth, a
semi-supervised strategy is designed to use confident pixels via the image reconstruction
loss. The network is proven effective using three post-processing algorithms: cost modula-
tion (Park and Yoon, 2015), GCPs-based propagation (Xu et al., 2013) and aggregated GCPs-
based propagation (Min et al., 2014).

There are also works which measure the confidence of the estimation as a byproduct, to-
gether with the stereo matching results. SGM-Forest (Schönberger et al., 2018) summarizes
the confidence of all the hypotheses close to the selected disparity hypothesis, as the con-
fidence measure of the random forest disparity prediction. This confidence measure could
support their confidence based spatial filtering, which selects neighboring pixels with confi-
dent prediction to compute the disparity median as the final estimation. The median of each
neighbor’s confidence estimation is the corresponding correctness. Shaked and Wolf (2017)
add two more FC layers in their network as a separated branch, which uses the feature for
disparity estimation to additionally predict the confidence, in parallel with the disparity
prediction branch. Mehltretter (2020) argue that most deep models only predict the confi-
dence according to the uncertainty present within the data or tasks, instead of the stereo
processing itself. Accordingly, they study both of the aleatoric and epistemic uncertainty in
their network. The former could locate the difficult regions in matching, where the error
mostly originates, e.g. depth discontinuities, reflective areas, occlusions, etc. The latter de-
fines the limitation of the model which is trained on finite training samples, resulting in bad
generalization in a new domain. The epistemic uncertainty can be theoretically explained
away with sufficient training data, which is not possible for the aleatoric uncertainty. How-
ever, the latter doesn’t increase in test period. Concretely, a probabilistic neural network
is proposed based on the GC-Net backbone, from which both disparity and confidence are
estimated. The aleatoric uncertainty is estimated via a separate branch after the cost regu-
larization, by comparing the predicted disparity with the ground truth. Regarding the epis-
temic uncertainty, a Bayesian method is applied to create a probability distribution of the
network’s parameters, in which the weights of the network are sampled rather than directly
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learned. Hence, different disparity maps are calculated from a single stereo pair, by sam-
pling different sets of the network weights, and the epistemic uncertainty is approximated
according to the variance of the prediction. The training could thus optimize the probability
distribution via the mean and variance of the network’s parameters. In test period, the dis-
parity is predicted multiple times for each stereo pair, from which the mean of the disparity
predictions is regarded as the final estimation. Images from a different domain may lead to
bad estimation, however, the variation of multiple predictions (of the same image) already
well represents the model’s weakness in the confidence map. The experiments prove that
the estimated confidence considering both uncertainties is more consistent with the error
map.

3.4 Cross Domain Estimation

Although SOTA networks continuously promote the development of dense stereo matching
in both accuracy and efficiency, overfitting on the training domain is an unavoidable issue as
there is no datasets covering all possible situations. The network may suffer from achieving
good predictions, when fed with images owning different color styles, lighting or exposure
conditions, view angles, resolutions, etc., from the data used for training. Besides, a syn-
thetic dataset is widely utilized to pre-train the models as it could provide huge amounts of
training samples with precise and dense annotation. However, discrepancy exists between
simulated and real environment making the finetuning on real data indispensable. There-
fore, some studies focus on designing a robust network which can generalize well cross do-
mains, so that a good estimation is acquired even for unseen scenes and targets. Two main
categories of the network adaption are proposed, offline and online.

Finetuning is regarded as a normal offline adaption, which allows a network to better esti-
mate stereo correspondences for unfamiliar scenes. The ground truth for practical scenarios
could be hard or expensive to collect, however, the stereo images in the target domain could
be easier to obtain. Hence, extracting appropriate stereo knowledge from the available im-
ages only is naturally considered as a good direction for a pre-optimization. Tonioni et al.
(2017) propose an unsupervised adaption strategy to leverage conventional stereo matching
algorithms, e.g. SGM, for disparity estimation on the test data as they are generally more
robust for different scenarios, in order to supervise a pre-trained network. To exclude un-
reliable predictions of traditional approaches, a confidence measurement CNN (Poggi and
Mattoccia, 2016) is used to adapt the network only on highly confident estimations. Ac-
cordingly, a confidence guided loss is defined, in which the network’s disparity prediction
is guided to approach the traditional algorithm’s prediction if its confidence is above a pre-
defined threshold. Moreover, another loss function is designed to enforce the smoothness
term, by minimizing the disparity difference within the neighborhood. Thus, the highly
confident estimation can be propagated to low confident ones. Experiments indicate that af-
ter the proposed adaption, the predicted disparity map from DispNet is smoother and more
accurate. Pang et al. (2018) obtain empirical findings that a pre-trained network achieves
blurred boundary reconstruction and erroneous estimation on ill-posed areas in the target
domain, which however could be improved when fed with an upsampled version of the
same stereo pair. Hence, they propose their ”zoom and learn” (ZOLE) model, in joint super-
vision of synthetic data with ground truth and stereo pairs from the target domain without
ground truth. Regarding the former, a normal L1 loss is applied according to the comparison
between the prediction and ground truth. As for the latter, the network is fed with stereo
pairs from the target domain in the original resolution and properly upsampled resolution,
respectively. The disparity prediction on each higher resolution input is downsampled to
the original resolution, which is found to still own finer details compared with the stereo
results on original resolution input. Therefore, another loss is introduced by using the dis-



36

parity map of higher resolution input to guide the lower resolution stereo matching, based
on graph Laplacian regularization (Elmoataz et al., 2008; Milanfar, 2013). The pre-trained
ZOLE model is tested on images collected using smart phone cameras on a driving car in
street view. The predicted disparity maps own sharper edges and more local details after
the adaption. It is mentioned in the paper that the resolution should not be increased ex-
cessively for supervising the network in the target domain, to keep a reasonable receptive
field.

Although the most effective domain adaption should be offline before bringing the model
to practical scenarios, the pre-trained model can also be adjusted online as each new image
is observed in test period, to conduct early prediction. Tonioni et al. (2019) offer a frame-
work to adapt the pre-trained model online towards the target domain. Considering the
practical use, good efficiency should be acquired, since the model stays in training mode
during the test period to optimize the network parameters after each backward propaga-
tion. Thus, a pyramid structure is applied, which generates multi-scale feature maps. The
stereo correspondences are firstly located at the lowest resolution, with a correlation layer
used to measure the matching cost and a decoder to estimate the disparity. Then the dispar-
ity map is upsampled to match the resolution of the next higher resolution pyramid level,
and acts as the initial estimation from which only a small disparity range is needed for fur-
ther correcting the results softly. Hence the disparity of each pixel is refined by searching
the corresponding point within a narrow range through the pyramid, achieving a high ef-
ficiency. The model could be adapted by unsupervised loss functions, e.g. a reconstruction
error which measures the difference between the left image and the warped right image ac-
cording to the disparity prediction. They name the network as Modularly Adaptive Network
(MADNet). Besides, they also design a strategy to partially tune a subset of the network, in
order to achieve a faster adaption. A portion of the network is sampled in each iteration,
which would acquire a higher superiority in next sampling if the optimization on the por-
tion brings positive effect to the overall performance. Specifically, positive effect represents
that the current two consecutive iterations enable a decrease of the loss more than the previ-
ous ones. The proposed method leads to the first stereo system with real-time self adaption.
Similarly, Zhong et al. (2018) propose an online network adaption scheme to process con-
tinuous stereo video, which is capable of improving the depth estimation gradually as more
frames are observed. Since the strategy enables their stereo network to be directly applied
in unseen open world environment, it is nominated as ”OpenStereoNet”. Specifically, Open-
StereoNet consists of feature extraction, encoder-decoder based cost regularization, and a
projection layer (soft argmin) to predict the disparity. The online adaption is realized based
on a photometric warping error via comparing the right and the warped left image accord-
ing to the disparity estimation. In addition, two Long Short-Term Memory (LSTM) units are
added to the bottleneck of the feature extraction and cost regularization module, respec-
tively, so that the network could provide a smooth disparity sequence along the temporal
axis according to its past experiences. Tonioni et al. (2019) provide a strategy to search a
base model for faster online adaption to the unseen target domain, based on Model Agnos-
tic Meta Learning (MAML) (Finn et al., 2017). Besides, a confidence measure is applied for
a weighted unsupervised loss calculation, thus the noise from doubtful estimation is allevi-
ated during the adaption.

In addition to the adaption strategy, online or offline, to finetune the pre-trained model to-
wards the target domain, the data from the training domain can already be transformed
to own similar appearance, e.g. color style, with the test data, such that the domain shift
is relieved when transplanting the pre-trained network to practical scenarios. Also, the ex-
tracted low-level feature can be normalized, such that the domain property is limited before
building up the cost volume. Based on the two findings above, Song et al. (2020a) propose
AdaStereo to preprocess the input stereo pair and the output of the feature extraction mod-
ule, in order to obtain a more robust and general representation for disparity estimation
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across domains. During the pre-training of the network on synthetic data, a color transfer
module is applied to transform each synthetic stereo pair towards a randomly selected test
stereo pair, e.g. from KITTI or Middlebury, before feeding to the network. Thus, a similar
color style is acquired between the two different domains. The color unification is carried
out in the LAB color space, according to the mean and standard deviation of the color val-
ues. Regarding the matching cost, the extracted feature is normalized along the spatial and
channel dimension successively, and then used to construct the cost volume via correlation
or concatenation. Thus, the cost volume can be regularized within a fixed range to narrow
the domain gap. Their experiments demonstrate that the pre-trained AdaStereo network on
synthetic data achieve comparable performance with other SOTA domain-invariant meth-
ods. Besides, the two preprocessing steps could be embedded into any SOTA stereo net-
works without incurring extra trainable parameters. However, the color transfer for every
single stereo pair still increase the computation burden. Furthermore, some researches aim
at training a robust network on, e.g. synthetic data, and keeping an acceptable performance
for real data without finetuning or adaption. Zhang et al. (2020) design a domain-invariant
stereo matching network, DSMNet, for robust cross domain estimation without the need
of explicit adaption. In order to reduce the domain differences, the common batch normal-
ization (BN) layer is replaced by a newly designed domain normalization (DN) layer after
each convolution. Traditional BN normalizes the feature within each channel through the
whole batch, which can amplify the domain property. On the other hand, another conven-
tional normalization layer, instance normalization (IN), uses the feature of each channel
from each input image independently for normalization, thus limiting the image level vari-
ation and obtaining a better cross domain estimation. Nevertheless, the feature vector (along
the channel dimension) of each pixel is not fully considered, leading to susceptible similar-
ity measure when inconsistent feature norms or scaling exist. Hence, DN is designed which
comprises an IN for the first normalization, and then normalizes the feature along the chan-
nel again, so that a robust feature measure is accomplished considering both spatial and
channel dimensions. Also, a non-local aggregation layer is proposed, which is a general form
of their SGA layer (Zhang et al., 2019), for better structural and geometric representation in
both feature extraction and cost aggregation. Based on the two modifications, DSMNet out-
performs all the SOTA networks pre-trained on the same synthetic data, when applied on
real data, and even surpasses some finetuned models. Cai et al. (2020) argue that a network
can acquire better generalization ability, if it is fed with feature from the matching space
(MS) instead of image appearance, i.e. pixel intensity or RGB values. Therefore, they replace
the feature extraction module from an end-to-end stereo network, e.g. GC-Net and PSMNet,
with a domain-invariant MS representation based on CBMV features (Batsos et al., 2018).
Thus, the training starts from the cost regularization step using conventional matching cost
measurement, without exposing the network to the image appearance. Their MS feature ex-
pression makes the pre-trained network suffer from marginal accuracy loss in the training
domain, however, generalize much better in the unseen target domain.

3.5 Datasets

Through the years, a sequence of stereo datasets are available to evaluate the SOTA ap-
proaches, for which dozens of stereo pairs with ground truth are sufficient for a fair com-
parison among competitive methods. The data are acquired based on elaborate campaign
planning, precise camera calibration, and expensive ground truth collection with technical
support needed using LiDAR, structured light, etc. Besides, each dataset represents a certain
situation, e.g. Middlebury datasets (Scharstein and Szeliski, 2002; Scharstein and Szeliski,
2003; Scharstein and Pal, 2007; Hirschmuller and Scharstein, 2007; Scharstein et al., 2014)
mainly focus on indoor scenes with different challenging cases for object reconstruction,
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KITTI datasets (Geiger et al., 2012; Menze and Geiger, 2015) are more interested in street
view imagery to better perceive the scene depth for smart driving, ETH3D dataset (Schöps
et al., 2017) contains both indoor and outdoor images to supply a more comprehensive eval-
uation standard, etc. As the development of modern stereo applications, machine and deep
learning are utilized in dense matching for processing high definition stereo data and ac-
complishing 3D reconstruction with high accuracy and rich details. Accordingly, a huge
amount of stereo images with ground truth are required to supervise learning based algo-
rithms, especially for data-hungry end-to-end methods. Thus, some synthetic datasets are
proposed (Wulff et al., 2012; Mayer et al., 2016; Dosovitskiy et al., 2017) for an initial learn-
ing phase, which could provide thousands of training samples with ground truth disparity
maps, without the need of cumbersome data collection and annotation. In this chapter, real
and synthetic stereo data are summarized, with a main focus on the commonly used datasets
and a brief introduction of less popular or newly proposed data. The described datasets in-
clude both indoor and outdoor imagery, covering from close-range, to airborne and satellite
data.

3.5.1 Real Stereo Data
Middlebury Data Series: The Middlebury Stereo Vision project provides the early software
platform for an online stereo algorithms evaluation since 2002 (Scharstein and Szeliski,
2002). They also make their first multi-view stereo dataset with ground truth disparity maps
public, so that each method contributor is able to pre-test the algorithm before submitting
them for evaluation. The dataset consists of six sequences with each of them containing nine
images. A digital high-resolution camera is placed on a horizontal translation stage for tak-
ing stereo pairs with regular baselines. The images only include piecewise planar objects,
e.g. newspapers and posters, for a simple scene composition, which enables the segmenta-
tion and direct alignment technique on each planar target (Baker et al., 1998) to estimate
the affine motion and the corresponding sub-pixel disparity values for ground truth. In the
paper, the limited scene complexity is a compromise for high precision ground truth dis-
parities, which is extended in their following study (Scharstein and Szeliski, 2003) with an-
other two sequences provided, Cones and Teddy, for more complex surfaces. Each sequence
also owns nine images taken from viewpoints with equal space in between, from which the
view-2 and -6 have precise ground truth disparity maps. To handle the depth perception
of more complex objects, the structured light technique is utilized to uniquely label every
pixel with special light patterns, so that a dense range map of the scene is obtained. The
Middlebury data series is further extended in (Scharstein and Pal, 2007; Hirschmuller and
Scharstein, 2007), in order to contain more challenging situations including a larger dispar-
ity range, more untextured regions, and radiometric variations. Accordingly, 30 and 6 new
datasets are published in each paper, with each dataset containing seven images acquired
from equidistant viewpoints along a line. From each viewpoint, three exposure settings are
applied under three lighting conditions, leading to nine radiometrically different images in
total. The ground truth disparity maps are produced also based on the structured light tech-
nique from (Scharstein and Szeliski, 2003), which is improved in (Scharstein et al., 2014) for
more precise disparity measurement up to 0.2 pixels, via a robust interpolation of lighting
codes. Besides, 33 new datasets are added with much higher resolution (6 megapixels), un-
der different exposure and ambient illumination conditions. The high resolution requires
better camera calibration and rectification strategy using bundle adjustment. Meanwhile
an ”imperfect” version of each dataset is generated to simulate the practical rectification
errors. Accordingly, 2D ground truth disparity values are available including y-disparities.
The datasets bring a new challenge into the community of stereo matching.

KITTI Data Series: As the development of robotics navigation and self-driving, the indoor
stereo datasets cannot meet the demands of evaluating depth estimation approaches for
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driving scenarios. Geiger et al. (2012) find that many algorithms owning a high rank on,
e.g. Middlebury benchmark, struggle to achieve acceptable performance when processing
street-view stereo pairs including cars, pedestrians, etc. Compared with the laboratory data
collection, the images from outdoor are more likely to involve non-lambertian surfaces, var-
ious materials, and challenging lighting conditions, which may increase the difficulty level
for dense matching. Therefore, they propose the first realistic non-synthetic stereo and opti-
cal flow dataset, KITTI-2012, for driving scenarios, with ground truth disparity maps avail-
able to train and evaluate the corresponding approaches. The data is collected with two
stereo camera pairs (one grayscale, one color) mounted on a car driving around urban and
rural areas, which are synchronized with a laser scanner and a positioning system for ground
truth generation. The ground truth disparity maps are acquired by projecting the LiDAR
point cloud onto each frame, for which Iterative Closest Point (ICP) is used for data regis-
tration. Due to the occlusion during the laser scanning, the ground truth disparity maps are
semi-dense. 389 stereo pairs are published, with 194 of them provided together with ground
truth for training. The rest is for test. Moreover, KITTI-2012 also includes datasets for 3D vi-
sual odometry/SLAM and object detection. In their subsequent research (Menze and Geiger,
2015), a new dataset for 3D scene flow, KITTI-2015, is designed also for autonomous driv-
ing. Based on the fact that an outdoor scene can be decomposed into a static background
and a sequence of moving objects, 400 KITTI raw images are annotated to create a dynamic
scene, for which the background is firstly reconstructed with all moving objects removed,
and then elaborate CAD models are added into the frame as dynamic objects. The reason for
not directly annotating the scene flow with the LiDAR points, originates from the hardware
limitation that the rolling shutter and the low frame rate of the used laser scanner cannot
support the flow measurement for all the moving objects. Hence, the 3D CAD models of 16
representative vehicles are selected and sampled as point clouds to be fitted into each frame.
KITTI-2015 provides half of the 400 stereo images with ground truth as training data, with
the other half to test the SOTA optical flow and scene flow methods.

ETH3D Data: Schöps et al. (2017) contribute their ETH3D stereo datasets, containing both
indoor and outdoor views. The imaging targets include man-made buildings and natural
scenes with vegetation, which are rarely considered in previous data. 47 low resolution two-
view stereo pairs are provided with 27 of them for training and the rest for testing with
ground truth withheld. For some scenes, the images are in two different sizes, one of which
owns a larger FOV to fully cover the other. The images are collected via a Digital Single-Lens
Reflex (DSLR) camera synchronized with a multi-camera rig capturing varying FOVs. The
ground truth is obtained using a high precision laser scanner. In addition to the binocular
stereo data, 25 high resolution multi-view stereo pairs and 10 low-resolution many-view
stereo video data are also publicly available. Since various scene categories are included in
the datasets, ETH3D expects a robust stereo algorithm to reduce overfitting.

EuroSDR Image Matching Benchmark: Triggered by the development in the field of dense
matching and the modern elevation data collection from advanced airborne imaging sen-
sors, an aerial image matching benchmark project (Haala, 2014) is launched by the Euro-
pean Spatial Data Research Organisation (EuroSDR). The project mainly aims at setting a
public platform to evaluate dense matching algorithms for airborne stereo data processing
and DSM generation. Thus, the potential of the normally used photogrammetric softwares
can be assessed according to the quality of generated 3D products. Two test areas from,
Vaihingen/Enz and Munich, are covered to include different landuse and ground geometry.
The Vaihingen/Enz subset concentrates on a semi-rural region, with the flight height set as
2900m and the GSD as 20cm. For stereo reconstruction, the image pairs acquire from one
folded to nine folded overlap, leading to 63% in flight and 62% cross flight overlap. The
other subset from Munich is a representative urban area, in which the central part of the
city in size of 1.5km × 1.7km is covered. Higher resolution is obtained with the GSD as
10cm. An overlap up to fifteen folded regions is achieved, from which the overlap for both
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in flight and cross flight directions is 80%.

Urban Semantic 3D (US3D) Data: To assist the previously mentioned multi-task learning
models which combine semantic and stereo information for better joint optimization, Bosch
et al. (2019) propose their US3D dataset including both semantic and disparity labels. The
dataset is composed of WorldView-3 target-mode panchromatic and VNIR images, with 26
of them collected between 2014 and 2016 over Jacksonville, Florida and 43 collected be-
tween 2014 and 2015 over Omaha, Nebraska. The GSD of panchromatic and VNIR data is
30cm and 1.3m, respectively, covering around 100 square kilometers area. Both the stereo
and semantic ground truth are generated based on LiDAR products published by the Home-
land Security Infrastructure Program (HSIP) (Brown et al., 2018). US3D contains multi-view
and multi-band satellite imagery, which promotes the development of pairwise semantic
stereo.

3.5.2 Synthetic Stereo Data
Since Dosovitskiy et al. (2015) have proven that the optical flow estimation problem can
be solved via a deep neural network based on supervised learning, many end-to-end neural
networks are proposed for stereo reconstruction, the performance of which is largely depen-
dent on the quality and quantity of available training data. As the real stereo data is often in
small amount with a specific situation concerned, a large synthetic dataset using automatic
ground truth annotation is promising, to thoroughly train a model from scratch and reduce
the requirement of real training data for finetuning.

Scene Flow Data Series: Mayer et al. (2016) propose the first large scale synthetic stereo
video datasets with accurate ground truth for scene flow estimation, which own sufficient re-
alism and variation to properly model the real-world situations, and provide a huge amount
of data to supervise deep networks. Three subsets are customized using a 3D creation suite,
Blender, named as FlyingThings3D, Monkaa, and Driving, including stereo color images
with bidirectional ground truth of disparity and optical flow. In addition, the disparity
change, motion and object boundaries are also available. FlyingThings3D is rendered using
everyday objects sampled from ShapeNet (Savva et al., 2015), which randomly fly over static
background constructed by choosing from 200 shapes of cuboids and cylinders. Around
25000 stereo pairs are created, with a main focus on randomness to realize a large variety for
training deep neural networks, instead of concentrating on a specific task with rigid rules.
Monkaa is essentially a short film, from which nonrigid motions are simulated to generate
stereo pairs. Besides the selected film scenes, the virtual camera’s orientation is adjusted to
manually create new scenes for more animated images. Driving is designed to mimic KITTI
datasets, with naturalistic street scenes from a driving car’s viewpoint. The models of cars,
trees and street lights are arranged in an appropriate manner, so that comparable scene set-
tings to KITTI is obtained. The emergence of Scene Flow datasets promotes the development
of deep learning based stereo methods to a great extent. Most of the supervised algorithms
described in this chapter pre-train the models using the datasets.

MPI-Sintel Flow Data: The data originates from an open source CGI movie, Sintel, contain-
ing various image sequences degraded by motion, defocus and atmospheric blur for more
realistic appearance (Wulff et al., 2012). There are 1628 frames in total (564 frames for
test), collected from 35 scenes, which enable appropriate supervision for flow estimation.
Regarding the ground truth, the camera intrinsic and extrinsic parameters, scene depth in-
formation, occlusion masks and motion boundaries are all available.

CARLA Simulator: CARLA (Dosovitskiy et al., 2017) is an open source platform which sim-
ulates autonomous driving scenes, with a variety of sensor suites and environment condi-
tions to be selected by users. Numerous urban elements could be added including vehicles,
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buildings, traffic signs, etc. In order to better train the driving scenarios, the speed and ac-
celeration of cars can be modeled to animate different driving situations. In addition, the
setting of illumination and weather conditions is possible. This engine can be used to create
multiple virtual cases, enabling deeper research in self-driving.

Recently, more and more stereo datasets are proposed to assist the development of learn-
ing based matching algorithms. As for the real data, the ApolloScape dataset contains
many more frames and labels for self-driving, compared with the popular KITTI data se-
ries (Huang et al., 2020). Geyer et al. (2020) release the Audi Autonomous Driving Dataset
(A2D2), with both stereo and semantic information provided in the form of images and
point clouds. Regarding the synthetic data, Li and Snavely (2018) utilize unlimited multi-
view internet photos to generate a huge stereo dataset, MegaDepth, for monocular depth
estimation. Yang et al. (2019) create a synthetic dataset together with a real dataset. The
synthetic one, High-res virtual stereo (HR-VS), is simulated using the CARLA environment,
with the images in size of 2056×2464. The real one, High-res real stereo (HR-RS), is collected
using stereo cameras and LiDAR from an urban driving campaign, acquiring 1918×2424 im-
ages and the corresponding ground truth. Both datasets are proposed for developing high
resolution dense matching methods, with the target on autonomous driving.
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4 Summary of the Contributions

In order to promote the development of dense matching, certain strategies are proposed
in the thesis to optimize the stereo framework, in form of three published peer-reviewed
journal papers. Regarding the aforementioned objectives, the stereo matching pipeline is
improved from the matching cost computation, cost aggregation, to an overall enhancement
as an end-to-end neural network. In this chapter, our contributions are summarized.

4.1 Self-Supervised Matching Cost Network with Case
Study: Plant Reconstruction (ForDroughtDet)

Dense image matching is widely used in computer vision to construct high-quality geomet-
ric models, which recovers three-dimensional (3D) information from two-dimensional (2D)
images. Among different techniques, SGM outperforms most existing classical approaches
in accuracy and efficiency, which is widely applied in diverse scenarios such as building re-
construction, DSM generation, robot navigation, and self-driving, etc. (Hirschmüller, 2011;
Kuschk et al., 2014; Qin et al., 2015). However, the performance of SGM varies with different
matching cost calculation methods adopted. Along with the development of machine/deep
learning (Lecun et al., 1998), supervised algorithms for learning the pixel similarity are
proposed with better performance to extract feature from pixels and compute the matching
cost. Among them, Matching Cost based on CNN (MC-CNN) (Zbontar and LeCun, 2016)
belongs to the first generation. Composed of a simple architecture, MC-CNN is trained on
pairs of small image patches with known true disparity, and outputs a similarity measure of
pixels which is exploited by SGM for the data term. Thanks to a good extraction of the local
image features and a trained similarity measure to compare the extracted feature descrip-
tors, the integration of MC-CNN and SGM proven to outperform most previous algorithms.
However, the ground truth collection is a bottleneck for neural network-based algorithms,
considering that huge amount of labeled data is required to train the net (Krizhevsky et al.,
2012; Knöbelreiter et al., 2018). For example, ground truth acquisition via LiDAR sensors
is complicated in remote sensing. It could be difficult to capture a temporally-consistent
dense point cloud as the reference data of stereo images, from a dynamic scenes in practice.
Inspired by the work of Knöbelreiter et al. (2018), we propose a dense matching strategy
combining SGM and a self-trained MC-CNN.

4.1.1 Background
Dense matching attempts at establishing correspondences between every pixel in the im-
age pair (Scharstein and Szeliski, 2002). Together with the known camera orientations, a
dense point cloud can be obtained. Most dense stereo matching algorithms consist of four
steps: Firstly, a similarity measure between two potentially matching pixels is computed to
evaluate the matching cost. As the matching cost can be ambiguous, costs are then usually
aggregated in a local neighborhood. Global stereo methods apply certain regularization to
the aggregated costs, while local methods simply select the correspondence with the low-
est matching cost. SGM combines local and global methods by regularizing the aggregated
costs before determining each correspondence. Afterwards, for rectified stereo pairs, a dis-
parity map containing the horizontal shifts between the images is obtained (Bolles et al.,
1987; Okutomi and Kanade, 1993). Finally, sub-pixel interpolation, left-right consistency
check, and outlier filtering are included in the post-processing by most stereo algorithms
for disparity refinement.
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On the other hand, CNNs (Lecun et al., 1998) have been used to solve several vision prob-
lems such as classification (Krizhevsky et al., 2012), recognition (Lawrence et al., 1997), etc.
It is basically a feedforward artificial neural network constructed by a sequence of layers
with learnable weights and biases. A volume of activations is transformed from one into an-
other when going through the layers, and finally certain scores are obtained as output at the
end of the network, which could be e.g. class scores for classification. Four types of layers
are frequently used: (a) convolutional layers, in which each neuron is related to a local re-
gion of the input; (b) pooling layers, used to downsample the previous volume and enlarge
the receptive field; (c) rectified linear units applying an element-wise activation function;
and (d) fully-connected layers, which calculate the output by connecting each neuron to all
the neurons of the previous volume for high-level reasoning. The network can be trained to
reach its best performance when a sufficient amount of training samples are available.

4.1.2 Dense Matching based on MC-CNN and SGM

CNNs provide a new possibility in dense matching (Luo et al., 2016; Zbontar and LeCun,
2016). Zbontar and LeCun (2016) proposed a dense stereo algorithm using a CNN based
matching cost measurement combined with SGM and additional post-processing steps,
which outperformed most previous stereo matching algorithms. Specifically regarding the
data term, a binary classification data set is constructed for training the net, based on either
the KITTI (Geiger et al., 2012; Menze and Geiger, 2015) or the Middlebury (Scharstein and
Szeliski, 2002; Scharstein and Szeliski, 2003; Hirschmuller and Scharstein, 2007; Scharstein
and Pal, 2007; Scharstein et al., 2014) stereo data sets with available ground truth disparity
maps. At each image location, a positive and a negative training example are extracted. The
positive example is a pair of patches from the left and right image, respectively, with the
central pixels projected from the same object point, while the negative example is from a
pair of patches where this geometric condition is not satisfied.

Two network architectures are designed and trained on the extracted training examples.
Both of them are Siamese networks with two sub-networks sharing the same weights (Brom-
ley et al., 1993). The sub-network consists of several convolutional layers, each of which is
followed by a rectified linear unit. Thus, each input image patch can be transformed into a
feature vector. Afterwards, the rest of the network computes the similarity measure using
the feature vectors. For that, two networks variants are proposed as shown in Figure 4.1.
The first architecture uses the dot product of the normalized feature vectors as similarity
measure. Therefore, it has a lower runtime and named as fast architecture. The second one
is designed for more accurate matching cost calculation, which learns the similarity mea-
sure during training. The extracted feature vectors are concatenated and passed through
a number of fully-connected layers with a rectified linear unit following each of them. At
the end, a fully-connected layer followed by a sigmoid nonlinearity is used to produce the
similarity score. In this research, the accurate architecture is adopted considering its better
performance.
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Fig. 4.1. The architecture of MC-CNN. With the same sub-networks, composed of a series of convolutional layers and
rectified linear units, a feature vector can be generated for each of the input image patches. Then, a similarity score is
computed at the end, either simply based on a dot product of the normalized feature vectors or another sub-network to
learn the similarity measure during training. The latter architecture achieves better accuracy at the cost of relatively higher
complexity.

Regarding the training, the binary cross-entropy loss is used as defined in

l = t · logs+ (1− t) · log(1− s). (4.1)

l is the calculated loss, and s is the similarity score from the output of the net. The value of t
depends on the category of the training example being used, which is equal to 1 for positive
examples and 0 for negative ones.

Zbontar and LeCun (2016) acquire the hyperparameters of MC-CNN based on manual
search, which include the number of convolutional layers in each sub-network (5), the num-
ber of feature maps in each layer (112), the convolutional kernel size (3), the number of
fully-connected layers (3), the corresponding number of units in each full-connected layer
(384), and the input patch size (11×11). The same hyperparameter setting is applied in this
research.

After the CNN based matching cost computation, SGM is exploited to regularize the dis-
parity estimation based on a piece-wise constant smoothness term. As mentioned in Chap-
ter 2.1.2, SGM is a combination of local and global stereo methods (Hirschmüller, 2008) and
approximates a global two-dimensional smoothness term by summation of one-dimensional
smoothness constraints along 8 or 16 directions. For each direction, assuming the target
pixel is at location p, the cost is computed as:

Lr(p,d) = C(p,d) + min(Lr(p − r,d), Lr(p − r,d − 1) + P1,

Lr(p − r,d + 1) + P1, mini Lr(p − r, i) + P2 ) .
(4.2)

in which Lr(p,d) is the cost along the path traversed in direction r assuming d as the dis-
parity. C(p,d) is the matching cost according to the output of MC-CNN. P1 is a penalty term
added when the previous pixel has a disparity difference of 1. A larger value P2 is utilized to
penalize larger disparity differences. For each pixel p, S(p,d) = ΣrLr(p,d) is computed and
the disparity with the minimum S is selected as the result using WTA strategy.
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SGM is selected as the smoothness term in both Zbontar and LeCun (2016) and this re-
search, thanks to its good performance and efficiency. The runtime is proportional to the
reconstructed volume (d’Angelo and Reinartz, 2012; d’Angelo, 2016). It should be noted
that, C(p,d) is calculated using MC-CNN and aggregated based on Cross-Based Cost Aggre-
gation (CBCA) (Mei et al., 2011). Then, S(p,d) undergoes CBCA once more before the final
disparity determination. Referring to Zbontar and LeCun (2016) and Mei et al. (2011), some
post-processing steps are implemented to refine the quality of the disparity map, including
interpolation, sub-pixel enhancement, a median filter, and a bilateral filter.

The following sections provide the details for training MC-CNN. Two schemes are designed,
of which one utilizes the ground truth from a LiDAR scanner to construct training data. The
other scheme is a self-training strategy, that directly uses the dense matching results of MC-
CNN, pre-trained on the Middlebury datasets, to retrain the network. The performance of
the two schemes is compared.

4.1.3 Training Strategy with Ground Truth
Zbontar and LeCun (2016) offer several models pre-trained on the KITTI 2012, KITTI 2015,
and Middlebury datasets, respectively. As one option, we start from the pre-trained net on
the Middlebury datasets which focus on static objects, and further train the net using our
own data with ground truth from LiDAR. Thus, the network is finetuned before testing on
our data. Also, the learning ability of MC-CNN for objects from a different category could
be tested.

As for the LiDAR scanning, a point cloud is generated to obtain the ground truth disparity
maps for our experiment images. As the image orientation and the point cloud use different
coordinate systems, a co-registration step is needed before the point cloud can be used. Be-
sides, the main target is to test the performance of MC-CNN trained with different strategies
and compare with the classic matching cost algorithm Census to demonstrate the effective-
ness of MC-CNN. Hence as shown in Figure 4.2, we first generate the disparity maps of the
experiment images, based on SGM either with Census or MC-CNN pre-trained on the Mid-
dlebury data sets. A pixel-wise average of the two maps is computed and projected into 3D
space to obtain a point cloud. Then, the point cloud from the laser scanner is registered to
this newly generated point cloud. The ground truth disparity map is obtained by projecting
the registered laser scanning point cloud onto the epipolar image planes. We use CloudCom-
pare (Girardeau-Montaut et al., 2005) to roughly align the two point clouds first, by scale
matching, rotation, translation, and manual point pair picking alignment. After the rough
alignment, the objects that are reconstructed well by both dense matching and LiDAR, and
aligned close to each other already, are selected for a further fine registration based on the
Generalized Iterative Closest Point (GICP) method (Segal et al., 2009). GICP is more ro-
bust and performs better than the standard ICP without loss of efficiency. Afterwards, only
well-registered objects are kept to generate the ground truth.

4.1.4 Training Strategy without Ground Truth
More and more data are gradually available to meet the need of CNN for training. However,
in most cases, high performance is accomplished at the cost of substantial pre-processing
workloads to label the training examples. Therefore, many self-supervised concepts have
been proposed to avoid the time-consuming manual annotation (Joung et al., 2017; Zhou
et al., 2017; Knöbelreiter et al., 2018). Joung et al. (2017) exploited the correspondence con-
sistency between stereo images to pick samples during the training and guide the network to
compute matching cost. Zhou et al. (2017) randomly initialized a network and adopted left-
right consistency check to select suitable matching to train the net. Knöbelreiter et al. (2018)
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Fig. 4.2. The flow chart for ground truth disparity map generation using LiDAR point cloud. Starting from the experiment
stereo images, the disparity maps are generated using SGM with Census and MC-CNN pre-trained on the Middlebury
data sets, respectively. Afterwards, a pixel-wise average of the two maps is computed, and projected into the object space
to obtain a point cloud. The laser point cloud is registered to this newly generated point cloud. Thus, the ground truth
disparity map is acquired via projecting the registered LiDAR point cloud onto the epipolar image planes.

constructed the training data using a pre-trained version of their hybrid CNN-Conditional
Random Fields (CRF) model followed by a conservative consistency check to reject most
outliers. Based on that, their self-supervised network is able to improve the completeness
and accuracy of the stereo reconstruction results on aerial imagery.

High-resolution LiDAR point clouds are very difficult and expensive to capture especially
in an outdoor environment. It could be challenging to obtain perfectly matching image and
LiDAR data considering the long scanning time and the dynamic attributes of objects in
practice. Therefore, instead of using LiDAR data, a self-training procedure is applicable
even to scenarios where ground truth acquisition is difficult or impossible. We use the MC-
CNN pre-trained on Middlebury data, to generate disparity maps used for self-training. A
left-right consistency check with a threshold of 1 pixel is used to filter most outliers as:∣∣∣dLP + dRq

∣∣∣ ≤ 1, q = p − dLP . (4.3)

In Equation 4.3, dLP is the disparity for pixel at location p in the disparity map regarding the
left epipolar image as the master epipolar plane, while similarly dRq is calculated via dense
matching regarding the right epipolar image as the reference epipolar plane. Only pixels
where left-right matching differs by less than 1 pixel are used as ground truth to further
train MC-CNN. The detailed procedure is shown in Figure 4.3
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Fig. 4.3. The flow chart for the self-training strategy. Based on SGM and a pre-trained MC-CNN on Middlebury datasets,
a disparity map is generated. Afterwards, a rigid left-right consistency check is applied to remove most outliers. Only the
pixels left are regarded as accurate estimation (artificial ground truth) to further train the MC-CNN model, which is finally
used to predict the disparity results.

4.1.5 Case Study: Plant Reconstruction and Drought Detection
In this section, the proposed self-training strategy is validated on two experiments, aiming
at reconstructing the 3D shape of an complex object, plants. The stereo matching remains
very difficult, especially for leaves, due to the lack of unique features, many occlusions,
and repetitive structure. Thus, the feasibility of self-trained MC-CNN is demonstrated. The
first experiment was carried out in an indoor laboratory environment. In this experiment,
an 8-meter high tree standing in the atrium of a building was photographed from above.
At the same time, a LiDAR point cloud was captured from a similar position. The second
experiment investigated stereoscopic images from the crown of a beech tree growing in a
typical European forest.

The main objective of this work is the three-dimensional reconstruction of trees and their
leaves in the forest. In order to minimize the influence of environmental conditions, the
first experiment investigates an 8-meter high deciduous tree inside a building. A digital
high-resolution handheld camera (NIKON D5500) equipped with an 18 mm lens is used to
acquire images from a bridge over the crown of the tree. An exposure time of 1/20 seconds
and an ISO speed rating of 400 was used. The acquired images are 4000 pixels in height
and 6000 pixels in width. A stereo image pair with a baseline length of approximately 0.1
meters is taken from a distance of approximately 1 meter from the tree. Details about the
image acquisition are available in Table 4.1. A Leica HDS7000 laser scanner is used to obtain
a point cloud of the plant from a similar position. Capturing the point cloud with a point
distance of 6.3 mm and a depth error of 0.4 mm RMS at a distance of 10 meters took about
10 minutes.

The proposed dense matching approach requires epipolar images, where corresponding pix-
els are located on the same image row. MicMac (Rosu et al., 2015) was utilized for camera
calibration, relative orientation and epipolar image rectification. The epipolar images gen-
erated based on the stereo pair mentioned above are shown in Figure 4.4.
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Table 4.1. The image acquisition parameters.

Camera model NIKON D5500

Height 4000 pixels

Width 6000 pixels

Exposure time 1/20 sec

ISO speed rating 400

Focal length 18.0 mm

Object distance ∼ 1 m

GSD 0.02 cm/pixel

Baseline length ∼ 0.1 m

Fig. 4.4. The epipolar image pair for the first experiment. MicMac was utilized for camera calibration, relative orientation
and epipolar image generation.

Disparity maps have been calculated using the strategies described above with four different
matching costs:

� Census: Using Census as matching cost;
� MC-CNN-Pre: Using MC-CNN matching cost pre-trained on the Middlebury data sets;
� MC-CNN-LiDAR: Using MC-CNN further trained on the LiDAR ground truth for match-

ing cost, as described in Chapter 4.1.3;
� MC-CNN-SelfT: Using MC-CNN further trained using the disparity maps of MC-CNN-

Pre, as described in Chapter 4.1.4.

After the processing as described in Chapter 4.1.2 and applying the left-right consistency
check as described in Chapter 4.1.4, the generated disparity maps for the epipolar image
pair in Figure 4.4 are shown in Figure 4.5. For pixels with valid matching, the calculated
disparity values from -91 to +42 are represented by the color from blue to yellow accord-
ingly.

It should be noted that, the training and evaluation of the different methods are hampered
by systematic differences between LiDAR and stereo pairs. Due to the automatic air con-
ditioning of the building, there were small movements of the branches and leaves during
LiDAR recording which took around 10 minutes. These led to slightly different leaf posi-
tions between LiDAR and stereo images. During the generation of the ground truth disparity
map, some errors are included unavoidably when picking up point pairs to align the point
clouds initially. The fine registration with GICP can improve the co-registration but errors
still exist. Due to these problems, the point cloud registration is not perfect which influences
the use of the ground truth disparity map generated from the LiDAR data. This is also the
reason that we determine to only focus on some selected objects (leaves) after rough align-
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Census MC-CNN-Pre

MC-CNN-LiDAR MC-CNN-SelfT

Fig. 4.5. The disparity maps generated based on SGM with different strategies, Census, MC-CNN-Pre, MC-CNN-LiDAR
and MC-CNN-SelfT for matching cost. Inconsistent matching (IM) is represented by the color white.

ment to do GICP, as mentioned in Chapter 4.1.3. Afterwards the relatively well registered
leaves by GICP, that visually show merely small shift between the point clouds, are utilized
for training and evaluation of the methods, which alleviates the problem mentioned above.
This is in accordance with our application, as the shape of the leaves is the major indica-
tor of plant drought condition. Compared with images from the Middlebury data sets with
sizes of around 300×200 to 3000×2000 pixels, our images are larger (6000×4000 pixels),
and the masked leaves can still provide a good amount of application specific training data.
Thus, we use 13 well registered leaves together with Jadeplant and Sword1 data (containing
a plant, belonging to the Middlebury datasets 2014) as training data. The reason for adding
the Middlebury data into the newly generated data sets is to increase the amount of training
data from limited selected leaves.

A visual comparison of the results in Figure 4.5 shows that the tree was well reconstructed
by all matching schemes. The results of five independent leaves not used during training
on the LiDAR ground truth are shown in Figure 4.6. While most parts of the leaves are well
reconstructed, some differences in completeness and amount of outliers are visible.
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(a) Leaf a

(b) Leaf b

Fig. 4.6. The reconstruction details of several selected leaves. From left to right in each subset: the first row includes the
master epipolar image and disparity maps for Census and MC-CNN-Pre. The second row includes the ground truth and
disparity maps for MC-CNN-LiDAR and MC-CNN-SelfT. In order to enhance the contrast of the disparity within each
single leaf, we have used a different color bar for each leaf. Pixels invalidated by the left-right check are shown in white.
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(c) Leaf c

(d) Leaf d

Fig. 4.6. The reconstruction details of several selected leaves. From left to right in each subset: the first row includes the
master epipolar image and disparity maps for Census and MC-CNN-Pre. The second row includes the ground truth and
disparity maps for MC-CNN-LiDAR and MC-CNN-SelfT. In order to enhance the contrast of the disparity within each
single leaf, we have used a different color bar for each leaf. Pixels invalidated by the left-right check are shown in white.
(cont.)
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(e) Leaf e

Fig. 4.6. The reconstruction details of several selected leaves. From left to right in each subset: the first row includes the
master epipolar image and disparity maps for Census and MC-CNN-Pre. The second row includes the ground truth and
disparity maps for MC-CNN-LiDAR and MC-CNN-SelfT. In order to enhance the contrast of the disparity within each
single leaf, we have used a different color bar for each leaf. Pixels invalidated by the left-right check are shown in white.
(cont.)

From a visual inspection, it is found that the disparity values obtained by all four strategies
match with the ground truth. With Census as matching cost, the main shape of the leaf is
reconstructed but with considerable noise and low completeness. MC-CNN-Pre results in
low completeness, cf. leaf (e), but shows less noise. However when fed with specific data
for further training, MC-CNN-LiDAR and MC-CNN-SelfT achieve higher reconstruction
completeness. MC-CNN-SelfT results in a slightly better leaf reconstruction than MC-CNN-
LiDAR and fewer gaps. We would like to point out two reasons for this behavior: Firstly, in
self-training more training samples are available for the net to develop the ability to learn
new feature and calculate the similarity score. In Figure 4.5, it can be seen that all leaves
are reconstructed or partially reconstructed in MC-CNN-Pre, which can possibly be used in
MC-CNN-SelfT compared with only a few leaves used in MC-CNN-LiDAR. Hence, the fur-
ther trained MC-CNN can learn from each single leaf during the training and recover more
area. Besides, the rigid left-right consistency check, applied to the dense matching results
of MC-CNN-Pre to construct training samples, guarantees a reasonable training procedure
for MC-CNN-SelfT.

In addition to the visual comparison above, a quantitative evaluation is performed by com-
paring the generated disparity maps with the disparity maps obtained from LiDAR. The
leaves a - e shown above are used for comparison. Firstly, the disparity difference Dp is cal-
culated as below in units of pixels:

Dp = dp − dGp p ∈Np, (4.4)
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where dp denotes the disparity value of a pixel at location p calculated using one of the four
dense matching schemes. dGp is the corresponding ground truth disparity value. Np is the
set of pixels where both dense matching and ground truth provide disparity values. The
mean (Dmean), median (Dmedian), standard deviation (DSTD) and median absolute deviation
(DMAD) of the disparity differences are computed for comparison. The results are reported
in Tables 4.2, 4.3, 4.4 and 4.5.

Dmean = mean
(
Dp

)
. (4.5)

Dmedian = median
(
Dp

)
. (4.6)

DSTD =

√
mean

((
Dp −Dmean

)2
)
. (4.7)

DMAD = median
(∣∣∣Dp −Dmedian

∣∣∣) . (4.8)

Table 4.2. Mean of the disparity difference between dense matching and ground truth.

Dmean (pixels)

Leaf Census MC-CNN-Pre MC-CNN-LiDAR MC-CNN-SelfT

a 0.28 -0.23 0.05 0.17

b -6.78 -4.96 -2.32 -1.88
c -13.88 -14.32 -3.73 -3.13
d 0.35 0.72 0.50 0.64

e -0.15 0.14 0.30 0.46

Table 4.3. Median of the disparity difference between dense matching and ground truth.

Dmedian (pixels)

Leaf Census MC-CNN-Pre MC-CNN-LiDAR MC-CNN-SelfT

a 0.11 -0.11 -0.10 -0.00
b -1.78 -1.72 -2.02 -1.57
c -3.91 -3.30 -3.54 -3.12
d 0.32 0.48 0.40 0.57

e 0.06 0.29 0.28 0.40

Table 4.4. STD of the disparity difference between dense matching and ground truth.

DSTD (pixels)

Leaf Census MC-CNN-Pre MC-CNN-LiDAR MC-CNN-SelfT

a 4.49 4.48 2.37 2.76

b 19.61 15.02 1.29 1.28
c 25.53 30.65 7.86 6.38
d 2.73 3.16 1.06 1.13

e 5.35 2.84 0.70 0.86

By comparing the results in Table 4.2 and Table 4.3, it can be observed that the median is
as expected more robust to outliers than the mean (e.g. for leaf c, all the Dmedian are around
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Table 4.5. MAD of the disparity difference between dense matching and ground truth.

DMAD (pixels)

Leaf Census MC-CNN-Pre MC-CNN-LiDAR MC-CNN-SelfT

a 0.76 0.57 0.57 0.63

b 3.03 0.51 0.42 0.40
c 3.49 0.64 0.63 0.63
d 0.73 0.67 0.60 0.65

e 0.50 0.46 0.43 0.51

3 pixels). Leaf b and c show a relatively large systematic disparity difference. This can be
attributed to the systematic error caused by the shape change and imperfect point cloud
registration of the ground truth disparity map.

The DSTD values in Table 4.4 show the robustness of MC-CNN-LiDAR and MC-CNN-SelfT,
as they exhibit much lower DSTD than Census and MC-CNN-Pre.

DMAD has been widely used for depth map evaluation, as it is more robust to outliers than
DSTD . The disparity map generated from Census has a relatively high DMAD for the leaves b
and c. This is due to the large amount of noise in the Census results, as visible in Figure 4.6.

In addition to the pixel-based direct comparison, the reconstruction completeness and the
percentage of the accurately measured pixels are calculated. The reconstruction complete-
ness is calculated using Equation 4.9.

Cpl =
nDM/G
nG

× 100%. (4.9)

nG denotes the number of pixels with a valid disparity value provided by the ground truth
in each leaf. nDM/G denotes the number of pixels where both dense matching and ground
truth provide disparity values. Thus the completeness Cpl will be the percentage of pixels
in ground truth which are reconstructed by the dense matching as well.

However due to the systematic error, the disparity difference Dp between dense matching
and ground truth cannot be directly utilized for evaluation. Therefore, we remove the sys-
tematic disparity shift for each leaf before computing the percentage of accurate pixels.

Acc =
npass

nG
× 100%. (4.10)

npass = the number of pixels if:
∣∣∣Dp −Dmedian mean

∣∣∣ ≤ ε. (4.11)

Dmedian mean
= mean

(
Dmedian scheme i

)
i ∈ {1,2,3,4}. (4.12)

In the above equations, Dmedian mean
is the mean of Dmedian calculated using each of the four

matching schemes for each leaf. npass counts the number of pixels with the deviation below
ε, a pre-defined threshold to evaluate the corresponding accuracy. In this research, ε is set
as 0.5 and 1 pixel respectively for the test. The results are shown in Table 4.6.

MC-CNN-SelfT consistently obtains a slightly higher completeness than MC-CNN-LiDAR,
while MC-CNN-LiDAR obtains slightly higher accuracy values for most leaves, except for
leaves b and c, where MC-CNN-SelfT shows significantly better completeness and 1 pixel
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Table 4.6. Evaluation of reconstruction completeness and accuracy for each dense matching scheme.

Algorithm

a b c d e

Cpl
Acc

Cpl
Acc

Cpl
Acc

Cpl
Acc

Cpl
Acc

0.5 p 1 p 0.5 p 1 p 0.5 p 1 p 0.5 p 1 p 0.5 p 1 p

Census 92.0 31.8 57.0 63.0 14.8 23.9 49.7 7.6 14.0 92.0 36.4 56.9 89.7 43.3 71.0

MC-CNN-Pre 91.1 42.1 67.3 82.0 39.0 62.5 59.8 23.6 37.0 91.5 37.6 63.3 85.0 45.6 72.9

MC-CNN-LiDAR 96.9 43.8 72.1 89.2 51.9 70.7 86.4 34.5 60.5 99.4 44.3 69.4 97.1 55.6 82.5

MC-CNN-SelfT 97.9 41.0 67.0 98.6 51.0 81.4 95.7 39.7 62.2 99.4 41.9 67.8 99.5 47.9 77.4

accuracy values. Both re-trained methods consistently outperform Census and MC-CNN-
Pre. This shows that especially MC-CNN-SelfT, which does not require additional LiDAR
ground truth data, is a good approach for significantly improving the leaf reconstruction.

In this experiment, MC-CNN-LiDAR is handicapped due to imperfect ground truth, lead-
ing to disadvantages compared to the MC-CNN-SelfT method. We therefore assume that
the scores for MC-CNN-LiDAR could be improved slightly by using a perfectly registered
ground truth. However due to different registration errors for each leaf (cf. Table 4.3), the
LiDAR trained network is not able to learn and correct for a systematic error between the
LiDAR point cloud and the image data. We thus believe that the evaluation does not favor a
specific method.

The second experiment was performed as part of our project ”ForDroughtDet (FKZ:
22WB410602)” aiming at detecting the physiological and morphological status of trees un-
der drought stress and studying the adaptation of forest areas to climate change. A major
part of the project focuses on constructing a detailed and accurate 3D model of tree leaves
in order to monitor the shape change when facing drought.

For this purpose, two nadir-viewing cameras are mounted on a crane system for stereo mea-
surement. When the system is lifted above the trees, a stereo image pair of the tree crowns
can be obtained. In order to test the feasibility of the stereo method described in this re-
search, a stereo image pair above a beech tree subject to slightly artificial drought stress is
collected. Some information about the images and the camera setting is shown in Table 4.7.

Table 4.7. The image acquisition parameters.

Camera model SONY ILCE-5100

Height 4000 pixels

Width 6000 pixels

Exposure time 1/60 sec

ISO speed rating 125

Focal length 19.0 mm

Object distance ∼ 3 m

GSD 0.06 cm/pixel

Baseline length ∼ 0.25 m

Acquisition date June 19th, 2018

The corresponding epipolar image pair is shown in Figure 4.7. In this experiment, no LiDAR
data is available, thus only Census, MC-CNN-Pre and MC-CNN-SelfT can be applied. The
disparity map computed using MC-CNN-SelfT is shown in Figure 4.8.

Figure 4.7 shows that the large beech tree crown is much more complex, and has much
smaller leaves than the indoor tree used in the first experiment. The slight drought stress
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Fig. 4.7. The epipolar image pair for the second experiment, which is collected from the test region of our project.

Fig. 4.8. The disparity map generated using self-trained MC-CNN. Inconsistent matching (IM) is represented by the color
white.

leads to multiple different leaf shapes. Under the hypothesis that curved leaves are an in-
dicator for drought stress, the stereo method should enable a clear separation of planar
and curved leaves. The generated disparity map provides a dense reconstruction of the tree
crown, and individual leaves are separable. The reconstruction completeness for MC-CNN-
Pre and MC-CNN-SelfT, are 76.0% and 78.7%, respectively. Due to the lack of ground truth,
the value is computed as the ratio of pixel passing the left-right check to the number of valid
pixels in the rectified image. Some leaves under drought stress are selected for visual com-
parison. As shown in Figure 4.9, the curled shape of the leaves is clearly visible in the dis-
parity image and the profile plot. It can be found that all the profiles are roughly U shaped,
similar to the true shape of the leaves.
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Fig. 4.9. Leaves under drought stress. From left to right in each subset: the master epipolar image, the disparity map of
the self-trained MC-CNN matching scheme, and the disparity profile along the red line. The color represents the disparity.
From blue to yellow, the targets get closer to the camera. Pixels with inconsistent matching (IM) are shown in white color.

4.1.6 Discussion and Outlook
Dense stereo matching remains to be an open question through decades, considering the
practical difficulties encountered for data collection, annotation, etc. SGM combined with
MC-CNN has proven to outperform most previous algorithms, however, in practice it is ex-
tremely difficult to capture a large amount of high-quality training data. When the object
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is complex, e.g. the plant reconstruction in this study for which the leaves exhibit similar
shape and intensity information, MC-CNN should provide accurate measure to adequately
represent the similarity between patches as the basis for the subsequent SGM processing.
In this research, a self-trained MC-CNN without the use of ground truth is tested to re-
construct the plant. Based on the dense matching results of MC-CNN pre-trained on the
Middlebury datasets, a rigid left-right consistency check is applied to limit the outliers and
the filtered results are utilized to further train the net. The reconstructed plant shows su-
perior performance for the self-trained version than for the pre-trained one and the classic
Census algorithm. Compared with MC-CNN further trained using the ground truth from
LiDAR, the self-trained net behaves slightly worse in accuracy but better in reconstruction
completeness. The self-training strategy of MC-CNN is also applied to the stereo imagery
of a natural forest tree under drought condition. The resultant disparity map is capable
of showing the deformation of leaves, which highlights the possibility of the self-trained
MC-CNN to monitor the tree health situation.

In future research, more approaches will be tested to capture the ground truth for outdoor
experiments, for instance the structured light technique (Scharstein and Szeliski, 2003).
Also the reconstruction of other more stable objects like buildings could be attempted. Fur-
thermore, multi-viewed dense matching can be used to improve the self-training. Multiple
images can in fact provide denser reconstruction results, meanwhile a consistency check
among more than two images is able to further remove outliers which guarantees more rea-
sonable training data. The self-training strategy of MC-CNN provides the possibility for
complex object reconstruction and avoids the complexity of collecting ground truth espe-
cially in extreme situations.

4.2 Adaptive Scanlines Selection in Semi-Global Matching

A good pixel similarity measure could guarantee an accurate matching cost computation, in
order to determine correspondences between the stereo pair for the scene depth prediction.
However, the performance of a stereo matching algorithm is also largely dependent on the
disparity distribution among neighboring pixels, considering the smoothness of the resul-
tant disparity map. Traditional Semi-Global Matching (SGM) algorithm realizes the spatial
smoothness, via approximating a 2D Markov Random Field (MRF) from multiple 1D scan-
line optimizations (SO) (Scharstein and Szeliski, 2002). Thus, it acquires a good compromise
between accuracy and efficiency. Nevertheless, the empirical scanline summation, applied in
SGM to approach 2D smoothness, is essentially a sub-optimal solution due to the difference
of the depth prediction by each single scanline. Therefore, SGM’s performance varies a lot
within the scene for different objects. SGM-Forest (Schönberger et al., 2018) improves SGM
by training a random forest to predict the best scanline for further disparity estimation, ac-
cording to each scanline’s disparity proposal. The best scanline then acts as the reference to
adaptively adopt other scanline with close disparity proposals for the result refinement. In
our research, it is frequently found that more than one scanline is capable of well predict-
ing the disparity. Aiming at selecting a single scanline for training the random forest may
hamper or even confuse the model when other good scanlines exist. Hence, we propose a
multi-label classification strategy to modify the SGM-Forest method (termed SGM-ForestS
for the follow-up). Each training sample is allowed to be described by multiple labels (or
zero label) if more than one (or none) scanline provides a good prediction. The proposed
method (termed SGM-ForestM) is tested on multiple stereo datasets cross domains, from
Middlebury (Hirschmuller and Scharstein, 2007; Scharstein and Pal, 2007; Scharstein et al.,
2014), ETH3D (Schöps et al., 2017), EuroSDR image matching benchmark (Haala, 2014),
and the 2019 IEEE GRSS data fusion contest (Bosch et al., 2019; Le Saux et al., 2019), indi-
cating that the multi-label strategy enhances the performance consistently.
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4.2.1 Background
Stereo matching recovers the depth information according to the dense correspondence be-
tween stereo images. Local stereo methods intuitively locate the corresponding pixels by
searching for the most similar points (and the surrounding patches), while global stereo
methods additionally consider the spatial smoothness (Bleyer and Breiteneder, 2013). Thus,
the former is normally more efficient but less accurate than the latter. SGM well balances
the two categories of methods, via a date term for matching cost measure and a smooth-
ness term based on dynamic programming (DP) to accomplish the spatial harmony among
neighboring points. Hence, the method is regarded as the baseline, and keeps promoting the
stereo methods development. As for the data term, Ni et al. (2018) combined three measures
to calculate the matching cost for SGM, to keep robust in non-ideal radiometric conditions.
Zbontar and LeCun (2016) initiated a CNN based method to calculate a similarity score be-
tween image patches, for matching cost computation in SGM. Luo et al. (2016) accelerated
the mode based on multi-class classification.

Regarding the smoothness term, Seki and Pollefeys (2017) designed a CNN to adaptively
penalize conflicting disparity prediction between neighboring pixels, to better guarantee
the smoothness of the disparity map. The approach performed well in various situations,
e.g. slanted plane, and depth boundaries, etc. Scharstein et al. (2017) enhanced SGM’s ro-
bustness to handle untextured or weakly-textured slanted regions. The penalty term could
be adjusted according to the prior knowledge of the scene’s depth via the pre-computed
surface orientation. Michael et al. (2013) demonstrated that the disparity map generated
using each single scanline might exhibit varying qualities depending upon the global scene
structure. Therefore, they assigned a specific weight to each scanline for deriving a weighted
summation before WTA in SGM. Poggi and Mattoccia (2016) extracted a feature vector for
each pixel using the disparity map estimated by a single scanline. The statistical dispersion
of disparity within the surrounding patch was included in the feature, which was then fed
to a random forest to predict a confidence measure for the corresponding scanline. Zhang
et al. (2019) proposed a semi-global aggregation layer as a differentiable approximation of
SGM to accomplish an end-to-end network. The network could adaptively learn a penalty
term for each single pixel along a certain directed scanline, allowing for a more reasonable
penalty for neighboring disparity inconsistency. Beside, a local guided aggregation layer
was proposed for thin structures refinement. The network improved the performance of
SGM significantly, and achieved good predictions for challenging situations, e.g. occlusions,
textureless areas, etc.

4.2.2 Limitations of SGM
Global stereo methods explicitly consider the smoothness demand in addition to photo con-
sistency. Accordingly, an energy function is defined for which a disparity map is optimized
to properly balance the two terms (data term and smoothness term) and approach the energy
minimization. This optimization, however, cannot be achieved in 2D since that the disparity
determination for each pixel will affect every other pixel under the smoothness assumption,
resulting in an np-complete problem (Bleyer and Breiteneder, 2013). SGM regularizes the
disparity estimation by performing 1D SO in multiple canonical directions, typically 8 or
16, and then summing up the corresponding energy functions. Thus, 2D SO is approxi-
mated and the disparity value corresponding to the minimum energy is selected based on
the WTA strategy.

Starting from the image boundaries, SGM aggregates the energy towards the target pixel
along a 1D path (scanline). Thus, for each pixel, the previous points are already considered
during the energy aggregation, which contributes to 1D smoothness. By summing up the
aggregated energy from multiple 1D paths, the disparity corresponding to the minimum
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energy is found based on the WTA strategy and 2D smoothness is approximated. For a pixel
located at image position p with a sampled disparity d from the disparity space, the energy
along the path traversing in direction r is defined as:

Lr(p,d) = C(p,d) + min(Lr(p − r,d), Lr(p − r,d − 1) + P1,

Lr(p − r,d + 1) + P1, mini Lr(p − r, i) + P2 ) .
(4.13)

Lr(p,d) represents the energy. C(p,d) is the photo inconsistency under the current parallax
and the rest of Equation 4.13 controls the smoothness by imposing a penalty term for a
conflicting disparity setting between p and its previous neighbor p− r. A small penalty P1 is
applied for only 1 pixel difference, otherwise a larger penalty term P2 is used. With multiple
canonical directions r considered, the energy is summed up.

S(p,d) =
∑
r

Lr(p,d). (4.14)

The disparity is computed according to the WTA strategy as:

dp = argmind S(p,d). (4.15)

SGM is able to derive a suitable disparity for each pixel with spatial smoothness consid-
ered, meanwhile spending reasonable runtime proportional to the reconstructed volume
(d’Angelo and Reinartz, 2012; d’Angelo, 2016). Thus the algorithm has been applied in nu-
merous fields, including building reconstruction, digital surface model generation, robot
navigation, driver assistance, etc. (Hirschmüller, 2011; Kuschk et al., 2014; Qin et al., 2015).
However, the energy summation from all scanlines and the corresponding WTA strategy
are empirical steps without a theoretical background, which is essentially inadequate when
different scanlines propose inconsistent solutions.

4.2.3 Limitations of SGM-Forest
Schönberger et al. (2018) inferred that the upper bound of the matching accuracy can be
approached by always selecting the best disparity proposal from all the scanlines. Therefore,
they trained a random forest for the best scanline selection, via simply using the disparity
proposed by each scanline and the corresponding costs as input, instead of handcrafting
feature to feed random forest. A confidence value is obtained for each scanline. Based on the
disparity predicted by the best scanline, other close disparity proposals were also adopted
for a weighted average according to the corresponding confidence measures.

Specifically, the input feature for the random forest is constructed in this way. Assuming a
pixel at location p has a WTA winner dr

′
p along a certain path r ′ as:

dr
′
p = argmind Lr ′ (p,d), (4.16)

the corresponding costs K rp (r ′) on dr
′
p along all N scanlines are calculated, where N is the

number of directions considered.

K rp (r ′) = Lr
(
p,dr

′
p

)
, r = 1 . . .N . (4.17)

N+1 elements
{
dr
′
p ,K

r=1
p (r ′) , . . . ,K r=Np (r ′)

}
are obtained for the current scanline of r ′. Thus for

all the scanlines, a feature vector with a length of (N + 1) ∗N is acquired for p which is then
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fed into a random forest for the best scanline prediction r∗ and a posterior probability ρ∗. In
order to achieve a more robust estimation, the corresponding disparity dr

∗
p acts as a baseline

to select other scanlines with a close prediction for a weighted averaging computation:

d̂p =

∑
r d

r
p ∗ ρrp

Σrρ
r
p

, (4.18)

where drp is selected from a set of WTA winners differing dr
∗
p by less than εd , and ρrp is the

corresponding posterior probability predicted by the random forest as:

Dp =
{(
drp,ρ

r
p

)
||drp − dr

∗
p | < εd

}
, r = 1 . . .N . (4.19)

The sum of selected posterior probabilities ρ̂p = Σrρ
r
p is the confidence measure of d̂p. ρ̂p is

then used for a confidence-based median filtering within an adaptive local neighborhood
Np centered around p as follows:

dp = median
(
d̂q

)
and ρp = median

(
ρ̂q

)
, q ∈ Np (4.20)

Np =
{
q
∣∣∣‖q − p‖ < εp∧∣∣∣ Iq − Ip |< εI ∧ ρ̂q > ερ} , (4.21)

where ‖q − p‖measures the Euclidean distance between q and p. I is the image intensity. εp,
εI and ερ are the corresponding pre-defined thresholds.

As for the training, assuming the pixel at location p has the ground truth disparity available
as dGTp , the label for this training sample is set as:

r̃ = argminr
∣∣∣drp − dGTp ∣∣∣ , r = 1 . . .N . (4.22)

The algorithm is robust and performs steadily better than standard SGM in multiple stereo
matching benchmark datasets (Scharstein et al., 2014; Menze and Geiger, 2015; Schöps et al.,
2017). However, in practice, there can be more than one scanline with good disparity pre-
diction. It appears when multiple scanlines properly perceive the scene structure, there-
fore, are capable of predicting accurate disparity values simultaneously. For example, on a
slanted plane extending horizontally, the two vertical scanlines (from bottom to top, and
inversely), along which the slope is not explicitly expressed, should have better disparity es-
timation than the horizontal ones but achieve similar performance. Thus, the random forest
gets confused when only a single best has to be selected. Figure 4.10 provides such an ex-
ample. SO1-SO8 represent the disparity estimation through a single scanline in each of the
8 canonical directions. Along the green line in (a), the disparities predicted by each scanline
(defined in (b)) are shown in (c) (blue dots), compared with the ground truth (red line). It
is found that SO3 and SO7 accomplish better solution than the other scanlines, however,
barely differ from each other. In this case, both scanlines should be selected.

To further analyze the problem, we investigate Middlebury (2005 and 2006) (Hirschmuller
and Scharstein, 2007; Scharstein and Pal, 2007) and ETH3D (Schöps et al., 2017) benchmark
datasets, recording the percentage of pixels with multiple (≥2) scanlines predicting dispar-
ities close to the ground truth (differing by less than 1 pixel) in Table 4.8. The percentage
of pixels with at least one well-predicting scanline is appended below, which indicates the
theoretical upper bound of the performance, for SGM based on the random forest to select
scanlines. Census (Zabih and Woodfill, 1994) is used here as the matching cost. It is found
that, for most pixels (75.52% in Middlebury, 81.69% in ETH3D), more than one scanline
potentially achieves a good disparity estimation.
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(a) The experimental image: the target
pixels are marked in green.

(b) The definition of each scanline: SO1
- SO8.
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(c) The disparity predicted by each
scanline in comparison with the
ground truth.

Fig. 4.10. The comparison between each single scanline’s disparity prediction and the ground truth, for pixels marked
green in (a). It is found that both SO3 and SO7 accomplish good prediction and should be selected for further processing.

Table 4.8. The percentage of pixels with more than one scanline achieving good prediction for Middlebury and ETH3D
benchmarks.

Middlebury ETH3D

Good scanline ≥ 2 75.52% 81.69%

Good scanline ≥ 1 83.83% 90.65%

It should be noted that SGM-ForestS further refines the disparity prediction by considering
other scanlines with close proposals. However, it’s supposed to be more reasonable if the
random forest learns to select all the proper scanlines directly in training. Therefore, we
adjust the scanline selection based on a multi-label classification strategy and propose SGM-
ForestM.

4.2.4 Multi-Label Classification based Scanlines Determination
In this research, we define a standard to determine good or bad scanlines, aiming at guiding
the random forest to select as many good scanlines as possible for disparity prediction. The
samples with zero scanline selection (all regarded as bad) are included for training, so that
a more comprehensive prediction is obtained.

Regarding the classification, traditional pattern recognition focuses on tasks with each class
defined mutually exclusive (Duda et al., 2001). For some scenarios, however, there are sam-
ples with multiple attributes among different classes, e.g. a movie categorized into comedy
and action film, which may confuse the classifier during training. In order to handle these
samples properly, the first issue is label assignment. The most intuitive solution is to label
a sample by the class it most likely belongs to. This strategy, nevertheless, is ambiguous
and may result in a subjective judgment. An alternative is to neglect the samples related to
multiple classes and concentrate only on the rest with a distinct definition. Yet, the classifier
trained in this way is not able to deal with multi-label samples in the test period.

The two schemes above simply ignore the multi-label attribute of the samples and still treat
the problem based on a single label classification strategy, therefore, the performance is lim-
ited. To cover all the corresponding labels of each sample, a new option is to define some
”composite” classes, of which each class includes a certain combination of base classes, e.g.
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”building + plant” from ”building” and ”plant”. Then each composite class is allocated with
a new label number above the original range for training. The samples categorized as com-
posite classes, however, are normally too sparse to train a well-behaved classifier (Boutell
et al., 2004). Hence, Boutell et al. (2004) propose a ”cross-training” strategy which simul-
taneously trains multiple binary classifiers. Each binary classifier aims at determining the
existence of a certain base class, and regards the corresponding multi-label samples as pos-
itive examples for training. For example, the samples of ”building + plant” are regarded as
”building” and ”plant”, respectively, when training the ”building classifier” and ”plant clas-
sifier”. Thus, all the labels of each training sample are considered, meanwhile the training
data are explored more effectively. In this research, the ”cross-training” scheme is applied
for training the random forest based on a multi-label classification strategy, in order to pro-
cess pixels with more than one scanline predicting appropriate disparities. With the cost
aggregation applied along a certain path as Equation 4.16, if the estimated disparity is close
to the ground truth, the corresponding pixel should be regarded as a positive sample for
training the binary classifier of the path. Regarding the pixels marked green in Figure 4.10
as an example, the label should be set as positive for the classifier of SO3 and SO7, and
as negative for the others. The multi-label strategy is appropriate for classification when
overlap exists among different categories. The label assignment is more reasonable for non-
mutually exclusive classes, in which one sample can be essentially related to multiple labels.
It applies not only to computer vision, e.g. semantic scene classification, but also in many
other fields including document analysis (e.g. text categorization), medicine (e.g. disease di-
agnosis), etc. (McCallum, 1999; Schapire and Singer, 2000; Clare and King, 2001; Boutell
et al., 2004; Tsoumakas and Katakis, 2007).

The feature for our SGM-ForestM is extracted in the same way as SGM-ForestS, however, the
label setting is adjusted to satisfy our multi-label concept. Instead of selecting the best scan-
line with the closest prediction to the ground truth as Equation 4.22, we define a threshold
εdso to extract all the promising scanlines as:

Rp =
{
r ||drp − dGTp | < εdso

}
, r = 1 . . .N . (4.23)

Thus, the pixel p is a positive example when training the binary classifiers of all the corre-
sponding scanlines contained by Rp. Otherwise, p is regarded as negative.

Afterwards in the test period, the trained random forest gives N predictions and N prob-
abilities for each pixel, indicating which scanlines should be regarded as good disparity
proposals (with the corresponding probability, ρrp, larger than 0.5). It should be noted that
a probability value is calculated exclusively for a certain scanline with no dependency on
the others. Unlike the single label classifier that the probabilities for all classes should be
sum-to-one, the multi-label classifier is not restricted to follow the rule.

With multiple (or zero) scanlines proposed by the random forest, the one with the high-
est probability, r∗, is considered as a baseline to refine the disparity estimation as given in
Equation 4.24 and 4.25 below:

d̂p =

∑
drp ∗ ρrp
Σρrp

, drp,ρ
r
p ∈Dp (4.24)

Dp =
{(
drp,ρ

r
p, r

)
||drp − dr

∗
p | < εd

}
, r = 1 . . .N . (4.25)

Dp is constructed via selecting disparity estimation close to dr
∗
p from the WTA winners as

SGM-ForestS. Thus, we limit the influence from the outliers, and ensure that one dispar-
ity value is available for further processing. As Equation 4.18 and 4.19, we refer to SGM-
ForestS’s strategy to consider scanlines with close disparity proposals, however, it should
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be pointed out that the disparity refinement of our SGM-ForestM is based on more reason-
able prediction, r∗, owing to multi-label classification. In addition, the confidence measure
should be adjusted accordingly as:

ρ̂p =

∑
r∈Dp ρ

r
p∑N

r=1ρ
r
p
, (4.26)

in which the nominator is still the sum of probabilities for selected scanlines as SGM-
ForestS. The denominator, on the other hand, is the sum of all scanlines’ probabilities in
order to confine the confidence in the range of [0, 1]. Following SGM-ForestS, a confidence-
based median filter is exploited as well.

Before testing the proposed algorithm, the efficiency and memory usage are evalutaed. SGM
approximates global energy function by summing up the aggregated costs along multiple
1D paths. The number of paths is determined according to application demands, hard-
ware constraints or quality requirements (Schumacher and Greiner, 2014). With more paths
considered, e.g. 8 or 16, better results are obtained incurring reduced streaking artifacts,
however, at the expense of high computational complexity (Schumacher and Greiner, 2014;
d’Angelo, 2016). As shown in Figure 4.11, SGM-Forest requires storing the full aggregated
cost volumes for all aggregation directions, leading to increased memory usage over stan-
dard SGM. Thus, resource efficient solutions and high resolution data processing are ham-
pered as the number of paths increases.
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Fig. 4.11. Stereo pair, cost cube and the corresponding aggregated cost cube in SGM. As more scanlines are considered, the
memory usage is highly increased.

Hence, we test different implementations of SGM, SGM-ForestS, and SGM-ForestM, by vary-
ing the number of scanlines considered for further processing. We aim at observing how the
SGM-Forest algorithms are influenced, when fewer scanline proposals are applied. A par-
ticularly interesting case is the configuration with 5 scanlines starting from left, top-left,
top, top-right and right, as this allows a memory efficient top down sweep implementation
which only requires storing two lines of the C and Lr volumes, greatly reducing the amount
of required memory. This enables the processing of very large stereo pairs with sizes of 200
to 2000 Megapixels, as typically occurring in aerial and satellite data. Thus, the potential
of SGM-Forest for efficient systems can be explored, such as real-time designs in CPU and
GPU systems, or embedded modules on e.g. embedded multi-core architectures and Field-
Programmable Gate Arrays (FPGAs) (Gehrig et al., 2009; Banz et al., 2010; Gehrig and Rabe,
2010; Arndt et al., 2013; Schumacher and Greiner, 2014).
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4.2.5 Performance Evaluation on Multiple Data Sources
In the experiments, SGM-ForestS and SGM-ForestM are compared with SGM as the base-
line method. The implementation details are controlled among each method for an unbi-
ased comparison, referring to Schönberger et al. (2018). As for the matching cost, Census
(Zabih and Woodfill, 1994) and MC-CNN-acrt (Zbontar and LeCun, 2016) are tested, cov-
ering both classic and learning based algorithms. With regard to Census, a 7 × 7 window
size is set. For MC-CNN-acrt, the proposed network architecture is applied. The number of
convolutional layers is 5, with 112 feature maps and 3× 3 kernel size for each. The number
of fully-connected layers is 3, with the corresponding number of units as 384.

Regarding the SGM setting, the calculated matching cost is scaled to be in the range of
[0,1023], and P1 and P2 are set as 400 and 700, respectively. We perform SO along 8 canoni-
cal directions (N = 8 with 2 horizontal, 2 vertical, and 4 diagonal scanlines, as Figure 4.10)
in order to implement SGM and generate input proposals to train the random forest for
SGM-ForestS and SGM-ForestM. As described above, we also have an implementation for
SGM, SGM-ForestS, SGM-ForestM by applying 5 SOs, in order to check the influence when
using fewer scanlines. 2 horizontal, 1 vertical (pointing downwards), and 2 diagonal (point-
ing downwards) scanlines are included, which accomplish a top-down sweep of the scene
to enable single-pass algorithms and consume less aggregation buffer (Schumacher and
Greiner, 2014). As for the 8-scanlines version, both Census and MC-CNN-acrt are employed
as matching cost, for a general comparison among the three SGM based algorithms. As the
5-scanlines version targets fast implementation, it is only tested using the faster Census data
term.

Considering SGM-Forest, we exploit the same parameter setting as proposed in Schönberger
et al. (2018). For both SGM-Forest versions, the same forest structure is adopted comprising
128 trees with the maximum depth of each as 25, based on Gini impurity to measure the
split quality. Before feeding to the random forest, we normalize the disparity proposals drp
to relative values for feature vectors construction, in order to generalize across datasets. The
disparity estimates are then denormalized to absolute values for further confidence based
filtering. εd , εp, εI , and ερ are respectively set as 2, 5, 10, and 0.1, which are determined
according to parameter grid search and 3-fold cross validation based on Middlebury 2014
training datasets (Schönberger et al., 2018). εdso is set as 1 pixel in SGM-ForestM. All our
implementations are based on Python and C.

Our first experiment is conducted on close-range datastes, including two benchmarks, Mid-
dlebury and ETH3D, which supply a certain number of stereo pairs with ground truth dis-
parity maps available. We split the datasets into non-overlapping training and validation
sets (as shown below), in order to train our proposed algorithm and test the performance
according to the validation accuracy. From the manually split training set, 500K pixels are
randomly selected for training the random forest, while all the pixels are used to train MC-
CNN-acrt. As for the Middlebury benchmark, the training set is acquired from 2005 and
2006 scenes, while 2014 scenes provide the validation set, as shown in Table 4.9. Each
dataset from Middlebury 2005 and 2006 consists of 7 views under 3 illumination and 3
exposure conditions (63 images in total). Ground truth disparity maps are provided for
view-2 and view-6. We regard the former as the master epipolar frame, and randomly select
illumination and exposure condition for two images to construct stereo pairs for further
processing.

ETH3D stereo benchmark contains various indoor and outdoor views with ground truth
collected using a high-precision laser scanner. The images are acquired using a Digital
Single-Lens Reflex (DSLR) camera synchronized with a multi-camera rig capturing vary-
ing field-of-views. The benchmark provides high-resolution multi-view stereo imagery, low-
resolution many-view stereo on video data, and low-resolution two-view stereo images
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Table 4.9. Train/validation splits for Middlebury benchmark.

Train Validation

Middlebury 2005

Books

Middlebury 2014

Adirondack
Dolls ArtL

Laundry Jadeplant
Moebius Motorcycle
Reindeer MotorcycleE

————————————————– Piano

Middlebury 2006

Aloe PianoL
Baby1 Pipes
Baby2 Playroom
Baby3 Playtable

Bowling1 PlaytableP
Bowling2 Recycle

Cloth1 Shelves
Cloth2 Teddy
Cloth3 Vintage
Cloth4

Flowerpots
Lampshade1
Lampshade2

Midd1
Midd2

Monopoly
Plastic
Rocks1
Rocks2

which are used in this experiment. There are 27 frames with ground truth for training
and 20 for test. We exploit the former for train/validation splits, as shown in Table 4.10.
For some scenes, the data include two different sizes. Both focus on the same target, how-
ever, with one contained in the field of view from the other (e.g. delivery area 1s and de-
livery area 1l). Therefore, we manually divide the datasets for training and validation, in
order to avoid images taken for the same scene appearing in both splits.

Table 4.10. Train/validation splits for ETH3D benchmark.

Train Validation
delivery area 1s delivery area 2s
delivery area 1l delivery area 2l
delivery area 3s electro 1s
delivery area 3l electro 1l

electro 2s facade 1s
electro 2l forest 2s
electro 3s playground 2s
electro 3l playground 2l
forest 1s playground 3s

playground 1s playground 3l
playground 1l terrace 1s

terrains 2s terrace 2s
terrains 2l terrains 1s

terrains 1l
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Regarding the accuracy evaluation, the disparity results of SGM, SGM-ForestS, and our
SGM-ForestM are compared with ground truth, with only the non-occluded pixels consid-
ered. The percentage of pixels with an estimation error less than 0.5, 1, 2, and 4 pixels,
respectively, are calculated as indicated by Table 4.11 and 4.12. In Table 4.11, a suffix of
’-5dirs’ or ’-8dirs’ is appended at the end of each algorithm to differentiate SGM, SGM-
ForestS, and SGM-ForestM implemented using 5 or 8 scanlines, respectively. For the follow-
up, unless mentioned explicitly, all the SGM related terms without a suffix represent the
8-scanlines implementation.

Table 4.11. The validation accuracy of SGM, SGM-ForestS, and SGM-ForestM on Middlebury and ETH3D datasets, respec-
tively (Matching cost: Census. ’-5dirs’ for 5 scanlines version and ’-8dirs’ for 8 scanlines version).

Middlebury ETH3D

0.5pix 1pix 2pix 4pix 0.5pix 1pix 2pix 4pix

SGM-5dirs 55.89% 67.60% 73.34% 77.48% 67.60% 79.18% 85.80% 90.33%

SGM-ForestS-5dirs 55.97% 68.71% 74.44% 78.37% 70.87% 82.97% 89.93% 95.03%

SGM-ForestM-5dirs 56.88% 70.30% 76.44% 80.37% 71.83% 85.00% 91.69% 95.96%

SGM-8dirs 58.92% 69.47% 74.87% 78.84% 70.14% 80.88% 87.02% 91.27%

SGM-ForestS-8dirs 59.38% 70.71% 76.33% 80.41% 72.87% 83.91% 90.55% 95.44%

SGM-ForestM-8dirs 60.38% 72.16% 78.00% 82.19% 74.04% 86.20% 92.48% 96.37%

Table 4.12. The validation accuracy of SGM, SGM-ForestS, and SGM-ForestM on Middlebury and ETH3D datasets, respec-
tively (Matching cost: MC-CNN-acrt).

Middlebury ETH3D

0.5pix 1pix 2pix 4pix 0.5pix 1pix 2pix 4pix

SGM 69.35% 79.35% 83.37% 86.07% 72.39% 83.29% 89.48% 94.18%

SGM-ForestS 70.01% 81.34% 85.71% 88.64% 74.25% 86.03% 92.04% 96.30%

SGM-ForestM 69.92% 81.32% 85.56% 88.28% 74.61% 86.47% 92.36% 96.44%

As for 8-scanlines implementation, it is found that the two SGM-Forest implementations
perform steadily better than the standard SGM, in both benchmarks considering different
estimation errors as the upper limit. With MC-CNN-acrt as matching cost, the results on
Middlebury datasets report slightly worse performance of SGM-ForestM (about 0.1% differ-
ence) than SGM-ForestS. However, a stable improvement is achieved by SGM-ForestM in all
the other cases (the results on Middlebury and ETH3D using Census as matching cost, on
ETH3D using MC-CNN-acrt as matching cost), which indicates the significance of applying
the multi-label classification strategy to train the random forest.

For 5-scanlines version, the performance of all the algorithms decreases as expected due to
the information loss using fewer scanlines. Nevertheless, SGM-ForestM is still better than
SGM-ForestS, and both of them are superior to the standard SGM. It is worth to mention
that, SGM-ForestS-5dirs and SGM-ForestM-5dirs achieve even better results than SGM-
8dirs on ETH3D datasets, which indicates the potential to embed SGM-Forest into efficient
stereo systems. On Middlebury datasets, SGM-ForestS-5dirs is not able to keep its superi-
ority to SGM-8dirs. However, it’s good to find that SGM-ForestM-5dirs remains to be better
than the standard SGM using 8 scanlines (except for 0.5 pixel error) and proves its robust-
ness.

On the other hand, MC-CNN is a ”data-hungry” method, requiring a large amount of train-
ing samples before achieving high performance (Zbontar and LeCun, 2016). The training
of the random forest in SGM-Forest, nevertheless, relies on much less data (500K pixels
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used here and in Schönberger et al. (2018)). With Census as matching cost, SGM-ForestM
consistently outperforms SGM and SGM-ForestS in all settings, which further indicates the
potential of the algorithm, especially when the amount of data is too limited for training a
well-performing MC-CNN.

In order to complete the demonstration for our multi-label classification strategy, below in
Table 4.13, we provide the official results of the ETH3D benchmark by evaluating our SGM-
ForestM on the test datasets. As the proposed method focuses on the refinement of SGM
itself, we simply use Census for a quick test. The random forest is also trained on 500K
pixels, with 8 scanlines for disparity proposals.

Table 4.13. The benchmark results of SGM-ForestM on ETH3D datasets (Matching cost: Census).

SGM-ForestM

0.5pix 1pix 2pix 4pix

non-occluded 76.28% 83.01% 87.44% 91.11%

all 74.79% 81.39% 85.75% 89.42%

The accuracy for ’non-occluded pixels’ is consistent with the numbers obtained in Table 4.11
(SGM-ForestM-8dirs), however, compared with other algorithms, our result is not compet-
itive. The reason includes that, we execute no post-processing, e.g. left-right consistency
check, interpolation, etc., and Census is used for calculating matching cost instead of a
well-trained MC-CNN. It should be noted that the main goal of this research is to improve
SGM and SGM-ForestS, therefore, the whole processing pipeline is not fully considered.

To explore deeper the random forest prediction, we also analyze the quality of r∗, which is
the reference for further confidence based processing. Adaptive scanline selection based on
a classification strategy is the core concept of SGM-Forest that is superior to the scanline
average of the standard SGM. Hence, r∗ and the corresponding dr

∗
p are necessary for compar-

ison between SGM-ForestS and SGM-ForestM. In Figure 4.12 and 4.13, the error plots are
displayed for SGM-ForestS, SGM-ForestM, and the upper bound of SO if the best scanline
can always be selected from the 8 alternatives. At here, it should be noted that the disparity
prediction of the random forest (dr

∗
p ) is directly compared to the ground truth for calculat-

ing the ratio of correct disparity estimation (y-axis), considering different estimation errors
allowed (x-axis). We still test two matching cost algorithms (Census and MC-CNN-acrt) on
two benchmark datasets (Middlebury and ETH3D).

(a) Middlebury. (b) ETH3D. 
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Fig. 4.12. Error plots for SGM-ForestS, SGM-ForestM, and the upper bound of SO (Matching Cost: Census).
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(a) Middlebury. (b) ETH3D. 
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Fig. 4.13. Error plots for SGM-ForestS, SGM-ForestM, and the upper bound of SO (Matching Cost: MC-CNN-acrt).

It is found that both SGM-Forest implementations achieve good performance to approach
the best SO, which demonstrates the feasibility of scanline selection based on a classification
framework. In addition, SGM-ForestM is superior to SGM-ForestS in all cases. The results
indicate that SGM-ForestM is essentially better at scanline prediction and capable of deriv-
ing preferable initial disparity estimation for further processing.

Figure 4.14 and 4.15 visualize the disparity results created by SGM, SGM-ForestS, and SGM-
ForestM, respectively, on data selected from ETH3D. The error map is appended below each
disparity map. Regarding ”2 pixels” as the upper bound, all the pixels with an error above
the bound are colored black, while the rest are colored uniformly according to the color bar.
We apply Census and MC-CNN-acrt to calculate the matching cost, respectively.

In each subfigure, the disparity map and the error map for SGM, SGM-ForestS, and SGM-
ForestM, respectively, are displayed from left to right, with a color bar at the end. The
red rectangles marked in the error maps represent the main difference of the result be-
tween SGM-ForestS and SGM-ForestM. It is found that the disparity maps generated by the
two SGM-Forest implementations are smoother than SGM. Moreover, according to the error
map, SGM-ForestM suffers fewer errors compared with SGM-ForestS. Especially for the ill-
posed regions (e.g. textureless areas, reflective surfaces, etc.), SGM-ForestM performs better
as highlighted by the red rectangles.

The second experiment is conducted on airborne data, using the aerial image matching
benchmark from EuroSDR. The benchmark project is motivated by the development of
matching algorithms and the improved quality of the elevation data obtained by advanced
airborne cameras. Based on the benchmark datasets and the corresponding evaluation plat-
form, the potential of the ongoing photogrammetric software is assessed by comparing
their generated 3D products, including point clouds, DSMs, etc. We use the nadir airborne
datasets, Vaihingen/Enz with moderate ground sampling distance (20 cm) and overlap (63%
in flight and 62% cross flight) in the experiment. A stereo pair is randomly selected on
which SGM, SGM-ForestS, and SGM-ForestM are applied to generate the disparity map, re-
spectively. The master epipolar image and the corresponding result of each algorithm are
displayed in Figure 4.16, with an area highlighted by a green rectangle for detailed com-
parison. According to the results, it is also found that the two SGM-Forest implementations
generate a smoother disparity map than the standard SGM. Within the highlighted region,
SGM-ForestM suffers less noise than SGM-ForestS, which further demonstrates the superi-
ority of the former.
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(a) delivery area 2l

(b) electro 1s

(c) playground 2l

Fig. 4.14. The disparity maps and the corresponding error maps. From left to right, the results of SGM, SGM-ForestS, and
SGM-ForestM are displayed, respectively (Matching cost: Census). The red rectangles marked in the error maps represent
the main difference of the result between SGM-ForestS and SGM-ForestM.
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(a) delivery area 2l

(b) electro 1s

(c) playground 2l

Fig. 4.15. The disparity maps and the corresponding error maps. From left to right, the results of SGM, SGM-ForestS, and
SGM-ForestM are displayed, respectively (Matching cost: MC-CNN-acrt). The red rectangles marked in the error maps
represent the main difference of the result between SGM-ForestS and SGM-ForestM.
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Master Epipolar Image SGM 

SGM-ForestS SGM-ForestM 

Fig. 4.16. Stereo matching results on EuroSDR benchmark datasets (Vaihingen/Enz). The master epipolar image and the
corresponding disparity results are displayed. The green rectangle marks the region for detailed comparison.

The last experiment explores the algorithms’ performance on satellite data, which is ob-
tained from the pairwise semantic stereo challenge (Track 2) in the 2019 IEEE GRSS data
fusion contest (Le Saux et al., 2019). The organizer provides the grss dfc 2019 dataset, a
subset of the Urban Semantic 3D (US3D) data (Bosch et al., 2019), including multi-view,
multi-band satellite images and ground truth geometric and semantic labels. Several tasks
are designed to reconstruct both a 3D geometric model and a segmentation of semantic
classes for urban scenes, aiming at further supporting the research in stereo and semantic
3D reconstruction using machine intelligence and deep learning.

The data are captured by WorldView-3 satellite including RGB and 8-band visible and near
infrared (VNIR) multi-spectral images, with ground sampling distance as approximately
35 cm. 26 images are collected between 2014 and 2016 over Jacksonville, Florida, and 43
images are collected between 2014 and 2015 over Omaha, Nebraska, United States. In our
experiment, epipolar rectified stereo pairs from challenge track 2 are used, with pairwise
ground truth disparity images generated using airborne LiDAR data. For evaluation, we
only consider the reconstructed stereo geometry, ignoring the semantics information. SGM,
SGM-ForestS and SGM-ForestM are applied on 150 stereo pairs randomly selected from
Jacksonville data. Due to the data inconsistency between the stereo images and LiDAR point
clouds, the random forest is trained on ETH3D datasets for SGM-ForestS and SGM-ForestM.
Thus, the robustness of the proposed algorithm is also tested when different data sources
are used for training and validation.

The validation accuracy using 3 pixels as the upper limit of the allowed error for SGM,
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SGM-ForestS, and SGM-ForestM are 66.06%, 61.36%, and 67.18%, respectively. With differ-
ent datasets to train the random forest, the performance of SGM-ForestS is limited and even
surpassed by SGM. The reason is the poor inference of the random forest when data different
from the training sets are fed as input. However, SGM-ForestM is capable of providing more
reliable scanline prediction, which is consistent with our demonstration in Figure 4.12 and
4.13. Therefore, it performs the best. Some visualization results are displayed in Figure 4.17.
The reference LiDAR data were collected several years before the satellite images. Therefore,
the images containing stable objects, e.g. buildings, are selected for visualization and evalu-
ation. It is found that SGM-ForestM is capable of better recovering the roads and buildings
(as highlighted by the red rectangles).

Fig. 4.17. Results on stereo datasets from the 2019 IEEE GRSS data fusion contest (Track 2, pairwise semantic stereo
challenge). The disparity and error maps are displayed, with the red rectangles highlighting the performance difference
between SGM-ForestS and SGM-ForestM.
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Fig. 4.17. Results on stereo datasets from the 2019 IEEE GRSS data fusion contest (Track 2, pairwise semantic stereo
challenge). The disparity and error maps are displayed, with the red rectangles highlighting the performance difference
between SGM-ForestS and SGM-ForestM. (cont.)
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4.2.6 Conclusion and Outlook

SGM combines local and global stereo methods to locate correspondences and approximate
2D smoothness via multiple 1D scanline optimizations. Thus, a good compromise between
accuracy and efficiency is obtained. However, adaptive scanline selection for disparity es-
timation is essentially more reasonable than the empirical scanline summation exploited
in SGM, considering the varying performance among each scanline. In this research, we
propose SGM-ForestM for scanline selection, as an extension of SGM-ForestS based on a
multi-label classification strategy. SGM-ForestS trains a random forest aiming at finding the
best scanline, the prediction of which is used as a baseline for further disaprity estima-
tion. On the other hand, we collect all the promising scanlines, given that normally more
than one scanline is capable of predicting the correct disparity. We test the method on sev-
eral datasets from close-range imagery, to airborne and satellite data. The results indicate
that SGM-ForestM performs better almost in all cases, since it reconstructs the ill-posed re-
gions more reasonably, for example, textureless areas, reflective surfaces, and so forth. It is
found that the inference of the random forest is improved when using the proposed multi-
label scheme, leading to improvements between 0.5% to 2.3%, depending on the benchmark
used.

In future work, the idea of adaptive scanline selection can be embedded to other stereo
matching systems as a further optimization step, such as the Sgm-nets (Seki and Pollefeys,
2017). Furthermore, self-supervision is promising as the random forest has low demand on
the number of training samples. A rigid standard can be set to exclude outliers for a reliable
supervision.

4.3 End-to-End Hierarchical Disparity Estimation and Re-
finement

Convolutional neural networks supervise a model to learn deep feature to better express
the data using reference training samples, thus achieving a great success when applied in
specific tasks. In the field of dense matching, the top ranking methods on vision bench-
marks such as KITTI (Geiger et al., 2012; Menze and Geiger, 2015), ETH3D (Mayer et al.,
2016), etc., are mostly end-to-end neural networks which are trained to predict dense dis-
parity maps directly from stereo imagery. The model could simulate traditional matching
schemes via differentiable layers and adpatively integrate each module to construct the pro-
cessing pipeline. It is, therefore, promising to exploit robust algorithms from computer vi-
sion to process remote sensing stereo data to deliver better geographic products. However
in practice, a well-performed model in close-range domain may struggle to handle aerial
and satellite stereo images, considering the large data amount and baselines. Days of run-
time and gigabytes of GPU memory could be consumed. In this research, we aim to adjust
a state-of-the-art stereo matching network, Guided Aggregation Network (GA-Net), via a
pyramid architecture for efficient disparity prediction from coarse to fine. Starting from a
downsampled stereo input, the disparity is estimated and continuously refined through the
pyramid levels until the original resolution is recovered. Thus, the depth search is only ap-
plied for a small size of stereo pair and then confined within a short residual range for minor
correction, leading to highly reduced memory usage and runtime. We successfully process
remote sensing datasets with very large disparity ranges, which could not be processed with
the GA-Net due to GPU memory limitations. Tests on close-range, aerial and satellite data
demonstrate that the proposed algorithm achieves significantly higher efficiency and com-
parable results with GA-Net on remote sensing data.
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4.3.1 Background

Semi-Global Matching (SGM) (Hirschmüller, 2005) acquires dense correspondences via
a simple pixel-wise cost comparison under a disparity searching range. The (piece-wise)
smoothness of the reconstructed surface is guaranteed by enforcing each neighboring pixel
to have similar disparity estimation. By repeatedly considering neighbors along multiple 1D
scanlines (normally 8 or 16 symmetric paths), 2D regularization is realized. As more high-
quality, high-resolution data becomes available, the computational cost of dense matching
rises exponentially, especially in the field of remote sensing. To limit the memory usage
and runtime, Rothermel (2017) proposed tSGM. Images are firstly downsampled to several
scales constituting a pyramid structure, in which SGM is applied from the lowest resolution
to the highest, level by level. On the pyramid top, the disparity range is downscaled accord-
ingly together with the image size, leading to reduced workload. The matching result is then
passed to the next higher resolution level as an initial prediction, from which a small dis-
parity buffer is set as a new search range to locally refine the estimation. The coarse-to-fine
scheme, thus greatly reduces the demand for memory and runtime. Besides, the influence
of ambiguous disparity candidates is limited. Additionally, this strategy enables the use of
deep learning based algorithms, which typically only support small search ranges due to
memory limits, on datasets with large disparity ranges of sometime several thousand pixels,
as typically occurring in extreme mountainous regions, such as the Himalayas.

GA-Net approximates SGM as a differentiable Semi-Global Guided Aggregation (SGA) layer,
to construct an end-to-end neural network for stereo matching (Zhang et al., 2019). All the
user-defined parameters in SGM can be learned, thus the smoothness requirement is sat-
isfied in a smarter way depending on the specific scene situation. With SGA and only a
few 3D convolutional layers to regularize the cost volume, the algorithm is more efficient
than other networks, e.g. GC-Net (Kendall et al., 2017), PSMNet (Chang and Chen, 2018),
etc, and achieves state-of-the-art performance. For processing high resolution remote sens-
ing data, however, the training and prediction are still memory- and time-consuming (days
are needed for training on patches of 384×576, with [0,192] as the disparity search range,
consuming around 15 GB GPU memory for each batch). Hence, we naturally refer to the
pyramidal strategy of tSGM, for modifying GA-Net (termed GA-Net Ori for the follow-up)
towards a pyramid architecture, and propose our GA-Net Pyramid. The efficiency is signif-
icantly enhanced with moderately decreased accuracy especially for remote sensing data.
As mentioned above, the proposed method is tested on large scale aerial/satellite stereo
data. The experiments prove the advantage of our strategy consistently. In addition, we also
test our methods on close-range benchmarks, Scene Flow (Mayer et al., 2016) and KITTI-
2012 (Geiger et al., 2012), to fill the domain gap. When the complexity of the target scene
increases, our pyramid architecture is still more efficient, however, a reasonable decrease
of the accuracy happens due to the lose of details and edges through the downsampling-
upsampling processing.

4.3.2 Differentiable Approximation of SGM

In SGM, the scanline optimization technique (Scharstein and Szeliski, 2002) is applied
through multiple scanlines simultaneously along several canonical directions, to satisfy the
spatial 2D smoothness and avoid streaking problem. Along a certain scanline traversing in
direction r, the cost for a pixel located at the image position p assuming d as the disparity,
is calculated as:

Lr(p,d) = C(p,d) + min(Lr(p − r,d), Lr(p − r,d − 1) + P1,

Lr(p − r,d + 1) + P1, mini Lr(p − r, i) + P2 ) .
(4.27)
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P1 and P2 are defined for penalizing the prediction when the previous neighboring point
p− r prefers a different disparity value. In practice, however, two problems exist. Firstly, the
users need expertise to determine appropriate P1 and P2 to punish neighboring disparity
inconsistency. Tuning of P1 and P2 additionally depends on scene structure and the used
similarity measure. Moreover, the values of P1 and P2 are fixed throughout the stereo pro-
cessing or simply adapted according to, e.g. pixel gradients, which are not optimal for all
the pixels within the image, especially under a varied scene structure, e.g. from plains to
mountains. Therefore, GA-Net Ori introduces the SGA layer to address the issues, which
is a differentiable approximation of Equation 4.27. Specifically, the master epipolar image
provides guiding information through a sub-network to better penalize depth discontinuity,
and enable a self-adaptive parameter setting. Thus, the penalty terms for conflicting neigh-
boring disparities are determined according to the pixel location and scanline direction,
which is more reasonable for smoothness regularization. Via the guidance sub-network, a
weight is supplied for each term in Equation 4.27 to constitute the following equation:

Lr(p,d) = C(p,d) + sum(w1(p,r) ·Lr(p − r,d),

w2(p,r) ·Lr(p − r,d − 1), w3(p,r) ·Lr(p − r,d + 1),

w4(p,r) ·maxi Lr(p − r, i) ) .

(4.28)

Compared with Equation 4.27, the punishment from P1 and P2 is replaced by the relative
importance (weight) wi of each term, which is predicted separately for each pixel along
a directed scanline. Besides, there are two differences with SGM, one of which is that the
first/external minimum operation is substituted by a weighted sum. This can be regarded
as a replacement from a max-pooling layer to a convolution with strides, which is proven
effective without accuracy loss (Springenberg et al., 2015). In addition, the second/internal
minimum search is changed to a maximum, which embodies the learning target to maxi-
mize the probability at the ground truth disparity rather than minimizing the cost. To avoid
the exploding accumulation of Lr(p,d) along the scanline, C(p,d) is also included within
the weighted summation, with the sum of all the weights equal to 1. Thus, SGA is finally
formulated as:

Lr(p,d) = sum(w0(p,r) ·C(p,d), w1(p,r) ·Lr(p − r,d),

w2(p,r) ·Lr(p − r,d − 1), w3(p,r) ·Lr(p − r,d + 1),

w4(p,r) ·maxi Lr(p − r, i) ) ,∑
i=0,1,2,3,4wi(p,r) = 1.

(4.29)

In SGM, the cost Lr(p,d) from each scanline is simply summed up to approximate
2D smoothness, which is demonstrated not reasonable for incurring inferior scanlines
(Schönberger et al., 2018; Xia et al., 2020). Accordingly, GA-Net Ori takes the maximum
as L(p,d) = maxr Lr(p,d) to keep the best information.

The guidance sub-network also provides weights for another layer, LGA, to further filter the
cost volume as below:

L∗(p,d) = sum
(∑

q∈Npw0(p,q) ·L(q,d),∑
q∈Npw1(p,q) ·L(q,d − 1),∑
q∈Npw2(p,q) ·L(q,d + 1)

)
,∑

q∈Npw0(p,q) +w1(p,q) +w2(p,q) = 1,

(4.30)

from which a 3D neighborhood (in both spatial and disparity dimensions) centered around
each pixel within the cost volume is utilized for a weighted average to protect thin struc-
tures. Afterwards as suggested by Kendall et al. (2017), a softmax operation σ (·) is applied to
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the filtered cost volume in order to acquire a probability for each disparity candidate (from
[0,Dmax]) and regress the final result as:

d̂ =
Dmax∑
d=0

d × σ (−L∗d) . (4.31)

4.3.3 Efficiency Enhancement via Coarse-to-Fine Strategy
SGM’s scanline optimization scheme is adapted by GA-Net Ori via an end-to-end neural
network, from which the disparity of each pixel can be estimated with the support from
neighboring pixels along multiple paths. The use of SGA and LGA layers is computationally
more efficient than convolution based encoder-decoder, leading to superior efficiency of GA-
Net Ori than most state-of-the-art methods (Kendall et al., 2017; Chang and Chen, 2018).
However it can still take days to train a well performed model, when the computational
power is limited. In our case for example, the training on the Scene Flow dataset (patch size
384×576), which is normally used for the initial learning phase, takes around 12 days to
finish 8 epochs on two Quadro P6000 GPU cards. Hence, the employment of the network is
hampered. In the field of remote sensing, it can be imagined that GA-Net Ori would struggle
to process high resolution aerial or satellite stereo data, especially for wide baseline stereo
pairs requiring larger disparity search ranges.

Therefore, we refer to tSGM (Rothermel, 2017), and restructure GA-Net Ori with a pyramid
architecture to regress the depth from coarse to fine. Figure 4.18 presents the schematic
overview of our GA-Net Pyramid. Three pyramid levels are depicted which could be ex-
tended. We use the same stacked hourglass module (a double U-Net structure) as GA-
Net Ori, which is essentially a Siamese network (Bromley et al., 1993) for symmetric feature
extraction from the left and right image, respectively. The input of the feature extraction
module, however, is a stereo pair downsampled in accordance with the pyramid level. Af-
terwards, the cost volume is generated and then processed by SGA and LGA for disparity
regression, in order to guide the subsequent level for the disparity refinement until the orig-
inal resolution is recovered.

In Figure 4.18, the stereo images are processed from the pyramid top after downscaled by a
factor of 4 along both row and column directions in our implementation (termed as ’Scale
1/4’). Then the feature is extracted to construct a 4D cost volume by concatenating the left
and right feature maps along the channel dimension, with a horizontal shift indicated by a
disparity candidate within the search range. Assuming the cost volume on the original full
resolution image is in size of H ×W ×Dmax × 2C, for the image height, width, the maximum
disparity, and twice the channel number of the generated feature maps, respectively, our cost
volume on the pyramid top reaches a highly reduced dimension as H/4×W/4×Dmax/4×2C.
Thus, the memory consumption and computational complexity are decreased by a factor of
1/64.

Afterwards, the cost volume enters the cost aggregation block containing SGA and LGA lay-
ers, for which the guiding information is obtained from the downscaled master epipolar
image. At last, the filtered cost is used for the following disparity regression as GA-Net Ori.
Thus, a disparity map of the downsampled image ’Scale 1/4’ is obtained for the pyramid
top. From here, the depth of the scene is already roughly estimated and the large scale con-
text is perceived, which provide a good guidance for the following processing. Based on the
prediction of the pyramid top, the other levels thus only need to locally refine the disparity
values. Therefore, the disparity map from ’Scale 1/4’ level is upsampled by a factor of 2 via
bilinear interpolation, to match the resolution of ’Scale 1/2’ level as an initial estimation.
Afterwards, we warp the right feature maps, pixel by pixel, according to the dense corre-
spondences indicated by the disparity map, and acquire a synthetic left feature. Assuming
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Fig. 4.18. GA-Net Pyramid with explicit downsampling. The input stereo pair is downsampled explicitly according to the
resolution required by each pyramid level. At the pyramid top, the stereo correspondences are located within an absolute
disparity range in low resolution. The following pyramid levels perform disparity refinement within a pre-defined residual
disparity range until the original resolution is recovered at the pyramid bottom. (SPN indicates the Spatial Propagation
Network which is an optional module for depth boundary enhancement.)

the disparity map from ’Scale 1/4’ level is accurate enough, the synthetic and the origi-
nal left feature maps would perfectly match each other. However, considering the details
lost through downsampling and the corresponding matching error in practice, a small shift
exists between the left and the warped right feature, which we call the disparity residual.
Accordingly, a cost volume is built in size ofH/2×W/2×2disp resi×2C for ’Scale 1/2’ level.
In contrast to the cost cube on the pyramid top, the height and width are increased to match
the current resolution, however, the disparity range is confined to a small buffer. disp resi
is a pre-defined threshold, leading to a range [−disp resi,+disp resi] around the initial dis-
parity estimation to locate the residual for refinement. For each pixel in the reference/left
frame, a positive residual suggests a further shift towards the left in the target/right frame,
from the current predicted matching position. On the contrary, a negative residual expects
a decreased displacement along the row for a better correspondence. Then the cost volume
is regularized by SGA and LGA, and the residual disparity map is calculated. The dispar-
ity estimation for the current level is obtained by adding the residual and the previously
upscaled disparity map.

The stereo pair on ’Scale 1/2’ level is twice larger in height and width, however, the search
for correspondences is restricted within a narrow range. Hence only a small overhead is ac-
cumulated. We apply the same procedure for the remaining pyramid level, to continuously
improve the disparity estimation until the original resolution is reached. Each pyramid level
only requires the input epipolar imagery at its level and the disparity image of the previous
level. For an efficient and memory saving implementation during disparity estimation, com-
putation of the levels could be decoupled to significantly lower the memory footprint while
allowing large input image sizes. Compared to GA-Net Ori, it is thus feasible to significantly
increase both image size and disparity range, as only the pyramid top needs to process the
full disparity search range, for example processing of images with a four times larger width,
height and disparity range are possible without additional GPU memory requirements in
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this case. Note that the efficiency evaluation in this research is performed without adding
these optimizations.

Regarding the loss calculation during the training, we use the same smooth L1 loss function
as GA-Net Ori. However, our pyramid architecture predicts more than one disparity map,
which should all be considered to allow for intermediate supervision. Hence, a weight is
assigned to each pyramid level for a weighted loss summation as:

L =
N∑
i=1

l(|d̂i − d̄|) ·ωi , (4.32)

in which d̂i denotes the disparity predicted by the pyramid level i (starting from 1 as the
pyramid top), and d̄ is the corresponding ground truth. l computes the smooth L1 loss from
the disparity difference. A weight ωi is assigned to the level i for a weighted summation
through all N pyramid levels. The disparity map from each level is upscaled to the original
full resolution before computing the loss. As the estimation is improved from the pyramid
top to the bottom, the corresponding weight is also increased.

In order to achieve efficient and robust estimation on cross-domain datasets, we design dif-
ferent feature extractors and observe the corresponding performance, so that an appropriate
model could be used to handle specific data types. The architecture in Figure 4.18 simply
applies GA-Net Ori in a pyramidal manner, which takes the linearly downsampled stereo
pair as input to extract feature for further processing. Therefore, we propose another ar-
chitecture to implicitly learn the downsampled feature, as displayed Figure 4.19, such that
both explicit and implicit image downsampling strategies are tested.

Instead of downsampling the input stereo pair level by level, we only use the stacked hour-
glass module once to extract feature from the original (full resolution) images for feeding
all the pyramid levels. In order to keep both geometric context and local details within the
feature maps, the input images are firstly downsampled via convolutions with stride two,
and then deconvolved to gradually recover the resolution, in which a skip connection is
exerted between corresponding feature maps of the encoder and decoder at the same reso-
lution. Before reaching the original size, we directly extract the intermediate feature maps
from the decoder to feed each level, as long as the expected resolution is acquired. Then re-
garding the guidance sub-network, the weights of SGA and LGA are first computed for the
pyramid bottom according to the original master frame. Afterwards, we apply convolutions
with strides to obtain the guiding weights of the subsequent lower resolution level until
reaching the pyramid top. To differentiate the GA-Net Pyramid with explicit and implicit
downsampling, we name the two variants as GA-Net PyramidED and GA-Net PyramidID,
respectively.

As the disparity is estimated and refined through the pyramid, we add a Spatial Propaga-
tion Network (SPN) (Liu et al., 2017) as a post-processing step to explore its influence on the
matching results. SPN is capable of sharpening the object boundaries, by learning from the
source image (in our case, the master epipolar image) in a data-driven mode, which is ap-
propriate as a further refinement in our pyramid architecture especially for close-range data
with rich details. Hence, four models are finally proposed including GA-Net PyramidED
and GA-Net PyramidID, respectively, with or without SPN added at the end of the pyramid
bottom.

4.3.4 Performance Evaluation on Multiple Data Sources
In the experiments, we compare our GA-Net Pyramid with GA-Net Ori using cross-domain
datasets including close-range, Scene Flow and KITTI-2012, aerial, and satellite stereo data.
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Fig. 4.19. GA-Net Pyramid with implicit downsampling. The feature extractor is applied on the stereo pair in original
resolution, with the intermediate feature maps from its decoder to feed each pyramid level according to the expected
resolution. Thus, an implicit downsampling is achieved. (SPN indicates the Spatial Propagation Network which is an
optional module for depth boundary enhancement.)

For a fair comparison, the implementation details are rigidly controlled between the two
algorithms. Regarding the training, we use the same patch size with a pre-defined disparity
search range, to train the networks for certain epochs, based on Adam optimization strategy
(Kingma and Ba, 2017). Each stereo pair is normalized, according to the mean and standard
deviation of the pixel values from each channel, before feeding to the network. As suggested
in Zhang et al. (2019), the SGA is applied along four directions (horizontally and vertically)
for both GA-Net Pyramid and GA-Net Ori.

For GA-Net Pyramid specifically, the number of pyramid levels is 3 and the search range
for the disparity residual after the pyramid top is set as [−6,+6] to refine the matching
results. Details about the pyramid setting are discussed. We apply 3 SGA and 2 LGA layers
to regularize the cost volume on our pyramid top, which is the same as GA-Net Ori. With
regard to the other pyramid levels, only 1 SGA layer (and 2 LGA layers) is utilized due
to the small disparity search range. The weight is set as 0.25, 0.5 and 1, to the pyramid
level 1 (top), 2 and 3 (bottom), respectively, to calculate the final loss in Equation 4.32. The
implementation of the methods is based on Python and Pytorch.

As for the close-range datasets, the scene structure is relatively complicated with rich de-
tails. Referring to most learning based dense matching algorithms, we train the models on
Scene Flow data from scratch, and utilize real data, KITTI-2012 in our case, for finetun-
ing. Scene Flow is a synthetic dataset via randomly combining human-made objects with
backgrounds from real images, which is used by most stereo networks for initial training.
Afterwards, only a small dataset from a specific field is sufficient to adjust the model into
practical scenarios. The dataset contains three subsets, namely FlyingThings3D, Monkaa
and Driving, including around 35000 images for training and 4370 images for validation.
KITTI-2012 is a stereo dataset with a focus on outdoor street views, which is normally ap-
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plied in the field of autonomous driving. The dataset includes 194 training and 195 test
stereo pairs, with ground truth disparity maps based on LiDAR measurements provided or
withheld.

Both the pre-trained and finetuned models are tested on the corresponding dataset. Regard-
ing the former, the whole Scene Flow training dataset is used for training (8 epochs), while
only 1000 stereo pairs from its validation set are selected for test to save time. On the other
hand, 170 images from KITTI-2012’s training data are exploited to finetune the models for
800 epochs, with the remaining 24 images for validation. All the data selection is random,
so that a fair evaluation is achieved. Through the entire training period, we use the same
patch size (384×576) with the maximum disparity set to 192. The networks are trained with
a batch size of two, on two Quadro P6000 GPU cards.

The quantitative and visual comparison between our pre-trained pyramid models and GA-
Net Ori is shown in Table 4.14 and Figure 4.20. As indicated by the table, we calculate the
percentage of pixels, for which the estimation error is smaller than 1, 2, and 3 pixels, re-
spectively, and the end point error (EPE) for accuracy evaluation. Regarding the efficiency,
the runtime and GPU memory consumption are reported. For all the experiments in this
research, the runtime in test period is counted for processing the whole test dataset. Specifi-
cally, we generate a binary file to save the disparity value of each correspondence, and a png
(Portable Network Graphics) file to visualize the result. In the tables, M denotes megabytes
for the GPU memory consumed by each network, while the time spent in training and test
is expressed in hours (h) or seconds (s). Better performance is highlighted in bold.

Table 4.14. Accuracy and efficiency comparison between GA-Net Pyramid, including GA-Net PyramidED and
GA-Net PyramidID, and GA-Net Ori on Scene Flow data.

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix EPE Memory Runtime Memory Runtime

GA-Net PyramidED 81.77% 88.59% 91.42% 1.61 7052M 38.25h 2761M 0.39h

GA-Net PyramidED+SPN 83.04% 89.97% 92.67% 1.44 7140M 40.62h 2761M 0.39h

GA-Net PyramidID 81.26% 89.10% 92.05% 1.49 7264M 30.07h 3501M 0.40h

GA-Net PyramidID+SPN 84.27% 91.09% 93.64% 1.23 7422M 31.69h 3501M 0.39h

GA-Net Ori 91.41% 95.35% 96.60% 0.86 30464M 280.53h 6983M 2.10h

From the results, it is found that GA-Net Ori outperforms the two pyramid models in accu-
racy, however, the latter consume much less memory and runtime usage in both training and
test periods. In case of the close-range data, the objects are captured under an ideal viewing
condition, thus very high resolution is achieved with plenty of details and texture informa-
tion contained. Besides, as Scene Flow is a synthetic dataset, the random arrangement of
man-made objects makes the scene non-natural, non-logical and highly complicated with
many occlusions. Hence, our GA-Net Pyramid is surpassed by GA-Net Ori, considering the
information loss due to a sequence of downsampling-upsampling through the pyramid lev-
els. On the other hand, our hierarchical strategy highly simplifies the problem complexity,
via refining the disparity estimation from coarse to fine. Therefore, the stereo matching
procedure can be finished using far less computational source but at a much higher speed.
Between the two pyramid models, GA-Net PyramidED and GA-Net PyramidID, similar ac-
curacy is obtained. Regarding the SPN processing, a positive effect is achieved for both pyra-
mid structures, while GA-Net PyramidID could be improved by a larger extent. Since that
the experiments are implemented on a server open to multiple users, the runtime of each
model could be slightly influenced by unknown processes. We recommend referring to the
training time to evaluate the speed of the algorithms, especially for each pyramid model
with similar efficiency, considering the relatively long training process compared with the
test period. GA-Net PyramidID is faster than GA-Net PyramidED, since the feature extrac-
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Fig. 4.20. Visual comparison between GA-Net PyramidID+SPN and GA-Net Ori on Scene Flow data. In each subfigure,
the disparity maps from the ground truth and each network are displayed in the first row. The second row provides the
master epipolar image and the corresponding error maps. Regions where the proposed algorithm outperforms GA-Net Ori
are marked with red arrows.

tion in former case is applied only once on the full resolution stereo pair, rather than re-
peatedly learning from the corresponding downsampled images level by level. In case of
the GPU memory consumption, GA-Net PyramidED performs better.

As for the figures, only the best performed pyramid model is visually compared with GA-
Net Ori, e.g. GA-Net PyramidID+SPN on Scene Flow dataset. Accordingly, we display the
master epipolar image, where the guidance information is acquired for SGA and LGA, the
ground truth, and the corresponding results from each algorithm. The color bar at the end
shows the disparity and error changes. In Figure 4.20, it is found that GA-Net Ori ob-
tains a generally better disparity result than GA-Net PyramidID+SPN, with clear edges
and more details included. However, our pyramid model still produces a disparity map
in good quality, even including better depth results in certain regions. We discover that
GA-Net PyramidID+SPN is capable of better reconstructing hollow-shaped objects, e.g. the
barrel and the shelf as indicated by the red arrows. The finding is also supported by the
following experiments on the KITTI dataset.

After finetuning the pre-trained models on part of KITTI-2012’s training data, we test them
on the remaining stereo pairs. In Table 4.15 and Figure 4.21, the corresponding quantita-
tive and qualitative results are provided. Regarding the training efficiency, only the time
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spent for finetuning is counted. Similar to the previous experiment, GA-Net Ori acquires
the best accuracy, however, the pyramid models are faster and more memory friendly. SPN
still improves the results of all the pyramid models, among which GA-Net PyramidID+SPN
achieves the highest accuracy. It should be noted that, our GA-Net Pyramid performs better
for real data leading to a further reduced accuracy gap compared with GA-Net Ori. From
the visual inspection, the depth result of each algorithm is barely distinguishable. More-
over as mentioned before, we obtain a better depth prediction for hollow-shaped structure.
KITTI-2012 doesn’t provide ground truth for certain area, nevertheless, it is clear that our
pyramid architecture gives a clean and more reasonable depth estimation for the regions
marked by the red arrows.

Table 4.15. Accuracy and efficiency comparison between GA-Net Pyramid, including GA-NetPyramidED and GA-NetPyra-
midID, and GA-Net Ori on KITTI-2012 data.

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix EPE Memory Runtime Memory Runtime

GA-Net PyramidED 86.54% 93.57% 95.76% 0.89 7140M 17.81h 2641M 28.07s

GA-Net PyramidED+SPN 86.56% 93.53% 95.66% 0.88 7242M 18.49h 2641M 29.29s

GA-Net PyramidID 83.20% 92.68% 95.12% 1.10 7546M 13.77h 3379M 27.02s

GA-Net PyramidID+SPN 86.88% 94.13% 96.18% 0.83 7680M 15.02h 3379M 29.89s

GA-Net Ori 91.55% 96.64% 97.65% 0.60 30514M 135.47h 6565M 165.72s
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Fig. 4.21. Visual comparison between GA-Net PyramidID+SPN and GA-Net Ori on KITTI-2012 data. In each subfigure,
the disparity maps from the ground truth and each network are displayed in the first row. The second row provides the
master epipolar image and the corresponding error maps. Regions reconstructed better by the proposed algorithm are
marked using red arrows.

Regarding the remote sensing scenarios, the networks are firstly tested on our aerial data.
The airborne and satellite stereo processing is the target domain of this research, since the
corresponding data is usually large in size and owns a much wider stereo baseline, which
presents a higher demand on the algorithm’s efficiency. The networks are trained on our
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synthetic remote sensing data (854 stereo pairs) from scratch for 200 epochs. Our synthetic
dataset is designed specifically for airborne and satellite stereo tasks. The dataset focuses
on urban regions, via referring to six city models provided by the software CityEngine:
Paris, Venice, New York, Philadelphia and two small development scenes. The models were
exported and processed in Blender, to preserve the textures and relevant information. Af-
terwards, we used BlenderProc (Denninger et al., 2019) to render the dataset according to
the geometry of the model, which included RGB images and the corresponding disparity
maps. Considering both aerial and satellite platforms, the simulated camera for rendering
was located at 200 m and 500 km above the cities, respectively. 854 stereo pairs in size of
1024×1024 pixels were generated in total, with the ground sampling distance (GSD) ranging
from 5 cm to 50 cm.

Afterwards, the models are finetuned on a subset (200 stereo pairs) of our aerial data for 100
epochs. As for our real aerial data, we use the 4K sensor system mounted on a helicopter for
the data collection (Kurz et al., 2014). Three off-the-shelf Canon EOS cameras (one 1D-C and
two 1D-X) constitute the imaging unit. The data contains geo-referenced images with a size
of 17.9 megapixels, acquired over Gilching in the southwest of Munich, Germany. Equipped
with 50 mm lenses looking in varying view directions, a field of view (FOV) up to 104° is
reached. The flight height was 500 m above ground, enabling 6.9 cm nadir GSD. A multi-
view stereo matching based on SGM was applied, in which the calculated heights (depths)
from multiple highly overlapped images were fused to achieve a high quality digital surface
model (DSM). The DSM was used to compute disparity maps for each stereo pair, which
were utilized as reference data for finetuning and validation.

We randomly select another 20 aerial stereo pairs, possessing no overlap with the finetuning
data, to test the trained models. Image patches in size of 384×576 are randomly cropped for
training, and the test images are 1152×1152. The data may contain negative or very large
disparity values, hence we exclude the stereo pairs with large baselines in order to keep
the disparity range processible by both GA-Net Pyramid and GA-Net Ori. Accordingly the
disparity range is also set as [0,192]. The models are trained with a batch size of two on two
Quadro P6000 GPU cards.

In addition, SGM is utilized as a baseline model in our aerial and satellite experiments,
since the algorithm is widely used in the field of remote sensing for dense reconstruction.
We exploit Census (Zabih and Woodfill, 1994) to calculate the matching cost with a 7×7
window. The penalty terms P1 and P2 are set to 19 and 33, respectively. The cost from 8
symmetric scanlines along horizontal, vertical and diagonal directions are accumulated to
compute the disparity based on the WTA strategy, which is then further refined using a
left-right consistency check.

In Table 4.16, the performance of each algorithm is recorded. We can firstly find that all the
GA-Net models outperform the baseline SGM by a certain margin. Besides, our pyramidal
revision leads to a very small accuracy decrease compared with the original structure, but
highly improves the efficiency. Our GA-Net PyramidED (without SPN added) is the best
performed pyramid model, which is only around 1% worse than GA-Net Ori in accuracy.
Nevertheless, the pyramid models are about 8 and 7 times faster than GA-Net Ori, but only
expends around 25% and 40% memory usage for training and prediction, respectively. It
should be noted that for airborne data, SPN cannot improve the performance for either of
the pyramid models, which is different from the close-range experiments. A visual compar-
ison among the methods is provided in Figure 4.22.

We select two regions, one vegetation and one building area from the validation data for
the visualization. It is shown that GA-Net PyramidED, as an intuitive modification of GA-
Net Ori based on a pyramid architecture, archives good performance in airborne stereo
matching. When the scene is relatively simple, containing fewer depth discontinuities and a
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Table 4.16. Accuracy and efficiency comparison between GA-Net Pyramid, including GA-Net PyramidED and
GA-Net PyramidID, and GA-Net Ori on aerial data (baseline model: SGM).

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix Memory Runtime Memory Runtime

GA-Net PyramidED 77.28% 86.19% 89.70% 7124M 25.18h 5623M 83.60s

GA-Net PyramidED+SPN 74.06% 86.08% 89.69% 7238M 26.19h 5623M 89.08s

GA-Net PyramidID 76.35% 85.46% 89.14% 7544M 20.59h 6979M 84.02s

GA-Net PyramidID+SPN 76.14% 84.82% 88.21% 7676M 21.54h 6979M 86.19s

GA-Net Ori 78.75% 86.99% 90.13% 30512M 187.59h 15685M 616.74s

SGM 72.14% 75.89% 77.15% ——

smooth depth change, the hierarchical estimation and refinement of disparity is capable of
highly enhancing the efficiency, without a noteworthy sacrifice of the result’s quality.

To further understand our GA-Net Pyramid when applied in the field of remote sensing, we
explore the impact of different pyramid architectures using our aerial data. Regarding the
pyramid structure, two variants are the most important factors, the number of pyramid lev-
els and the residual search range for disparity refinement. The main difference between GA-
Net PyramidED and GA-Net PyramidID is the strategy to extract feature, which is not di-
rectly related to the above two factors. In addition, our two pyramid models achieve similar
accuracy. Therefore, we select GA-Net PyramidED without SPN for post-processing to study
the pyramid setting, since it is the more intuitive pyramidal modification of GA-Net Ori. As
for the number of pyramid levels, we start from 2, since a 1-level GA-Net Pyramid will
degenerate to GA-Net Ori, to 4 levels, with a fixed residual range [−6,+6]. The model is
trained on our synthetic dataset from scratch and tested on the same validation data. We
use the same hyperparameter setting as before, except that the size of the training patches
changes to 384×768 to facilitate the downsampling when more levels are applied. We train
the model on one GPU card due to the less memory requirement of GA-Net Pyramid. The
results are in Table 4.17.

Table 4.17. Accuracy and efficiency comparison for GA-Net PyramidED with different pyramid levels.

Accuracy Training Efficiency Test Efficiency

Pyramid Levels 1 pix 2 pix 3 pix Memory Runtime Memory Runtime

2 72.38% 80.89% 85.14% 11521M 70.25h 5813M 120.28s

3 72.17% 81.22% 85.69% 8121M 29.13h 5623M 82.11s

4 72.08% 81.19% 85.57% 7647M 27.80h 5589M 63.92s

According to the table, it is found that the architecture with 4 pyramid levels acquires the
best efficiency. However, with slightly increased memory and runtime, the model with 3
pyramid levels achieves better results. Along with GA-Net PyramidED regresses towards
GA-Net Ori (from 3 to 2 levels), the efficiency drastically deteriorates as expected, never-
theless, without a noticeable improvement of the accuracy. Therefore, we determine to use
the number of pyramid levels as 3. Then we adjust the residual search range to [−3,+3],
[−6,+6] and [−12,+12], respectively. The model is also trained from scratch on our synthetic
dataset using one GPU card, and tested on the same 20 aerial images. We keep the train-
ing setting unchanged, except that the patch size is set back to 384×576. In Table 4.18, the
performance for different residual search ranges is recorded.

Table 4.18 indicates that as the residual range becomes larger, the efficiency naturally de-
creases. Moreover, when the residual buffer expends over [−6,+6], the accuracy cannot be
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Fig. 4.22. Visual comparison among GA-Net PyramidED, GA-Net Ori and SGM on aerial data. In each subfigure, the
reference disparity map and each algorithm’s stereo results are displayed in the first row. The second row provides the
master epipolar image and the corresponding error maps.

further enhanced. Hence, the structure of our pyramid is determined as 3 levels, with the
maximum/minimum residual set as 6/-6. To keep the experiments consistent, the pyramid
structure is used for both GA-Net PyramidED and GA-Net PyramidID in this research.

At last, we also test the proposed methods on satellite data. The flight campaign regarding
our aerial images was performed during a Worldview-3 stereo acquisition of the same area.
WorldView-3 is a very high resolution imaging satellite currently offering the most detailed
publicly available spaceborne imagery, at a resolution of 30 cm. Due to the minimal time
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Table 4.18. Accuracy and efficiency comparison for GA-Net PyramidED with different residual search ranges.

Accuracy Training Efficiency Test Efficiency

Residual Range 1 pix 2 pix 3 pix Memory Runtime Memory Runtime

[−3,+3] 73.38% 81.95% 86.04% 5941M 23.49h 5467M 55.23s

[−6,+6] 73.76% 82.21% 86.40% 6283M 26.35h 5623M 84.50s

[−12,+12] 73.38% 82.11% 86.37% 7033M 34.96h 6489M 123.09s

difference of less than 1 hour of each aerial image from the satellite images, the higher
resolution airborne data is well suited as reference data for the satellite stereo matching to
finetune the models and evaluate the results. After bundle-adjustment of the satellite data
with the aerial imagery and DSM as reference, we generated an epipolar rectified stereo
pair using the algorithm implemented by the CARS stereo pipeline (Michel et al., 2020).
Similar to the aerial imagery, a reference disparity map was calculated by projecting each
point of the 4K DSM into the epipolar satellite stereo pair. The stereo pair has a dimension
of 20815×28264 pixels, which was cut into 98 tiles (in size of 1152×1152) owning an overlap
larger than 25% with the 4K data coverage. From them, 78 tiles were randomly selected for
finetuning the pre-trained GA-Net models, with the other 20 image pairs as the validation
data. As the airborne data was geo-referenced in two separate blocks using differential GPS
and only few ground control points (GCPs), a slight height offset was found between the
aerial and satellite data, yielding disparity differences between the aerial reference and the
satellite stereo pair in the pixel range, but rising up to 4 pixels at the corner of one aerial
block. Since these systematic differences strongly affected training and evaluation of the
networks, a second order offset surface was fitted to the difference of the airborne reference
disparity map and the satellite disparity map estimated by SGM, on each of the 98 tiles. The
offset was added to the reference disparity map to remove the systematic bias.

The networks are also pre-trained on our synthetic remote sensing data for 200 epochs, and
finetuned on the generated satellite training data for 150 epochs. The training conditions
stay the same, including the patch size (384×576), disparity range ([0,192]), batch size (2),
GPU usage (2 Quadro P6000 cards), etc. SGM is also used as a baseline.

In Table 4.19, we record the performance of GA-Net Pyramid, GA-Net Ori and SGM. Sim-
ilar to the results of airborne data, GA-Net Ori achieves the highest accuracy, after which
GA-Net PyramidED still acquires the best performance among all the other models. The 1
pixel accuracy of our GA-Net PyramidED, without SPN added for post-processing, is only
surpassed by GA-Net Ori by 0.08%. However, the former is around 8 and 13 times faster
than the latter, consuming only 23% and 36% GPU memory in training and test, respec-
tively. In addition, GA-Net PyramidED performs better than GA-Net PyrmaidID, with less
GPU memory consumption but longer training time. SPN also impairs the performance of
the pyramid models, which is consistent with our experiments on aerial data. The visual
comparison is in Figure 4.23, including a vegetation and a building area as well. It is found
that both networks predict a smoother disparity map than SGM, with less erroneous estima-
tion. Besides, similar results are obtained between our GA-Net PyramidED and GA-Net Ori,
considering the reconstruction density and quality.

We also apply our pyramid network on a stereo pair with a large disparity range, in order to
indicate the model’s ability to process large scale remote sensing data. The imagery is from
WorldView-2 at a resolution of 50 cm, covering the Matterhorn mountain, Switzerland. We
select a stereo pair with 14◦ conversion angle for which the disparity varies in range of
thousand pixels, due to the very large ground height difference from 1800 m to 4478 m. The
best performing model finetuned in our satellite stereo experiments, GA-Net PyramidED,
is directly used for disparity prediction in this test, without fine-tuning on the mountain
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Table 4.19. Accuracy and efficiency comparison between GA-Net Pyramid, including GA-Net PyramidED and
GA-Net PyramidID, and GA-Net Ori on satellite data (baseline model: SGM).

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix Memory Runtime Memory Runtime

GA-Net PyramidED 83.76% 90.70% 93.00% 7144M 23.77h 5623M 31.53s

GA-Net PyramidED+SPN 82.99% 91.05% 93.34% 7250M 24.56h 5623M 35.93s

GA-Net PyramidID 81.45% 89.58% 92.40% 7558M 19.11h 6979M 33.11s

GA-Net PyramidID+SPN 80.66% 89.10% 92.00% 7700M 20.27h 6979M 32.87s

GA-Net Ori 83.84% 91.42% 93.74% 30514M 179.19h 15685M 401.91s

SGM 79.98% 82.74% 83.32% ——

stereo pair. Regarding the evaluation, we follow our previous processing chain, using an
aerial dataset with good stereo geometry to the same area to generate reference data. The
test region, the reference disparity map and our stereo results are displayed in Figure 4.24.

The mountain peak is located at the center of the image with a disparity of around 1250
pixels. Thus, we set the disparity range as [0,1248]. Note that the model we use receives no
supervision and knowledge, regarding the mountain area with that large disparity differ-
ence. However, we achieve a 3-pixel accuracy as 87.34%. There are temporal inconsistency
between the satellite and reference data, leading to varying snow cover. Therefore, we use
3-pixel as the threshold. The visual comparison shows very similar results between our dis-
parity prediction and the reference, considering the reconstruction density, smoothness, etc.
Disparity holes are found from certain regions in our results. According to the image con-
tent, the regions are in shadow with limited texture information, where the network suffers
from collecting enough information to locate the correspondences.

In the test period, the patch in size of 768×6912 is fed to the network for disparity pre-
diction. Considering the disparity range [0,1248], GA-Net Ori will theoretically need more
than 200 GB GPU memory to process the same data. While in our pyramid implementation,
GA-Net PyramidED consumes only around 20 GB.

4.3.5 Conclusion and Outlook
Based on a pyramid architecture, our GA-Net Pyramid is able to roughly estimate the depth
from downsampled feature, and then refine the prediction level by level until the origi-
nal resolution is recovered. Thus, the efficiency is significantly enhanced with the accuracy
maintained to be comparable with GA-Net Ori. Some technical details are found.

We firstly propose GA-Net PyramidED, which applies the GA-Net Ori model hierarchi-
cally. In our experiments on airborne and satellite data, it is demonstrated that GA-
Net PyramidED is able to achieve similar results as GA-Net Ori, nevertheless, consuming
much less GPU memory and runtime for both training and prediction. Considering that
only the pyramid top exploits the absolute disparity range in low resolution to locate the
stereo correspondence, GA-Net PyramidED is capable of processing stereo pairs with wider
baselines if the same GPU memory for GA-Net Ori is available. This is particularly suitable
to process large stereo pairs with high disparity search ranges in the field of remote sens-
ing, which usually triggers the bottleneck of most memory-hungry deep neural networks.
On the other hand, the aerial/satellite images mainly focus on large scale landscapes such as
city areas, for which the local object heights/depths are generally smoother and regular with
fewer occlusions, depth discontinuities, fine structures, etc., compared with the close-range
datasets. Thus, the results from the previous level can better guide the disparity estimation
on current level. More importantly, when large height variance exists within the scene, e.g.
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Fig. 4.23. Visual comparison among GA-Net PyramidED, GA-Net Ori and SGM on satellite data. In each subfigure, the
reference disparity map and each algorithm’s stereo results are displayed in the first row. The second row provides the
master epipolar image and the corresponding error maps.

in mountain areas, a rough depth prediction from lower resolution pyramid level is effec-
tive to limit the search range and avoid influence from ambiguous disparity candidates for
higher resolution level.

Another architecture is designed as GA-Net PyramidID, which implicitly downsamples the
input stereo pair via a U-Net feature extractor to feed each pyramid level using the interme-
diate feature map of its decoder. Concerning the close-range datasets, especially for Scene
Flow that contains very complex and non-logical scene structures, both GA-Net PyramidED
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Fig. 4.24. A showcase to indicate the ability of our pyramid network in processing remote sensing stereo pair with large
baseline. The reconstruction results for the region with a size of 19791 x 15639 pixels highlighted by the green rectangle
are shown below, from the reference disparity map (left) and our pyramid model (right). Test region: Matterhorn mountain,
Switzerland. Test model: GA-Net PyramidED.

and GA-Net PyramidID are not competitive with GA-Net Ori. The accuracy could be influ-
enced, when details are possibly omitted by the low resolution level. Besides, the resid-
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ual search range may not support refinement for regions with rapid depth changes and
discontinuities. With a SPN module added at the end to sharpen the boundaries, GA-
Net PyramidID+SPN achieves the best result among all the pyramid models. While GA-
Net Ori outperforms the proposed pyramid approaches on both close range datasets, Scene
Flow and KITTI, the performance difference is smaller for the real-world KITTI 2012 data.
Thus, we could be confident to apply this pyramidal revision in practical scenarios when
the scene is natural and regular, to efficiently predict a disparity map with good quality.

SPN is applied on image segmentation to refine the object boundaries. In our experiments
on close-range data, better depth estimation is achieved by our pyramid networks with
SPN added, especially for GA-Net PyramidID. However, it is found that negative influ-
ence from SPN occurs on airborne and satellite data, for both GA-Net PyramidED and GA-
Net PyramidID. The reason is that the resolution of aerial/satellite data is relatively low,
with fewer details and depth discontinuities included, thus the strength of SPN is not em-
bodied. More importantly, the training of SPN cannot be well supervised, considering that
the number of valid training patches from airborne (987 millions) and satellite (934 mil-
lions) datasets is far less than the close-range datasets (18 billions). The condition to col-
lect reference data is not as ideal as close-range scenarios using precise LiDAR scanning,
structured light or synthetic labelling. In addition, SPN essentially refers to the input to im-
prove the output, which are the master epipolar image and the disparity result in our case,
respectively. The natural land texture and shadows, which are not necessarily related to
ground height variation, may confuse SPN to locate the correct depth borders. The slightly
changing and rolling ground height, e.g. in natural regions, could confuse the disparity
post-processing as indicated by the lower 1-pixel accuracy.

Nowadays, the rapid development of deep learning and CNNs has made the technique dom-
inate in the field of dense matching, leading to a sequence of high-rank algorithms in differ-
ent close-range benchmarks. Compared to conventional approaches, the depth estimation
for ill-posed areas, e.g. textureless regions, occlusions, etc, is better accomplished resulting
in a considerable improvement. However, a large amount of well-annotated data and a time-
consuming training are usually required, before a network reaches high performance. In the
field of remote sensing, a huge amount of high definition data is supplied by unmanned
aerial vehicles, helicopters, airplanes or satellites in all time. The data covers large areas
with varying stereo baselines and image sizes of up to multiple gigapixels. Hence, a well-
performed deep network from the field of computer vision would struggle to process the
corresponding data, under the certain time and memory budget. Since that stereo datasets
with reliable ground truth at sub-pixel disparity precision are not available in remote sens-
ing, we build a dataset consisting of simultaneously acquired and carefully co-registered 30
cm satellite and 6 cm aerial imagery. The experimental results demonstrate that our pro-
posed model can largely enhance the efficiency in training and test, while maintaining a
comparable accuracy. The test on a satellite stereo pair over Matterhorn specifically high-
lights the significance of our method for processing large baseline stereo data.

In future research, more reference data should be collected for urban, rural and moun-
tainous scenarios for remote sensing, in order to better supervise a learning based model
in stereo prediction. Thus, we can better handle the ill-posed regions in shadows, depth
boundaries, etc., and obtain high-quality geographical measurements for earth observation.
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5 Conclusion and Outlook

5.1 Conclusion

Modern learning based techniques strengthen the model’s ability for better understanding
and expressing the scenes and data, from feature representation, analysis, to interpretation,
thus, largely enhancing the corresponding algorithm’s robustness to handle complex vision
and semantics related problems. Regarding stereo dense matching and 3D reconstruction,
tons of methods have been proposed in the field of computer vision targeting at the ap-
plications of self-driving, object recognition, etc. High performance is achieved under the
support of advanced machine/deep learning techniques and rich training data sources. The
methods greatly inspire the study in remote sensing for DSM generation, change detection,
and so forth. However, a simple model transfer from computer vision to remote sensing
does not automatically lead to competitive performance. For example, the data collection is
usually more challenging, due to the varying environmental factors such as the illumination
changes and clouds. More importantly, the target are mostly dynamic scenes which makes it
difficult to obtain a temporarily consistent reference dataset for model supervision and eval-
uation. On the other hand, the data volume of remote sensing data is much higher due to the
large format airborne and satellite sensors. The corresponding tasks have a higher demand
on the algorithms’ efficiency, especially for processing wide-baseline stereo data. Hence, the
SOTA algorithms in computer vision need be adjusted before they can be applied to robustly
to remote sensing data.

SGM achieves steady performance in stereo matching with reasonable computational re-
sources, thus it is widely applied in the field of remote sensing. Therefore, the thesis aims
at improving the algorithm, referring to the SOTA strategies from computer vision, with
special adjustment for a more appropriate stereo processing in remote sensing. We follow
the pipeline of SGM, meanwhile adapting every single module for better performance. The
following conclusions are drawn with our specific contributions summarized as:

� The calculation of matching costs as the first step of dense matching determines the simi-
larity of potentially matching pixels and forms the basis for further determination of cor-
respondences and depth estimation. Therefore, it is promising to use machine learning
and convolutional neural networks to deeply represent the individual pixels (and their
surrounding neighborhood) for appropriate comparison. MC-CNN offers a light-weight
network for pixel similarity measurement, however, also demands a certain amount of
annotated samples to train the model which may be difficult to collect in remote sensing.
With plant stereo reconstruction and drought detection as a case study, two strategies are
proposed to train a MC-CNN model.

The first scheme relies on an active depth sensor to generate reference data. We use
a LiDAR scanner to obtain a point cloud of the target plant and acquire disparity maps
via projecting the 3D object points onto each master frame. Normally, a co-registration
between the LiDAR point cloud and each stereo pair is sufficient to connect the two
data sources within a common coordinate system before training. However, branches and
leaves move and deform due to airflow during laser scanning, disrupting co-registration.
We therefore, propose to roughly align the LiDAR and stereo point clouds acquired based
on a classic stereo matching method, and then manually select the well-aligned points
for further fine co-registration using GICP. At last, only well-registered points are used
as ground truth. Based on this strategy, a limited amount of ground truth disparity maps
could be obtained, and used to finetune a pre-trained MC-CNN model.

The second scheme uses self-supervision during the training of MC-CNN, thus avoiding
the time-consuming reference data annotation. Based on SGM and a pre-trained MC-
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CNN model, a disparity map is firstly generated for each of the stereo images, on which
a rigid left-right consistency check is applied to exclude most outliers. Afterwards, only
the disparity values that pass the consistency check are used to further fine-tune the pre-
trained MC-CNN model.

In remote sensing, the self-supervised strategy is essentially more promising, con-
sidering that in many cases a reference dataset is difficult to collect or only provides
low-quality training samples. The experiment results prove that the self-trained MC-
CNN is capable of achieving competitive accuracy with the model trained on ground
truth generated from LiDAR. When tested on our research project ForDroughtDet, the
combination of SGM and a self-supervised MC-CNN model can create a detailed 3D
model of wild trees in centimeter level. The deformation of leaves is clearly visible and
could be used for drought stress detection.

� After the matching cost calculation, SGM applies multiple 1D SO in canonical directions
and sums up the corresponding energy to compute the disparity based on the WTA strat-
egy. Thus, the correspondence between the stereo pair is determined with both pixel simi-
larity and 2D spatial smoothness of depth considered. SGM-Forest trains a random forest
to adaptively select the best scanline for further processing, to avoid exploiting scanlines
with wrong or inconsistent estimation. However regarding the scanline selection, we ex-
perimentally demonstrate that for most pixels, multiple scanlines provide a good dispar-
ity prediction. Hence, we adjust the training of the random forest, by setting the target as
selecting all possible well-behaved scanlines.

Experiments on cross-domain stereo datasets, including close-range, aerial and satellite
data, prove that the multiple scanlines selection further improves the SGM performance.
The strategy consistently improves the dense matching results, especially on ill-posed
areas, such as textureless and reflective regions with less noise.

� We finally design an end-to-end convolutional neural network based on the SOTA GA-Net
to simulate SGM and estimate the disparity using a coarse to fine approach. A disparity
map is directly predicted for an input stereo pair, through the network which includes
feature extraction, matching cost computation and regularization, and disparity regres-
sion. The network is constructed within a pyramid architecture. On the pyramid top, a
disparity map is estimated for a downscaled stereo input, for which the calculation is
highly simplified considering the decreased image height, width and the disparity range.
The disparity map can be upsampled to the next pyramid level, as an initial estimation for
higher resolution processing. Therefore, only a refinement within a small buffer around
the initial estimation is needed, instead of locating the best disparity value through an
absolute range. Along with the pyramidal processing towards the pyramid bottom, only a
small overhead is added at each level to refine the disparity estimation, until the original
resolution is recovered. Thus, the efficiency is largely enhanced.

Two variants of the feature extractor are proposed, the first one simply feeds a down-
sampled stereo pair to each pyramid level and is designated as explicit downsampling.
The other one applies a U-Net to extract feature from the stereo pair in original reso-
lution, and takes the intermediate feature maps from the decoder to feed each pyramid
level according to the expected resolution. Thus, an implicit downsampling is realized.
Our pyramid network using both feature extractors are tested on close-range, airborne
and satellite stereo datasets. Regarding the close-range experiments, our network is much
faster than the baseline method GA-Net consuming lower GPU memory. However, the
quality of the estimated disparity maps for close range imagery is not competitive with
GA-Net, with blurred boundaries and some loss of smaller details. The two feature ex-
tractors achieve similar accuracy. As for the experiments on aerial and satellite data, our
network is still much more efficient than GA-Net and acquire comparable accuracy (The
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feature extractor with explicit downsampling slightly surpasses the other). We demon-
strate that, our pyramid network is appropriate for reconstruction of overhead remote
sensing datasets. In the field of remote sensing, aerial and satellite stereo processing is
more frequent than complex close-range scenarios, underscoring the significance of our
method.

We implement a series of modifications on SGM, from technical adjustment on specific mod-
ules to an overall CNN based approximation with a pyramid structure to improve the effi-
ciency of disparity estimation. The proposed methods are tested on cross-domain stereo
datasets, and proven to outperform the baseline methods and achieve SOTA performance.
The thesis enriches the approaches for dense matching optimization, especially in the field
of remote sensing for change detection, building reconstruction, DSM generation, etc., how-
ever, also shows its limits requiring further improvement. For example, the algorithms eval-
uation still needs reference samples to test the performance before releasing to practical
use. A self-training strategy may simplify the model finetuning, nevertheless, still needs a
pre-trained model from closely related domain and cannot provide competitive results with
a network trained using high-quality ground truth. Besides, the full cost volumes from ev-
ery 1D scanline is necessary to train the random forest for scanline selection in SGM, which
results in extra memory consumption. High efficiency is achieved by our pyramid network,
however, losing details cannot be avoided from the downsampling-upsampling processing
logic. The stereo estimation for high resolution close-range data is not satisfying. Hence,
extra work is needed in future research.

5.2 Outlook

The state-of-the-art learning based techniques have broken the rigid processing chain of
traditional stereo matching, via guiding a model to analyze the problem and adaptively
handle each sub-task according to the experience from the training. However, a higher de-
mand is placed on the methods for higher accuracy, less responding time, and more intel-
ligent decision-making, considering the more sophisticated functions required in modern
scenarios. In the field of remote sensing, 3D knowledge is the most intuitive information for
consistent and precise earth observation, thus naturally relying on more advanced stereo
techniques to reconstruct a digital geometry of the world.

In order to better supervise a model for remote sensing stereo tasks, a synthetic airborne
and satellite dataset is promising, since that the real reference data collection and annota-
tion are usually complicated especially in extreme regions. Different rendering software are
available to attach color and texture information on virtual city models with known geo-
metric shape, position and orientation (Denninger et al., 2019). Then with a manual set of
camera height, images and height maps can be simulated according to the cities’ appearance
and geometry, meanwhile obtaining the expected ground sampling distance. Thus, a deep
neural network is well supervised for aerial and satellite stereo applications. With diverse
city models to render the datasets, a robust model can be acquired for different scenarios.

The current pyramid networks for stereo matching (Wang et al., 2019; Yang et al., 2019)
naturally suffer from losing details and blurring the depth edges, due to that the disparity
estimation highly relies on the initial prediction using images with the coarsest resolution.
The message delivered between the two consecutive pyramid levels is, therefore, very im-
portant to keep accurate results and remove the outliers for further refinement. In addition
to a regular buffer set around the initial disparity estimation, statistical rules can be applied
to sample the most possible disparity candidates in the following test to determine a better
disparity value. For example, a probability density function (PDF) is a good option to ex-
press the possibility of each disparity candidate to be correct in the previous pyramid level.
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Then a sequence of disparity candidates could be obtained with the cumulative probabili-
ties equally sampled in range of [0,1], such that a certain number of candidates are available
within each peak of the PDF. Thus, a bad disparity estimation from previous levels could be
corrected in current level, for example at object boundaries with large depth differences.

Recent researches focus more on semantics learning for more intelligent analysis as humans
to solve concrete vision tasks. The object geometry can be unconsciously perceived using
semantic clues, which leads to brain technology development (Vinny and Singh, 2020). Be-
sides, attention (Carion et al., 2020) can also assist the network to quickly concentrate on
the more useful information for a fast depth sensing.
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1.1 Stereo results of an indoor tree. The two images on the left constitute a
rectified stereo pair, in which the corresponding points lie on the same row.
The stereo disparity map is displayed on the right, from which the depth
of the scene can be perceived. The color bar at the bottom represents the
disparity range. 2

1.2 Challenges in stereo matching, including repetitive texture as the grids on
the flag, part of which is occluded by the tree crown (occlusion also happens
among leaves), reflective surface on the window, and textureless region on
the wall. 3

2.1 Binocular stereo 3D reconstruction (Bleyer and Breiteneder, 2013). Stereo
matching locates the corresponding pixels from two 2D images. The
disparity is thus calculated as the relative displacement in between, from
which a 3D view of the scene could be recovered. 6

2.2 Disparity determination through the disparity space for locating the
correspondences. The element (x0, y0,d0) in the disparity space should have
the highest probability within the DSI, assuming (x0, y0) and (x0 − d0, y0) are
the corresponding projections from the object point (X,Y ,Z) on the reference
and target frame, respectively. 7

2.3 Stereo epipolar geometry. The corresponding point for q1 could be located
exclusively through the epipolar line L2 in another image. Thus, the stereo
matching is highly simplified from 2D to 1D. 8

2.4 The ordering rule in stereo matching. Normally, the order of the image
points from the same targets should be consistent in each of the image, as (a).
However, the rule is not valid for transparent objects, e.g. in (b). 8

2.5 The cost aggregation along a single scanline and the strategy in SGM to
visit each pixel through multiple scanlines, assuming 16 scanlines are used
(Hirschmüller, 2008). From the image border, the disparity is continuously
predicted for each pixel to support the next pixel’s estimation along a
directed path for smoothness. With the same procedure repeated along
multiple scanlines, the 2D smoothness is approximated for each pixel. 12

2.6 Deep learning assisted stereo matching (Zbontar and LeCun, 2016; Gidaris
and Komodakis, 2017; Seki and Pollefeys, 2017; Schönberger et al., 2018;
Knöbelreiter and Pock, 2019). Along the conventional processing pipeline,
each module can be supervised for better feature representation to calculate
the matching cost, smarter strategy to aggregate neighboring pixels and
penalize disparity inconsistency, and learning based post-processing to
refine the results. 13

2.7 Representative end-to-end neural networks for stereo matching (Kendall
et al., 2017; Chang and Chen, 2018; Zhang et al., 2019). The entire stereo
matching procedure is fully differentiable and trainable, from feature
extraction, cost volume generation and regularization, to disparity prediction
at the end. Thus, a disparity map can be output directly from a stereo pair. 14
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2.8 Monocular and multi-view stereo acquisition. In monocular stereo, only a
certain view of the scene is obtained, which makes the depth sensing an
ill-posed problem. In multi-view stereo, a sequence of images (at least two)
are captured around the target scene or object. Detailed 3D reconstruction
can be achieved with fewer occlusions and reduced stereo errors thanks to
additional views. 15

3.1 Basic network architecture for matching cost computation. A Siamese
network is usually used as a backbone, with two branches sharing the
same architecture and weights to extract features from each of the patches.
Afterwards, the feature can be directly compared for matching cost
calculation, e.g. via a correlation layer, or concatenated together to feed a
comparison sub-network to adaptively learn a similarity measure. 18

3.2 Matching constraints along an epipolar line (Tulyakov et al., 2017), including
epipolar constraint, disparity range constraint, uniquiness constraint,
continuity constraint and ordering constraint. 20

3.3 The disparity estimation using a single scanline. Although the raw estimation
from each single scanline is noisy, it can be found that the results from the
”left to right” scanline is slightly better than ”top to bottom”, within the
marked region. The reason is that the depth distribution is more stable
horizontally than vertically. 22

4.1 The architecture of MC-CNN. With the same sub-networks, composed of
a series of convolutional layers and rectified linear units, a feature vector
can be generated for each of the input image patches. Then, a similarity
score is computed at the end, either simply based on a dot product of the
normalized feature vectors or another sub-network to learn the similarity
measure during training. The latter architecture achieves better accuracy at
the cost of relatively higher complexity. 44

4.2 The flow chart for ground truth disparity map generation using LiDAR
point cloud. Starting from the experiment stereo images, the disparity maps
are generated using SGM with Census and MC-CNN pre-trained on the
Middlebury data sets, respectively. Afterwards, a pixel-wise average of the
two maps is computed, and projected into the object space to obtain a point
cloud. The laser point cloud is registered to this newly generated point
cloud. Thus, the ground truth disparity map is acquired via projecting the
registered LiDAR point cloud onto the epipolar image planes. 46

4.3 The flow chart for the self-training strategy. Based on SGM and a pre-trained
MC-CNN on Middlebury datasets, a disparity map is generated. Afterwards,
a rigid left-right consistency check is applied to remove most outliers. Only
the pixels left are regarded as accurate estimation (artificial ground truth)
to further train the MC-CNN model, which is finally used to predict the
disparity results. 47

4.4 The epipolar image pair for the first experiment. MicMac was utilized for
camera calibration, relative orientation and epipolar image generation. 48

4.5 The disparity maps generated based on SGM with different strategies,
Census, MC-CNN-Pre, MC-CNN-LiDAR and MC-CNN-SelfT for matching
cost. Inconsistent matching (IM) is represented by the color white. 49
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4.6 The reconstruction details of several selected leaves. From left to right in
each subset: the first row includes the master epipolar image and disparity
maps for Census and MC-CNN-Pre. The second row includes the ground
truth and disparity maps for MC-CNN-LiDAR and MC-CNN-SelfT. In order
to enhance the contrast of the disparity within each single leaf, we have used
a different color bar for each leaf. Pixels invalidated by the left-right check
are shown in white. 50

4.7 The epipolar image pair for the second experiment, which is collected from
the test region of our project. 56

4.8 The disparity map generated using self-trained MC-CNN. Inconsistent
matching (IM) is represented by the color white. 56

4.9 Leaves under drought stress. From left to right in each subset: the master
epipolar image, the disparity map of the self-trained MC-CNN matching
scheme, and the disparity profile along the red line. The color represents the
disparity. From blue to yellow, the targets get closer to the camera. Pixels
with inconsistent matching (IM) are shown in white color. 57

4.10 The comparison between each single scanline’s disparity prediction and
the ground truth, for pixels marked green in (a). It is found that both SO3
and SO7 accomplish good prediction and should be selected for further
processing. 62

4.11 Stereo pair, cost cube and the corresponding aggregated cost cube in SGM.
As more scanlines are considered, the memory usage is highly increased. 64

4.12 Error plots for SGM-ForestS, SGM-ForestM, and the upper bound of SO
(Matching Cost: Census). 68

4.13 Error plots for SGM-ForestS, SGM-ForestM, and the upper bound of SO
(Matching Cost: MC-CNN-acrt). 69

4.14 The disparity maps and the corresponding error maps. From left to right, the
results of SGM, SGM-ForestS, and SGM-ForestM are displayed, respectively
(Matching cost: Census). The red rectangles marked in the error maps
represent the main difference of the result between SGM-ForestS and
SGM-ForestM. 70

4.15 The disparity maps and the corresponding error maps. From left to right, the
results of SGM, SGM-ForestS, and SGM-ForestM are displayed, respectively
(Matching cost: MC-CNN-acrt). The red rectangles marked in the error
maps represent the main difference of the result between SGM-ForestS and
SGM-ForestM. 71

4.16 Stereo matching results on EuroSDR benchmark datasets (Vaihingen/Enz).
The master epipolar image and the corresponding disparity results are
displayed. The green rectangle marks the region for detailed comparison. 72

4.17 Results on stereo datasets from the 2019 IEEE GRSS data fusion contest
(Track 2, pairwise semantic stereo challenge). The disparity and error
maps are displayed, with the red rectangles highlighting the performance
difference between SGM-ForestS and SGM-ForestM. 73

4.17 Results on stereo datasets from the 2019 IEEE GRSS data fusion contest
(Track 2, pairwise semantic stereo challenge). The disparity and error
maps are displayed, with the red rectangles highlighting the performance
difference between SGM-ForestS and SGM-ForestM. (cont.) 74
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4.18 GA-Net Pyramid with explicit downsampling. The input stereo pair is
downsampled explicitly according to the resolution required by each
pyramid level. At the pyramid top, the stereo correspondences are located
within an absolute disparity range in low resolution. The following pyramid
levels perform disparity refinement within a pre-defined residual disparity
range until the original resolution is recovered at the pyramid bottom. (SPN
indicates the Spatial Propagation Network which is an optional module for
depth boundary enhancement.) 79

4.19 GA-Net Pyramid with implicit downsampling. The feature extractor is
applied on the stereo pair in original resolution, with the intermediate
feature maps from its decoder to feed each pyramid level according to the
expected resolution. Thus, an implicit downsampling is achieved. (SPN
indicates the Spatial Propagation Network which is an optional module for
depth boundary enhancement.) 81

4.20 Visual comparison between GA-Net PyramidID+SPN and GA-Net Ori on
Scene Flow data. In each subfigure, the disparity maps from the ground truth
and each network are displayed in the first row. The second row provides the
master epipolar image and the corresponding error maps. Regions where the
proposed algorithm outperforms GA-Net Ori are marked with red arrows. 83

4.21 Visual comparison between GA-Net PyramidID+SPN and GA-Net Ori on
KITTI-2012 data. In each subfigure, the disparity maps from the ground
truth and each network are displayed in the first row. The second row
provides the master epipolar image and the corresponding error maps.
Regions reconstructed better by the proposed algorithm are marked using
red arrows. 84

4.22 Visual comparison among GA-Net PyramidED, GA-Net Ori and SGM
on aerial data. In each subfigure, the reference disparity map and each
algorithm’s stereo results are displayed in the first row. The second row
provides the master epipolar image and the corresponding error maps. 87

4.23 Visual comparison among GA-Net PyramidED, GA-Net Ori and SGM on
satellite data. In each subfigure, the reference disparity map and each
algorithm’s stereo results are displayed in the first row. The second row
provides the master epipolar image and the corresponding error maps. 90

4.24 A showcase to indicate the ability of our pyramid network in processing
remote sensing stereo pair with large baseline. The reconstruction results
for the region with a size of 19791 x 15639 pixels highlighted by the green
rectangle are shown below, from the reference disparity map (left) and our
pyramid model (right). Test region: Matterhorn mountain, Switzerland. Test
model: GA-Net PyramidED. 91
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