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Linder Höhe, 51147 Cologne, Germany
e-mail: 1pierre.sivel@dlr.de, 2christian.frey@dlr.de

Key words: Computational Fluid Dynamics, Low Mach Preconditioning, Harmonic Balance,
Non-Reflecting Boundary Conditions

Abstract. In computational fluid dynamics (CFD), unsteady computations are cost-intensive.
The Harmonic Balance (HB) method [7] represents a cost-efficient alternative. Here, for time-
periodic flows, the governing equations are recasted in the Fourier domain.

In the low Mach regime, the compressible governing equations are stiff. Therefore, density-
based solvers converge slowly. Low Mach preconditioning equalizes the eigenvalues of the system
of equations, to improve the condition number and remove the stiffness of the system [14].

In this paper, low Mach preconditioning is applied to the HB method, with emphasis on the
non-reflecting boundary conditions (NRBCs). These boundary conditions have a crucial impact
on the flow inside the truncated computational domains used in CFD. Improper boundary
conditions reflect waves exiting the computational domain and deteriorate the quality of the
solution. However, NRBCs [6] avoid spurious reflections.

We explain that to precondition the NRBC its formulation in terms of characteristics has to be
adapted. An academic wave propagation test case is computed for different wave configurations
to validate the preconditioned boundary conditions.

The use of non-preconditioned NRBCs in a preconditioned computation leads to instabilities
and reflections at the boundaries of the domain. A consistent setup with preconditioned NR-
BCs improves the stability and leads to good non-reflecting properties for all presented wave
configurations.

1 INTRODUCTION

In the low Mach regime, the compressible Euler equations become stiff, because of the large
discrepancy between the acoustic and convective eigenvalues. This means that computations of
low Mach flows with density-based solver converge slowly [10]. Low Mach preconditioning is a
method, which greatly improves the convergence by equalizing the eigenvalues of the system of
equations.

It was first introduced by Chorin [3] for the incompressible Euler equations. Here, the author
increased the coupling of the continuity equation by scaling its time derivative, thereby altering
the compressibility of the system. Later, this method was further developed by several authors.
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Choi and Merkle [10, 2] derived preconditioning matrices based on asymptotic analysis of the
governing equations for low Mach numbers, Turkel et al. [14] proposed matrices for the com-
pressible equations based on the original method proposed by Chorin, and Van Leer et al [16]
focused on the derivation of symmetrizable preconditioning matrices. All of these matrices were
applied to steady state problems and showed a significant improvement of the convergence in
the low Mach regime.

Venkateswaran and Merkle [17] applied the method to unsteady flow. Here, a dual-time
stepping approach was used. This allowed to precondition the pseudo-time derivative of the
equations instead of the physical time derivative. This way the temporal accuracy of the solution
in the physical time is preserved. Further, they showed that to optimize the convergence, the
preconditioning matrix must be a function of the physical time step. This approach was later
applied successfully to a three dimensional rotorcraft flow by Potsdam et al. [11].

In this work, low Mach preconditioning is applied to the HB method. HB is an efficient
method to solve time-periodic flows in the frequency domain [7, 5]. The time-domain governing
equations are recasted by expressing the flow as Fourier coefficients about the fundamental
frequency of the flow. This results in a non-linear system of equations for the Fourier coefficients
of the state, which is solved as a steady state problem in the frequency-domain.

The first application of low Mach preconditioning for the HB method was presented by
Howison and Ekici [8]. They computed wind turbine blade test cases, showing the improved
convergence and accuracy of the preconditioned HB solver. Based on these results, Djeddi et
al. [4] presented a preconditioner which fully incorporates the Spalart-Allmaras turbulence model
to further improve the convergence.

The previous applications of low Mach preconditioning for the HB method focus on external
flow computations. However, in internal flow computations the boundary conditions may need
to be placed close to the area of interest. Therefore, improperly defined boundary conditions
can lead to spurious reflection. To avoid reflections, Giles [6] proposed a steady state NRBC
based on the decomposition of the boundary flow into modes, and the suppression of incoming
modes. The NRBC was extended for three dimensional flow by Saxer et al. [12]. Schlüß et
al. [13] proposed a spectral NRBC, which takes into account unsteady perturbations at the
boundaries. A frequency domain application of the spectral NRBC was described by Kersken
at al. [9]. Anker et al. [1] presented a preconditioned version of the NRBC proposed by Saxer
et al. In this work, the spectral NRBC presented by Kersken et al. and by Schlüß et al.
are preconditioned. Here, the boundary condition based on the modal decomposition of the
flow state, is not influenced by low Mach preconditioning. However, the characteristic frame-
work used to increase the robustness of the NRBC must be preconditioned to avoid spurious
reflections.

In the first section of this paper, low Mach preconditioning is explained. Following that,
the HB method is presented, including the application of low Mach preconditioning. Then,
the preconditioned NRBC is described. Finally, a preconditioned wave propagation test case is
computed with preconditioned and non-preconditioned NRBCs. The results show that the use
of non-preconditioned NRBCs in a preconditioned computation results in stability issues and
increased reflections at the outlet boundary. With preconditioned NRBCs, all computations
remained stable and had good non-reflecting properties.
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2 LOW MACH PRECONDITIONING

The discrepancy between the acoustic and convective eigenvalues of the Euler equations
increases in the low Mach regime, which leads to a very stiff system of equations. Therefore,
density-based solvers converge slowly, when solving low Mach flows. The goal of low Mach
preconditioning is to remove the stiffness of the system, by equalizing its eigenvalues. This is
achieved by multiplying the time derivative of the governing equations with a preconditioning
matrix P−1

P−1∂q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0. (1)

Here, F , G and H are the convective fluxes in x, y and z direction, t is the time and q is the
state vector.

In this work, the preconditioning matrix presented by Turkel [14] is used. It is defined in
primitive entropy variables qS = (ρ, u, v, w, S), where ρ is the density, U = (u, v, w) is the
Cartesian velocity vector and S is the specific entropy. The preconditioning matrix reads

PS = diag
(
β2, 1, 1, 1, 1

)
. (2)

Here, β2 is the preconditioning parameter.
An indicator for the stiffness of a system of equations is its condition number

κ =
|λ|max

|λ|min
. (3)

Here, λi are the eigenvalues of the systems flux Jacobian

PD = P

(
∂F

∂q
+

∂G

∂q
+

∂H

∂q

)
. (4)

Its eigenvalues are

λ1,2,3 =
√
u2 + v2 + w2 (5)

λ4,5 =
1

2

((
β2 + 1

)
λ1,2,3 ±

√
(1− β2)2 λ2

1,2,3 + 4β2a2
)
. (6)

Here, a is the isentropic speed of sound.
Choosing the preconditioning parameter to be β2 = 1 disables the preconditioner and retrieves

the non-preconditioned equations. In this case, the eigenvalues of the system are

λ1,2,3 =
√

u2 + v2 + w2 (7)

λ4,5 = λ1,2,3 ± a. (8)

The Mach number is defined as

Ma =

√
u2 + v2 + w2

a
. (9)

For Mach numbers tending to zero the condition number tends to infinity, demonstrating the
stiffness of the non-preconditioned equations.

However, since the acoustic eigenvalues λ4,5 depend on the preconditioning parameter, a value
for the preconditioning parameter can be found that best equalizes the acoustic and convective
eigenvalues. This optimal preconditioning parameter is β2 = Ma2. For Mach numbers tending
to zero, this will lead to a finite condition number of κ ≈ 2.6, effectively removing the stiffness
of the system and improving the converge for low Mach flows.
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3 HARMONIC BALANCE

Solving the unsteady Euler equations in the time-domain is cost-intensive. For time periodic
flows, the HB method is a cost-efficient alternative. It is derived by expressing the unsteady
state as a Fourier series about the fundamental frequency of the flow ω

q (t) = Re

( ∞∑
k=0

q̂k (x, y, z) e
ikωt

)
. (10)

Here, q̂k is the Fourier coefficient of the k-th harmonic. The Fourier series is inserted into
the governing equations, which leads to the non-linear system of equations.

ikωq̂k + R̂k(q) = 0, for k = 0, . . . ,K. (11)

This system of equations is solved directly for the Fourier coefficients of the harmonics in the
frequency-domain using standard steady state approaches. This reduces the computational cost
compared to time-domain methods. Of course, these equations cannot be solved for an infinite
number of harmonics. Instead, the unsteady state is approximated using a finite number of
harmonics K.

Due to the non-linearity of the time-domain residual R, the Fourier coefficients of the residual
R̂k(q) depend on all K harmonics of the state. The calculation of the non-linear residuals sets
apart the different HB approaches. Here, an alternating time-domain frequency-domain method
is used. In other words, the system of equations is solved in the frequency-domain, but the
non-linear residual is calculated in the time-domain. At a finite number of equidistant sampling
points in time, the unsteady state is reconstructed and the residual is calculated. Then, the
harmonics of the residual are calculated with a discrete Fourier transform. The minimum number
of sampling point is defined by the frequency of the highest harmonic and the Nyquist criteria.

We apply low Mach preconditioning to the HB equations (11) as presented in the previous
section. However, since we do not want to change the solution of the original system, a pseudo-
time marching scheme is used to solve the system of equations and the pseudo-time derivative
is preconditioned

P−1
∂q̂k
∂τ

+ ikωq̂k + R̂k(q) = 0, for k = 0, . . . ,K. (12)

Regarding the preconditioning parameter, the same value is used for all harmonics. Here, the
average Mach number is used, which corresponds to the zeroth harmonic of the Mach number

β2 = M̂a
2

0. (13)

4 PRECONDITIONED NON-REFLECTING BOUNDARY CONDITIONS

In this section, the two-dimensional NRBC presented by Kersken et al. [9] is adapted for low
Mach preconditioned computations. The preconditioning method is equally applicable to the
unsteady time-domain version of the NRBC presented by Schlüß et al. [13].

The NRBC is derived based on two assumptions. The first is that the flow is inviscid and
that perturbations from the mean flow are small. The second assumption is that the flow
is dominated by two-dimensional effects. This means that perturbations in radial direction
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for rotational configurations and in z-direction for translational configurations are negligible.
Therefore, the NRBC can be based on the unsteady two-dimensional linear equations

∂q′

∂t
+A

∂q′

∂x
+B

∂q′

∂y
= 0. (14)

They are formulated using the primitive state q = (ρ, u, v, w, p), which is separated into an
average flow q̄ and perturbations around the average flow q′ by q = q̄+q′. The NRBC is computed
in the reference system of the boundary. In other words, x is defined in boundary normal
direction. For translational cases, the y-coordinate is defined by the Cartesian y-direction.
However, for rotational configurations, y denotes the circumferential coordinate, which is defined
by y = rϕ, where r is the radius and ϕ is the pitch. The velocity components u and v are defined
accordingly in x and y direction. The primitive flux Jacobians of the linearized Euler equations
are

A =


ū ρ̄ 0 0 0
0 ū 0 0 1/ρ̄
0 0 ū 0 0
0 0 0 ū 0
0 ρ̄ā2 0 0 ū

 and B =


v̄ 0 ρ̄ 0 0
0 v̄ 0 0 0
0 0 v̄ 0 1/ρ̄
0 0 0 v̄ 0
0 0 ρ̄ā2 0 v̄

 . (15)

The perturbations in the flow can be expressed has a superposition of wave-like solutions

q′ = Re
(
q̂ei(kx+ly+ωt)

)
. (16)

These wave are defined by a non-zero amplitude q̂, an angular frequency ω and the wave numbers
k and l along the x and y directions, respectively. We insert this solution into the linearized
equations (14), which simplifies to the dispersion relation

det (ωI + kA+ lB) = 0, (17)

For a given combination of ω and l, the dispersion relation is an eigenvalue problem with five
eigenvalues corresponding to the negative axial wave numbers −k. For each mode, i.e. for every
combination of ω and l, the dispersion relations leads to the set of eigenvalues:

k1,2,3 =− lv̄ + ω

ū
(18)

k4,5 =
lv̄ + ω

ā2 − ū2
(ū∓ Φ) , (19)

with

Φ =

{√
∆, if ∆ ≥ 0

−isign (lv̄ + ω)
√
−∆, if ∆ < 0

(20)

and

∆ = ā2

(
1 +

l2
(
ū2 − ā2

)
(lv̄ + ω)2

)
. (21)
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Definition (20) ensures that for subsonic flows the waves corresponding to the first four eigen-
values are propagating downstream and the wave corresponding to the fifth eigenvalue is always
propagating upstream. The five right eigenvectors corresponding to each eigenvalue in (18),
form the right eigenvector matrix

R = (r1, r2, r3, r4, r5) =


−ρ̄ 0 0 ρ̄ ρ̄

0 āūl 0 − ā2k4
(ω+lv̄+k4ū)

− ā2k5
(ω+lv̄+k5ū)

0 ā (ω + lv̄) 0 − ā2m
(ω+lv̄+k4ū)

− ā2m
(ω+lv̄+k5ū)

0 0 ā 0 0
0 0 0 ρ̄ā2 ρ̄ā2

 . (22)

Here, each eigenvector describes a fundamental wave. The first eigenvector r1 corresponds to an
entropy wave, the second eigenvector r2 and the third eigenvector r3 represent vorticity waves
in radial and circumferential direction and the fourth eigenvector r4 and the fifth eigenvector r5
constitute downstream and upstream acoustic waves, respectively.

The amplitude of every mode q̂ω,l is a linear combination of these right eigenvectors

q̂ω,l =

5∑
i=0

αiri. (23)

The modal transformation which decomposes each mode into the fundamental waves is the left
eigenvector matrix L = (l1, l2, l3, l4, l5)

T = R−1. Therefore, the weight of each right eigenvector
in (23) is defined as

αi = liq̂ω,l. (24)

To enforce a non-reflecting behavior at the boundaries, we allow outgoing waves to exit the
domain, but suppress all incoming waves. This is achieved by setting the weights of incoming
waves to zero, which results in the non-reflecting boundary condition

Lincq̂ω,l = 0. (25)

Here, Linc is the matrix containing the left eigenvectors corresponding to incoming modes.
In some cases, we need to prescribe incoming modes at the boundaries of the domain. This is

achieved by defining the desired non-zero value for the incoming modal amplitude. This changes
the NRBC to

Linc

(
q̂ω,l + q̂bdω,l

)
= 0, (26)

where q̂bdω,l is the user defined modal amplitude.

This boundary condition (25) is purely based on physical properties of the linearized flow.
Therefore, it remains unaffected by low Mach preconditioning. However, an application of the
NRBC based on modes, may not be well-posed in the pseudo-time, which leads to instabilities [9,
13]. A more robust approach is to apply the NRBC using a frame-work of one-dimensional
characteristics, which are known to be well-posed [6]. Here, the characteristics must be properly
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defined in the pseudo-time. Since the pseudo-time has been preconditioned in (12), the frame-
work must be based on the preconditioned characteristics. These are derived by computing the
dispersion relation (17) for a preconditioned one dimensional wave.

det (Iω + PAk) = 0. (27)

solving the dispersion relation leads to the preconditioned right eigenvector matrix

R1D =


−ρ̄ 0 0 ρ̄β2 ρ̄β2

0 0 0
(
λ̄4 − uβ2

) (
λ̄5 − ūβ2

)
0 ā 0 0 0
0 0 ā 0 0
0 0 0 ρ̄β2ā2 ρ̄β2ā2

 . (28)

Here, λ̄i are the preconditioned eigenvalues (5) based on the average flow. This right eigenvector
matrix and its inverse L1D = R−1

1D are the transformation matrices between the primitive q and
characteristic state c

L1D q̂ = ĉ and R1D ĉ = q̂. (29)

Here, analogously to the fundamental waves, the first four eigenvectors of R1D correspond to
downstream characteristics and the fifth eigenvector to an upstream characteristic.

The boundary condition is now applied in terms of preconditioned characteristic variables.
Thanks to the mixed time-domain frequency-domain implementation of the HB method, the
NRBC is applied directly in the frequency domain. Therefore, the starting point is the primitive
temporal Fourier state q̂ω for each computed harmonic. First, the modal amplitudes q̂ω,l are
computed by means of a Fourier decomposition in circumferential direction for rotational cases
or in y-direction for translational cases. Then the modes are transformed into characteristics
ĉω,l following (29). For each mode, the NRBC (25) is expressed in terms of characteristics

Linc(ω, l)q̂ω,l = 0 = Linc(ω, l)
(
Rinc

1D ĉ
inc
ω,l +Rout

1D ĉoutω,l

)
(30)

and is solved for a target incoming characteristic

ĉinctarget,ω,l = −
(
Linc(ω, l)Rinc

1D

)−1
Linc(ω, l)Rout

1D ĉoutω,l , (31)

which ensures a non-reflective behavior for this mode. Here, the superscripts ”inc” and ”out”
denote all entries associated with incoming or outgoing characteristics and modes. The target in-
coming characteristic is a function of the outgoing, which are extrapolate form the inner cell. To
increase the stability, the target characteristics are relaxed, leading the updated characteristics

ĉω,l = σĉtarget,ω,l + (1− σ) ĉprevious,ω,l. (32)

The relaxation factor σ is usually set to 0.1.
For the average mode, i.e. ω = 0 and l = 0, the NRBC (25) is not applied. Instead this mode

is used to enforce the user-defined boundary values. This is achieved by driving the residual

R = Rinc
bd +Rout

i (33)
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to zero. The residuals are defined as

Rbd =


p̄
(
s̄− sbd

)
ρ̄ā (v̄ − ū tan (αcirc,bd))
ρ̄ā (w̄ − ū tan (αrad,bd))

ρ̄
(
h̄t − htbd

)
p̄− pbd

 and Ri = L1D (q̄f − q̄i) . (34)

Here, the subscript ”bd” denotes the user defined boundary values and the subscripts ”i” and
”f” denote the face state and the inner first cell state. The update of the average characteristics
is calculated with one Newton-Raphson step each pseudo-time iteration

R+
∂R
∂c

δc̄ = 0. (35)

With Rinc
bd and Rout

i driven to zero, the incoming characteristic enforce the prescribed bound-
ary values, while the outgoing characteristics are extrapolated from inside the computational
domain. The updated average characteristic is then calculated as

ĉ0,0,new = ĉ0,0 + σavδc̄ (36)

Here, σav corresponds to the relaxation factor σ, but it is only applied to incoming characteristics.
The updated characteristics are transformed back to temporal characteristics ĉω using an in-

verse Fourier transform and, finally, they are transformed into the new primitive state q̂ω = L1D ĉω
for each harmonic.

5 RESULTS

A circular duct with prescribed two-dimensional waves is computed with the preconditioned
HB solver. The duct is 0.0125m long and has a radius of 1m. The computed section is a
400th of the full annulus. The domain is discretized with 128 cells in axial direction, 64 cells in
circumferential direction and a single cell in radial direction. The boundaries in radial direction
are inviscid walls and in axial direction NRBCs are applied for the inflow and the outflow. In
circumferential direction the flow is periodic.

The inviscid flow in the duct is computed, by solving the Euler equations. A preconditioned
Roe scheme for unsteady flow is used to discretize the convective fluxes [11]. Second order
accuracy in space is obtained with a MUSCL scheme [15]. The equations are solved implicitly
with an Euler backwards scheme for the pseudo-time. The implicit system is solved with a
Gauß-Seidel algorithm. All computations are preconditioned.

At the inflow, a stagnation temperature of 350K and a stagnation pressure of 100 000Pa
are prescribed as boundary values. At the outlet, the static pressure is set to 99 990Pa. This

Table 1: Stability for different prescribed waves computed with the preconditioned HB solver
with preconditioned and non-preconditioned NRBC.

acoustic vorticity entropy

non-preconditioned NRBC no convergence unstable unstable

preconditioned NRBC converged converged converged
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(a) zeroth harmonic (b) first harmonic

Figure 1: Solution for an acoustic wave computed with the preconditioned HB solver with non-
preconditioned NRBC.

results in an average Mach number of M̂a0 = 0.012. All HB computations are initialized with
a converged steady state solution, computed with the described boundary values.

The test case is computed for three different waves prescribed at the inflow: A downstream
acoustic wave, a entropy wave and a vorticity wave. All waves have a circumferential wave
number of l = 400. For the acoustic wave, the frequency is f = 78 531.37Hz and the amplitude
corresponds to a 100Pa pressure perturbation. The vorticity wave and the entropy wave are
transported at the convective speed. Therefore, to maintain the same axial wave number as
for the acoustic wave, the frequency is reduced to f = 940Hz. The amplitude of the entropy
wave corresponds to a temperature perturbation of 1K and the amplitude of the vorticity wave
corresponds to a perturbation of the axial velocity of 1× 10−3m/s. The flow is computed using
only the zeroth and the first harmonic of the waves’ frequencies.

In a first step, we will demonstrate the need for preconditioned NRBC, by computing the test
case with an inconsistent setup, i.e. using the preconditioned solver with non-preconditioned
NRBC. Then, we perform the same computations with a consistent setup. i.e. using the pre-
conditioned solver with preconditioned NRBC.

The results of the computations are summarized in table 1. With the non-preconditioned
NRBC setup, the computations are unstable. The vorticity wave and the entropy wave crash
after only a few time steps. The acoustic configuration does not crash, but it also does not
convergence either. Here, the L1-norm of the residual did not converge further than 8 × 10−3.
In contrast, with preconditioned NRBCs the computations converged for all three wave config-
urations down to an L1-residual of approximately 5× 10−12.

Figure 1 shows the zeroth harmonic of the pressure and the real part of the first harmonic of
the pressure for the acoustic wave computation with non-preconditioned NRBC. Since the flow
is inviscid, the average pressure represented by the zeroth harmonic, should correspond to the

9



Pierre Sivel and Christian Frey

pressure prescribed at the outlet. However, the average pressure is only 99 336Pa, showing that
the non-preconditioned NRBC does not enforce the correct boundary values in a preconditioned
computations.

Regarding the first harmonic, the amplitude of the acoustic wave corresponds to the pre-
scribed 100Pa, but the wave is distorted by spurious reflections. The reflections produced at
the outlet of the domain can be quantified by using a reflection coefficient, which is defined as
the ratio of the upstream acoustic mode to the downstream acoustic mode at the interface.

cr =
|q̂|ω,l,5
|q̂|ω,l,4

(37)

For the non-preconditioned outlet boundary, the reflection coefficient is cr = 0.06. In other
words, 6% of the prescribed downstream wave is reflected.

Analogously, Figure 2 shows the solution of the zeroth and first harmonic for the acoustic
wave computation with preconditioned NRBCs. Here, the correct boundary value of 99 990Pa
is maintained inside the domain. Regarding the first harmonic, the prescribed acoustic wave
exits the domain without producing reflections at the outlet. The reflection coefficient of the
preconditioned boundary is only cr = 3× 10−6.

Similarly good results are achieved with the preconditioned NRBC for the entropy and the
vorticity waves, as presented in figure 3. Here, both waves exits the domain without producing
reflections, showing that the preconditioned NRBC has good non-reflecting properties for all
three presented wave configurations.

6 CONCLUSION

This paper is a first step towards the application of the low Mach preconditioned HB method
for internal flow computations. First, low Mach preconditioning was explained and the precondi-

(a) zeroth harmonic (b) first harmonic

Figure 2: Solution for an acoustic wave computed with the preconditioned HB solver with
preconditioned NRBC.
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(a) entropy mode (b) vorticity mode

Figure 3: Real part of the first harmonic of the solution for an entropy wave and a vorticity
wave computed with the preconditioned HB solver and preconditioned NRBC.

tioned HB solver was presented. Then, the NRBC was preconditioned. While the actual modal
non-reflecting boundary condition remains unchanged, the characteristic frame-work needed to
ensure that the NRBC is well posed in the pseudo-time must be consistent with the precondi-
tioned governing equations. Therefore, the characteristic framework was reformulated in terms
of preconditioned one-dimensional characteristics.

The behavior of NRBCs with and without preconditioning has been tested on a circular duct
computed using the preconditioned HB solver. Here, three types of wave were prescribed at
the inlet of the domain. The results showed that the non-preconditioned NRBC were unstable,
were unable to hold the correct boundary values and lead to strong reflections. Using the
preconditioned NRBC greatly improved the stability of the preconditioned computations, while
also holding the correct boundary values. Further, the preconditioned NRBC showed good
non-reflective properties for acoustic, entropy, and vorticity waves.
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