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A B S T R A C T

The expansion of distributed electricity generation and the increasing capacity of installed battery storage
systems at the community level have posed challenges to efficient technical and economic operation of the
power systems. With advances in smart-grid infrastructure, many innovative demand response business models
have sought to tackle these challenges, while creating financial benefits for the participating actors. In this
context, we propose an optimal real-time pricing (ORTP) approach for the aggregation of distributed energy
resources within energy communities. We formulate the interaction between a community-owned profit-
maximizing aggregator and the users (consumers with electricity generation and storage potential, known
as ‘‘prosumagers’’, and electric vehicles) as a stochastic bilevel disjunctive program. To solve the problem
efficiently, we offer a novel solution algorithm, which applies a linear quasi-relaxation approach and an
innovative dynamic partitioning technique. We introduce benchmark tariffs and solution algorithms and assess
the performance of the proposed pricing strategy and solution algorithm in four case studies. Our results show
that the ORTP strategy increases community welfare while providing useful grid services. Furthermore, our
findings reveal the superior computational efficiency of our proposed solution algorithm in comparison to
benchmark algorithms.
1. Introduction

1.1. Motivation

The lower levelized cost of electricity from photovoltaic (PV) sys-
tems compared to residential retail tariffs has incentivized households
in many countries to invest in rooftop PV systems [2]. Similarly,
developments in battery storage systems (BSSs) are making them eco-
nomically viable for use by electricity consumers. Thus, a combination
of home energy storage (HES) and rooftop PV systems has been shown
to be profitable under various regulatory schemes, leading to the
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emergence of so-called ‘‘prosumagers’’ (consumers with electricity gen-
eration and storage potential3) as new market actors [3]. Furthermore,
improved charging infrastructures and policy support measures have
made electric vehicles (EVs) more competitive for mobility and intro-
duced them into the mix of distributed energy resources (DERs) [4].
However, this growth of DERs poses significant challenges for the
electricity system; For economic efficiency, end-user activities should
be aligned with market signals [5] and provide system benefits [6].

With the expansion of smart-grid infrastructure, several innovative
demand response (DR) business models are seeking to meet these
challenges. Ideally, the focus of these business models should be the
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Nomenclature

Parameters

𝛤 S, 𝛤B Aggregator’s sale and purchase margin in
benchmark tariffs

𝜃B𝑖 Battery capacity of user 𝑖
𝑀B, 𝑀S Sufficiently large constants
𝑃Q
𝑖 Marginal operational cost of

charging/discharging the BSS for user
𝑖

𝜂𝐶𝑖 , 𝜂
D
𝑖 Battery charge and discharge efficiencies for

user 𝑖
𝑊 𝑡 Maximum available line capacity behind

the PCC in 𝑡
CW Community welfare
𝐶 ′ Total cost of all users
𝐺𝑖𝑡𝑣, 𝐿𝑖𝑡𝑣 Electricity generation and load of user 𝑖 in

𝑣 and 𝑡
𝑁 Last discrete step
𝑃M
𝑡𝑣 Wholesale electricity market price in 𝑡 and

𝑣
𝑍

C
𝑖 , 𝑍

D
𝑖 Battery charge and discharge power limits

for user 𝑖
𝐺𝑖, 𝐿𝑖 Nominal power limits for user 𝑖
𝑃B, 𝑃

B
Aggregator’s purchase price limits

𝑃 S, 𝑃
S

Aggregator’s sale price limits
𝜇𝑐 , 𝜎𝑐 Mean value and standard deviation of data

in cluster 𝑐
𝑇 Last optimization step
𝐶𝑖𝑣 Cost of user 𝑖 in 𝑣
𝑃 S, 𝑃B Aggregator’s discrete sale and purchase

prices
𝜙𝑣 Probability of scenario 𝑣
𝛬𝑖 Battery self-discharge rate for user 𝑖
𝑈𝑖𝑡 Battery availability of user 𝑖 in 𝑡
𝐴𝑖, 𝐴𝑖 Battery state of charge limits for user 𝑖
𝐻X
𝑡 ,𝐻

X
𝑡 , 𝑝

X⋆
𝑡
, 𝑝X⋆𝑡 Intermediary parameters of the MBB algo-

rithm in 𝑡
𝑆X Size of each discrete step in the MBB

algorithm
LB Problem’s lower bound in the MBB algo-

rithm

Sets

𝜒 Set of user’s decision variables in (1)
𝜉 Set of decision variables in (9)
𝜚 Set of decision variables in (15)
 Set of clusters in k-method
𝛶 Set of user-specific model parameters

Indices

𝑐 Cluster in the scenario generation algorithm
𝑘 Discretization step
X Trade direction: Sale or purchase in 𝑡

provision of incentives that are compatible with the needs of the sys-
tem. The most common DR schemes instruct consumers to change their
consumption patterns upon request or according to a contractual agree-
ment [7]. However, a lack of customer privacy and system scalability
2

𝑡 Optimization time
𝑣 Scenario index
𝑖 User index

Variables

𝑟 Aggregator’s total profit
𝑟𝑖𝑡𝑣 Aggregator’s profit considering user 𝑖 in 𝑣

and 𝑡
𝛼, 𝛽, 𝜆, 𝛾, 𝜏, 𝜐, 𝜇 Lagrangian dual variables
𝜓𝑖𝑡𝑣 Binary variable for user 𝑖 to avoid simul-

taneous charge and discharge in 𝑣 and
𝑡

𝑏S𝑡𝑣𝑘, 𝑏
B
𝑡𝑣𝑘 Binary variables in the MILP formulation for

𝑡, 𝑣 and 𝑘
𝑧C𝑖𝑡𝑣, 𝑧

D
𝑖𝑡𝑣 Charged and discharged power for user 𝑖 in

𝑣 and 𝑡
ℎX𝑖𝑡𝑘𝑣 Continuous variables in the MILP formula-

tion
𝑑B𝑡 , 𝑑S𝑡 Spanning variables in 𝑡
𝜋S𝑖𝑡𝑣, 𝜋

B
𝑖𝑡𝑣 Bilinear terms after single level reduction

for user 𝑖 in 𝑣 and 𝑡
𝑐𝑖𝑡𝑣 Cost of user 𝑖 in 𝑣 and 𝑡
𝑒S𝑖𝑡𝑣, 𝑒

B
𝑖𝑡𝑣 Grid usage and feed-in of the user 𝑖 in 𝑡 and

𝑣
𝑒S(0)𝑖𝑡𝑣 , 𝑒

S(1)
𝑖𝑡𝑣 , 𝑒

B(0)
𝑖𝑡𝑣 , 𝑒B(1)𝑖𝑡𝑣 Non-negative intermediary variables in the

quasi-relaxed formulation for user 𝑖 in 𝑣 and
𝑡

𝑝S𝑡 , 𝑝
B
𝑡 Aggregator’s sale and purchase prices

𝑠 Silhouette value in the k-mean clustering
method

𝑎𝑖𝑡𝑣 Battery state of charge for user 𝑖 in 𝑡 and 𝑣
𝑝X
𝑡
, 𝑝X𝑡 Dynamic lower and upper bounds of aggre-

gator sale prices in 𝑡

are major drawbacks of these directive approaches [8]. Alternatively, in
price-based schemes, consumers are exposed to time-varying prices that
reflect the cost of electricity and grid conditions. Furthermore, these
price-based schemes do not suffer from the same privacy and scalability
issues [7]. Real-time pricing (RTP) is perhaps the best-known example
of this approach [9]. Although RTP can increase the alignment of BSS
dispatch with wholesale market signals [5], it does not usually reflect
the local level of generation and the constraints of the grid; achieving
this requires more comprehensively specified optimal real-time pricing
(ORTP).

This paper considers an energy community (EC) that is not isolated
from the wholesale market and is managed by a community-owned
aggregator (real-world examples of such ECs can be found in [10] and
[11]). We have developed a methodology for the aggregator to set
ORTP and show how this can improve the EC’s welfare in comparison
to an RTP strategy. The economic profitability of ORTP is subjected to
many uncertainties associated with wholesale electricity prices as well
as the power demand and supply. Therefore, such local aggregators
operate under conditions of bounded rationality. Therefore, we also
provide a solution for the aggregator to deal with its limited knowledge
regarding the market prices, the level of local power generation, and
users’ electricity demands.

In the remainder of this section, we provide an overview of the
background research in this context and thereby identify the research

gap to which we contribute.
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Table 1
Drawbacks of the reviewed single-level DR studies compared to the chosen bilevel approach.

Approach Examples Focus Drawbacks

Single user optimization [15,16,24] Detailed modeling of the user-side
reaction to dynamic prices

• Lack of energy-sharing potential
• Ignores the aggregator-side

strategy

User coordination [17] Coordination of multiple users
in reaction to external prices

• Interests of the higher-level
actors are neglected

Local power markets [20–22] Distributed trading of electricity • Internal prices do not reflect the
state of the larger energy system

Retailer-side strategy [12–14] Creating dynamic prices for users • Simplified modeling of the user-side
strategy

• Internal prices do not reflect the state
of DERs
1.2. Background research and contributions

The contributions of this paper can be broadly embedded into two
bodies of literature: On the one hand, we contribute to the research
area of modeling price-based DR measures for end users in energy
communities. In Section 1.2.1, we provide an overview of relevant
publications and highlight the novelties of our proposed model. On
the other hand, our methodology contributes by proposing a relaxation
technique and an algorithm to solve the resulting bilevel optimization
problem. In Section 1.2.2, we review the common approaches to solving
the bilevel problems that emerge in modeling the hierarchical interac-
tions between an aggregator and users and show the advantages of our
proposed approach.

We summarize contributions of this paper in Section 1.2.3.

1.2.1. Price-based DR in energy communities
Residential DR programs in the context of the smart-grid have been

extensively studied in recent years [7,9]. A significant fraction of this
body of literature has examined efficient dynamic pricing strategies for
electricity consumers [12]. Considering consumer adoption barriers,
the authors of [13] designed and analyzed dynamic tariffs that can
provide considerable cost savings for households. Similarly, the authors
of [14] proposed a day-ahead and real-time pricing strategy for a smart-
home community to benefit the consumers while reducing their power
peak-to-average ratio.

A growing body of literature has focused on the demand-side im-
plementation of DR measures and studied optimization strategies for
individual users. For example, the authors of [15] proposed a schedul-
ing optimization model for smart-home appliances to reduce the peak
load value and electricity cost. The price-based DR presented in [16]
is implemented through control algorithms for different types resi-
dential consumer appliances. With a broader perspective, the authors
of [17] suggested an autonomous and distributed demand-side energy-
management system for efficient coordination of multiple users in
reaction to external dynamic prices. The demand-side management
design in [18] includes a group of passive consumers and active users
with DERs.

DR has also been studied in the context of peer-to-peer markets
with little or no interaction with a central energy system [19]. For
example, in [20] a two-stage energy sharing strategy for a building
cluster with distributed transaction was proposed. Considering a similar
setup, buildings in [21] can directly share their energy supplies and
demands within the community. The authors of [22] used an agent-
based model to study the implementation of DR measures in a local
energy market that is not isolated from the public grid.

Although all the works noted above offer beneficial features for both
the users and the grid, they generally fail to take the (often conflicting)
interests of the actors of the higher-level energy system (e.g., retailers)
into account. In this regard, the hierarchical nature of different decision
levels can be captured using bilevel optimization models [23]. Table 1
summarizes the reviewed single-level solutions and compares them
with the bilevel approach chosen in this work.
3

There is an extensive body of research that applies game-theoretic
frameworks or bilevel optimization models, in which the users follow
the pricing strategy of the aggregator [25,26]. However, many of
the existing models do not consider the load-shifting potential that
results from storage systems such as BSSs. For example, in an uncertain
environment, the EV aggregator in [27] offers selling prices to the
EV owners. In a similar setup, the decision-making variables of the
DR clients in [28] choose the most competitive aggregator. Without
load-shifting potential, the EV owners switch to rival aggregators to
minimize their energy procurement costs. In other models, users must
adapt their preferred electricity demand under strong pricing incen-
tives. For example, in the models of [29] and Yu and Hong [30],
users adjust the amount of electricity they consume based on a sat-
isfaction function. In the time-and-level-of-use scheme studied in [31],
consumers must book an energy capacity within each optimization time
frame. In the pricing process, the electricity consumption of the con-
sumers is unknown to both the supplier and the consumer themselves.
The proposed two-stage optimization model presented in [32] consists
of a real-time optimization stage, in which the microgrid operator
generates separate buy and sell RTPs, and the prosumers decide on the
amount of their hourly electricity consumption. Alternatively, in our
context, because users may own a BSS, they are not required to reshape
their desired demand profiles.

Among the studies that have considered load-shifting with BSSs,
in the model of [33] a competitive community energy storage (CES)
operator trades with the grid and offers RTP to trade with users. The
users in this model decide on the electricity they trade with the grid
and the CES operator. From a social planner’s perspective, the retailer
in [34] interacts with a CES operator and provides RTP for users to
minimize their total costs. In these studies, user-owned energy storage
systems are neglected. The aggregator in [35] also operates a CES
and can adopt either a profit-maximizing or self-sufficiency-maximizing
strategy. With full knowledge of market prices, electricity generation,
and power demand, the aggregator generates buy and sell RTPs for
the users in the EC to elicit a desired load and feed-in pattern. The
presented model of the interplay between users with BSSs and a social-
welfare-optimizing aggregator in [36] can be effectively used to size the
EC. The aggregator agent in [37] provides sale prices for self-optimizing
EVs for optimal bidding in the day-ahead reserve market.

None of the above formulations have considered uncertain input
parameters, and do not include a more generally applicable scenario-
generation algorithm. In our bilevel optimization model, we take these
three sources of uncertainty into account. The stochastic bilevel frame-
work presented in [28,38] determines the optimal involvement in
the wholesale market and its trading with the wind-generation units
while anticipating the reaction of the EVs and responsive loads. The
authors of this work showed that the implemented regret-based bidding
strategy is effective for hedging the risks of uncertainties. However, the
presented model, unlike our model, does not consider bilateral trading
with the clients and does not take prosumagers into account. Herein, we
take the EC grid restrictions into account and include a novel scenario-
generation approach for stochastic optimization. Table 2 compares the

existing bilevel models in comparison to our model.
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Table 2
Comparative overview of the bilevel RTP models in the literature.

Papers BSS
optimization

User-owned
BSS

Prosumager EV EC grid
restrictions

Bi-directional
trading

Uncertain
parameters

[29,30,39–43] ✗ ✗ ✗ ✗ ✗ ✗ ✗

[31] ✗ ✗ ✗ ✗ ✗ ✗ ✓

[32–34,44,45] ✓ ✗ ✗ ✗ ✗ ✗ ✗

[28] ✗ ✗ ✗ ✗ ✗ ✗ ✓

[27] ✗ ✗ ✗ ✓ ✗ ✗ ✓

[38] ✓ ✓ ✗ ✓ ✗ ✗ ✓

[36] ✓ ✓ ✓ ✗ ✗ ✓ ✗

[37] ✓ ✓ ✗ ✓ ✗ ✗ ✗

[46] ✓ ✓ ✗ ✗ ✗ ✗ ✗

[35] ✓ ✓ ✓ ✗ ✗ ✓ ✗

This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓
1.2.2. Solution to DR bilevel problems
Bilevel optimization is widely used to solve consumer’s DR prob-

lems arising in the power sector [23]. Bilevel problems are generally
hard to solve; even linear bilevel problems are shown to be NP-hard
problems [47]. Different approaches have been used to solve bilevel
optimization problems in the literature.

Several studies have used heuristics algorithms [48]. For example,
the bilevel problem in the modeled energy-sharing solution in [49] is
solved with a closed-loop iterative algorithm based on the Brouwer
fixed-point-theorem. Moreover, the authors of [35,42,43,50] used ge-
netic algorithms to iterate between the upper- and lower-level problems
and search for the optimal solution. However, heuristic algorithms have
the drawback that they cannot guarantee that the global solution is
actually found [51].

If the lower-level problem is modeled as a differentiable function,
one can derive the optimal solution mathematically and replace it in
the upper-level problem. This leads to a single-level problem, which
is solvable using commercial solvers. This approach has been used
extensively in the context of DR modeling. For example, in [29,32,41]
the utility of consumers is modeled in a logarithmic relationship with
consumed energy. To model the objectives of the users, the authors
of [33,34,44,46] employed quadratic cost functions as strictly convex
and increasing functions of demand. Although this method can be used
to solve bilevel problems to their global optimum in an efficient man-
ner, the required underlying assumptions for the problem formulation
make it impractical for many real-world applications [35].

Another common approach to solving bilevel problems is using
mathematical techniques such as the Karush–Kuhn–Tucker (KKT) op-
timality conditions to transform the problem into an equivalent math-
ematical program with equilibrium constraints that is solvable with
commercial solvers [52]. Under certain conditions, the emerging com-
plementary slackness constraints can be replaced by the strong duality
condition to eliminate the bilinear terms. These two approaches for
single-level reduction are employed in [53] to solve the microgrid
investment and operation planning bilevel problem. Among the liter-
ature reviewed in Section 1.2.1, the authors of [27,28,36,38] used this
methodology. In many cases, the resulting single-level problem con-
tains many binary variables and requires a high computational effort
to solve [54]. In this paper, we propose a quasi-relaxation technique
and an innovative solution algorithm to eliminate the binary variables
that appear in the single-level reduction process and correspondingly
solve the problem efficiently.

1.2.3. Contributions
Against this background, this paper makes the following research

contributions:
1. We propose a bilevel stochastic nonlinear programming model to
find the buy–sell ORTP for a community-owned profit-maximizing
aggregator that manages for users (including prosumagers and EVs)
in a smart EC. We show that the profit-maximizing operation also
4

maximizes the welfare of the EC. In two transformation steps, we derive
a stochastic disjunctive program from the original bilevel stochastic
nonlinear program. To enable this transformation, we first apply a
single-level reduction technique using KKT optimality and strong du-
ality conditions and then discretize the aggregator’s prices. We use a
multi-parameter cluster-based (MPCB) scenario-generation approach to
produce the required representative scenarios for the key uncertainties
in the stochastic optimization problem.
2. We provide an efficient solution to the reformulated disjunctive
program. We apply a linear quasi-relaxation approach to eliminate
the nonlinear terms and propose a novel modified branch-and-bound
(MBB) algorithm that imposes the relaxed constraint. Moreover, we
extend the algorithm used in [54] and [55] by employing a dynamic
partitioning approach, which disentangles the optimization results from
the disjunctive parameters and reduces the computational effort needed
to solve the problem.
3. We present a comprehensive analysis, regarding the effectiveness of
the proposed ORTP scheme and solution algorithm. For this analysis,
we compare the ORTP tariff with two benchmark tariffs: average
pricing and RTP. Moreover, we demonstrate the superior computational
performance of the proposed MBB algorithm in comparison with the
branch-and-bound algorithm suggested in [54] and a standard mixed-
integer linear programming (MILP) formulation that is used extensively
in the literature. We parameterize the model with real data, examine
several case studies, and evaluate the effectiveness of the proposed
ORTP strategy against two benchmark tariffs.

The remainder of this paper is organized as follows. The method-
ology is described in Section 2, where we present our EC model
and the proposed bilevel problem. In this section, we reformulate the
mathematical problem into a quasi-relaxed stochastic disjunctive pro-
gram and describe the developed MBB algorithm to solve the resulting
problem. Section 2 also contains the definitions of the benchmark
models and tariffs used to assess the results as well as a description of
the data used in our analysis. This section ends with the explanation
of the developed MPCB scenario-generation algorithm and the used
data in the case studies. In Section 3, we introduce four case studies
and demonstrate the performance of the ORTP tariff and the MBB
algorithm. In Section 4, we compare the results of the case studies
with those of the benchmark cases. The limitations of our methodology
and the transferability of our results to real-world cases are critically
discussed in 5. Section 6 concludes.

2. Methodology

2.1. Model structure

ECs represent multifaceted sociotechnical systems that, depending
on their context and purpose, can have numerous definitions and
diverse forms [56]. The bottom-up model developed in this work
adopts the following definition: ‘‘An EC is a group of electricity users
(whether with or without DERs) that are connected to the same distribution
network. Each user is metered separately and operates under a contract

with a community-owned aggregator. The aggregator manages the electricity
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Fig. 1. Schematic illustration of the modeled energy community.

demand and generation of the EC by trading within the community and in
the electricity market’’. Note that in our definition, we do not consider
the possibility of collective self-consumption or virtual sharing of the
electricity in the EC. The EC modeled according to this definition is
schematically illustrated in Fig. 1.

The EC aggregator is an agent that maximizes its profit (𝑟) by op-
timizing its hourly trading in the day-ahead electricity market (hence-
forth referred to as the market) and with the users in the EC, while
considering the predicted EC grid limitations over the next day. For
this optimization, the aggregator receives a forecast of the upcoming
market prices (𝑃M) and the maximum available line capacity behind
he point of common coupling (PCC) (𝑊 𝑡). It also sets the real-time sell
nd buy prices (𝑝S, 𝑝B) to trade with the users within the community.
o isolate the effects of the ORTP, we consider a case in which the
ggregator does not operate a BSS. Therefore, the aggregator’s demand
nd supply bids to the market correspond to the EC’s residual load and
eneration, respectively.

Users within the EC can be parameterized as consumers, prosumers,
rosumagers, or EVs. For the case of a prosumager, the user’s model and
he interaction with the aggregator is schematically shown in Fig. 2.
sers with BSS optimize their interactions with the EC grid, i.e., their
ower consumption and feed-in (𝑒S, 𝑒B) to minimize their costs (𝐶). We
ssume that the users are equipped with the processing and controlling
ystems required for this optimization. Since the user’s bidirectional
rid interaction is measured with a single smart meter, the actual
nteraction with the grid is unidirectional in each time step (𝑒S = 0
f 𝑒B > 0 and vice versa).4 Moreover, the considered metering scheme
llows a behind-the-meter consumption of the self-generated electricity.
ue to the near-zero marginal cost of the rooftop PV systems, we
ssume that the electricity generated by the users is primarily used to
over their electricity demand. If the electricity generated by the user
𝐺) is less than demand (𝐿), the difference must be covered by the
SS or from the grid. Similarly, if the electricity generation exceeds the
emand, the user will feed the residual generation into the BSS or sell
o the grid. We also assume that the electricity consumption of the users
s price inelastic, and the only source of flexibility is the load-shifting
otential with the BSS. The parameter 𝛬𝑖 considers the self-discharge
ate, while 𝜂𝐶𝑖 and 𝜂D𝑖 account for charge and discharge efficiency of
he BSS. The state of charge (SOC) of the BSS (modeled as 𝑎) has an
nitial value of 𝐴𝑖 and is limited by its lower and upper limits (𝐴𝑖, 𝐴𝑖).
y adding an availability factor (𝑈𝑖𝑡), we take into account the inability

4 Note that the metering scheme in our model differs from the gross-
etering scheme, in which the electricity consumption and generation are
etered separately. Furthermore, unlike net-metering schemes, the users

annot consume the electricity fed into the grid at a later time free of charge.
5

t

Fig. 2. Schematic overview of the prosumager’s model.

or unwillingness of the users to charge their BSSs. This is particularly
important in the case of EVs, as these users may not be connected to
the grid during the whole day.

The interplay between the aggregator and users within this model
structure leads to a hierarchical decision-making formulation, specified
as a bilevel program, in which the aggregator’s and users’ optimizations
are the upper- and lower-level problems, respectively.

2.2. Bilevel program

The stochastic bilevel programming model is formulated in (1), in
which the indices 𝑖, 𝑡, and 𝑣 refer to each user, optimization time, and
robabilistic scenario, respectively:

aximize
𝑝S𝑡 ,𝑝

B
𝑡

𝑟 =
∑

𝑖,𝑡,𝑣
𝜙𝑣 (𝑃M

𝑡𝑣 (𝑒
B
𝑖𝑡𝑣−𝑒

S
𝑖𝑡𝑣)+𝑝

S
𝑡 𝑒

S
𝑖𝑡𝑣−𝑝

B
𝑡 𝑒

B
𝑖𝑡𝑣)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑟𝑖𝑡𝑣

(1a)

subject to: 𝑃 S ≤ 𝑝S𝑡 ≤ 𝑃
S
, 𝑃 B ≤ 𝑝B𝑡 ≤ 𝑃

B
, (1b)

−𝑊 𝑡 ≤
∑

𝑖
(𝑒S𝑖𝑡𝑣−𝑒

B
𝑖𝑡𝑣) ≤ 𝑊 𝑡, (1c)

where 𝑒S𝑖𝑡𝑣, 𝑒
B
𝑖𝑡𝑣 ∈

argmin
𝜒

𝐶𝑖𝑣 =
∑

𝑡
(𝑝S𝑡 𝑒

S
𝑖𝑡𝑣−𝑝

B
𝑡 𝑒

B
𝑖𝑡𝑣+𝑃

Q
𝑖 (𝑧C𝑖𝑡𝑣+𝑧

D
𝑖𝑡𝑣)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑐𝑖𝑡𝑣

), (1d)

subject to: 𝑎𝑖𝑡𝑣 = 𝛬𝑖𝑎𝑖(𝑡−1)𝑣+
𝜂𝐶𝑖 𝑧

C
𝑖𝑡𝑣

𝜃B𝑖
−
𝑧D𝑖𝑡𝑣
𝜂D𝑖 𝜃

B
𝑖

∶ (𝜆𝑎𝑖𝑡𝑣), (1e)

𝑧C𝑖𝑡𝑣 = 𝑒S𝑖𝑡𝑣−𝑒
B
𝑖𝑡𝑣+𝐺𝑖𝑡𝑣−𝐿𝑖𝑡𝑣+𝑧

D
𝑖𝑡𝑣 ∶ (𝜆𝑧𝑖𝑡𝑣), (1f)

𝐴𝑖 ≤ 𝑎𝑖𝑡𝑣 ≤ 𝐴𝑖 ∶
(

𝜏 𝑖𝑡𝑣, 𝜏𝑖𝑡𝑣
)

, (1g)

𝑎𝑖𝑡𝑣 = 𝐴𝑖 ∶
(

𝛼𝑎𝑖0𝑣
)

, 𝑡 = 0, (1h)

0 ≤ 𝑒B𝑖𝑡𝑣 ≤ 𝐺𝑖 ∶ (𝜇
𝑖𝑡𝑣
, 𝜇𝑖𝑡𝑣), (1i)

0 ≤ 𝑒S𝑖𝑡𝑣 ≤ 𝐿𝑖 ∶
(

𝜐𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣
)

, (1j)

0 ≤ 𝑧C𝑖𝑡𝑣 ≤ 𝑈𝑖𝑡𝑍
C
𝑖 𝜓𝑖𝑡𝑣 ∶ (𝛽

𝑖𝑡𝑣
, 𝛽𝑖𝑡𝑣), (1k)

0 ≤ 𝑧D𝑖𝑡𝑣 ≤ 𝑈𝑖𝑡𝑍
D
𝑖 (1−𝜓𝑖𝑡𝑣) ∶ (𝛾

𝑖𝑡𝑣
, 𝛾 𝑖𝑡𝑣). (1l)

here 𝜒 in (1d) is the set of the user’s decision variables 𝜒 =
{𝑒S𝑖𝑡𝑣, 𝑒

B
𝑖𝑡𝑣, 𝑎𝑖𝑡𝑣, 𝑧

C
𝑖𝑡𝑣, 𝑧

D
𝑖𝑡𝑣}. The symbols in parentheses (i.e., 𝜆𝑎𝑖𝑡𝑣, 𝜆

𝑧
𝑖𝑡𝑣, 𝛽𝑖𝑡𝑣,

𝛽
𝑖𝑡𝑣

, 𝛾 𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜏𝑖𝑡𝑣, 𝜏 𝑖𝑡𝑣, 𝛼
𝑎
𝑖0𝑣, 𝜐𝑖𝑡𝑣, and 𝜐𝑖𝑡𝑣) are the

agrangian dual variables of the corresponding constraint in the lower-
evel problem. Eq. (1a) represents the utility function of the aggregator
nd 𝜙𝑣 is the probability of each scenario. Eq. (1b) sets bounds to ensure
hat the aggregator’s prices in the EC are no worse than those of the
ublic grid (𝑃 S, 𝑃

S
, 𝑃B, and 𝑃

B
are the lower and upper limits for the

ggregator’s sell and buy prices). We make these assumptions in the
bsence of competition among different aggregators and retailers. The
otal power imported/exported through the line that connects the EC
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to the PCC is limited in Eq. (1c), where 𝑊 𝑡
5 is the maximum available

apacity of this line at time 𝑡. The user’s objective in Eq. (1d) is to
inimize the total operation costs for the given optimization period
𝑇 ). Therefore, the lower-level objective is unique for each pair of 𝑖
nd 𝑣. The parameter 𝑃Q

𝑖 is a strictly positive value representing the
arginal operation cost of the BSS. Eq. (1e) describes the SOC of the
SS, which depends on the SOC in the previous time step, the self-
ischarge rate (𝛬𝑖), and the charged and discharged amount (𝑧C𝑖𝑡𝑣 and
D
𝑖𝑡𝑣). The constraint in (1f) guarantees that the incoming and outgoing
ower flows for each user and time step are balanced. Constraint (1g)
akes sure that the SOC of the BSS stays within an acceptable range.
qs. (1i) and (1j) consider the users’ nominal power constraints (𝐿𝑖
nd 𝐺𝑖). The battery charge and discharge in each step are limited by

the maximum allowed power constraints (𝑍
C
𝑖 , 𝑍

D
𝑖 ), the availability of

he battery, and the binary variable 𝜓𝑖𝑡𝑣, which prevents simultaneous
charging and discharging of the BSS. In the proposed stochastic model,
the aggregator considers the uncertainty of market prices as well as
the users’ electricity generation and load when deciding the hourly
sell and buy prices. To cope with these uncertainties and achieve the
best solution, the aggregator must solve the bilevel problem for various
scenarios. This means that, for a set of scenarios and for each step, a
unique solution (𝑝S𝑡 and 𝑝B𝑡 ) is delivered to the users. The problem of
he users also incorporates uncertainties regarding their demand and
eneration.

Note that the fact that the aggregator maximizes its profit does
ot compromise its fiduciary obligation to the EC, since the welfare
f the EC is, in this case, maximized (see Proposition 1). The actual
edistribution of the aggregator’s profit among the EC users can be
one in several ways to reflect their respective interests, but these
onsiderations are subsidiary and outside the scope of this analysis.

roposition 1. Solving (1) is equivalent to maximizing the community
elfare (CW):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

𝑟(𝑝S𝑡 , 𝑝
B
𝑡 )

s.t. (1a), (1b)
where 𝑒S𝑖𝑡𝑣, 𝑒

B
𝑖𝑡𝑣 ∈

argmin𝐶𝑖𝑣(𝜒)
𝜒

s.t. (1e)–(1l)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

≡

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

∑

𝑖𝑡𝑣 𝜙𝑣
(

𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝
B
𝑡 ) − 𝐶𝑖𝑣(𝜒)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=CW

)

s.t. (1a), (1b)
where 𝑒S𝑖𝑡𝑣, 𝑒

B
𝑖𝑡𝑣 ∈

argmin𝐶𝑖𝑣(𝜒)
𝜒

s.t. (1e)–(1l)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(2)

Proof. Proof of this proposition is given in Appendix A.1.

2.3. Proposed stochastic disjunctive program

We solve the bilevel program in (1) by reformulating the problem
into a single-level problem. To be able to represent the lower-level
problem, which is currently a MILP problem, by the KKT optimal-
ity conditions (which are necessary and sufficient), we propose an
equivalent relaxed linear programming (LP) formulation of (1). Using
Proposition 2, we can omit the binary variables in the constraints (1k)
and (1l) in the formulation of the lower-level problem.

Proposition 2. If we drop the binary variables 𝜓𝑖𝑡𝑣 from the MILP model,
the optimal solution of the resulting relaxed LP model and its original MILP
model are the same.

5 Availability of the line capacity (𝑊 𝑡) can vary due to power-system
operation issues such as a line outage at time 𝑡.
6

t

Proof. We assume that the binary variable 𝜓𝑖𝑡𝑣, (1k), and (1l) do
not exist and the BSS unit can charge and discharge simultaneously,
i.e., 𝑧C𝑖𝑡𝑣 > 0 and 𝑧D𝑖𝑡𝑣 > 0. Therefore, (1) is an LP problem in this case
and the KKT optimality conditions hold. Based on this assumption, the
Lagrangian multipliers 𝛽

𝑖𝑡𝑣
and 𝛾

𝑖𝑡𝑣
are equal to zero. The stationary

conditions of the relaxed LP problem are written in (3):

𝑝S𝑡 +𝜆
𝑧
𝑖𝑡𝑣+𝜐𝑖𝑡𝑣−𝜐𝑖𝑡𝑣 = 0 ∶ 𝑒S𝑖𝑡𝑣, (3a)

𝑝B𝑡 −𝜆
𝑧
𝑖𝑡𝑣+𝜇𝑖𝑡𝑣−𝜇𝑖𝑡𝑣 = 0 ∶ 𝑒B𝑖𝑡𝑣, (3b)

𝜆𝑎𝑖𝑡𝑣+𝛬𝑖𝜆
𝑎
𝑖(𝑡+1)𝑣−𝜏 𝑖𝑡𝑣+𝜏 𝑖𝑡𝑣 = 0 ∶ 𝑎𝑖𝑡𝑣, (3c)

𝛬𝑖𝜆
𝑎
𝑖1𝑣−𝛼

𝑎
𝑖0𝑣 = 0 ∶ 𝑎𝑖𝑡𝑣, 𝑡 = 0, (3d)

𝑃Q
𝑖 −𝜆𝑎𝑖𝑡𝑣∕𝜂

D
𝑖 𝜃

B
𝑖 +𝜆

𝑧
𝑖𝑡𝑣−𝛾 𝑖𝑡𝑣+𝛾 𝑖𝑡𝑣 = 0 ∶ 𝑧D𝑖𝑡𝑣, (3e)

𝑃Q
𝑖 +𝜂𝐶𝑖 𝜆

𝑎
𝑖𝑡𝑣∕𝜃

B
𝑖 −𝜆

𝑧
𝑖𝑡𝑣−𝛽𝑖𝑡𝑣+𝛽𝑖𝑡𝑣 = 0 ∶ 𝑧C𝑖𝑡𝑣. (3f)

rom (3e) and (3f) we can derive:

𝑎
𝑖𝑡𝑣∕𝜃

B
𝑖

(3e)
= 𝜂D𝑖 (𝑃

Q
𝑖 +𝜆𝑧𝑖𝑡𝑣−𝛾 𝑖𝑡𝑣+𝛾 𝑖𝑡𝑣)

(3f)
= (−𝑃Q

𝑖 +𝜆𝑧𝑖𝑡𝑣+𝛽𝑖𝑡𝑣−𝛽𝑖𝑡𝑣)∕𝜂
𝐶
𝑖 , (4)

Based on our assumptions of 𝑧C𝑖𝑡𝑣 > 0 and 𝑧D𝑖𝑡𝑣 > 0, the terms 𝛽
𝑖𝑡𝑣

= 0
and 𝛾

𝑖𝑡𝑣
= 0 can be omitted from (4). Therefore,

( 1
𝜂𝐶𝑖

−𝜂D𝑖 )𝜆
𝑧
𝑖𝑡𝑣 = (𝜂D𝑖 𝛾 𝑖𝑡𝑣 +

1
𝜂𝐶𝑖
𝛽𝑖𝑡𝑣) + ( 1

𝜂𝐶𝑖
+𝜂D𝑖 )𝑃

Q
𝑖 . (5)

hile the right-hand side of (5) is strictly positive (𝑃Q
𝑖 , 𝜂𝐶𝑖 , 𝜂D𝑖 > 0

and 𝛽𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣 ≥ 0) its left-hand side is negative (𝜆𝑧𝑖𝑡𝑣 < 0 and 1
𝜂𝐶𝑖

−𝜂D𝑖 ≥
0). From this contradiction, one can conclude that the assumption of
simultaneous charge and discharge of the BSS (𝑧C𝑖𝑡𝑣 > 0 and 𝑧D𝑖𝑡𝑣 > 0)
cannot hold.6 □

Thus, the dual feasibility conditions of the LP formulation can be
described as:

𝛽
𝑖𝑡𝑣
, 𝛽𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜏𝑖𝑡𝑣, 𝜏 𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣 ≥ 0. (6)

The complementary slackness conditions for the lower-level problem
result in several nonlinear terms but, according to [57], the comple-
mentary slackness conditions can be replaced with the strong duality
condition. The strong duality condition for the lower-level problem can
be formulated as:

−
∑

𝑡
(𝑝S𝑡 𝑒

S
𝑖𝑡𝑣−𝑝

B
𝑡 𝑒

B
𝑖𝑡𝑣+𝑃

Q
𝑖 (𝑧C𝑖𝑡𝑣+𝑧

D
𝑖𝑡𝑣)) = −𝛼𝑎𝑖0𝑣𝐴𝑖+

∑

𝑡
(𝜏𝑖𝑡𝑣𝐴𝑖−𝜏 𝑖𝑡𝑣𝐴𝑖+𝜇𝑖𝑡𝑣𝐺𝑖+𝜐𝑖𝑡𝑣𝐿𝑖−𝜆

𝑧
𝑖𝑡𝑣(𝐺𝑖𝑡𝑣−𝐿𝑖𝑡𝑣)

+𝑈𝑖𝑡𝛽𝑖𝑡𝑣𝑍
C
𝑖 +𝑈𝑖𝑡𝛾 𝑖𝑡𝑣𝑍

D
𝑖 ). (7)

The bilinear terms 𝑝S𝑡 𝑒
S
𝑖𝑡𝑣 and 𝑝B𝑡 𝑒B𝑖𝑡𝑣 in the strong duality constraint and

the upper-level problem make the reformulated problem a nonlinear
programming (NLP) problem. We denote these bilinear terms 𝜋S𝑖𝑡𝑣 and
𝜋B𝑖𝑡𝑣, respectively. To eliminate the nonlinearity, we introduce discrete
electricity sell and buy prices that can take values from a feasible set
of prices 𝑝X𝑡 ∈ {𝑃X

1𝑡 ,… , 𝑃X
𝑘𝑡 ,… , 𝑃X

𝑛𝑡 }. Accordingly, we formulate the
bilinear terms in the following disjunctive form:

𝑝X𝑡 𝑒
X
𝑖𝑡𝑣 =

𝑛
⋁

𝑘=1
𝑃X
𝑘𝑡𝑒

X
𝑖𝑡𝑣, (8)

where the disjunction is represented by the disjunction (OR) operator
⋁. To shorten the expressions in (8) and throughout this paper, the

6 Although we have proved Proposition 2 analytically, the proposition
tatement is also intuitive. It is not economical for a BSS with charging and
ischarging efficiencies less than 100% to charge and discharge at the same
ime.
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superscript X represents both sell and buy variables and parameters (in-
stead of the superscripts S and B). The original program can therefore
e rewritten as a stochastic disjunctive program:

aximize
𝜉

𝑟 =
∑

𝑣,𝑖,𝑡≠0
𝜙𝑣(𝑃M

𝑡𝑣 (𝑒
B
𝑖𝑡𝑣−𝑒

S
𝑖𝑡𝑣)+

𝑁
⋁

𝑘=1
𝑃 S
𝑘 𝑒

S
𝑖𝑡𝑣−

𝑁
⋁

𝑘=1
𝑃B
𝑘 𝑒

B
𝑖𝑡𝑣)

ubject to: (1b), (1c), (1e)–(1l), (3), (6),

7) rewritten with (8). (9)

here 𝜉 is the set of decision variables. 𝜉 = {𝑝S𝑡 , 𝑝B𝑡 , 𝑒S𝑖𝑡𝑣, 𝑒
B
𝑖𝑡𝑣, 𝑎𝑖𝑡𝑣,

C
𝑖𝑡𝑣, 𝑧

D
𝑖𝑡𝑣, 𝜆

𝑎
𝑖𝑡𝑣, 𝜏 𝑖𝑡𝑣, 𝜏 𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣, 𝛽𝑖𝑡𝑣, 𝛽𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣}. Using

binary expansion approach, the disjunctive problem in (9) can be
eformulated as a MILP problem. The MILP formulation (presented later
n Section 2.5) contains many binary variables, which leads to a high
omputational effort. Moreover, the performance of the solver depends
n the right choice of 𝑀X. To improve these shortcomings, authors
f [48] suggest an alternative approach to deal with bilinear terms.
imilar to [54], we adopt a linear quasi-relaxation to transform this
roblem to an LP problem and deal with the disjunctive nature of 𝑝X𝑡
n our solution algorithm.

To this end, instead of formulating the electricity sell and buy prices
s a convex combination of discrete values, we use only their lower and
pper bounds. By introducing a continuous variable 𝑑X𝑡 , we rewrite 𝑝X𝑡
s:
X
𝑡 = 𝑝X

𝑡
𝑑X𝑡 +𝑝

X
𝑡 (1 − 𝑑

X
𝑡 ), 0 ≤ 𝑑X𝑡 ≤ 1. (10)

Therefore, the aggregator’s 𝑝X𝑡 always adopts a value between 𝑝X
𝑡

and
𝑝X𝑡 . Then, the disjunctive constraints can be enforced by:
𝑁
⋁

𝑘=1

[

𝑝X
𝑡
𝑑X𝑡 +𝑝

X
𝑡 (1 − 𝑑

X
𝑡 ) = 𝑃X

𝑘𝑡

]

. (11)

To perform the quasi-relaxation method, we rewrite 𝑒X𝑖𝑡𝑣, which ap-
pears in the bilinear term 𝜋X𝑖𝑡𝑣, as the summation of two non-negative
variables:

𝑒X𝑖𝑡𝑣 = 𝑒X(0)𝑖𝑡𝑣 +𝑒X(1)𝑖𝑡𝑣 . (12)

Therefore, the bilinear term 𝜋X𝑖𝑡𝑣 can be formulated as:

𝜋X𝑖𝑡𝑣 = (𝑒X(0)𝑖𝑡𝑣 +𝑒X(1)𝑖𝑡𝑣 )
[

𝑝X
𝑡
𝑑X𝑡 +𝑝

X
𝑡 (1 − 𝑑

X
𝑡 )
]

. (13)

e solve the formulated disjunctive program using an MBB algo-
ithm, which branches on the ranges of sell and buy prices instead
f branching on binary variables. To obtain the upper bound of the
bjective value, we apply quasi-relaxation of the problem and drop the
isjunctive constraint (11) and replace (13) with (14):
X
𝑖𝑡𝑣 = 𝑒X(0)𝑖𝑡𝑣 𝑝X

𝑡
+𝑒X(1)𝑖𝑡𝑣 𝑝X𝑡 , (14a)

0 ≤ 𝑒X(0)𝑖𝑡𝑣 ≤𝑀X𝑑X𝑡 , (14b)

0 ≤ 𝑒X(1)𝑖𝑡𝑣 ≤𝑀X(1−𝑑X𝑡 ), (14c)

0 ≤ 𝑑X𝑡 ≤ 1. (14d)

As a result, the disjunctive program (9) can be reformulated in the
following quasi-relaxed form:

SDPQ: Maximize
𝜚

𝑟 =
∑

𝑣,𝑖,𝑡
𝜙𝑣(𝑃M

𝑡𝑣 (𝑒
B
𝑖𝑡𝑣−𝑒

S
𝑖𝑡𝑣)+𝜋

S
𝑖𝑡𝑣−𝜋

B
𝑖𝑡𝑣)

subject to: (1b), (1c), (1e)–(1l), (3), (6),

(7) rewritten with 𝜋X𝑖𝑡𝑣 from (14), (12). (15)

where 𝜚 = {𝑝S𝑡 , 𝑝B𝑡 , 𝑒S𝑖𝑡𝑣, 𝑒
S(0)
𝑖𝑡𝑣 , 𝑒S(1)𝑖𝑡𝑣 , 𝑒B𝑖𝑡𝑣, 𝑒

B(0)
𝑖𝑡𝑣 , 𝑒B(1)𝑖𝑡𝑣 , 𝑎𝑖𝑡, 𝑧C𝑖𝑡𝑣, 𝑧

D
𝑖𝑡𝑣, 𝑑

S
𝑡 , 𝑑B𝑡 ,

𝜆𝑎𝑖𝑡𝑣, 𝜏 𝑖𝑡𝑣, 𝜏𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣, 𝛽𝑖𝑡𝑣, 𝛽𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣} is the set of decision
variables. For simplicity, we will refer to the quasi-relaxed formulation
of the stochastic disjunctive program in (15) as SDPQ.
7

2.4. MBB solution algorithm

We now explain the different steps of the MBB algorithm in solv-
ing the SDPQ. Having imposed the dropped constraint in the quasi-
relaxation, we partition the disjunctive steps dynamically to find the
solution of (1) efficiently. The dynamic partitioning feature addresses
the limitation of the disjunctive formulation in having a fixed number
of discrete steps.
Fig. 3 illustrates the different steps of the algorithm in detail.
Initialization: The algorithm starts by initializing the parameters 𝑝X

𝑡
,

𝑝X𝑡 , 𝐻X
𝑡 , and 𝐻X

𝑡 as well as the algorithm hyperparameters LB and 𝑆X:

𝑝X
𝑡
←←← 𝑃X

1𝑡 , 𝑝
X
𝑡 ←←← 𝑃X

𝑛𝑡 , (16a)

𝐻X
𝑡 ←←← 𝑃X, 𝐻

X
𝑡 ←←← 𝑃

X
, (16b)

LB ←←← −∞, 𝑆X ←←← (𝑃
X
−𝑃X)∕(|𝑘|−1), (16c)

X
𝑘𝑡 = 𝐻X

𝑡 +𝑘(𝐻
X
𝑡 −𝐻

X
𝑡 )∕|𝑘|. (16d)

here 𝐻X
𝑡 and 𝐻

X
𝑡 are intermediary lower and upper levels of dis-

junctive values in each time step, and 𝑆X is the disjunction step size
and LB is the lower bound of the solution that represents the best
solution so far. In (16d), the disjunctive values 𝑃X

𝑘𝑡 for each time step
re calculated.
olving SDPQ and generating new branches: In each iteration (itr
n short), the algorithm solves the quasi-relaxed formulation of the
roblem (SDPQ) in (15). If the problem is infeasible or the upper bound
f the objective function (𝑟) is less than LB, the nodes are fathomed.
or the cases with 𝑟 higher than LB (𝑟 ≥ LB), the algorithm checks the

condition (17) to make sure that the result of the SDPQ is identical to
(1) and the relaxed constraint in (11) is imposed.

𝑑X𝑡 ∈ {0, 1} ∨ 𝑝X
𝑡
= 𝑝X𝑡 . (17)

If condition (17) is valid for all the optimization time steps, the node
is fathomed, 𝐿𝐵 is updated (𝐿𝐵 ←←← 𝑟), and the values of 𝑝X

𝑡
and 𝑝X𝑡

re stored in intermediary parameters 𝑝X⋆
𝑡

and 𝑝X⋆𝑡 . The results with
𝑑X𝑡 ∉ {0, 1}, 𝑝X

𝑡
≠ 𝑝X𝑡 indicate that 𝑝X𝑡 is not discrete (i.e., 𝑝X𝑡 ∉

𝑃X
1𝑡 ,… , 𝑃X

𝑘𝑡 ,… , 𝑃X
𝑛𝑡 }) and therefore does not satisfy constraint (11). In

hese cases, we keep the nodes active and generate new branches.
ccording to (18a), the algorithm finds the closest disjunctive value
nd generates two new branches on either side of the 𝑝X𝑡 (18b):

X
𝑘𝑡 ≤ 𝑝X

𝑡
𝑑X𝑡 +𝑝

X
𝑡 (1 − 𝑑

X
𝑡 ), (18a)

𝑝X𝑡 = 𝑃X
𝑘𝑡 and 𝑝X

𝑡
= 𝑃X

(𝑘+1)𝑡. (18b)

After creating new branches, the algorithm evaluates all the nodes
and selects the one with the largest LB as the next node to assess.
We chose this branching method as it creates fewer sub-problems and,
therefore, reduces the computational time required [58]. The next node
is evaluated by repeating this step.
Dynamic partitioning: Each optimization ‘‘round’’ is terminated when
all the created nodes have been investigated. Once there are no branches
left to solve, if LB is equal to its initial value (i.e., −∞), the problem
is infeasible. If not (i.e., the algorithm has found at least one solution
to the problem), we discretize the solution range further to search for
values that may lie between the first disjunctive steps and we start a
new round of optimization. Changes in the solution range (𝑝X

𝑡
to 𝑝X𝑡 ) are

schematically visualized in Fig. 4. To perform the dynamic partitioning,
we update 𝐻

X
𝑡 and 𝐻X

𝑡 with the lower and upper values of the best
solution:

𝐻
X
𝑡 ←←← 𝑝X⋆𝑡 ,𝐻X

𝑡 ←←← 𝑝X⋆
𝑡

(19)

If 𝑝X
𝑡

and 𝑝X𝑡 have adopted the same value (𝑝X
𝑡

= 𝑝X𝑡 ), at least one of
them is moved by the size of one step 𝑆X:

If 𝑝X = 𝑝X = 𝑃X then 𝐻
X
←←← 𝑝X+𝑆X, (20a)
𝑡 𝑡 𝑡 𝑡
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Fig. 3. Our proposed modified branch-and-bound (MBB) algorithm.
lse if 𝑝X
𝑡
= 𝑝X𝑡 = 𝑃

X
then 𝐻X

𝑡 ←←← 𝑝X𝑡 −𝑆
X, (20b)

lse {𝐻
X
𝑡 ←←← 𝑝X

𝑡
+𝑆X and 𝐻X

𝑡 ←←← 𝑝X𝑡 −𝑆
X} (20c)

inally, we update the values of 𝑝X
𝑡

and 𝑝X𝑡 once more, set the LB to
∞, update the disjunctive values according to (16d), and solve the
roblem again.

𝑝X𝑡 ←←← 𝐻
X
𝑡 , 𝑝

X
𝑡
←←← 𝐻X

𝑡 (21)

f the solution (LB) is improved, the algorithm continues. Otherwise,
he optimal solution is reported.

.5. Benchmark models

To assess the performance of the proposed MBB algorithm, we solve
he bilevel program with two alternative algorithms, as described in
ections 2.5.1 and 2.5.2.

.5.1. MILP
To reformulate the disjunctive problem in (9) as a MILP problem, we

se a binary expansion approach. For the disjunctive term ⋁𝑛
𝑘=1𝑃

X
𝑘𝑡𝑒

X
𝑖𝑡𝑣,

e introduce binary variables ∑𝑁
𝑘=1𝑏

X
𝑡𝑣𝑘 = 1 and rewrite the disjunctive

onstraints as:

𝑀X𝑏X𝑡𝑣𝑘 ≤ ℎX𝑖𝑡𝑘𝑣 ≤𝑀X𝑏X𝑡𝑣𝑘,∀𝑖𝑡𝑣𝑘, (22a)

𝑀X(1 − 𝑏X𝑡𝑣𝑘) ≤ ℎX𝑖𝑡𝑘𝑣 − 𝑃
X
𝑘𝑡𝑒

S
𝑖𝑡𝑣 ≤𝑀X(1 − 𝑏X𝑡𝑣𝑘),∀𝑖𝑡𝑣𝑘, (22b)
8

Fig. 4. Change of the solution range (𝑝X𝑡 to 𝑝X
𝑡
) in our proposed MBB algorithm. Itr

X1, X2 and X3 respectively refer to the iterations with the best solutions in the first,
second, and third rounds of optimization.

where 𝑀X is a sufficiently large number, and ℎX𝑖𝑡𝑘𝑣 are continuous
variables that are enforced to take the values of the binary terms for a
single step 𝑘. The disjunctive term and the prices can then be written
as:

𝑁
⋁

𝑃X
𝑘𝑡𝑒

X
𝑖𝑡𝑣 =

𝑁
∑

ℎX𝑖𝑡𝑘𝑣, (23a)

𝑘=1 𝑘=1
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𝑝X𝑡 =
𝑁
∑

𝑘=1
𝑃X
𝑘𝑡𝑏

X
𝑡𝑣𝑘. (23b)

he disjunctive problem in (9) together with additional constraints
erived in (22) and (23) can be solved using standard commercial MILP
olvers and branch-and-bound algorithms.

.5.2. Special branch-and-bound (SBB) algorithm
To demonstrate the improvements resulting from the MBB algo-

ithm, we also solve SDPQ using the SBB algorithm proposed in [54].

.6. Benchmark tariffs

As shown in Proposition 1, we expect that the competition between
he aggregator and users in the proposed ORTP strategy increases the
W of the EC, defined as CW = 𝑟 − 𝐶 ′, where 𝐶 ′ =

∑

𝑖𝑡𝑣 𝜙𝑣𝐶𝑖𝑣 is the
otal cost of users. Note that, in the calculation of CW, the terms with
X
𝑡 are eliminated. Therefore, CW =

∑

𝑖𝑡𝑣 𝜙𝑣𝑃
M
𝑡𝑣 (𝑒

S
𝑖𝑡𝑣 − 𝑒

B
𝑖𝑡𝑣)+𝑃

Q
𝑖 (𝑧C𝑖𝑡𝑣+𝑧

D
𝑖𝑡𝑣).

o validate our hypothesis regarding the impact of competition on the
W, we compare the resulting CW values from the ORTP with those
ained from the two benchmarks.

• Average pricing (AP) uses the mean value of the market prices during
the simulated period to calculate 𝑝X𝑡 . Therefore, the tariff does not
contain any real-time element and the price is constant over time,
similar to the retail price in many countries:

𝑝X𝑡 = (
𝑇
∑

𝑡
𝑃M
𝑡𝑣 )∕|𝑡| + 𝛤

X. (24)

• Real-time pricing (RTP) includes the market price signals in 𝑝X𝑡 :

𝑝X𝑡 = 𝑃M
𝑡𝑣 + 𝛤X. (25)

While the aggregator’s margin in the ORTP is optimized and may
change in real time, the parameters 𝛤X in Eqs. (24) and (25) are
exogenous model assumptions that do not vary over time. We assume
that 𝛤 S = −𝛤B, and this is set at 0.5 ¢/kWh. Since, in the calculation of
CW, the terms with 𝑝X𝑡 are eliminated, the choice of 𝛤X does not have
any impact on the community’s welfare.

2.7. Data and model parameterization

For the household demand profiles, we use the data from [59]. This
dataset contains high-resolution measured load profiles of 74 different
German households. Data regarding the load and availability profiles
of EVs were obtained using the open-source tool VencoPy [60], based
on the mobility data available in [61]. The translation of the mobility
data into the EV electrical demand and charging availability profiles for
this analysis is described in Appendix A.2. The electricity generation
profile of the PV systems is scaled based on the share of generated
electricity from the installed PV capacity in 2018 in Germany (PV
capacity data was collected from [62]). For 𝑃M

𝑡𝑣 , we use the day-
ahead electricity market prices for Germany in [62]. The aggregator’s
maximum (minimum) sell price 𝑃

S
(𝑃 S) is 8 (3) ¢/kWh, while the

maximum (minimum) buy price 𝑃
B

(𝑃B) is 7 (2) ¢/kWh. The marginal
cost of charging and discharging the battery (𝑃Q

𝑖 ) is 1 ¢/kWh. The SOC
f the BSSs cannot drop below 0 or exceed a maximum value of 1
0 ≤ 𝐴𝑖 ≤ 1). For the user-specific model parameters (𝛶 ), we assume
he values listed in Table 3. The big-M parameters (𝑀S and 𝑀B) in the
ILP and LP formulations are set to 100000. Other parameters will be
9

ntroduced for each case study in the next section.
Fig. 5. Silhouette values for different numbers of clusters.

2.8. MPCB scenario generation

The uncertain attributes in SDPQ are the market price, demand and
V generation of each user. Since these attributes vary continuously
ver time and with temperature, wind speed, cloud cover, etc., the
ggregator needs to take their associated uncertainties into account.
ne approach to generating the required scenarios for the optimization

s the so-called direct-sampling method, which samples directly from
he historical data. Using this approach, if we increase the size of the
ample, the distribution of the scenarios will converge to the actual dis-
ribution of the data. However, performing the optimization for many
cenarios requires excessive computational resources and is impractical.
o provide a practical number of scenarios that are representative of

the historical data, we propose the following MPCB scenario-generation
algorithm:
Step 1: The time series for all attributes is specified according to year,
month, week, day of the week and hour of the day. Then, the data
for all attributes are scaled to the range [−1,1] so that we can use
the Euclidean distance to compare similarities between different data
points. The vector of attributes x has a probability distribution function
𝑓 (x).
Step 2: The data for the attributes are divided into |{}|7 clusters. We
mploy the well-known k-means method to group the dim(x) data into
lusters. To decide on the suitable number of clusters, we perform
sensitivity analysis by applying the k-means method for different

umbers of clusters and choose a value of || that demonstrates the
ighest silhouette value. The silhouette value 𝑠(𝐩) is calculated in (26),
n which 𝑑(𝐩) is the average Euclidean distance between point 𝐩 and
ll the points in its cluster. In this equation, 𝑑′(𝐩) is the smallest
verage Euclidean distance between point 𝐩 and all the points in other
lusters [63]. A larger average silhouette value, i.e., ∑

𝐩 𝑠(𝐩)∕dim(x),
indicates better cohesion within and separation between the clusters.

𝑠(𝐩) =
⎧

⎪

⎨

⎪

⎩

1−𝑑(𝐩)∕𝑑′(𝐩), if 𝑑(𝐩) < 𝑑′(𝐩)
0, if 𝑑(𝐩) = 𝑑′(𝐩)
𝑑′(𝐩)∕𝑑(𝐩)−1, if 𝑑(𝐩) > 𝑑′(𝐩)

(26a)

1 ≤ 𝑠(𝐩) ≤ 1 (26b)

he average silhouette values for different numbers of clusters are
lotted in Fig. 5. We select |{}| = 4, which results in the highest
ilhouette value, as the optimal number of clusters for the k-means
lustering. Moreover, we only retain the attributes that improve the
ilhouette value. These attributes are the hour of day, day of the week,
arket prices, load, and solar generation profiles.

7 The expression |{𝑄}| is used for cardinality of the set {𝑄}.
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Table 3
Users’ technical parameters.

𝛶 𝜃B𝑖 𝜂𝐶𝑖 𝜂D𝑖 𝛬𝑖 𝑍
C
𝑖 𝑍

D
𝑖 𝐺𝑖 𝐿𝑖 𝑃Q

𝑖 𝜃PV𝑖 BSS
[−] [kWh] [−] [−] [−] [kW] [kW] [kW] [kW] [¢/kWh] [kW] [−]

1 20 1 1 1 20 20 20 20 1 20 HES
2 0.01a 0 0.01a 0 0 0 20 20 0 0 ✗

3 10 0.95 0.95 0.99 10 10 20 20 1 10 HES
4 6 0.90 0.90 1 6 6 20 20 1 7 HES
5 50 0.98 0.98 1 50 50 11 11 1 0 EV

aUser 2 does not own a BSS. To avoid division by zero, a very small number is chosen for its 𝜃B𝑖 and 𝜂D𝑖 .
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Fig. 6. Illustrative representation of the scenario-generation algorithm.

tep 3: The mean (𝜇𝑐) and standard deviation (𝜎𝑐) of the data in each
luster 𝑐 ∈  are calculated as:

𝑐 = 𝐸(x) = ∫ x𝑓 (x)d𝑥 (27a)

𝑐 =
√

𝐸((x − 𝜇𝑐 )2) =

√

∫ (x−𝜇𝑐 )2𝑓 (x)d𝑥. (27b)

We then use these values are to generate scenarios in each cluster
separately. Using the calculated means and standard deviations for each
cluster, we generate a vector of random numbers y with a normal
distribution:

y = [y𝑐 ] and 𝑔(y𝑐 ) ≡ 𝑁(𝜇𝑐 , 𝜎𝑐 ). (28)

Here, 𝑁(𝜇𝑐 , 𝜎𝑐 ) is a normal distribution function with a mean value
f 𝜇𝑐 and a standard deviation of 𝜎𝑐 . The data within each cluster
how significantly higher cohesion compared to the alternative of not
sing these clusters, e.g., direct sampling. Fig. 6 shows a simplified
epresentation of the scenario-generation algorithm for three clusters
|{}| = 3) in two dimensions. Note that, depending on the number
f attributes, the actual number of dimensions dim(x) could be greater
han 2.

Fig. 7 shows a comparison of the means and standard deviations of
he actual data (described in Section 2.7) with the scenarios generated
y the direct-sampling and the MPCB approaches. It can be seen that
he distribution of the generated scenarios using the MPCB algorithm
or all attributes are closer to the actual data when compared to the
irect-sampling approach.

. Case studies

In this section, we consider four case studies to demonstrate the per-
ormance of the methodology. The first three are illustrative examples
o show how the algorithm and pricing work. The fourth is a larger-
cale example to demonstrate computational scalability. Table 4 gives
n overview of the model setups of the different case studies.
10
Table 4
Overview of model setups in the case studies.

Case study 𝑇 𝑖 𝑣 𝛶 Demonstration goal

I 2 1 1 1 Convergence of the solution algorithm
II 4 1 1 1 Determination of ORTP
III 4 2 1 1,2 Internal balance of load and generation
IV 8 5 9 1,2,3,4,5 Large-scale stochastic optimization

3.1. Case study I

In the first example, we consider a single prosumager (𝑖 = 1),
arameterized with 𝛶 = 1, an optimization period of 2 h (𝑡 ∈ {1, 2}),
ne scenario with probability of 1 (|{𝑣}| = 1, 𝜙𝑣 = 1), and three
iscretization steps (𝑘 = 3). The prosumager has a constant demand of 5
Wh (𝐿𝑖𝑡𝑣|(𝑡=1) = 𝐿𝑖𝑡𝑣|(𝑡=2) = 5 kWh), and the power generation is 7 kWh
nd 3 kWh in the first and second time steps, respectively (𝐺𝑖𝑡𝑣|(𝑡=1) = 7
Wh, 𝐺𝑖𝑡𝑣|(𝑡=2) = 3 kWh). The market price changes from 0 ¢/kWh in
= 1 to 8 ¢/kWh in 𝑡 = 2 (𝑃M

𝑡𝑣 |𝑡=1 = 0 ¢/kWh, 𝑃M
𝑡𝑣 |𝑡=2 = 8 ¢/kWh).

he BSS is available all the time (𝑈𝑖𝑡 = 1). The discrete options for
ell and buy prices are 𝑝S𝑡 ∈ {3, 5.5, 8} and 𝑝B𝑡 ∈ {2, 4.5, 7}, respectively.
etailed results for the performance of the proposed solution algorithm
re shown in Table 5.

The proposed MBB algorithm changes 𝑝S
𝑡
, 𝑝S𝑡 , 𝑝B𝑡 , and 𝑝B𝑡 at each

teration. In iterations 1 to 7, condition (17) is not satisfied (status A).
teration 8 is the first iteration in which all solutions are discrete for all
ime periods (status B: condition (17) is fulfilled). Since 𝑟 ≥ LB and all
he solutions are discrete, LB is updated for the first time from −1000
o −14 in iteration 9. Similarly, 𝑝X

𝑡
and 𝑝X𝑡 are changed until better

solutions are found in iterations 25, 48, and 53 and the lower bound
updates to 72 (LB=72). After 56 iterations, the algorithm has checked
all the branches and this round is ended (status C). Therefore, the
highest profit for the aggregator with the current discretization steps is
72 (𝑟 = 72 ¢). Thus, if we use the SBB algorithm proposed in [54] with
fixed discrete steps, the optimal solution will be 72 in iteration 53, and
the algorithm will stop after iteration 56. In contrast, in the proposed
MBB algorithm, we modify the discrete steps inside the algorithm to
find a solution that is closer to the global optimal point. In iteration
57, we apply the dynamic partitioning technique and start a new round
in our algorithm (status D). Based on the best discrete result of the last
round, the new discrete options for sale and purchase prices in the new
round are 𝑝B1 ∈ {2, 3.25, 4.5}, 𝑝B2 ∈ {4.5, 5.75, 7}, 𝑝S1 ∈ {3, 4.25, 5.5}, and
𝑝S2 ∈ {5.5, 6.75, 8}.

As the choices are changed, the LB is initialized again with −1000.
Then, 𝑝X

𝑡
and 𝑝X𝑡 are changed until a better discrete solution is found

at iterations 71, 83, and 84 with the aggregator’s profit 𝑟 and LB
equal to 0, 94, and 94.5. Round 2 of the algorithm is finished after
iteration 92. After this, the discrete options are updated once more:
𝑝B1 ∈ {2, 3.25, 4.5}, 𝑝B2 ∈ {5.75, 6.375, 7}, 𝑝S1 ∈ {3, 4.25, 5.5} and 𝑝S2 ∈
{6.75, 7.375, 8}. In round 3, the lower bound of the problem updates
twice, in iteration 99 and 101, to 0 and 105.75, respectively. Fig. 8
shows the transformation of the solution range for the purchase price
(𝑝B) in the time step 𝑡 = 2 in iterations 53, 84, and 101. The remaining
𝑡
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Fig. 7. Comparison of means and standard deviations between MPCB scenario generation, direct sampling, and actual data (sources: [59,62]). Mean values are illustrated with
continuous lines. Standard deviations are shown with dashed lines as confidence intervals.
Fig. 8. Change of solution range (𝑝B𝑡 to 𝑝B
𝑡
) in Case I for 𝑡 = 2.

options for 𝑝X
𝑡

and 𝑝X𝑡 are investigated until iteration 104, after which
he MBB algorithm for this problem is ended. To reach this objective
alue with the SBB algorithm, a larger number of discretization steps
𝑘) and correspondingly more iterations are required.

.2. Case study II

In the second example, the bilevel problem for a simple setup with
ne prosumager (𝑖 = 1), parameterized with 𝛶 = 1, is solved. For a time

period of 4 h (𝑇 = 4) and a single scenario, the model results, electricity
rices, and prosumager’s grid interactions, as well as the input time
eries, 𝑃M, 𝐺𝑖𝑡𝑣|(𝛶=1), and 𝐿𝑖𝑡𝑣|(𝛶=1), are shown in Fig. 9.

In time steps 𝑡 = 3 and 4, the prosumager uses its generation to cover
its load. Note that in our model, the self-consumption of electricity
by prosumagers is considered to be free of charge. Therefore, it is
profitable for the users to use the generated electricity mainly to cover
the own load in most cases. Since the storage is full in this hour,
the residual generation at 𝑡 = 4 is fed into the grid. As the highest
market price occurs at 𝑡 = 4 (𝑃M

𝑡𝑣 |(𝑡=4) = 9 ¢/kWh), the aggregator
increases the purchase price to 𝑝B𝑡 |(𝑡=4) = 5.75 ¢/kWh and incentivizes
the prosumager to discharge the storage. The prosumager completely
11
Fig. 9. Optimization results for Case study II. A: Aggregator’s and market prices. B:
Prosumager’s electricity demand and generation, as well as grid usage and feed-in. C:
Battery SOC of the prosumager.

discharges the BSS in this time step and feeds 20 kWh into the grid
(𝑒B𝑖𝑡𝑣|(𝑡=4) = 𝐺𝑖 = 20 kWh).

3.3. Case study III

In Case study III, we demonstrate how the ORTP reacts to market
prices, limited available line capacity, and the availability of local
generation and storage. Two users with the technical specifications
of 𝛶 = 1 and 2 (see Table 3) are considered. User 2 (𝛶 = 2) does
not have a PV system or BSS. Therefore, this user does not have

electricity generation and cannot have a flexible interaction with the
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Table 5
Detailed results of Case I.

Iteration 𝑡 𝑟 LB 𝑝S𝑡 𝑝B𝑡 𝑝S
𝑡

𝑝S𝑡 𝑝B
𝑡

𝑝B𝑡 Round Status
[−] [ℎ] [¢] [¢] * * * * * * [-]

1 3 2 3 8 2 7
1

2
108 −1000

4 2.0005 3 8 2 7
1 A

1 3 2 3 8 2 7
2

2
106 −1000

3 2.0006 3 3 2 7
1 A

1 6 6 3 8 2 7
3

2
108 −1000

8 2.0005 5.5 8 2 7
1 A

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟖 𝟐 𝟑 𝟖 𝟐 𝟐𝟖 𝟐 −𝟏𝟒 −𝟏𝟎𝟎𝟎 𝟑 𝟐 𝟑 𝟑 𝟐 𝟐 1 B

1 7.9990 4.5002 3 8 4.5 7
9

2
55.6 −14

3 2 3 3 2 2
1 A

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟑 𝟐 𝟑 𝟑 𝟐 𝟐𝟓𝟑 𝟐 𝟕𝟐 𝟔𝟗 𝟖 𝟕 𝟖 𝟖 𝟕 𝟕 1 B

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 5.5 4.5 5.5 5.5 4.5 4.5
56

2
−14 72

5.5 4.5 5.5 5.5 2 4.5
1 C

1 5.4995 4.5 3 5.5 2 4.5
57

2
108 −1000

6.9996 6.9996 5.5 8 4.5 7
2 D

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟑 𝟐 𝟑 𝟑 𝟐 𝟐𝟕𝟏 𝟐 𝟎 −𝟏𝟎𝟎𝟎 𝟓.𝟓 𝟒.𝟓 𝟓.𝟓 𝟖 𝟒.𝟓 𝟒.𝟓 2 B

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟑 𝟐 𝟑 𝟑 𝟐 𝟐𝟖𝟑 𝟐 𝟗𝟒 𝟎 𝟓.𝟓 𝟓.𝟕𝟓 𝟓.𝟓 𝟓.𝟓 𝟓.𝟕𝟓 𝟕 2 B

𝟏 𝟑 𝟐 𝟑 𝟑 𝟐 𝟐𝟖𝟒 𝟐 𝟗𝟒.𝟓 𝟗𝟒 𝟔.𝟕𝟓 𝟓.𝟕𝟓 𝟔.𝟕𝟓 𝟖 𝟓.𝟕𝟓 𝟕 2 B

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 5.5 4.5 5.5 5.5 3.25 4.5
92

2
0 94.5

6.75 5.75 6.75 6.75 4.5 5.75
2 C

1 5.4999 4.5 3 5.5 2 4.5
93

2
108 −1000

8 7 6.75 8 5.75 7
3 D

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟓.𝟓 𝟒.𝟓 𝟓.𝟓 𝟓.𝟓 𝟐 𝟒.𝟓𝟗𝟗 𝟐 𝟎 −𝟏𝟎𝟎𝟎 𝟖 𝟕 𝟖 𝟖 𝟓.𝟕𝟓 𝟕 3 B

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟒.𝟐𝟓 𝟐 𝟑 𝟒.𝟐𝟓 𝟐 𝟑.𝟐𝟓𝟏𝟎𝟏 𝟐 𝟏𝟎𝟓.𝟕𝟓 𝟎 𝟔.𝟕𝟓 𝟔.𝟑𝟕𝟓 𝟔.𝟕𝟓 𝟖 𝟔.𝟑𝟕𝟓 𝟕 3 B

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 3 3 3 3 2 3.25
104

2
94.5 105.75

8 5.75 6.75 8 5.75 5.75
3 C

*: [¢/kWh]. A: (17) is not fulfilled. B: (17) is fulfilled. LB will be updated. C: All branches are checked. End of
this round. D: Dynamic partitioning is applied. Beginning of a new round. Highlighted solution : Best solution
in this round.
u

3

E
c
5

grid. Moreover, we assume that the available line capacity is limited
(𝑊 |(𝑡=1,2,4) = 20 kWh and 𝑊 |(𝑡=3) = 0.6 kWh). The optimization results
and the input series for Case III are presented in Fig. 10. As a result
of a low market price at 𝑡 = 2, the aggregator offers a low sale price
to the users. However, due to the restricted available line capacity,
user 1 cannot charge the BSS completely (𝑒S𝑖𝑡𝑣|(𝑡=2) = 17.526 kWh,
𝑎𝑖𝑡𝑣|(𝑡=2) = 0.78). In hour 3 (𝑡 = 3), user 1 feeds enough electricity into
he community grid to cover the load of user 2 and therefore the load
nd generation of the EC can be balanced locally in this hour. At 𝑡 = 4,

the market price reaches its highest value (𝑃M
| = 8.9). Therefore,
12

𝑡𝑣 (𝑡=4) T
the aggregator increases the purchase price to 𝑝B𝑡 |(𝑡=5) = 5 ¢/kWh and
ser 1 is encouraged to discharge its battery completely.

.4. Case study IV

In Case study IV, we increase the problem size and analyze an
C with a larger number of users and a longer optimization period
ompared to the previous illustrative examples. Five users (|{𝑖}| =
) and eight optimization periods (i.e., |{𝑡}| = 8) are considered.
hese users are relatively diverse and adopt the parameters shown
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Fig. 10. Optimization results for Case study III. A: Aggregator’s and market prices. B:
sers’ electricity demand and generation, as well as grid usage and feed-in. C: Battery
OC of the prosumager.

n Table 3. For this case, we study the sensitivity of the aggregator’s
xpected profit to the scenarios. In a simulation experiment, we vary
he number of scenarios (|{𝑣}|) from 1 (indicating a deterministic
olution) to 50 and solve the SDPQ over 7000 times.8 We use the MPCB

scenario-generation algorithm (introduced in Section 2.8) to provide
the required scenarios for this experiment. Note that every scenario is
unique and used only once in this analysis. Moreover, as a simplifying
assumption, we consider a uniform probability of occurrence for all the
scenarios (𝜙𝑣 = 1∕|{𝑣}|,∀𝑣).

The results of this experiment are presented in Fig. 11. Each box
lot in this figure displays the distribution of the aggregator’s profit
objective value of the optimization problem in SDPQ) for a fixed
umber of scenarios. In this case, the fluctuation of the profit stems
rom the variance of the underlying time series in each of the generated
cenarios. The trend of the median values indicates that, with an
ncreasing number of scenarios, the aggregator’s expected profit tends
o drop. We observed that solving the SDPQ with a higher number
f scenarios, e.g., larger than 100, the median value falls below 100
. In the formulated stochastic problem, regardless of the number of
cenarios, the aggregator chooses a single set of prices for the users
see also (1a)). With an increasing number of scenarios, these prices
re less tailored to each individual scenario and therefore the overall
fficiency of the ORTP drops. Moreover, the aggregator’s profit is more
ensitive to the scenarios when the number of scenarios is lower. For
nstance, in the deterministic solution, i.e., |{𝑣}| = 1, the profit of the
ggregator varies between 104 and 382 ¢ (267% change) depending
n the selected scenario. This range is reduced to 121 and 174 ¢ (43%
hange), when the number of scenarios is 47. Due to the considered
niform probability of scenarios, the impact of extreme scenarios re-
uces when the number of scenarios increases. This leads to a smaller
pread of profit in the cases simulated with high numbers of scenarios.

Due to computational limitations, for the comparative analysis in
ection 4, we solved the SDPQ with nine scenarios (|{𝑣}| = 9). In

8 These cases are optimized using high performance computer Tegner PDC
ith 24 computational nodes and 32 threads [64].
13
Section 4.2, we present a sensitivity analysis and elaborate on the de-
pendency of the computational efforts to solve the formulated problem
on the numbers of users, optimization time steps, and scenarios.

4. Comparison of results

4.1. CW comparison

The results regarding the aggregator’s profit, users’ total costs, and
the CW of the EC for the proposed ORTP tariff together with those de-
rived from AP and RTP schemes are presented in Table 6 (the contents
of this table are plotted in Appendix A.3). With the implementation
of the ORTP, the CW of the EC has the highest value relative to the
two other tariff strategies. In the setup in which only one flexible user
interacts with the aggregator (Case study I), the RTP tariff performs as
well as the ORTP tariff. In more complicated setups with multiple users,
the ORTP tariff outperforms the RTP tariff. The AP tariff, the current
pricing strategy for many small-scale electricity users in Germany,
demonstrates the lowest CW value. This tariff does not contain any
real-time signals relating to the scarcity or surplus of electricity (in
the market or the EC). Note that we did not monetize the achieved
grid relief by the ORTP in Case study III. In such a case, we would
expect that the achieved CW in the ORTP tariff would outperform the
benchmark tariffs by an even higher margin.

In all case studies, the aggregator’s profit reveals the highest and
lowest values for the ORTP and AP versions, respectively. However,
the aggregator’s profit in the benchmarks depends on the choice of
the aggregator’s margin. (𝛤X). Larger 𝛤X values will lead to greater
profits for the aggregator, which come at higher costs for the users.
This will be a policy decision for the EC stakeholders as the aggregator’s
profit increases the EC’s assets; these may be redistributed to users or
invested.

4.2. Computational comparison

Table 7 compares the performance of the MBB algorithm and the
benchmark algorithms introduced in Section 2.5 for the four case stud-
ies (the contents of this table are plotted in Appendix A.3). The model
statistics and the number of discretization steps (𝑘) in different cases
under investigation are given in 8. We carried out the optimization
for both the MILP and LP models on GAMS 25.1.3 platform using the
CPLEX 12.8 solver. The case studies I–IV are optimized on a laptop with
Intel Core i7-8650U CPU running at 1.90 GHz with eight nodes and
16 threads. Note that our algorithm does not use parallel computation
and therefore, even though multiple processors were available, all the
calculations were carried out on a single CPU node.

The optimal solution of SDPQ (the profit of the aggregator) depends
substantially on the level of discretization (𝑘); a larger number of
discretization steps will converge closer to the optimal solution of the
original problem in (1).

The results in Table 7 clearly show that the MBB algorithm outper-
forms the SBB algorithm (from [54]) and the MILP model, as it is able
to reach a better objective value with fewer iterations and less com-
putation time. These improvements increase in more complex cases.
For example, in Case study IV, the MBB algorithm converges to an
objective value, which is respectively 9.2% and 11% higher than those
from the SBB algorithm and MILP model with 83.1% and 91.8% less
solver execution time. This indicates the efficient performance of our
proposed MBB algorithm, especially for solving large-scale problems.

A convergence plot of the proposed MBB and the benchmark SBB
algorithms for Case study III is presented in Fig. 12. Starting with a
lower value 𝑘, the MBB algorithm converges to the objective value
of 76.49 after 768 iterations for the first time. After this step, the
discretized prices are dynamically modified, and LB is set back to
−∞. After five more rounds, the algorithm converges to the objective
value of 123.25 in iteration 2189. In contrast, with 𝑘 = 5, the SBB
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Fig. 11. Sensitivity analysis of the impact of the number of scenarios on the aggregator’s profit in Case study IV. Box plots show the distribution of profit with the corresponding
uartiles (25%, 50%, 75%).
Fig. 12. Convergence plot of the benchmark SBB and MBB algorithms for Case study III. The LB values lower than zero are not shown in the figure.
Table 6
Comparison of aggregator’s profit, users’ costs and CW under different tariff strategies.
Tariff Case study I Case study II Case study III Case study IV

𝑟 [¢] 𝐶 ′ [¢] CW [¢] 𝑟 [¢] 𝐶 ′ [¢] CW [¢] 𝑟 [¢] 𝐶 ′ [¢] CW [¢] 𝑟 [¢] 𝐶 ′ [¢] CW [¢]

ORTP 105.7 1.7 104 93.36 −13.31 106.67 99.6 52.3 47.3 181.1 −2.7 183.8
AP −14 2 −16 12.59 −0.67 13.26 4.3 199.9 −195.6 23.5 −31.3 54.8
RTP 18 −86 104 22.45 −84.22 106.67 28.4 338.6 −310.2 50.2 −56.1 106.3
Table 7
Comparison of the computational performance.
Case Number of iterations [–] Nodes explored [–] CPU time [s] Profit (𝑟) [¢]

MILP SBB MBB MILP SBB MBB MILP SBB MBB MILP SBB MBB

I 1226 306 104 203 296 102 5.12 0.69 0.37 105.75 105.75 105.75
II 70439 5959 1701 19945 5610 1608 35.39 18.22 5.85 93.36 91.17 102.34
III 876382 8586 2188 141848 7761 2138 347.2 26.83 6.9 99.55 99.55 123.25
IV 50227324 41254 6086 190145 30058 4021 10935 5270 924.3 181.08 184.18 201.14
14
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Fig. 13. Sensitivity analysis regarding the impact of optimization time steps, number of users, and scenarios on the computation time. The numbers on the 𝑥-axis indicate the
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Table 8
Model statistics.

Case Bin. Con. Const. |𝑘|𝑀𝐼𝐿𝑃 |𝑘|𝑆𝐵𝐵 |𝑘|𝑀𝐵𝐵

I 38 115 198 9 9 3
II 44 163 264 5 5 3
III 48 277 495 5 5 3
IV 819 8799 16035 4 4 3

Bin.: Number of binary variables. Con.: Number of continuous variables. Const.: Number
of constraints.

algorithm, achieves the optimal value of 99.55 after 8587 iterations.
This shows that a significant efficiency improvement is made by the
MBB algorithm. Note that each round of optimization is finished, when
the termination criteria (see Section 2.4) are fulfilled.

To assess the sensitivity of the computation effort to three key model
parameters, i.e., number of optimization time-steps, users, and sce-
narios, we perform another simulation experiment. The starting point
of our sensitivity analysis is a reference case, which is parameterized
identically to Case III (i.e., with five time steps, one scenario, and two
users). In three parallel analyses (one for each parameter), we increase
the parameters and carry out more than 600 simulations with unique
scenarios. The required CPU time for the simulated cases is presented
in Fig. 13.9 The 𝑥-axis in Fig. 13 shows the increased number of time
teps, scenarios, and users (with the maximum value of 14) in each
nalysis.

The computation time of the reference case (black box in Fig. 13)
aries between 0.6 and 1297 s. This fluctuation indicates a strong de-
endency of the computation effort to the input time series (electricity
emand, generation, and market prices). The findings of the simulation
xperiment reveal that the required computation time rises significantly
hen prolonging the optimization period. Simulations with 19 time

teps (14 steps more than REF) require an average computation time

9 For this simulation experiment, we used the processor AMD EPYC
.25 GHz and 16 GB memory from the recent KTH Dardel system [65].
15
of 4370 s. In contrast, optimizing the formulated problem with a
larger number of users does not increase the needed solution time
substantially. When increasing the number of scenarios, we observed
that stochastic optimizations with larger |{𝑣}| were solved faster than
eterministic optimizations. For instance, the maximum recorded com-
utation time for the cases with 13 and 15 scenarios (12 and 14
cenarios more than REF) is 226 and 259 s. These findings indicate that
he proposed model scalable with respect to the number of scenarios
nd users in the EC. In contrast, increasing the optimization period
bove 14 time steps seem to have a strong impact on the required
omputation effort.

. Discussion of limitations and implications for external validity

The results of our analysis demonstrate that the implementation
f DR in ECs with the help of smart real-time pricing strategies can
otentially lead to technical and economic benefits. Our evaluation did
ot assess the practical implementation of this pricing strategy. The
ollowing are pointers to future research needs.

Concerning the economic benefits of the proposed pricing strategy, a
uestion arises about how the generated welfare is redistributed among
he stakeholders; i.e., what are the financial incentives for the users
o participate in this business model, rather than switching to another
etailer. In this regard, the absence of competition among aggregators is
limitation of our model that should be addressed in future research.
oreover, the observed actor behavior in this analysis could be dis-

orted by the addition of regulatory-induced charges to the electricity
onsumer price.10 Expensive electricity consumer prices generally

10 These regulatory-induced charges do not contain any time-varying signal
and comprised more than 70% of the end-user electricity price in Germany in
the year 2021.
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incentivize a higher level of behind-the-meter self-consumption for the
prosumagers [66]. Because we neglected the impact of these consumer-
price components, future research should assess the adaptability of such
real-time pricing schemes in different regulatory environments.

With an efficient operation, ECs can support the power network
and enhance the integration of renewable energies. In this paper, we
demonstrated that the ORTP strategy can incentivize an operation that
contributes to power-grid relief. Quantifying the value of the delivered
flexibility requires a more comprehensive study with the help of a
distribution grid model. Along with these benefits, the establishment of
ECs can arouse concerns regarding inefficient investments and increas-
ing overall energy-system costs. For instance, if sharing the electricity
across the EC reduces the revenues of the distribution grid, raising the
grid charges for other consumers is likely. This effect may exacerbate
inequalities and incentivize local self-consumption even further. In this
case, solutions such as distribution-network tariffs are suggested in the
literature [67]. Therefore, further studies are required concerning the
impact of the (collective) self-consumption in ECs on the larger energy
system. A useful approach for such analysis is the coupling of models
with different perspectives (e.g., local and national perspectives) [68].

Regarding the technical implementation, this paper assumes that the
bidirectional communication infrastructure and the required measuring
and control equipment for an efficient and secure transmission of data
is available in the EC. Therefore, we have neglected the investment
costs in our calculations. For the case of Germany, users need to be
equipped with smart-meter gateways, which are devices that auto-
matically communicate measurements from connected smart meters
to external market participants; these allow them to send incentives
or commands for load adjustments to local control boxes such as
energy-management systems [69]. While a general advantage of the
price-based DR measures is respecting users’ privacy [8], a limitation
of the single-level reduction approach in solving bilevel optimization
problems (compared to distributed algorithms such as [35]) is the
necessity for sharing information about users with the aggregator. The
technical evaluation of the technologies and algorithms that enable
an efficient and secure transmission of the necessary data is part of
another field of research [70]. Concerning our proposed methodology,
we demonstrated that the presented modeling approach and solving
technique can significantly contribute to a more effective solution of the
bilevel problem when compared to the benchmark solving approaches.
Real-world applications, however, can lead to optimization problems
with longer durations and more heterogeneous users. Improving the
performance of the proposed methodology to satisfy real-world-scale
problems should be the focus of future research. In this context, one
direction to improving the scalability potential of the algorithm is the
simultaneous evaluation of the created branches on multiple processors
using parallel computing [71].

6. Conclusion

The expansion of distributed electricity generation and storage po-
tential poses challenges for the efficient technical and economic opera-
tion of the power system. Smart-grid infrastructure has opened the door
to many innovative DR business models that can contribute to meeting
these challenges while creating financial benefits for the participating
actors. In this context, we have proposed an ORTP methodology for a
16

profit-maximizing community-owned aggregator in an EC, that is not
isolated from the wholesale market. In our model, the aggregator trades
bilaterally with users in the EC (e.g., prosumagers and electric vehicles)
while coping with restrictions regarding the maximum available line
capacity behind the point of common coupling. Moreover, the stochas-
tic formulation of the problem provides a solution for the aggregator to
deal with uncertainties regarding the wholesale market prices as well as
users’ electricity demand and generation. The required representative
scenarios for these sources of uncertainty are produced by develop-
ing a multi-parameter cluster-based scenario-generation approach. To
capture the hierarchical nature of the decision-making process in the
considered setup, the interplay between the users and the aggregator is
formulated as a bilevel optimization problem. To solve the resulting
problem efficiently, we reformulated the original stochastic bilevel
program as a stochastic disjunctive program and proposed a novel
MBB algorithm that applies a linear quasi-relaxation approach and a
dynamic partitioning technique. We assessed the effectiveness of our
proposed methodology in four cases studies.

Our results show that the derived ORTP leads to higher community
welfare for the EC. Furthermore, if necessary, the ORTP can provide
useful grid services by creating incentives to offset the EC’s demand and
supply locally. The comparison of the ORTP with the average pricing
strategy (with no time-varying component) shows a significant im-
provement in all studied cases. However, the effectiveness of the ORTP
against a simple real-time pricing strategy (including only signals from
the wholesale market) becomes evident when the diversity of users
increases. Moreover, our proposed algorithm outperforms the bench-
mark algorithms both in computational performance and community
welfare. These enhancements were found to be more substantial in the
large-scale case studies. There are two major drivers for the achieved
improvements: first, by applying the quasi-relaxation approach a large
number of binary variables are eliminated; second, the implemented
dynamic partitioning technique disentangles the optimization results
from the disjunctive parameters. Our simulation experiments show that
the computational effort is sensitive to the number of optimization time
steps. In contrast, the proposed model is observed to be scalable in
terms of the number of users and scenarios. One direction of future
studies includes assessing the impact of ECs on the German electricity
market. Another objective of the subsequent studies will be the further
development and enhancement of the proposed EC model and the
solution algorithm.
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Appendix

A.1. Proof of Proposition 1

We start with the objective on the left-hand side of (2), which is
defined in (29a). In (29), {𝑝S𝑡 , 𝑝B𝑡 } and 𝜒 are sets of decision variables for
the user and the aggregator, respectively and 𝜒 = {𝑒S𝑖𝑡𝑣, 𝑒

B
𝑖𝑡𝑣, 𝑎𝑖𝑡𝑣, 𝑧

C
𝑖𝑡𝑣, 𝑧

D
𝑖𝑡𝑣}.

The expression −
∑

𝑖𝑣𝜙𝑣𝐶𝑖𝑣(𝜒) is not a function of 𝑝S𝑡 and 𝑝B𝑡 . Therefore,
it can be added to the objective function in (29a) without changing the
optimal solution, i.e., (29a) and (29b) are equivalent. From (1), the ex-
pression 𝑟(𝑝S𝑡 , 𝑝

B
𝑡 ) can be replaced with its equivalent ∑𝑖𝑡𝑣𝜙𝑣𝑟𝑖𝑡𝑣(𝑝

S
𝑡 , 𝑝

B
𝑡 ),

as done in (29c). Then, we can extract 𝜙𝑣 in (29d); this has the term
(𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝

B
𝑡 ) − 𝐶𝑖𝑣(𝜒)), which is the CW. The terms 𝑟(𝑝S𝑡 , 𝑝B𝑡 ) and −𝐶𝑖𝑣(𝜒)

indicate profit of the aggregator and user 𝑖, respectively. CW can be
defined as a summation of revenue of all the participants in the EC
(users and the aggregator). Therefore, CW = 𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝

B
𝑡 ) − 𝑐𝑖𝑡𝑣(𝜒). Note

that 𝜙𝑣 is a fixed parameter that does not change with the decision
variables.

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

𝑟(𝑝S𝑡 , 𝑝
B
𝑡 ) ≡ (29a)

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

(

𝑟(𝑝S𝑡 , 𝑝
B
𝑡 ) −

∑

𝑖𝑣
𝜙𝑣𝐶𝑖𝑣(𝜒)

)

≡ (29b)

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

(

∑

𝑖𝑡𝑣
𝜙𝑣𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝

B
𝑡 ) −

∑

𝑖𝑣
𝜙𝑣𝐶𝑖𝑣(𝜒)

)

≡ (29c)

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

∑

𝑖𝑡𝑣
𝜙𝑣

(

𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝
B
𝑡 ) − 𝐶𝑖𝑣(𝜒)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=CW

)

(29d)

We have started from the left-side of (2) and demonstrated that it is
equivalent to the right-side of (2), which is CW. This shows that solving
(1) is equivalent to maximizing the CW, as stated in (2). □

A.2. EV parameterization

The optimization of the charging schedule for EVs requires a delib-
erate consideration of their mobility pattern. Assuming a price-inelastic
transport demand, we should know when the EV is available for charg-
ing/discharging from/to the grid (the battery storage of the prosumager
is connected to the grid the whole time) and what the electricity con-
sumption of the EV is. Due to a lack of suitable empirical open-source
data, in this work, the VencoPy tool was deployed to derive these data.
VencoPy uses data from the German national travel survey [61] and
aims to estimate future electric vehicle fleet charging flexibility [60]. In
the first step (trip diary building), the individual trips are consolidated
into a user-specific travel diary. In this step, the driven distance and
the travel purpose (e.g., shopping, returning home, etc.) are allocated
to their respective hour and merged into the daily travel diaries. In
the next step, using a basic charging infrastructure model, the charging
availability is allocated through a binary True–False mapping of the
respective trip purposes. Since we focus on the technical load-shifting
potential, and due to lack of sufficient data, user behavior (e.g., state-of-
charge dependent plugging decisions) is disregarded. The result of the
charging-availability allocation is a binary grid connection profile that
describes whether the EV is connected to the grid at a given hour. To
calculate the electricity flow from the battery to the electric motor, the
driven distance is multiplied by an assumed average specific electricity
consumption in 100 kWh/100 km. The two resulting profiles, together
with the technical parameters of the storage, are then passed to the EC
model. Fig. 14 gives an overview of the described steps to calculate the
EV load and availability profiles. The interested reader can refer to [60]
for a more detailed explanation of the internal calculations of VencoPy.
17
A.3. Visualization of the comparative results

In this section, we visualize the comparative results presented in
Section 4. Fig. 15 shows the achieved community welfare with ORTP
compared to the benchmark tariffs AP and RTP. Fig. 16 compares
the computational performance of the MBB with the benchmark ap-
proaches SBB and MILP. Figs. 15 and 16 respectively correspond to
Tables 6 and 7.

Fig. 14. Data preparation using the VencoPy tool.

Fig. 15. Community welfare for the studied tariffs in different case studies.
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Fig. 16. Computational performance of the benchmark MILP approach compared to the SBB and MBB algorithms. A: Number of iterations. B: Number of explored nodes. C: CPU
ime. D: Aggregator’s profit (𝑟).
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