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Analysis of Turbomachinery
Averaging Techniques
In this paper, various averaging techniques commonly used in turbomachinery applications
are analyzed. It is shown how the work average relates to Miller’s mechanical work poten-
tial and that it is, in a certain way, consistent with Hartsel’s cooled turbine efficiency. It is
found that a key to understand these approaches is to analyze the impact that entropy var-
iations at inflows have on them. Second-order asymptotics of mixing entropy are used to
establish a close relationship between flux and work averages. It is found that the mixing
entropy asymptotic due to entropy modes is identical for both averages. The work
average, along with Miller’s mechanical work potential analysis, is as optimistic as the
entropy average for vorticity and acoustic modes, but as pessimistic as the flux averaging
for entropy variations. This explains why mechanical work potential-based analysis is pes-
simistic about the inflow and thus optimistic about the efficiency of a turbine for high
entropy variations in the inflow, e.g., in the presence of hot streaks or film cooling.
Radial averaging techniques are discussed and their impact on turbine performance is
shown. Our findings are illustrated by means of the analysis of steady and unsteady flow
simulations of a 1.5 stage turbine configuration. [DOI: 10.1115/1.4056057]

Keywords: computational fluid dynamics (CFD), fluid dynamics and heat transfer
phenomena in compressor and turbine components of gas turbine engines

1 Introduction
Quantifying the aerodynamic performance of a turbomachinery

component is a highly non-trivial task. It requires the knowledge
of multidimensional distributions of various derived flow quantities
and thus relies on highly resolved and accurate flow fields, no
matter whether they are obtained from experiments or computa-
tional fluid dynamics (CFD). Apart from the problem of predicting
the flow, a further difficult task is to choose and implement a
method to obtain integral quantities such as efficiency or loss
parameters. This latter problem, in turn, usually consists in the com-
putation of certain surface averages.
Cumpsty and Horlock [1] gave an excellent overview of the most

common ways to compute appropriate average quantities in turbo-
machinery. They argue that the particular choice of an averaging
technique depends on the purpose for which the average is being
created and is therefore to a lesser extent a matter of preference.
It would, however, be premature to conclude that the choice itself
is obvious. For instance, the efficiency of a cooled turbine has
been a subject of debate. A multitude of different approaches is ana-
lyzed by Young and Horlock [2]. With the introduction of the
so-called mechanical work potential, Miller [3] has proposed yet
another approach to assess turbine efficiency, thereby questioning
the established performance metrics.
Rather than state our own position in this debate, the aim of this

paper is to compare the approaches found in Refs. [1–3] and analyze
the mechanisms by which they differ. As is shown in this paper, the
difference of the approaches can essentially be reduced to the way
in which the surface averages involved postulate a certain mixing
entropy, i.e., the entropy rise due to averaging. Moreover, one of
the keys to understand the different techniques and their impact
on performance is the averaging entropy rise which is caused by
entropy variations. In particular, we show that this averaging
entropy is identical for the work average, the mass-averaged flow
mechanical work potential, and, at least approximately, the mixed-
out state. Analyses that use increased averaged entropies for the

incoming flow yield higher performances. This explains why
some of the approaches result in much greater efficiencies than
others in the case of cooled turbines.
Moreover, we show that Hartsel’s turbine efficiency [4] is closely

related to the work average, in that it is compatible with the subdi-
vision and merging of incoming streams. As is shown in this paper,
the flow mechanical work potential-based turbine efficiency can be
summarized as Hartsel’s approach based on work averages with the
additional feature of incorporating the so-called reheat effect. This
last effect means that losses created locally within the flow at a pres-
sure above the dead-state pressure increase the internal energy and
thus the potential to generate shaft work in the subsequent expan-
sion process [3,5].
A further topic is the flux average or mixed-out state which is

important for CFD simulations; in that steady Reynolds-averaged
Navier–Stokes (RANS) simulations usually rely on conservative for-
mulations of mixing planes, i.e., matching conditions for the radial
distributions of circumferentially mixed-out states. In this paper, we
use the second-order asymptotic analysis of the flux average mixing
entropy [6–8] to relate the flux average in a concise form to the
other, more optimistic, averages. In particular, a second-order asymp-
totic analysis of the work average shows that flux and work average
mixing entropies coincide for entropy modes. For vorticity and acous-
tic modes, however, the second-order approximation of the work
average mixing entropy vanishes. Hence, the difference between
flux and work averages can be viewed as the potential to decrease
mixing losses further downstream, e.g., via the so-called differential
work mechanism studied by Rose and Harvey [9] and Rose et al. [10].
Regarding the problem of radial flux averaging, two approaches

are discussed here: (i) the so-called complete radial equilibrium
[11,12] and (ii) a rather simplistic method that generalizes the cir-
cumferential averages; this can be computed for any rotational
surface but lacks a physical rationale such as an idealized mixing
process. As the application shows, both can yield significant
mixing entropies which, in contrast to circumferential flux averages,
can hardly be justified on the basis of an expected mixing process,
especially if subsequent blade rows could, in principle, homogenize
reversibly the distorted flow.
The paper is organized as follows. We first revisit the definitions

of the different averages in a rather general manner, avoiding
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assumptions such as perfect gas. We then analyze the mixing entro-
pies mathematically and illustrate our findings by means of the
steady and unsteady flows in a 1.5-stage turbine.

2 Averaging Techniques
In the following, the definitions and the main properties of four

important and widely used averaging techniques are outlined.
This list, however, is far from being exhaustive. Other commonly
used averages are discussed in Ref. [1]. All averages treated in
this paper are mass and energy conservative in that the absolute
stagnation enthalpy is computed from mass averaging, so that the
energy flux equals the average energy flux, i.e., the flux computed
from the average values. Note that for a calorically perfect gas, the
absolute stagnation enthalpy is proportional to the absolute stagna-
tion temperature.

2.1 Entropy Average. The entropy average computes the
absolute stagnation pressure from the mass-averaged entropy and
absolute stagnation enthalpy [1,11]. It is applicable to flows
across all analysis surfaces in a turbomachinery except in certain
partial backflow situations which are beyond the scope of this
study. The entropy average is optimistic insofar as it is based on
the unrealistic assumption that all flow inhomogeneities can mix
out without increasing the overall entropy. Note that availability,
defined as the specific stagnation exergy bt= ht− T0s with some
reference temperature T0, is a linear combination of stagnation
enthalpy and entropy. Therefore, mass averaging bt is equivalent
to computing bt from the entropy average, which explains the alter-
native term availability average [1].

2.2 Mechanical Work Potential. To correctly characterize
the effect of heat transfer on the work output of a turbine, Miller
[3] introduced a measure of the maximum useful work that can
be extracted from a fluid by an isentropic turbine exhausting to a
given ambient pressure. More precisely, the so-called mechanical
work potential is defined as

m = e − ese + pD(v − vse) +
1
2
‖U‖2 = et − hse + pDv

whereas the flow mechanical work potential is

mf = h − hse +
1
2
‖U‖2 = ht − hse

Here, the subscript “se” refers to the corresponding value obtained
by isentropic expansion to the so-called dead-state pressure,

denoted by pD. For example, Tse satisfies

∫Tse
T
cp(T

′)d log T ′ = R log
pD
p

( )

which implies

∫Tse
Tt

cp(T
′)d log T ′ = R log

pD
pt

( )

since

∫Tt
T
cp(T

′)d log T ′ = R log
pt
p

( )

Hence, hse can alternatively be characterized as the stagnation
enthalpy that is obtained by adiabatically expanding the flow until
the stagnation pressure attains pD. Figure 1 illustrates the terms of
the flow mechanical work potential drop in real and isentropic
expansion processes. The mechanical work potential density can
be rewritten in the form

ρm = ρet − ρhse − pD

Now, the reference state (denoted by se) is completely determined
by the constant value of pD, the entropy, and the gas composition,
i.e.,

hse = h(pD, s, Y1, . . . , Yk)

Since s and Yk satisfy transport equations with diffusion and source
terms [13], we obtain a transport equation for hse. The correspond-
ing diffusion and source terms may be derived from

Dhse
Dt

=
∂h
∂s

Ds

Dt
+
∑
k

∂h
∂Yk

DYk
Dt

= Tse
Ds

Dt
+
∑
k

gk,se
DYk
Dt

(1)

Here, the first partial derivatives are to be understood as derivatives
of the enthalpy as a function of s, p and the mass fractions Yk at
p = pD. Note that unlike entropy production, the source term of
hse can have both signs. For instance, for a constant composition
fluid, we obtain

∂(ρhse)
∂t

+ div[ρUhse] + Tsediv
�q

T
= Tse Φvisc −

�q · gradT
T2

( )
(2)

and therefore

∂(ρhse)
∂t

+ div ρUhse +
Tse�q

T

[ ]
= TseΦvisc + �q · grad Tse

T
(3)

Since ρet− ρhse and ρm differ by a constant, the inviscid flux for
the conservation law for ρm is given by

ρUht − ρUhse = ρUmf

Therefore, an (inviscid) flux balance of the mechanical work poten-
tial amounts to mass averaging the flow mechanical work potential
mf which, in turn, amounts to mass averaging ht and hse.
Mass averaging ht, Y andmf yields work-potential-based average

values for entropy and stagnation pressure by solving

h(pD, smwp, Yṁ
) = ht

ṁ −mf
ṁ (4)

and computing

pmwp
t = p(smwp, ht

ṁ
, Yṁ

) (5)

In other words, the work-potential-based average defines a uniform
state that would yield the same energy flux, flow mechanical work

Fig. 1 Enthalpy–entropy chart for real and ideal expansion
processes
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potential, and overall mass flow, as well as identical species mass
flows in the case of multicomponent flow.
Concerning the role of the dead-state pressure, observe that, for

thermally perfect gas, two states (p1, h1), (p2, h2) with identical
composition lie on the same isentrope if and only if

∫h2
h1

dh

RT
= log

p2
p1

(6)

In the case of perfect gas, this implies that replacing pD with another
value p̃D means multiplying all values of hse with the constant factor
(p̃D/pD)

(γ−1)/γ . Therefore, smwp as defined by Eq. (4) is independent
of pD. In the general case of a calorically imperfect gas or a non-
constant gas composition, a modified dead-state pressure will
result in a value hse which will depend nonlinearly on the original
one. Mass averages of this modified hse are therefore expected to
give, in general, different values for entropy and stagnation
pressure.

2.3 Work Average. The third average discussed here is the
work average, which is based on a so-called work averaged stagna-
tion pressure [1,11]. Given a distribution of the stagnation quantities
pt, Tt and mass flow densities dṁ, the virtual work average mixing
process consists in expanding and compressing each infinitesimal
streamline to reach a single stagnation pressure, pwt , such that the
specific work exerted to or extracted from each streamline integrates
to zero. All other thermodynamic quantities are computed from this
stagnation pressure and mass-averaged stagnation enthalpy. Since
in an adiabatic compression or expansion to pwt , the specific work
added is

h(pwt , s, Y) − ht

It follows that the overall flowmechanical work potential vanishes if
the dead-state pressure is set to pwt . The flowmechanical work poten-
tial is thus a strictly monotonic, continuous function of the dead-state
pressure pD and changes sign when pD ranges from the minimal to
the maximal stagnation pressure. It follows that the work-averaged
stagnation pressure is a unique value in this range.
In the case pD = pwt , the overall flow mechanical work potential is

zero, i.e.,

mf
ṁ = ht

ṁ − h( pt
w, smwp, Yṁ

) = 0

Hence, smwp is exactly the entropy of the state given by the work-
averaged stagnation pressure and the mass averages of the stagna-
tion enthalpy and mass fractions. This means that the mechanical
work potential average (cf. Eq. (5)) and the work average give
the same stagnation pressure for this particular choice of dead-state
pressure. For perfect gas, the mechanical work potential averaged
entropy is independent of the dead-state pressure, so, in this case,
this equality holds for all dead-state pressures. This fact has
already been noted by Miller without further explanation in
Ref. [3]. From the arguments in the previous subsection,
however, it follows that this identity cannot be expected to hold
for a general thermally perfect gas.
To compare work and entropy averages with each other, assume

all streamlines have been expanded and compressed isentropically
to ptw, as in the virtual experiment explained above. This new dis-
tribution agrees with the original one in both averages, so to
compare the two averagings, it suffices to consider the case of
uniform stagnation pressure. Now,

ds =
1
Tt
dht −

1
ρtTt

dpt

implies that for a given value of pt, the function ht 7! s(ht, pt) has
the second derivative −1/(cp(Tt)T2

t ) and is thus strictly concave.

Therefore,

s(ht, pt)
ṁ ≤ s(ht

ṁ
, ptw)

with equality if and only if the stagnation enthalpy and thus the
entropy are constant (cf. Appendix A). Note that the left-hand
side of the inequality corresponds to the entropy computed from
the entropy average whereas the right-hand side is the entropy
derived from the work average. It follows that the averages are iden-
tical for uniform entropy distributions, otherwise the entropy
average is more optimistic.
The last argument also shows that for uniform total pressure but

varying entropy, entropy averaging yields an increased stagnation
pressure. In particular, entropy averaging, in contrast to work aver-
aging, may result in a stagnation pressure outside the range of the
input distribution.

2.4 Flux Average. Flux averaging [11] consists of integrating
the fluxes and finding a uniform flow state with an identical overall
flux. This last step amounts to finding the inverse of the flux func-
tion, which may not always have a unique solution. First, both nor-
mally subsonic and supersonic solutions may exist. Second, there
may be no solution at all, in particular, if the distribution contains
partially reversed flow, i.e., the normal flow component changes
sign. For small deviations from a uniform state, however, the flux
inversion problem is well-posed if the normal flux Jacobian for
that uniform state is invertible, i.e., if the normal Mach number is
neither zero nor one. In this paper, flux averages are considered
only for this non-singular case.
When applying flux averaging to three-dimensional turboma-

chinery flows, the question of the correct flux components and sim-
ilarly the velocity components of the uniform state arises. In some
situations, it seems natural to choose Cartesian components, and
thus search for a state with constant x-, y-, z-components that
yield equal Cartesian momentum flux integrals. In turbomachinery,
however, this may not be an appropriate method. For instance, con-
sider a rotationally symmetric duct flow. If x is the machine axis,
then integrating the y- and z-components of the momentum flux
always gives zero. Hence, no information about the swirl and the
radial flow component can be extracted from these flux integrals.
In this paper, two ways to compute integral flux-averaged values
for turbomachinery are discussed.
The first one, which is rather simple to implement, consists in

treating the cylindrical components of the flow states as Cartesian,
e.g., by setting Ux, Uy, Uz to the axial, radial, and circumferential
velocities, respectively. Note that the z-component of the momen-
tum flux coincides, up to a factor of r−1, with the angular momen-
tum flux. Hence, taking a flux average along a line of constant
radius, as opposed to rotational surfaces, conserves the angular
momentum in that the average state yields the same angular
momentum flux as the original distribution. Taking the circumfer-
ential flux average for all radii gives a radial distribution of circum-
ferential flux averages. In case of an unsteady time periodic flow,
one should integrate the fluxes both in time and in the circumferen-
tial direction. The relevance of these flux averages for CFD simula-
tions is that the distributions on both sides of a rotor–stator interface
have to match if the interface is to be conservative. Mixing planes
for steady flow simulations are usually formulated in a conservative
fashion [14]. Hence, the mixing entropy due to flux averaging,
usually observed as a jump in the circumferentially mass-averaged
entropy [7], should be attributed to the steady turbomachinery flow
modeling rather than the way the flow is analyzed.
To define a physically more meaningful flux average over a rota-

tional surface, one can seek a complete radial equilibrium, i.e., a
“mixed-out” radial distribution that corresponds to a steady flow
in an annular domain with constant radii and which could at least
theoretically be achieved by some virtual dissipation process. An
important assumption in these virtual experiments is that the
fluxes across the annular walls integrate to zero. In particular, the
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walls are assumed inviscid and adiabatic. Pianko and Wazelt [11]
and later Prasad [12] describe how the radial equilibrium state
can be determined from the integral of axial and angular
momenta, the mass flow, and the energy flux through a rotational
surface. In contrast to the Cartesian flux average, the flux inversion
problem results in a nonlinear equation system that must be solved
with an iterative (e.g., Newton) method. Moreover, the approach
seems limited to axial turbomachinery. In a narrow annular duct,
i.e., with a ratio of outer to inner radii close to 1, this method will
coincide with the simple flux average on constant radii described
above, since both conserve mass and energy as well as axial and
angular momentum.

3 Averaging and Mixing Loss
In the following, the averages defined in the preceding section are

analyzed with regard to their inherent mixing entropy, i.e., the
entropy rise of work and flux averages when compared to the
entropy average:

Δsw = sw − sṁ, ΔsF = sF − sṁ

Since the stagnation enthalpy is identical for all averages discussed
here and since we assume that the entropy is always consistent with
the stagnation quantities, one can easily translate mixing entropies
into mixing stagnation pressure losses.

Constant Area Mixing of Two Streams. To illustrate the
impact of flux averaging on loss accounting, we consider the
entropy rise coefficient

TtΔsF

ht − hout
, ΔsF = sout − sṁin

for the constant area mixing problem of two streams which differ by
a given Δpt and ΔTt, as explained, for instance, in the textbook by
Greitzer et al. [15, Sec. 5.5] and illustrated in Fig. 2. Here, the value
sout is the entropy that results from a virtual mixing process and thus
corresponds to the flux-averaged entropy. Figure 3 shows the con-
tours of the entropy rise coefficients for a mean flow Mach number
of 0.5. The stagnation pressure difference is non-dimensionalized
with the mean compressible dynamic pressure pdyn. The values of
the flux average (solid black lines) correspond to the unavoidable
entropy rise of a virtual mixing process with adiabatic and inviscid
walls. A similar plot containing only the flux-averaged values can
be found in Refs. [15,16]. The additional contour lines plotted
here correspond to the work-averaged entropy rise Δsw (red
dashed lines), i.e., the entropy rise due to work averaging the two
inflow streams. In contrast to the mixed-out entropy rise, the

entropy rise of work averaging is no longer a strictly convex func-
tion. In particular, it is zero along the line of constant entropy var-
iations (red solid line). The blue line corresponds to zero velocity
difference. Along this line, the two entropy rise coefficients
coincide.

3.1 Second-Order Analysis of Mixing Loss. Recall that the
work average can be computed from the mass-averaged dead-state
enthalpy hse and the mass-averaged stagnation enthalpy. To approx-
imate the difference between work and entropy average, one can
first (cf. Appendix A) estimate

hse
ṁ − h(pD, sṁ) = hse − hse(pD, sṁ)

ṁ

=
1
2
∂2h
∂s2

∣∣∣
(sṁ ,pD)

(s − sṁ)2
ṁ
+ O((s − sṁ)3)

=
T(sṁ, pD)

2cp
(s − sṁ)2

ṁ
+ O((s − sṁ)3) (7)

This implies the following second-order approximation:

Δsw =
∂s
∂h

∣∣∣
(h(sṁ ,pD),pD)

(hse
ṁ − hse(s

ṁ)) + O((hse
ṁ − hse(s

ṁ))2)

=
1
2cp

(s − sṁ)2
ṁ
+ O((s − sṁ)3)

which can be rewritten in terms of non-dimensionalized entropies in
the form

Δsw

R
≈

1
2
γ − 1
γ

(s/R − sṁ/R)2
ṁ

(8)

For circumferential flux averages, we have the second-order
expansion

ΔsF =
∑
ω,m,l

ΔsFω,m,l + O(‖q − q‖3) (9)

where ΔsFω,m,l is the approximate entropy rise attributed to the lth
mode of the harmonic with angular frequency ω and the circumfer-
ential mode order m [7]. ΔsFω,m,l is the unavoidable mixing loss that
would occur if this mode dissipated in some process that conserves
mass, momentum, and energy. l runs over the five mode types
(entropy, two vorticity, and two acoustic modes). Schlüß andFig. 2 Virtual mixing process of two streams

Fig. 3 Constant area mixing loss for two streams with identical
pressure and cross-sectional area
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Frey [8] show that

ΔsFω,m,l =
1

2ṁΔt
vg ·

∫t0+Δt
t0

∫
Γ
〈q′, q′〉ρsdA dt (10)

for all but cutoff acoustic modes (see Eq. (B2) of Appendix B).
Here, vg is the normal group velocity of the corresponding mode
type, q′ is the disturbance of the Fourier harmonic, projected onto
the line spanned by the lth right-eigenvector of the dispersion rela-
tion. The inner product 〈q′, q′〉ρs is the inner product associated to
the Hessian of the entropy density (see Eq. (B1)). For an infinites-
imal entropy mode, we have

ρ′

ρ
= −

s′

cp

and p′ as well as U′ vanish. Hence, using Eq. (B1),

ΔsFω,m,1
R

=
1
2
|s′|2
cpR

=
1
2
γ − 1
γ

(s′/R)2

which is, up to third order, identical with the second-order approx-
imation of the work average mixing entropy, i.e., the right-hand side
of Eq. (8).
Observe that for cutoff acoustic modes, the left-hand side of

Eq. (10) is zero, if only left- or only right-running modes have
non-zero amplitudes. In case both are present, there is an additional
term that intertwines cutoff modes, see Ref. [8] for details.

4 Turbine Efficiency
One of the standard definitions of turbine efficiency for configu-

rations with coolant streams goes back to Hartsel [4]:

ηHart =
ṁ ht

ṁ
in − ht

ṁ
out

( )
∑

i ṁi ht
ṁ
in,i − ht,out,is,i

( ) (11)

where ht,out,is,i is computed from the ith mass-averaged stagnation
enthalpy and appropriately averaged inflow and outlet stagnation
pressures. More precisely, ht,out,is,i is the stagnation enthalpy that
is obtained if the ith stream is adiabatically expanded until the stag-
nation pressure attains pt,out. i runs over all inflows including the
main gas flow and the coolant streams. For an uncooled turbine,
this definition reduces to the standard isentropic “total-to-total” effi-
ciency ηtt [2].
For cooled turbines, Young and Horlock [2] suggest to use a

so-called fully reversible efficiency where an ideal mixing process
is thought to mix out the main gas flow and the coolant streams
without generating entropy. Using the nomenclature of this paper,
this so-called fully reversible efficiency, denoted by ηfr, is just the
standard single-stream efficiency in Eq. (11) with inflow values
defined as an entropy average over the main inflow and all
coolant streams. Since it is shown above that the difference
between work and entropy averages is essentially a function of
the entropy variation, with a second-order approximation of the dif-
ference given by Eq. (8), we see that the fully reversible analysis
does not differ much from the work-averaged total-to-total analysis
unless there are significant entropy variations. However, if second-
ary inflows with much lower entropy exist, then this difference is
responsible for the highly optimistic fully-reversible average
inflow state which, as a consequence, leads to a relatively low effi-
ciency. This phenomenon is illustrated with an academic example
below. A similar behavior is expected for unsteady flows in high-
pressure turbines with the migration of hot streaks.
The mechanical work potential-based efficiency is defined as the

ratio between the specific work extraction and the mechanical work

potential drop [3]:

ηmwp =
ht

ṁ
in − ht

ṁ
out

mf
ṁ
in −mf

ṁ
out

(12)

Note that all the different turbine efficiencies may be written in the
form

η =
Pgross

Pideal
=

Pgross

Pgross + Ploss
(13)

with Pgross = ṁ(h
ṁ
t,in − h

ṁ
t,out) being the gross power output. Pideal is

the corresponding denominator. Ploss=Pideal−Pgross is the differ-
ence between the ideal and the actual power output and represents
the “lost” power. Now, Hartsel’s definition can be expressed as

PHart
loss =

∑
i

ṁi h(sout, pt,out) − h(sin,i, pt,out)
( )

where the average bars indicate one particular averaging type. In the
limit of infinitely many streamlines, this formula converges to the
lost power modeled in the mechanical work potential-based analysis

Pmwp
loss =

∫
(hse,out − hse,in)dṁ

with dead-state pressure pD = pt,out. The above integral is to be
taken over all streamlines. Hence,

Pmwp
loss =

∫∫sout
sin

Tseds dṁ (14)

Since in the case of a perfect gas, the mechanical work potential-
based average coincides with the work average, we can interpret
Hartsel’s efficiency using work averages as the mechanical work
potential-based efficiency with a particular choice for the dead-state
pressure. Moreover, Hartsel’s efficiency is compatible with work
averages in the sense that it is invariant under the subdivision or
merging of inflows as long as the work average is used.
The important feature of the mechanical work potential-based

efficiency analysis with a general dead-state pressure is to take
into account the so-called reheat effect. Since

Pmwp
loss =

∫∫sout
sin

T pD
se

T
pwt,out
se

T
pwt,out
se ds dṁ (15)

each local entropy production appearing in the work-averaged
total-to-total analysis is thus reduced by a factor of

T pD
se

T
pwt,out
se

=
T pD
se

T
w
t,out

Here, the superscript marks which dead-state pressure is to be used.
Miller argues that the lost power modeled in the other efficiency
analyses is not necessarily completely lost but corresponds to heat
that can be converted into useful work by subsequent turbine
stages, the optimal work extraction being given by the Joule-cycle
efficiency [3,5].
Summarizing, two very different effects are responsible for the

mechanical work potential-based analysis to yield, for high-
pressure turbines, much greater efficiencies than the fully reversible
analysis by Young and Horlock [2]. First, the mechanical work
potential-based averaging attributes a high mixing entropy to
inflows with strong entropy variation. Second, the mechanical
work potential-based efficiency takes into account the reheat effect.
Both Hartsel’s and Miller’s approach can be viewed as a loss

analysis which is based on the dead-state enthalpy hse with an
appropriately chosen dead-state pressure. Since hse corresponds to
the inviscid flux of a nonlinear function of the entropy (and compo-
sition in case of variable gas mixtures), one cannot expect hse to
always increase. Indeed, both Miller [3] and Young and Horlock
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[2] give academic examples of configurations with negative losses
for the corresponding approaches.

5 Implementation
All techniques described here have been implemented in the post-

processing tool of DLR’s in-house CFD software TRACE. The post-
processor carries out a chain, or more generally a directed graph, of
elementary tasks (input/output, computation of integrals or derived
quantities, etc.). The averaging process essentially consists of tasks
that compute (i) flux integrals, mass flow weighted integrals, etc.
over surfaces and bands of nearly constant radius and (ii) tasks
that compute flow states and derived quantities from these integrals.
For unsteady flow simulations, the integrals are computed and
summed up inside a loop over time instances which preferably
are the solver time-steps of a time period. For frequency domain
simulations, the time instances should be chosen to be the sampling
points of the harmonic balance (HB) formulation (see Refs. [17,18]
for the method used here). This way, consistency with the numerical
boundary conditions is achieved.

6 Test Case
To illustrate the properties of different averagings and their

impact on efficiency, the flow through the 1.5 stage cold air
turbine rig operated by the Institute of Jet Propulsion and Turboma-
chinery at RWTH Aachen is simulated and analyzed. Experimental
data from five-hole probes for this case have been compared to

steady and unsteady TRACE results in the past by Restemeier
et al. [19] who found that unsteady RANS simulations showed
better agreement between numerical and experimental results. An
overview of the configuration employed here is given in Fig. 4.
The configuration is identical to that used by Morsbach [20]. The
results of two steady and one harmonic balance simulation are ana-
lyzed. The second steady simulation is purely academic and differs
from the first by the injection of cold air along strips on the first
stator’s pressure and suction sides, marked in light blue in Fig. 4.
The overall cooling mass flow is 4% of the main inflow. The
coolant total temperature is about 50% lower than that at the
main inflow. Since the fluid is modeled as perfect gas, one should
think of this flow as being representative of much higher tempera-
tures since, for instance, phase transitions expected for CO2 at the
temperatures here are simply discarded. The motivation for this
setup, called “cooled” in the following, is to illustrate the impact
of high entropy variations in the inflows as they typically occur in
cooled high-pressure turbines. The third, uncooled configuration
is a harmonic balance simulation [18] with three harmonics for
each rotor–stator interaction. The second stator row consists of
two passages to account for the clocking effect between stators 1
and 2. All simulations are fully turbulent and use Menter’s shear
stress transport (SST) turbulence model in a log ω-formulation.
Figures 5 and 6 show the distributions of streamwise vorticity

and Mach number as measured by the five-hole probes in compar-
ison with the steady uncooled CFD result. As observed in the liter-
ature, the configuration shows relatively pronounced secondary
flow structures [21]. The area-averaged axial velocity of the
steady and unsteady simulations is compared with the experimental
data in Fig. 7. The overall agreement between numerical and

Fig. 4 Aachen cold air turbine test case with measurement planes (green)

Fig. 5 Streamwise vorticity at measurement plane between first
stator and rotor. Steady CFD versus experiment. Fig. 6 Mach number at plane 1. Steady CFD versus experiment.
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experimental data highlights that the flow solutions used here are
not only representative of CFD results but also of real turbomachin-
ery flow fields.
The mixing entropy of flux and work averages has been analyzed

for the steady simulations at the outlet of the first stator and, for the
uncooled simulation, for the outlet of the rotor, see Fig. 8. The
second-order approximations (i) for all modes and (ii) for the
entropy mode alone (cf. Eqs. (8) and (9)) are plotted in gray and
show a good agreement with the flux and work average mixing
entropies, respectively. Somewhat higher discrepancies can be
seen for the cooled configuration. Figure 9 shows the entropy distri-
butions for cooled and uncooled setups along the first stator outlet.
A strong entropy variation that causes an additional mixing entropy
in the order of magnitude of the vorticity modes can be seen for the

cooled setup. In the uncooled case, work and entropy averages show
no significant difference. These results are consistent with our find-
ings in the section on constant area mixing (see Fig. 3). Whenever
the entropy variation is small, the work average has no significant
mixing entropy. In case of high entropy variations, the mixing
entropy due to work averaging may attain values that are compara-
ble in magnitude to that of flux averaging.
Finally, to study integral quantities, different radial averaging

procedures are shown in Fig. 10 and compared in terms of
entropy. The solid lines correspond to the circumferential averages
of the uncooled steady CFD at the outlets of the first stator and the
rotor, and the dashed lines represent a certain radial average. The
blue solid line corresponds to the complete radial equilibrium
(denoted by “rad eq”) computed with Prasad’s procedure [12], the

Fig. 7 Circumferentially averaged axial velocity at measurement planes. CFD versus
experiments.

Fig. 8 Mixing entropies for uncooled ((a) and (b)) and cooled (c) steady CFD: (a) Stator 1 outlet, (b) Rotor outlet, and (c) Stator 1
outlet (“cooled”).
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dashed blue line being its radial entropy average. The red dashed
line represents the integral value computed with the simplistic
flux average method outlined above (denoted by “flux/flux av”).
When compared with the radially work-averaged circumferential
flux average (“flux/work av”), both radial flux averaging procedures
can result in a significant additional mixing entropy, as can be seen
in particular for the rotor outlet. Note that the additional entropy
caused by taking the complete equilibrium can hardly be linked
to the unavoidable mixing entropy of an idealized mixing process
inside the present configuration as the neighboring blade rows
could be designed in such a way that they largely homogenize the
radial distribution of the flow. In situations where there is no poten-
tially rectifying structure, e.g., for flows into propelling nozzles,
other approaches such as the so-called thrust average should be
considered [1]. At the stator outlet, the “simplistic” flux averaging

Fig. 9 Entropy at plane 1. Uncooled versus cooled
configuration.

Fig. 10 Entropy (black) flux averages (red), complete radial equilibrium (blue), and their radial averages (dashed).
Steady uncooled configuration.

Table 1 Comparison of efficiency definitions for first stage

ηHart ηmwp

Work av Entropy av Flux/work av Flux/flux av pD= pt,Rw pD= pwS2 ηfr

Steady 0.00% 0.02% −0.58% −0.99% 0.00% 0.20% 0.02%
HB −0.18% −0.18% −1.10% −1.44% −0.18% 0.02% −1.18%
“Cooled” −1.54% −1.52% −2.06% −2.37% −1.54% −1.30% −9.23%
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approach (“flux/flux av”) yields a negative mixing entropy which
indicates that this radial flux average does not correspond to some
uniform flow state that could be attained far downstream after suf-
ficient diffusion and dissipation.
Table 1 lists the efficiencies of the first stage (first stator and

rotor) as predicted by three simulations. The values shown corre-
spond to the difference between the result and the steady uncooled
work-averaged-based analysis. The efficiency is computed with dif-
ferent approaches (Hartsel, mechanical work potential, and “fully
reversible” analysis) and in the case of Hartsel’s efficiency using
different averaging techniques. The results show for all configura-
tions that if the dead-state pressure is set to the work-averaged
outlet stagnation pressure, the mechanical work potential-based
efficiency coincides with Hartsel’s efficiency using work averages.
Moreover, if the dead-state pressure is set to the exit static pressure
behind the second stator, a slight increase is seen for the mechanical
work potential-based efficiency. The fully reversible analysis gives
the same value as the entropy average-based analysis for uncooled
configurations. In contrast, the work average type mixing of the dif-
ferent streams in case of Hartsel’s approach show significantly
higher efficiencies than the fully reversibly analysis for the
cooled configuration. Finally, flux averaging results in the well-
known efficiency drop. A further decrease in performance is pre-
dicted when the flux average is applied in the radial direction as
well.

7 Conclusions
In this paper, various common averaging techniques have been

studied with regard to their mathematical properties, underlying
rationales, and relationships between them. The flow mechanical
work potential is found to be closely related to the work average.
As has been stated earlier in the literature, the corresponding aver-
ages are identical for perfect gas. The additional important feature
of work potential-based analysis is that it relates the losses to the
capability of a Joule cycle to convert the generated heat into
useful work. For non-constant gas properties, the mechanical
work potential-based averages depend on the dead-state pressure
although the relevance of this dependency for practical applications
has not been worked out here and should be the subject of future
studies.
The averages have been compared in this article in terms of their

mixing loss, i.e., the entropy difference between the mass-averaged
entropy and the entropy calculated from the particular averaging. It
is shown that the work average is always equally or more pessimis-
tic than the entropy average, with equality only for distributions that
are isentropic and have constant gas composition. For constant gas
composition, the entropy rise due to flux averaging can be approx-
imated up to second order with respect to the disturbance ampli-
tudes. This quadratic approximation, in turn, can be decomposed
into contributions from different disturbance types (entropy, vortic-
ity, and acoustic modes). It is found that a corresponding asymptotic
analysis for the work average yields mixing losses that are identical
to those of flux averaging for entropy modes, but vanish for vortic-
ity and acoustic modes. Hence, Cumpsty and Horlock’s conclusion
that in turbomachinery practice, entropy and work averages will not
differ much can be expressed in a mathematically precise way as
follows. The additional work average loss is approximately propor-
tional to the second moment of entropy in the input distribution.
Taking the complete radial equilibrium of flux averages can

result in a significant mixing entropy that in the context of a turbo-
machinery design seems overly pessimistic. In contrast, radial
distributions of temporally and circumferentially flux-averaged
quantities are compatible with the flow modeling of steady
mixing plane simulations and therefore appropriate for their analy-
sis. Taking the entropy or work average of these radial distributions
limits the pessimism of flux averagings to circumferential and tem-
poral disturbances. The mixing entropy due to this hybrid averaging
can be taken as a measure of the modeled mixing losses that are

due to the mixing plane approach and which could potentially
decrease if unsteady effects were taken into account.
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Nomenclature
e = internal energy
g = Gibbs energy
h = enthalpy
ṁ = mass flow
p = pressure
�q = heat flux
s = entropy
t = time
v = specific volume
i = imaginary unit

m = mechanical work potential
R = specific gas constant
T = temperature
U = velocity vector
mf = flow mechanical work potential
D f = Jacobian of f
H f = Hessian of f

cv, cp = specific heat capacities
Xk, Yk = mole and mass fractions

Greek Symbols

γ = specific heat ratio
ρ = density

Φvisc = viscous dissipation rate
ω = angular frequency

Subscripts

D = dead state
se = value after adiabatic expansion to dead-state pressure
t = stagnation quantity

Superscripts

F = flux average
fr = fully reversible (efficiency)
is = isentropic
ṁ = mass average

mwp = mechanical work potential
tt = total-to-total (efficiency)
w = work average

Appendix A: Second-Order Asymptotics of Averages
Consider n state variables q1, …, qn and a derived quantity y=

f(q) where f is a smooth, possibly nonlinear function. The compar-
ison of averaging techniques can be boiled down to the problem of
finding the difference between (i) averaging y and (ii) computing y
from average quantities q. For simplicity, assume that the averaging
is mass-weighted although the following arguments are more
general. For an analysis surface Γ, we have the following
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consequence of Taylor’s theorem:

y − f (q) =
1
ṁ

∫
Γ

f (q) − f (qṁ)
( )

dṁ

=
1
ṁ

∫
Γ
Df (qṁ)[q − qṁ]

+
1
2
(q − qṁ)THf (qṁ)(q − qṁ)dṁ + O(‖q − qṁ‖3∞)

=
1
2
(q − qṁ)THf (qṁ)(q − qṁ)

ṁ
+ O(‖q − qṁ‖3∞)

whereD f andH f denote the Jacobian and Hessian of f. Hence, up to
third order, the second derivative of f at qṁ determines the differ-
ence of the averaging processes. Moreover, using the integral
form for the remainder term of the first-order Taylor expansion,
we have

f (q) − f (qṁ) = Df (qṁ)[q − qṁ]

+
∫1
0
(q − qṁ)THf ((1 − t)qṁ + tq)(q − qṁ)(1 − t)dt

Since the average of the linear term vanishes, we have

y − f (qṁ) =
∫1
0
(q − qṁ)THf ((1 − t)qṁ + tq)(q − qṁ)

ṁ
(1 − t) dt

This last equation shows that the difference is always positive (neg-
ative), if the Hessian H f is positive (negative) definite. This corre-
sponds to the case of a strictly convex (concave) function f.

Appendix B: Asymptotic Expansion of Mixing Losses
For two-dimensional time periodic ideal gas flow, Fritsch [6] and

Fritsch and Giles [7] first presented an asymptotic mixing loss
formula in the form of Eq. (9). Schlüß and Frey [8] recovered this
formula and showed that it is a consequence of the fact that the
Euler equations form a hyperbolic system and possess a convex
entropy–entropy flux pair. The general formula in Ref. [8] expresses
each summand in terms of the normal group velocity vg and the
square of a certain norm of the disturbance amplitude of the corre-
sponding mode. This squared norm is the inner product defined by
the Hessian of the entropy density as a function of conserved quan-
tities. With primitive components ρi′, Ui

′, pi′, this inner product is
given by

〈q′1, q′2〉ρs = cvρ
ρ′1/ρ

a

U′
1/a

a

p′1/ p
a

⎛
⎝

⎞
⎠

H
γ 0 −1
0 γ(γ − 1) 0
−1 0 1

⎛
⎝

⎞
⎠ ρ′2/ρ

a

U ′
2/a

a

p′2/ p
a

⎛
⎝

⎞
⎠
(B1)

Here, aa and pa denote the velocity of sound and pressure derived
from the area-averaged state qa. The second-order approximate con-
tribution to the mixing entropy of the lth mode can now be

expressed as

ΔsFω,m,l =
1

2ṁΔt
vg ·

∫t0+Δt
t0

∫
Γ
〈q′q′〉ρs dA dt (B2)

with Δt being the time period. When the up- and downstream cutoff
acoustic modes with identical frequencies and mode orders have
both non-zero amplitudes, they give an additional contribution
which, as shown in Ref. [8], must therefore be taken into account
for unsteady simulations of rotor–stator interactions.
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