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Zusammenfassung

Druckstöße sind ein verbreitetes Phänomen in strömungstechnischen Systemen. Sie können
zum Beispiel durch das plötzliche Abbremsen einer Flüssigkeit beim schnellen Schließen eines
Ventils hervorgerufen werden und können zu potentiell zerstörerisch hohen Drücken führen.
In der Folge kann die Verdünnungswelle niedrige Drücke hervorrufen, was dazu führen kann,
dass die Flüssigkeit kavitiert. Diese Kavitation hat einen großen Einfluss auf das Verhalten der
Druckschwingungen.

Druckstöße in Wasser wurden in der Vergangenheit ausführlich untersucht. Im Vergleich
dazu gibt es wenig Forschung mit kryogenen Medien als Testflüssigkeit. Kryogene Medien sind
allerdings besonders relevant im Bereich der Raumfahrtantriebe. Um die Übertragbarkeit der
Erkenntnisse von Wasser auf kryogene Medien bewerten zu können, müssen die Unterschiede
im Kavitationsverhalten zwischen diesen Medien und die daraus resultierenden Auswirkungen
auf das Druckstoß-Verhalten bekannt sein. Dazu trägt die vorliegende Arbeit bei, indem sie
bestimmte Aspekte der hochfrequenten Druckschwankungen während der Kavitation und deren
Unterschiede zwischen Wasser und flüssigem Stickstoff untersucht.

Die Messdaten wurden anhand charakteristischer Merkmale in den Drucksignalen geclustert,
um eine aussagekräftigere statistische Auswertung zu ermöglichen. Das Verhalten der Intensität
des Rauschens über die Zeit wurde innerhalb mehrerer aufeinanderfolgender Kavitationstäler
ausgewertet. Es hat sich gezeigt, dass sich das Rauschen in dem Bereich des Rohres, in dem
Kavitation vorliegt, in Wasser unabhängig von dem Rauschen in der Flüssigkeitssäule verhält,
während in flüssigem Stickstoff eine starke Kopplung ersichtlich war.

In Wasser wurde die Ausbreitung von Druckpeaks untersucht, mit dem Ziel, Aussagen über
den Ursprung dieser Peaks zu treffen. Diese Untersuchung ergab, dass eine auffällig große Zahl
an Peaks aus einem Bereich nahe des Ventils stammt. Es wurde daher angenommen, dass diese
Peaks vom Kollaps von Kavitationsblasen stammen.

In flüssigem Stickstoff wurde ein charakteristischer Peak auf dessen zeitliches Auftreten und
seine Breite hin untersucht. Die Ergebnisse legen eine Übereinstimmung mit der Druckwelle
nahe, die laut der Theorie zu erwarten ist. Die Abweichungen von der Theorie könnten zu
einer verringerten Schallgeschwindigkeit auf Grund der Kavitation und einem Abriss der
Flüssigkeitssäule am Ventil passen. Einhergehend mit diesen Peaks, wurde ein hochfrequentes
Rauschen mit einer diskreten Frequenz von 25 kHz beobachtet. Es wurde eine Methode
entwickelt, um die Position der Quelle dieses Rauschens zu ermitteln. Die Ergebnisse zeigen
einen Zusammenhang zwischen Ort der Quelle und der Zugspannung, die auf Grund der
Verdünnungswelle auf die Flüssigkeit wirkt. Demnach geht eine höhere Zugspannung damit
einher, dass der Ursprung des Rauschens näher am Tank liegt.
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Abstract

Pressure surges are a common phenomenon in fluid dynamic systems. They can, for example,
occur when stopping a fluid by closing a valve rapidly and may lead to destructively high
pressures. Subsequently, the resulting rarefaction wave can lead to low pressures, potentially
causing the liquid to cavitate. The presence of cavitation has a drastic impact on the overall
pressure oscillations.

While water as a test fluid has been studied extensively in the past, comparably little
attention has been paid to cryogenic media. However, cryogenic media are of particular
importance for space propulsion systems. In order to assess the transferability of findings
from water to cryogenic media, the differences in the cavitation behavior between those types
of fluids and the resulting consequences for the pressure surge behavior need to be known.
This thesis contributes to that by investigating certain aspects of the high-frequency pressure
fluctuations during cavitation and their differences between water and liquid nitrogen.

The measurements were clustered according to characteristic features of the pressure
readings in order to allow for a more informative statistical evaluation. The behavior of the
noise intensity over time was evaluated within multiple subsequent cavitation valleys. It was
found that in water the noise in the cavitation region of the pipe behaves independently from
the noise in the liquid column, while a strong coupling was apparent in liquid nitrogen.

In water the propagation of pressure peaks was investigated in order to draw conclusions
on the origin of those peaks. It was found that a dominant number of peaks originated from a
region close to the valve. These peaks were therefore attributed to bubble collapse.

In liquid nitrogen a characteristic peak was investigated in terms of timing and duration.
The results suggested agreement with the main pressure wave predicted by theory. Deviations
from the theory could fit to a reduced speed of sound due to cavitation and a column separation
at the valve. High-frequency noise with a discrete frequency of 25 kHz was observed during
these peaks. A method for tracking the point of origin of this noise was proposed. The results
showed a correlation between the source location and the tension caused by the rarefaction
wave. A higher tension goes along with a point of origin closer to the tank.
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1
Introduction

Pressure surges are rapid changes in pressure that propagate through the system as pressure
waves. They have the potential to cause devastating damage to such systems if they are not
accounted for. Pressure surges are generally caused by sudden changes in flow velocity, as they
occur for example when a valve is closed quickly. When designing any kind of fluid dynamic
system the occurrence of pressure surges must be considered.

In the propellant feed system of space propulsion systems pressure surges can be created in
various ways: From priming of evacuated feed lines to the valve closure at the end of chill-down
or at engine shutdown. The extent of potential damage caused by such pressure surges can be
seen from the fourth launch attempt of the soviet N-1 rocket, which was part of the manned
lunar program N1-L3. The shutdown of the central engines of the first stage during flight
caused pressure surges which led to the destruction of one of the oxygen pumps. The resulting
fire caused the destruction of the launcher [1]. During development of the European Automated
Transfer Vehicle (ATV) pressure surges with peak pressures above 220 bar were observed and
required changes in the design [2].

Naturally, pressure surges occur in various other fields as well. An especially prominent
example is civil engineering. Several accidents due to pressure surges were recorded in pipelines
and hydropower stations, in some cases with tragic consequences. Some of them were attributed
to pressure surges, where the rarefaction wave led to cavitation up to the rupture of the liquid
column ("column separation") [3].

While the basic phenomenon of pressure surges is well understood and can be predicted
accurately, the influence of cavitation is still hard to predict precisely by calculations. Most
research so far was conducted with water as the test fluid since water is easy to handle and a
fluid with many applications. However, in the field of liquid-propellant rocket engines, cryogenic
fluids are commonly used. The cavitation behavior of cryogenic liquids is known to differ
strongly from water. In order to assess the transferability of findings from water experiments
to cryogenic liquids, it is therefore important to understand how these differences affect the
pressure surge behavior.

This thesis is intended to contribute to this open field of research. Pressure surge experiments
were previously conducted with both, water and liquid nitrogen (LN2) at DLR Lampoldshausen.
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1. Introduction

The pressure surges were generated by rapidly closing a valve in a pipeline with initially steadily
flowing liquid. The pressure was recorded at different locations along the pipe. During these
tests pressure fluctuation exceeding the standard fluid hammer theory were observed during
cavitation.

In this thesis certain aspects of these fluctuations will be investigated in detail and compared
between water and LN2. The focus will lie on the behavior of the noise intensity over time
during the presence of cavitation, and on the interaction and relationship between pressure
fluctuations in the cavitation region with fluctuations in the liquid column with the goal to
establish hypotheses on the cause of those fluctuations.
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2
Theoretical background

As a preparation for the evaluation, the important theoretical foundations will be discussed in
the following. Focus will lie on the fluid hammer theory and the bubble dynamics of cavitation.

2.1 Pressure surges in pipelines

Pressure surges in general are rapid changes in pressure due to a change in flow velocity that
propagate through liquid conveying pipelines away from their point of origin. While this work
concentrates on pressure surges induced on the upstream side of a rapidly closed valve, it
should be mentioned here that the valve closure also leads to a low-pressure wave travelling
downstream. In space propulsion systems pressure surges can also occur during the priming
process of evacuated feed lines [4]. Pressure surges can as well be induced by harsh shutdown
and start of pumps [5, 6].

Classical pressure surge theory

The classical pressure surge theory will be explained on a simple system as depicted in Fig. 2.1.
This system only consists of a tank, a pipeline and a fast closing valve. The tank is pressurized
with p0 and kept at this constant pressure. The ambient pressure behind the valve is pa and
the pipeline has the length L. A sequence where the fluid flows steadily into the environment
at t0 and the valve is closed at t1 with an indefinitely small closure time shall be considered.
The fluid at the valve is stopped abruptly and the pressure rises accordingly. The change in
pressure and velocity propagates towards the tank with the speed of sound of the liquid a.
This compression wave is reflected at the tank after L/a (t2 in Fig. 2.2) which acts as an open
boundary condition, meaning that the pressure needs to remain constant. Therefore a wave
inducing a flow velocity towards the tank propagates towards the closed valve, where it is
reflected after 2L/a at a closed boundary condition, which requires zero velocity. This leads to
a low pressure wave traveling upstream which stops the flow. This wave is again reflected at
the tank after 3L/a as a compensation pressure wave which goes along with a positive flow
velocity (directed towards the valve). When this wave reaches the valve at t3 or 4L/a, the
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2. Theoretical background
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Figure 2.1: Exemplary system for fluid hammer consideration

initial conditions are restored (p0 and v0) which leads to a repetition of the cycle [5]. This
idealized sequence is depicted in Fig. 2.2 with the pressure on the left and the velocity on the
right.

Since the wave travels through the pipe four times during one cycle it becomes clear, that
the duration of one cycle equals 4L/a and consequently the frequency of this main pressure
oscillation equals (4L/a)−1.

The initial pressure rise ∆p = p1 − p0 depends on the change in momentum of the fluid. It
can be determined by Joukowsky’s equation [7]

∆p = ρ · a ·∆v, (2.1)
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Figure 2.2: Idealized fluid hammer theory
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2.1 Pressure surges in pipelines

with the fluid’s density ρ, the speed of sound a and the change in velocity ∆v. In the case of
the complete closure of a valve the fluid is stopped to zero velocity, therefore ∆v corresponds
to the initial velocity v0. In this case the maximum pressure rise ∆p is reached if the valve
closure time tv is smaller than half a period of the cycle described above. This condition can
be formulated as [3]

tv < 2 · L

a
. (2.2)

When neglecting friction (and if no cavitation is present), the pressure drop during the
rarefaction wave has the same ∆p as the initial pressure rise.

The speed of sound is an influential parameter in those considerations. In pipelines as
considered in this thesis the speed of sound is not simply a fluid property but also depends on
the elasticity of the pipe. This was already described by Korteweg in 1878 [8]. The speed of
sound is therefore calculated as

a =
√︄

K/ρ

1 + [(K/E) (D/e)] c1
, (2.3)

with the fluids bulk modulus of elasticity K and density ρ and the pipes Young’s modulus E,
diameter D and wall thickness e. The parameter c1 is obtained from the Poisson’s ratio ν by

c1 = 2e

D
(1 + ν) + D

(︁
1− ν2)︁

D + e
(2.4)

for thick-walled pipes as used in this thesis. [9]
The oscillation of pressure and velocity along the pipe can be calculated with the

fundamental 1D water-hammer equations [10]

∂H

∂t
+ v

∂H

∂x
− v sin θ + a2

g

∂v

∂x
= 0, (2.5)

∂v

∂t
+ g

∂H

∂x
+ v

∂v

∂x
+ fv · |v|

2D
= 0, (2.6)

with the head H = p/(ρg), the pipe slope θ, the gravitational acceleration g, the Darcy-
Weißbach friction factor f and the pipe diameter D. These water-hammer equations can
be solved using the method of characteristics. Besides the one-dimensionality, this model is
based on a few other assumptions: The wave speed is assumed to be constant. The effect
of undissolved gas is therefore neglected. The pressure must not fall below the fluid’s vapor
pressure, so cavitation does not occur. And the pipe needs to be completely filled with liquid
at any point in time. Additionally, fluid-structure interactions are assumed to be neglectable
and linear elasticity is assumed for pipe wall and fluid. Lastly, the friction is approximated as
quasi-steady [10].

In this work, the influence of cavitation on the pressure surge behaviour is of particular
importance and shall be described in the following.

Pressure surges with cavitation

If the theoretical pressure change ∆p would cause the pressure to drop below the vapor pressure
of the liquid pv the liquid is put under tension and cavitation can occur if nuclei are present.
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2. Theoretical background

Cavitation can develop in the form of distributed cavitation, that is, in the form of many
separate vapor bubbles. Under severe conditions, single cavities can develop, which occupy
almost the whole cross section of the pipe. This is known as column separation. The two types
can be qualitatively distinguished via the volumetric ratio of vapor (Vv) and total mixture
(Vm)

αv = Vv

Vm
. (2.7)

For local column separation the mixture consists almost entirely of vapor (αv ≈ 1), where for
distributed cavitation the liquid phase is dominant (αv ≈ 0) [3]. Both types are sometimes
referred to as vaporous cavitation, while the term gaseous cavitation is used to describe release
of previously dissolved gas due to the pressure drop. In this case the bubbles don’t collapse with
rising pressure. Instead the gas re-dissolves only slowly (water: order of minutes) compared to
the gas release (water: order of seconds) [3]. The gas bubbles can therefore effect the behavior
even well after the pressure has risen above the vapor pressure again. Gas bubbles in a liquid
effect the speed of sound c. From equation (2.1) it can be seen that this effects the pressure
rise. In this work, however, the term cavitation is used only as defined in section 2.2.1 in the
context of evaporation.

The development of cavitation corresponds to an increase in volume. Therefore the flow
velocity towards the tank is not completely stopped but only reduced. The initial deceleration
of the liquid can be determined by the actually possible pressure drop [3]:

∆vi = 1
ρa
· (p0 − pv). (2.8)

Here it is assumed, that the liquid actually cavitates at pv so there is no retardation in boiling.
The fluid keeps moving towards the reservoir with v1 = vo − ∆vi. The deceleration along
with the pressure drop propagates towards the reservoir, which functions as an open end. The
reflected wave causes the fluid to decelerate again by ∆vi. It is again reflected at the cavity
which is serving as a open end (constant pressure) boundary condition. Here the velocity is
again decreased by ∆vi. Thus during every time interval 2L/a the negative velocity decreases
by 2∆vi. In this model-like consideration, the time between two main fluid hammer peaks is an
integer multiple of 2L/a. In this consideration the length of the cavity is neglected, therefore
the location of reflection is at the valve. Otherwise L could not be viewed as constant and the
frequency of the pressure fluctuations in the valleys would increase. This theory is visualized
in a wave travel diagram in Fig. 2.3.

An approximation of the lifetime Tc of the first cavity is therefore given by [3]

Tc = ∆p

p0 − pv

2L

a
. (2.9)

The collapse of the cavity does not necessarily occur simultaneously with the arrival of the
pressure wave. This collapse causes a rise in pressure lower than the Joukowsky pressure. But
when the main pressure wave arrives, positive interference can cause the pressure to rise well
above the Joukowsky pressure.

The spacial length of the cavity can be estimated by integrating the velocity of the liquid
column. A slightly different approach is the rigid column theory. The elasticity of the liquid
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2.1 Pressure surges in pipelines
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Figure 2.3: Simplified wave travel diagram for primary wave during cavitation

(thus the propagation of pressure waves) is neglected. The liquid is treated as a rigid cylinder
of length L, on which the vapor pressure pv acts on the side of the valve and the tank pressure
pt on the other side. This cylinder moves towards the tank with v0. Now a simple differential
equation for the motion of this cylinder can be used, based on the conservation of momentum:

ρl · L ·
dv

dt
= pv − pt −∆ptot, (2.10)

with the liquid’s density ρl and the combined pressure loss ∆ptot of pipe friction, losses in
fittings and hydrostatic pressure difference if applicable [11].

Even though the first model considers spatial differences in pressure and velocity within
the liquid column both methods provide the same insight: The velocity changes approximately
linearly, therefore the length of the cavity has a parabolic course over time [3, 11].

More sophisticated one dimensional models have been developed to handle multiple vapor
cavities (DVCM - Discrete Vapor Cavity Model) [9] and to handle the release of a second
component gas (DGCM - Discrete Gas Cavity Model) [12].

Pressure surges in the context of space propulsion

There are various possibilities for pressure surges to occur in the propellant feed systems of
rocket or satellite propulsion systems. When using cryogenic propellants, the piping needs to
be cooled down prior to ignition (chilldown). One possible chilldown method is to vent the
propellant into the environment [13]. Chilldown is stopped by closing the bypass valve, which
can introduce pressure surges into the system. See Fig. 2.4 (left) for a simplified schematic
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2. Theoretical background

of such a feed system. The valve closure at engine shutdown is another potential source of
pressure surges [14].

In satellites and spacecrafts in general an isolation valve separates the tanks from the
engine during launch. Often pyrovalves are used due to their high reliability, but they come
with the disadvantage of very fast operating times. When the valve is opened the propellant
rushes into an evacuated line (priming) and hits against the still closed latch valve. This can
cause intense pressure surges [15, 16]. Figure 2.4 (right) depicts a very simple feed system of a
satellite propulsion system.

Figure 2.4: Simplified schematics of feed systems. Left: liquid rocket engine, right: satellite
propulsion system

2.2 Cavitation

Cavitation is understood to be the abrupt vaporization and subsequent condensation of liquid
due to local changes in pressure that reach below the vapor pressure. In the following, the
basics of nucleation, bubble dynamics and bubble collapse will be discussed.

2.2.1 Nucleation

The formation of vapor bubbles is not trivial and does not necessarily occur as soon as the
vapor pressure is undershot. It relies on the presence of boundary layers between a liquid and
a gaseous phase [17]. Therefore either microbubbles or even microscopic vacancies in the liquid
or gas entrapped in pores of solids (e.g. pipe wall or contaminating particles) are required.
These are summarized under the term nuclei. In the absence of nuclei, a liquid can withstand
tension without "breaking". Therefore pressures below the vapor pressure are possible without
the occurrence of cavitation [18].

Generally, two types of nucleation can be distinguished: Homogeneous and heterogeneous
nucleation. Homogeneous nucleation describes the occurrence of microscopic voids in the liquid
due to the thermal motion of the molecules. This random type of nucleation does not require
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2.2 Cavitation

contamination of free gas or solid particles. In contrast, heterogeneous nucleation is based
on the presence of contaminant gas, either as microbubbles or as gas filled pores in wetted
surfaces of solids [19].

For the homogeneous nucleation theory a nucleation rate J can be defined, describing the
number of nucleation events per volume and time. This rate corresponds to a specific tensile
strength ∆pC via [19]

∆pC =
[︄

16πS3

3kBT ln (J0/J)

]︄ 1
2

, (2.11)

with the surface tension S, Boltzmann’s constant kB, the temperature T and a factor of
proportionality J0, for which there are different possible formulations, but which is typically
dependent on the molecular number density, the molecular mass and the surface tension.

It can be seen that for a specific tensile strength the nucleation rate has a strong dependence
on the surface tension. The tensile strength is defined as

∆pC = 2S

RC
, (2.12)

where RC denotes the radius of the largest vacancy present. It can be understood as the
pressure difference pv − p at which a bubble with radius RC is in equilibrium. A further
decrease in pressure p will lead to an unstable growth of the bubble. From this it can be seen
that the pressure in the liquid surrounding the bubble needs to be slightly below the vapor
pressure pv to achieve equilibrium conditions [19].

2.2.2 Dynamics of spherical bubbles

The bubble dynamics can be examined on a single spherical bubble with radius R(t) surrounded
by an infinite domain of liquid with pressure p∞ and temperature T∞, where the pressure
is considered to be a function of time while the temperature is assumed to be constant.
Furthermore, the liquid’s density ρL and dynamic viscosity µL are assumed to be constant.

The motion of the liquid around the bubble will be considered in radial direction. Based on
the Navier Stokes momentum equation the Rayleigh-Plesset equation can be derived. Here it
is assumed that no mass transfer occurs over the boundary of the bubble. If the vapor density
is much smaller than the liquid density this approximation is valid even with evaporation
or condensation occurring at the boundary. In its simple formulation the Rayleigh-Plesset
equation is [19]

pB(t)− p∞(t)
ρL

= R
d2R

dt2 + 3
2

(︃
dR

dt

)︃2
+ 4νL

R

dR

dt
+ 2S

ρLR
, (2.13)

with the pressure inside the bubble pB and the kinematic viscosity of the liquid νL. If the
pressure inside the bubble is known, this function provides the bubble radius R(t) as a reaction
on a change in pressure p∞(t). However, since the bubble can contain non-condensable gas
and the temperature inside the bubble TB can differ from the liquids temperature, the left
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2. Theoretical background

side of the equation can be expanded as follows [19]:

pB(t)− p∞(t)
ρL

= pv(T∞)− p∞(t)
ρL

+ pv(TB)− pv(T∞)
ρL⏞ ⏟⏟ ⏞
(1)

+pG0

ρL

(︃
TB

T∞

)︃(︃
R0
R

)︃3
. (2.14)

Here pG0 denotes the partial pressure of the contaminant gas at the reference state (R0, T∞).
The term annotated with (1) in equation (2.14) is called thermal term. It can have major

influence on the bubble dynamics but there are many cases where it is appropriate to neglect
this term. If this term is neglected for a moment and it is assumed that T∞ ≈ TB,it can be
shown that the response of a bubble on a sudden drop in pressure from p∞ to p∗

∞ is an initially
accelerated growth that turns into a linear increase of the bubble radius, which corresponds to
a volumetric growth of the bubble like t3.

The impact of the thermal term depends on thermal properties of the fluid: From the
structure of the term it is obvious that the sensitivity of the vapor pressure regarding changes
in temperature is very important. Assuming ρL ≫ ρV , the Clausius-Clapeyron equation yields
[19, 20] (︃

dpv

dT

)︃
T∞

≈ ρv(T∞)Lvap(T∞)
T∞

, (2.15)

with the latent energy of evaporation Lvap. Linearization of the thermal term for modest
temperature differences TB − T∞ therefore leads to [19]

pv(TB)− pv(T∞)
ρL

≈ ρv(T∞)Lvap(T∞)
ρLT∞

(TB − T∞). (2.16)

Besides the dependence on Lvap it becomes clear, that the ratio of vapor and liquid density
plays a decisive role. For the temperature difference the heat diffusion in the liquid as well
as the evaporation mass rate have to be considered. An approximation for small thermal
boundary layers δT ≪ R shows the proportionality [19]

T∞ − TB(t) ∝ Lvapρv

ρLcpLα
1
2
L

. (2.17)

The same influences as in (2.16) can be observed. In addition the specific heat capacitance cpL

and the thermal diffusivity αL of the liquid have an effect. Those influences can be summarized
in the thermodynamic parameter Σ [19]

Σ(T∞) =
L2

vapρ2
v

ρ2
LcpLT∞α

1
2
L

, (2.18)

which directly, proportionally effects the thermal term. It is important to note that the thermal
term in its simplified form is proportional to tn− 1

2 with 0 < n < 1 for bubble growth and n = 1
for the constant, asymptotic growth. The thermal term therefore gains importance during the
bubble growth. For the previously mentioned case of a step-function-like drop in pressure to
p∗

∞ a critical time tc1 can be defined as [19]

tc1 = pv − p∗
∞

ρL
· 1

Σ2 , (2.19)
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2.2 Cavitation

after which the order of magnitude of the thermal term is comparable to that of the other terms
in the Rayleigh-Plesset equation. The growth is then considered to be thermally controlled in
contrast to the inertially controlled first phase. The greater the thermodynamic parameter Σ
the earlier the thermally controlled growth sets in.

Earlier it was mentioned that the bubble radius grows linearly with t in its asymptotic
growth phase if the thermal term is neglected. Now it can be shown, that in the thermally
controlled case the asymptotic growth rate is proportional to

√
t [19]. The growth is therefore

strongly slowed down.
In an oscillating pressure field, a bubble will respond with an oscillating radius. The

frequency with the maximum response is defined as [19]

ωp =
[︄

3kp (p̄∞ − pv)
ρLR2

E

+ 2 (3kp − 1) S

ρLR3
E

− 8ν2
L

R4
E

]︄ 1
2

, (2.20)

with kp being the polytropic exponent (kp = 1 if the gas inside the bubble behaves isothermally),
the mean pressure in the distant liquid p̄∞, the bubble radius RE at equilibrium at p̄∞ and
the kinematic viscosity of the liquid νL.

2.2.3 Bubble collapse

If a bubble with R0 is exposed to increasing pressure it begins to shrink. This process can
get quite violent. After some minimum bubble size Rmin is reached, the bubble will grow
again, leading to an oscillation about a reduced radius. The minimum size is affected by the
amount of contaminant gas in the bubble. If the gas content was zero, the bubble would
collapse completely to Rmin = 0 and the collapse velocity at the end of the collapse would be
infinitely large. For this hypothetical case the duration of collapse can be estimated, based on
the Rayleigh-Plesset equation as [21]

tT C = 0.915
(︄

ρLR2
0

p∗
∞ − pv

)︄ 1
2

, (2.21)

also called the Rayleigh time, with the new, increased ambient pressure p∗
∞. The violence

of the collapse may violate the assumption of incompressibility in the liquid. A collapsing
bubble usually does not remain spherical, violating another assumption of the Rayleigh-Plesset
equation. Nonetheless those assumptions allow for a conservative estimation of the collapse,
since in reality the actual collapse will be less severe [19].

The collapse of a bubble produces a pressure pulse that gets radiated into the surrounding
liquid. The pressure of this pulse pP as a function of distance to the bubble r can be estimated
as

pP ≈
100R0p∞

r
, (2.22)

as a function of the maximum bubble radius before collapse R0. This demonstrates the severity
of bubble collapse and demonstrates that cavitation can produce noise and vibration as well
as damage nearby solid surfaces. As for the bubble growth, the thermal effect can influence
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2. Theoretical background

the bubble collapse significantly after a critical time [19]

tc4 =
(︃

R0
Σ

)︃ 2
3

. (2.23)

2.3 Previous related research

Various studies dealt with the characteristics of cavitation in cryogenic fluids. In general it
is found that the thermodynamic effect plays a dominant role in cryogenics during bubble
growth [22, 23]. Since the operating conditions for cryogenics are usually closer to the critical
point than for water [24], the ratio of vapor and liquid density ρv/ρL is much higher than for
example in water at atmospheric conditions. The definition of the thermodynamic parameter
(2.18), stresses the importance of this ratio. The thermal conductivity of the liquid phase is
small, which benefits the development of temperature gradients close to the cavitation bubbles
and therefore a lower temperature inside the bubbles [22]. The influence of the thermal effect
leads to a large number of bubbles while the bubble sizes are very small. In water at room
temperature in contrast, usually few but large bubbles form. This was observed in various
visual studies that compared the cavitation behavior of liquid nitrogen with water [23–25]. In
the context of fluid hammer, visual investigations performed by Traudt et. al. [26] showed the
formation of large cavitation bubbles in water. Various other fluids were studied visually (e.g.
ethanol [27], acetaldehyde [27] and oil [28], but published visual investigations of cavitation
during cryogenic fluid hammer is not known to the author.

It was reported, that the erosive damage from cavitation was found to be less severe
in cryogenics than in water [24]. This fits well to the theoretical consideration, since larger
bubbles produce higher pressure spikes upon collapse and the thermal effect also slows down
the collapse.

Fluid hammer experiments have been conducted with cryogenic fluids mainly in the
context of priming of propellant feedlines. The focus of those studies was the validation and
improvement of numerical methods to simulate multi-phase fluid hammer with the goal of
representing the timing and amplitude of the main pressure peaks correctly [27, 29, 30].

High-frequency pressure fluctuations during the cavitation phase of pressure surge cycles
were investigated previously at DLR Lampoldshausen. Tests in water showed strong pressure
peaks during cavitation [26]. It was assumed that those peaks were the pressure wave traveling
between cavity and tank. Klein et al. [31] found that dominant frequencies in the liquid phase
in water correspond to the natural frequencies of open/open resonators and concluded that
cavitation acts as an open acoustic boundary condition. The noise intensity for consecutive
cavitation valleys in water and liquid nitrogen was investigated in [14]. Noise was defined here
as pressure fluctuations above 250 Hz. It was found that the intensity is greater in water by
one order of magnitude. While the noise intensity seems to decay linearly in LN2 between
consecutive cavitation valleys, it seemed to remain constant for water and only started to
decay when no cavitation occurred anymore.
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3
Test bench

The data for this work comes from the Fluid Transient Test Facility (FTTF) at DLR
Lampoldshausen [14, 26]. This test bench was set up in two different configurations to allow
experiments with different test fluids. The configuration FTTF-1 was used to perform tests
with water at room temperature, the cryogenic configuration FTTF-2 was used with liquid
nitrogen.

The basic setup is the same for both configurations: A high pressure tank is connected to
a low pressure tank via the test section. This test section is designed as a coil with 1.5 turns
to reduce the space occupied in the lab. The pipe is therefore slightly inclined towards the
valve with a slope of 0.62°. The tanks and the pipes are made out of stainless steel of grade
1.4541. A fast closing valve (Axius 1400 S) is installed close to the low pressure tank. The
valve closing time is about 22 ms [26]. A coriolis flow meter (Emerson CMF50M) is placed
between the valve and the low pressure tank.

In both configurations pressurization of the tanks is done with gaseous nitrogen. The
FTTF-2 configuration needs additional peripherals in terms of insulation. The tanks are
double-walled tanks whose outer shell is filled with liquid nitrogen which is kept at a pressure
just above ambient pressure by a check valve with an opening pressure < 0.3 mbar. The liquid
nitrogen in the inner tank can be pressurized and therefore kept well below boiling point. The
test section is insulated by a vacuum jacket and the fast closing valve as well as the flow meter
are encased by insulating foam.

In the test section sensors are positioned at three locations S1, S2, S3 along the pipe.
The exact locations can be taken from Tab. 3.1. It is important to point out that the middle
sensor position S2 deviates strongly between the two configurations. While FTTF-1 has its S2
position close to S3 near the high pressure tank, FTTF-2 has a much more evenly distributed
sensor positioning. The overall setup and the sensor positioning is depicted in Fig. 3.1. As
shown in this figure, the test section does not lead directly into the tank. However, at the
specified start of the test section the piping has a drastic change in diameter, which decouples
the test section from the section before it.
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Figure 3.1: Test bench setup: FTTF-1 (left), FTTF-2 (right)

Table 3.1: Test section dimensions

Parameter FTTF-1 FTTF-2
Length l 7.671 m 9.294 m
Inner diameter di 19 mm 19 mm
Wall thickness e 1.5 mm 1.5 mm
Sensor position S1 x1/l 3.9 % 6.5 %
Sensor position S2 x2/l 88.6 % 47.3 %
Sensor position S3 x3/l 97.8 % 88.2 %

Each location contains a dynamic pressure sensor (pdyn) (Kistler 601), a static pressure
sensor (p) (FTTF-1: Kistler 4043A-100, FTTF-2: Kulite CTL-190S-2000A) and a temperature
sensor (T ) (type K thermocouple). The sampling rates as well as the cut-off frequency of the
anti aliasing filters are listed in Tab. 3.2 for those sensor types. The pressure sensors have
a measurement error of ±0.552 bar. The temperature sensors have a measurement error of
±3.7 K (FTTF-2) and ±2.7 K (FTTF-1).

In preparation for the tests at the FTTF-1, the water is stored over night in order to
reduce the amount of dissolved gas. The FTTF-2 needs to be cooled down prior to the tests.

Table 3.2: Sampling rate and anti aliasing frequency for sensor types

Sensor type Sampling rate
(kS/s)

Anti aliasing frequency
(kHz)

Dynamic pressure 150 30
Static pressure 10 2
Temperature 1 0.2
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Therefore, before each test the LN2 is pumped between the low and high pressure tank to
ensure a properly chilled down test section.

A test run is then started by letting the fluid flow from the high to the low pressure tank
until steady conditions are reached. In FTTF-2, the LN2 is let to flow longer than in FTTF-1
to compensate for possible heat input into the fluid in the test section before the test start.
After that the valve is closed and the resulting pressure oscillations are recorded.
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4
Test data overview

This work is based on the data produced in a previously conducted test campaign. In the
following an overview over the available data will be given. As a preparation for the later
evaluation, the data is clustered according to characteristic features of the pressure readings.

4.1 Test campaign

The test campaign generated 164 valid tests in water during which cavitation occurred. The
pressure levels in the high and low pressure tanks represent the decisive boundary conditions
and were changed between the tests. This results in different initial flow velocities. An overview
over the tests used in the later analysis is given in Fig. 4.1. Since there was no additional
flow regulating device installed, the flow velocity results directly from the pressure differences.
Therefore only the initial velocity v0 and the initial pressure in the high pressure tank p0hp

is
shown. The ranges for those boundary conditions can be taken from Tab. 4.1.

109 valid tests with cavitation were generated using liquid nitrogen. Those tests can be
seen in Fig. 4.1 as well. Refer to Tab. 4.1 for the boundary condition ranges. 16 tests showed
invalid data from the dynamic pressure sensor at S3. Those tests can be used for analysis
which only require the data from S1 and/or S2, but have to be excluded if sensor S3 needs to
be considered as well. Those tests are referred to as partial in Fig. 4.1. Figure 4.2 shows the
pressure reading at S1 for an exemplary test in water.

Table 4.1: Ranges of boundary conditions

Boundary
condition

H2O LN2
min max min max

p0hp
(bar) 1.44 32.38 1.84 28.08

p0Lp (bar) 0.98 31.15 0.30 19.53
v0 (m/s) 1.26 6.29 3.31 242.85
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Figure 4.1: Overview over the boundary conditions of the tests. Left: H2O, right: LN2
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Figure 4.2: Exemplary pressure reading (S1) from a test with cavitation in water

4.2 Clustering

In the later analysis the focus lies on the cavitation valleys, one of which is highlighted in
Fig. 4.2. From a first inspection of the test data it is apparent that those valleys differ very
strongly for different boundary conditions and are sometimes hardly comparable. Not only
the length of the valleys varies greatly but also the general shape and various features like
high frequency noise onset and short duration peaks have very different characteristics. Some
examples of the pressure readings at position S1 are shown for water and LN2 in Fig. 4.3 to
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4.2 Clustering

demonstrate the wide range of cavitation valleys. The definition of start and end points of
those valleys are described further below. For those readings the time scales are normalized by
the expected wave travel time through the pipe tref with length l at a wave propagation speed
a, which is calculated via the Korteweg equation (which takes into account the elasticity of
the pipe) [32] for the initial conditions just before valve closure :

tref = l/a (4.1)
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Figure 4.3: Examples of different cavitation valleys measured at S1. Left: water, right: LN2

It becomes clear that applying evaluation routines on all tests per fluid may not provide
particularly informative results. Recurring patterns may only become visible in groups of
similar tests. Therefore it is advisable to cluster the tests before proceeding with the analysis.
The tests will be clustered based on characteristics in their pressure readings at S1 during the
first cavitation valley.

The start and endpoints of those valleys are defined via the crossing points of the pS1

reading with the high pressure tank reading php. Since the tank pressure slowly rises after valve
closure, using the initial values as a constant reference would not be accurate. Here, the static
pressure sensors are used, to exclude intermediate pressure spikes that occur in the dynamic
pressure readings in the cavitation valley. Empirical conditions have to be defined to exclude
crossing points that occur due to higher frequency fluctuations instead of the actual pressure
surge waves. Therefore pairs of consecutive crossings are discarded if the time difference is
smaller than ∆tmin with (∆tmin)H2O = 7 ms and (∆tmin)LN2

= 20 ms. The difference between
the two fluids comes from the vastly different speeds of sound.
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4. Test data overview

4.2.1 Cluster parameters

The characteristics of those valleys are described by various parameters that will be defined in
the following. They describe the valleys shape and noise characteristics.

Shape characteristics

A set of parameters is defined to describe the general shape of the valley by comparing it to a
reference square wave, which would be the idealized theoretical shape. The lower limit of this
square wave pref is defined by the median of the pressure readings in the first halt of the valley

pref = median
[︃(︂

¯
pS1

)︂
0≤t̃<0.5

]︃
, (4.2)

with the time t̃ being normalized to go from 0 to 1 in each valley. The set of pressure samples is
denoted as

¯
pS1. For valleys with a pronounced horizontal part, this reference pressure usually

coincides well with the pressure in this part. The pressure is now normalized using the initial
tank pressure in the high pressure tank p0hp

and pref so that the interval [0, 1] corresponds to
[pref, p0hp

]:
p̃ = pS1 − pref

p0hp
− pref

. (4.3)

To describe the shape with only a few single parameters, a linear function fi(t̃) is fitted per half
of the valley. The error function that is used for fitting is extremely important. The common
least squares fitting would be very susceptible to short peaks. It is important here that only
the low frequency trend is expressed in the fits. For that it proved to be beneficial to use a
logistic function of the form

e(d) = 1
1 + e−k(d−d0) , (4.4)

with the error e and the absolute difference between fit and sample d. The parameters k

and d0 can be chosen to influence the shape of the function. A parameter study for those
parameters will be conducted later in this section. In general this function weights very small
differences only weakly. But the penalization is increasing quickly with larger deviations. At
some point large deviations are treated equally, reducing the impact of short but high peaks.
The procedure described so far is visualized in Fig. 4.4.

Now the parameters used for clustering are:

• A1, A2: The areas between the linear fits and p̃ = 0 calculated as

Ai = 1
t̃max,i − t̃min,i

∑︂
t̃j ∈

¯
t̃i

fi
(︁
t̃j
)︁

∆t̃, i ∈ {1, 2}, (4.5)

with the set of sample times per half
¯
t̃i, the spacing between the normalized time

samples ∆t̃ and the minimum and maximum normalized times per half t̃min,i = min
(︁
t̃i
)︁
,

t̃max,i = max
(︁
t̃i
)︁
.

• φ1φ1φ1 , φ2φ2φ2: The slopes of the linear fits, calculated as

φi = fi
(︁
t̃max,i

)︁
− fi

(︁
t̃min,i

)︁
t̃max,i − t̃min,i

, i ∈ {1, 2}. (4.6)
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Figure 4.4: Demonstration of linear fits on exemplary cavitation valley (LN2)

Spread

Another parameter is supposed to characterize the deviation of the pressure signal from the
"expected" value, which is represented by the reference pref from above. The same scaling as
above is applied, so the pressure is again referred to by p̃. For this purpose short but large
deviations are allowed to have a great effect on the parameter, allowing for a simple definition
like

s = mean
[︂
abs

(︂
¯
p̃
)︂]︂

. (4.7)

Since the reference pressure pref equals p̃ = 0 after scaling, this formulation represents the
mean deviation of the signal from the reference pressure.

However, the start and end transients are not representative since the selection of the
start and end points leads to large inherent differences between the tests. For some tests the
transient is not included in the valley and for others with only a slightly smaller gradient
almost the whole transient from p0hp

to pref is included. This would cause inconsistencies in
the spread. Therefore the linear fits described above are utilized again. The valley is cropped
between the first crossing of signal and linear fit in the first valley tx1 and the last crossing in
the second half tx2. This is visualized in Fig. 4.5. The definition of the spread s is now

s = mean
[︃
abs

(︃(︂
˜
¯
p
)︂

tx1≤t≤tx2

)︃]︃
. (4.8)

Parameter study for error function

Since the parameters k and d0 in (4.4) have to be chosen somewhat arbitrarily, a parameter
study will be performed in order to make a well-grounded choice. The parameter d0 shifts the
position of the infection point in d-direction, k determines the maximum steepness. Reasonable
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Figure 4.5: Visualization of cropping

ranges for those parameters were found to be d0 ∈ [0, 0.5] and k ∈ [10, 100], considering that
the majority of the values for d are expected to lie between 0 and 1. Per parameter 20 different
values within those ranges were considered.

Since there is no way to define the right combination, a parameter combination is desired
for which small deviations in those parameters don’t effect the results in a significant way. The
procedure of this study is as follows:

• For each test in the data set do the following:

– Calculate all dependent clustering parameters (A1, A2, φ1, φ2 and s) for the total
of 400 parameter combinations

– Scale the results of each parameter according to [min (var) , max (var)] → [0, 1]
with var ∈ {A1, A2, φ1, φ2, s}

• Calculate the mean value for each cluster parameter for each parameter combination
over all tests

• Calculate the euclidean norm of the gradient of var (k, d0) for every cluster parameter
var at every parameter combination (k, d0)

gvar = ∥∇var (k, d0)∥2 =
⃦⃦⃦⃦
⃦ ∂var

∂k
∂var
∂d0

⃦⃦⃦⃦
⃦

2

(4.9)

The results of this step are shown in Fig. A.1 in the appendix.

• Scale this gradient according to [min (gvar) , max (gvar)]→ [0, 1] per cluster parameter.

• Calculate the mean scaled gradient for each parameter combination over all cluster
parameters.
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4.2 Clustering

This mean scaled gradient is shown in Fig. 4.6. As previously stated, a parameter combination
with a small gradient is desired. Since the distribution shows a clear region with particularly
small gradients, one can simply take the combination with the minimum gradient. This
combination is marked in Fig. 4.6. The chosen parameters are consequently k = 15 and
d0 = 0.1. The resulting error function is plotted in Fig. A.2.
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Figure 4.6: Mean gradient over parameter combinations

Noise onset

There are various ways of defining noise and its onset. Here the low-amplitude, high-frequency
noise is not of interest. Instead the cluster parameter derived in this section is supposed to
describe the point at which the signal starts to deviate from the flat horizontal part that is
expected by theory. Since this transition usually comes with pressure fluctuations, it can be
determined via peaks in the pressure readings. However, in water there are many test cases in
which a strong oscillation occurs directly following the initial pressure drop. This oscillation is
not the phenomenon that should be covered by the noise onset parameter. It is often decaying
quickly and is then followed by a flat region. The peaks during this oscillation therefore must
not be confused with the noise onset, which requires a method for excluding those peaks.

As a first step the signal is smoothed via a moving average with window size N = 2·⌊N ′

2 ⌋−1,
where N ′ = n

100 with the number of samples n. This step excludes the high-frequency noise,
which is necessary for reliably separating the initial oscillation.

Then the initial drop in pressure is cut from the signal, since it may distort the frequency
analysis, which will be performed in a later step. This is simply done by only considering the
signal after the first local minimum. The number of samples is therefore reduced to n′. The
greyed-out area in Fig. 4.7 shows the discarded initial transient.
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4. Test data overview

Now, a peak detection is performed on the signal. The peak detection condition is that
its prominence is greater than 0.1 for water and 0.15 for liquid nitrogen. Those values were
determined empirically. A sensitivity study for this parameter might be appropriate for the
future, but the chosen values already produced satisfactory clustering results that could be used
for further analysis. The prominence is defined as the difference between the peaks maximum
and the highest base. The bases are the minimum values between the peak and the next higher
peak to either side.

Next, a Fast Fourier Transform (FFT) is performed on the first fifth of the remaining valley,
which is approximately where the initial oscillation is prominent. This range is denoted as A

from now on with nA = ⌊n′/5⌋ samples. From the resulting frequency spectrum the frequency
with the highest amplitude is assumed to be the main frequency of the initial oscillation fio

under the condition that the frequency is larger than
(︂

nA
2·fs

)︂−1
, with the sampling frequency

fs. In other words, at least two periods of the oscillation must fit within the first fifth of the
cropped valley. A single peak is thus not considered as the initial oscillation. Based on this
frequency it can be evaluated which peaks can be part of this oscillation. With the frequency
resolution of the FFT result ∆f , which can be obtained via ∆f = fs

nA
, the expected distances

ds in samples between two consecutive peaks lie within the range [dsmin , dsmax ], with

dsmin =
⌊︃

fs

fio + ∆f/2

⌋︃
,

dsmax =
⌊︃

fs

fio −∆f/2

⌋︃
.

(4.10)

The first peak within range A is used as a starting point and is therefore included by
default. From there it is checked for all consecutive peaks (Λi, Λj) if the neighboring peak is
within the expected range via the condition

(Λj + wj − Λi ≥ dsmin) ∧ (Λj − wj − Λi ≤ dsmax) . (4.11)

The peaks width wj is evaluated at half of the peaks prominence height. It is visualized by the
thin light blue stripes in Fig. 4.7. If the gap between two peaks is too large or too small, the
first of the two is considered the end of the initial oscillation and the second is considered to
be the noise onset. Here it is again checked, if the oscillation consists of at least two peaks.
So far, the noise onset was expressed as the index of the sample at which the specific peak
was detected minus half the peak width w. With the timestamp of the resulting sample ts,no

and the timestamp of the first sample of the valley ts,0 the noise onset can be expressed in
terms of elapsed time t′

no = ts,no − ts,0. The cluster parameter is this time, normalized by the
reference time (4.1):

tno = t′
no

tref
. (4.12)

If no peaks were detected at all, the noise onset is set to the last sample of the valley.
The length of the oscillation lio will be needed later in this work and can simply be defined

as
lio = Λio,end, (4.13)

where Λio,end denotes the index of the last peak, that is part of the initial oscillation.
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Figure 4.7: Definition of noise onset

Valley length

Lastly the valley length is used as an additional cluster parameter. It is simply defined as the
valley duration relative to twice the reference time:

lv = ts,end − ts,0
2 · tref

. (4.14)

The theoretical valley length for cases without cavitation would consequently be lv = 1.

4.2.2 K-Means Clustering

K-Means Clustering is a simple unsupervised learning algorithm. It clusters a data set by
finding cluster centers iteratively. Each iteration consists of (1) assigning the data points to
their nearest center and (2) updating the position of the centers as the mean of all previously
assigned data points. This procedure is repeated until there is either no significant change in
assignments or a maximum number or iterations is reached. [33]

With such clustering algorithms the problem of choosing "the right" number of clusters
arises. A very simple approach is to calculate the sum of squared distances (Sum of Squared
Errors, SSE) of the samples to their corresponding cluster center for various different number
of clusters k. If at a certain k the change in SSE decreases significantly, that k can be a good
choice ("elbow method"). A more advanced approach is the silhouette method. A silhouette
coefficient sc can be calculated for each sample which evaluates how well the sample is clustered.
A value of +1 indicates very good clustering, while -1 indicates misclassification. The mean sc

over all samples can be used as an indicator for the performance of the overall clustering. So a
k with a high mean sc is favored. [34]

The data is clustered by considering the parameters defined in section 4.2.1. The tests are
consequently points in a 7-dimensional space (A1, A2, φ1, φ2, s, tno, lv).
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4. Test data overview

For each fluid the data set is scaled as a first step. Here, the mean is set to zero and the
variance to one. This scaling is applied for each feature independently. This ensures that no
feature dominates over the others just due to its order of magnitude.

The number of clusters k is chosen to be kH2O = 4 for water and kLN2 = 7 for LN2. The
SSE does not show a single abrupt change in slope for any of the fluids (see Fig. 4.8 on the
left). It would, however, suggest to use either 4 or 7 clusters in water and 7 or 9 clusters in
LN2. For clarification the silhouette method is used (see Fig. 4.8 on the right). Inspection
of the different valley types reveals that choosing k = 2 is not sufficient for the purpose of
targeted evaluation. In LN2 k = 7 and k = 8 have almost the same sc. In this case it was seen
that choosing k = 8 just leads to an additional almost empty class compared to k = 7.

The clustering results are visualized in Fig. 4.9 for water and Fig. 4.10 for LN2. The tests
are plotted according to their Joukowsky pressure and the difference between system and
vapor pressure. It can be seen that the clusters, which were revealed only with information
gathered from the first cavitation valley, also correspond to clusters considering the boundary
conditions. In liquid nitrogen this is even more obvious than in water.

The cluster sizes can be taken from Fig. A.3 in the appendix. The focus of this work will
be on the largest two clusters (0,1). Refer to the spider web representations in Fig. A.5 (water)
and Fig. A.4 (LN2) for insight into the cluster centers.

The most prominent clusters in water are:

• Class 0: Characterized by a short initial oscillation and a relatively early noise onset.
This class is spread over all branches and is not confined to a specific ∆p-range. But it
tends towards higher (p0 − pv).

• Class 1: Mainly differentiated from class 0 by a late noise onset. Those test lie on the
first branch which corresponds to the lowest pressure p0,lp. Within this branch they are
widely spread.
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Figure 4.8: Effect of different numbers of clusters k. Left: "elbow" method, right: silhouette
method
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4.2 Clustering

• Class 2: Characterized by a pronounced initial oscillation and early noise onset. The
valleys are considerably shorter. Those tests are mainly located on the third branch with
a few outliers. Within this branch no clear preference for a ∆p-range is apparent.
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Figure 4.9: Clustered H2O-tests and their boundary conditions

In LN2 the most important clusters are:

• Class 0: Characterized by a strong peak at around t/tref ≈ 2 and a long slowly rising
part afterwards. This class can be associated with relatively small system pressures and
medium Joukowsky pressures. It has a principal component in the ∆p-(p0 − pv)-plane
for which the variance is comparably small.

• Class 1: Characterized by the same peak around t/tref ≈ 2, but with a much shorter
overall valley length. Those tests correspond to high initial system pressures but are
widely spread regarding the Joukowsky pressure.

• Class 2: Characterized by an early noise onset. The strong peak is absent for a large
portion of the tests. This class is located at relatively small system pressures and small
Joukowsky pressures.

The small figures in Fig. 4.9 and 4.10 are overlays of the first cavitation valley of all tests from
the particular cluster.
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Figure 4.10: Clustered LN2-tests and their boundary conditions
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5
Analysis

In the following, the statistical evaluation of the noise behavior over time will be conducted,
based on the previously obtained clusters. Subsequently, certain distinctive features in the
pressure readings will be investigated in detail.

5.1 Noise Over Time

The development of the noise intensity over consecutive cavitation valleys was investigated in
[14]. It might provide additional insight to consider the development of noise intensity over
time within the individual cavitation valleys.

First, it must be defined, what exactly is considered as noise here. In general all pressure
fluctuations that are not directly linked to the main fluid hammer wave, can be considered
as noise. This distinction can be made by frequency considerations, assigning all fluctuations
with a frequency above a threshold to the noise. Various harmonic frequencies of the main
wave frequency were found during the cavitation valleys, therefore it was chosen to allow for
a large margin between the expected wave frequencies and the lowest noise frequency. The
chosen frequency band for the noise is 1-30 kHz. The upper bound originates from the use of
the anti-aliasing filter with a cutoff frequency of 30 kHz. A common measure of intensity of
oscillations is the root mean square (RMS). For the examination of the intensity over time, a
moving RMS will therefore be used.

5.1.1 RMS over time

The following analysis is performed separately for each cluster, defined in chapter 4.2. For each
individual cavitation valley the signal is bandpass filtered according to the chosen frequency
band (1-30 kHz in this case). The moving RMS is calculated on this filtered signal. The filter
width N is chosen to cover one period of the lowest frequency in the specified range fmin:

N =
⌊︃ 1

fmin
· fs

⌋︃
, (5.1)
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with the sampling rate fs.
The goal is to evaluate the course over time for all corresponding cavitation valleys from

all tests within the specific cluster. For that the time needs to be discretized in order to
compare the RMS-course at the same points in time between different tests. To make the time
comparable, it is first normalized by tref. The discretization in time is now chosen according to
the smallest resolution in time from the set of cavitation valleys that will be compared to one
another. The signals from tests with higher resolution will therefore be downsampled. This is
done by calculating the mean of the samples falling into the same time-bin.

Afterwards common statistics such as mean, median and interquartile-range (IQR) can be
determined at each point in time. Those are plotted in Fig. 5.1 for example. Those plots can
be viewed as a series of boxplots over time, with the additional mean. Since not all valleys
within the cluster have the exact same lengths, it must be kept in mind that the statistics are
based on less data with progressing time. Therefore the number of tests contributing to the
statistics are plotted as well.

Observations: LN2

The results for clusters 0 and 1 in LN2 are shown in Fig. 5.1 and Fig. 5.2 for the first two
cavitation valleys. In general it can be seen, that the IQR can get very large temporarily,
indicating a wide spread distribution. Still the mean value sometimes exceeds the IQR-
boundaries. This shows that the mean is influenced strongly by outliers in many cases. The
median should therefore be considered as the more reliable measure. In the first cavitation
valley, at position S1 a flat region with very little noise can be seen after the initial transient.
As mentioned briefly in chapter 4.2, the clusters 0 and 1 in liquid nitrogen are characterized by
a strong peak in the raw pressure readings of S1 at a normalized time around 2. It can be seen
that the noise increases strongly at this point as well. As the IQR is especially large at that
point, it is apparent that, even though the peak is a common feature in those clusters, the
intensity of the noise differs greatly. Cluster 1 shows a second peak in noise intensity around
t/tref = 4. In cluster 0 this peak is replaced by two consecutive peaks, one shortly before and
one shortly after t/tref = 4. Around t/tref = 5 the noise increases again and decays afterwards.

At position S2 the noise increase from the initial transient comes slightly later at around
t/tref = 0.3. Similar to S1 the noise intensity afterwards is small followed by the increase
around t/tref = 2. The peak in noise intensity is shifted towards t/tref = 2.5. Afterwards the
median in cluster 1 has another maximum shortly before t/tref = 4. In cluster 0 in contrast,
this increase is only visible in the IQR. The median has a short drop at that time.

At S3, the noise intensity is first very small. The rise that can be assigned to the initial
transient takes place at around t/tref = 0.6 in cluster 0 and around t/tref = 0.75 in cluster 1.
Subsequently the noise decreases but stays at a higher level than in S1 and S2. The following
peak takes place at around t/tref = 3 in both sensor positions. A second rise is apparent around
shortly after t/tref = 4 in cluster 0 and around t/tref = 5 in cluster 1.

The delays of the first peak fit to the expected delay for a propagation from S1 to S3
with the calculated speed of sound. However, the peaks are much broader in S2 and S3. The
delays of the rising edges of those peak therefore only fit to a propagation from S2 to S3, since
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5.1 Noise Over Time

the rising edge in S1 comes later. The second peak is less consistent. Here, no substantive
statement can be made about a possible propagation between the sensors.

In the second valley (right column in the figures) the initial transients in S1 and S2 seem
to be less sharp. In cluster 1 the subsequent phase of low noise intensity is still present, just
like the increase around t/tref = 2. However, compared to the first valley, here the peak takes
place slightly earlier. Interestingly, in S2 this rise appears to be split in two separate peaks,
which are positioned in time almost symmetrically around the peak in S1. In cluster 0 there is
a short drop after the initial transient but followed by an early rise well before t/tref = 2. Note
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Figure 5.1: LN2, cluster 0: Noise over time for the first (left column) and second (right column)
cavitation valley, at sensors S1 (top), S2 (middle), S3 (bottom)
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5. Analysis

that the order of magnitude of the noise is much smaller here compared to the first valley and
also compared to cluster 1.

S3 shows an increase around t/tref = 2 in cluster 0 but no significant movement in cluster
1, considering the mean. Note that the strong increase at t/tref = 4 is not very conclusive since
the data set only consists of two tests at this point.

The results for the other clusters are shown in the appendix (Fig. A.6 to A.8). But since
they consists of only few tests, they are not suitable for drawing conclusions.
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Figure 5.2: LN2, cluster 1: Noise over time for the first (left column) and second (right column)
cavitation valley, at sensors S1 (top), S2 (middle), S3 (bottom)
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Observations: Water

The results for class 0 and 1 in water are shown in Fig. 5.3 and Fig. 5.4 for the first two
cavitation valleys. In water it stands out that the median noise intensity is small and flat
in S1 over most of the valley length. In the beginning intense noise is present which decays
smoothly and quickly within less than t/tref = 2. This can be attributed to the initial oscillation
mentioned before in chapter 4.2. The phenomenon of such an oscillation in cavitating flow
behind a tension wave is described in literature as well [35]. The mean and IQR shows a strong
fluctuation in the noise intensity along the whole valley in cluster 0 and in the second half of
the valley in cluster 1. This can be assigned to the short term pressure spikes. That they don’t

0.0

0.5

1.0

1.5

2.0

2.5

p
rm

s
(S

1)

mean

median

IQR

#tests

0.0

0.5

1.0

1.5

2.0

mean

median

IQR

#tests

0.0

0.5

1.0

1.5

2.0

2.5

p
rm

s
(S

2)

mean

median

IQR

#tests

0.0

0.5

1.0

1.5

2.0

mean

median

IQR

#tests

0 5 10 15 20

normalized time t/tref

0.0

0.5

1.0

1.5

2.0

2.5

p
rm

s
(S

3)

mean

median

IQR

#tests

0 5 10 15 20

normalized time t/tref

0.0

0.5

1.0

1.5

2.0

mean

median

IQR

#tests

0

10

20

30

40

50

60

70

#
in

vo
lv

ed
te

st
s

0

10

20

30

40

50

60

70

#
in

vo
lv

ed
te

st
s

0

10

20

30

40

50

60

70

#
in

vo
lv

ed
te

st
s

Figure 5.3: Water, cluster 0: Noise over time for the first (left column) and second (right column)
cavitation valley, at sensors S1 (top), S2 (middle), S3 (bottom)
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5. Analysis

have an influence on the median suggests that that the timing of those peaks is random, since
from an accumulation of peaks at a certain time it would be expected that the median reacts
accordingly.

At positions S2 and S3 the noise intensity is low at the beginning and increases around
t/tref = 1. In cluster 0 this increase is only weak but it is followed by a second and stronger
increase at t/tref = 2. A third step-wise increase occurs around t/tref = 4. Afterwards the
intensity is decreasing steadily. However, it should be noted that at this point the number of
considered test is decreasing rapidly as well. Therefore it is not necessarily the case that the
noise intensity drops at this point. It could also be that the longest valleys simply are the
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Figure 5.4: Water, cluster 1: Noise over time for the first (left column) and second (right column)
cavitation valley, at sensors S1 (top), S2 (middle), S3 (bottom)
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least noisy ones and since the other valleys are no longer contributing to the distribution, the
overall intensity decreases.

In cluster 1 the first increase around t/tref = 1 is present as well but it is only followed by
small peaks around t/tref = 2 and shortly before t/tref = 4. The overall noise intensity is lower
than in cluster 0. But it stays more or less constant until t/tref = 12. Then it decreases. Again,
this decrease coincides with the drop in number of involved tests.

From theory, the expectation would be that the noise starts to increase in S2 earlier than
in S3. But due to the small distance between both sensors, the delay is so small that this
method is not suitable for a reliable conclusion. This question would have to be investigated
individually per test.

Unlike in nitrogen, the behavior in the second cavitation valley is very similar to the first
one. The main differences are the following: In cluster 0 a peak in S1 at t/tref = 5 is visible,
but note that at this point the number of tests is already halved. The step-wise increase in S2
and S3 is not visible in the second valley. And the noise intensity at t/tref = 0 is higher than
in the first valley.

5.1.2 Frequency dependence

So far, only the complete frequency range from 1 to 30 kHz was considered. It should be
investigated, if the noise in different frequency ranges behaves differently over time. Therefore
the procedure above is repeated for different frequency ranges. Each frequency range covers
1 kHz. Starting with the frequency band 1-2 kHz, the range is shifted in steps of 100 Hz up to
29-30 kHz. Due to the reasons mentioned above, only the median of the RMS is considered
in the following. However, only the general shape of the median over time is of interest. In
the next steps the high-frequency changes of the median would be obstructive. Therefore the
moving average with a filter size of 10 % of tref is used to smooth the course over time.

That leads to 281 courses of the RMS-median over time, each corresponding to a certain
frequency range. These are plotted as colorplots, which are basically spectrograms but with
absolute values matching to the previous consideration of the complete frequency band.

Observations: LN2

The results for class 0 and 1 in LN2 are shown in Fig. 5.5 and Fig. 5.6 for the first two
cavitation valleys. Regarding class 0, it can be seen that the low frequency noise is much
more effected by the initial transient and the peak around t/tref = 2 than the high frequency
noise. The peaks around t/tref = 4 and the increase at t/tref = 5 in S1 are also much more
pronounced in the low-frequency region. The same is true for the fluctuations in S2 and S3.

In class 1 it can be seen as well that during the initial transient the low-frequencies are
effected the most. Afterwards, the low frequencies are especially present around shortly after
t/tref = 2 and around t/tref = 4. The range around t/tref = 3 is slightly less pronounced.
High frequencies have peaks at those three points as well but in varying intensity. In the
mid-frequency range around 15 kHz the third peak seems to be especially pronounced, while in
the high-frequencies above but especially at 25 kHz the first and second peak are pronounced
the strongest. Another peak that was not easily visible in the previous consideration is present
at t/tref = 6 for frequencies below 15 kHz, however, there are only few tests involved.

35



5. Analysis

In S2 it seems like the two peaks at t/tref = 2.5 and t/tref = 3.5 are equally pronounced at
low frequencies but at higher frequencies the second peak seems slightly less prominent. It is
further noticeable that low frequencies below 10 kHz start to rise much earlier than higher
frequencies. The frequency range around 25 kHz seems to have its maximum even later, while
the RMS in the other frequency ranges has already dropped again.
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Figure 5.5: LN2, cluster 0: Frequency dependent noise over time for the first (left column) and
second (right column) cavitation valley, at sensors S1 (top), S2 (middle), S3 (bottom)
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5.1 Noise Over Time

In S3 the main differences in the behavior over time are an early rise in the very low
frequencies around 5 kHz around t/tref = 1 and a more prominent one over a larger frequency
range up to 20 kHz around t/tref = 5. Again, the frequency range around 25 kHz stands out.
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Figure 5.6: LN2, cluster 1: Frequency dependent noise over time for the first (left column) and
second (right column) cavitation valley, at sensors S1 (top), S2 (middle), S3 (bottom)
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The second valleys in clusters 0 and 1 are not very informative. Low frequencies are more
pronounced in general, but changes over time seem to occur relatively synchronously in the
different frequency regions. See Fig. A.14 to Fig. A.16 for the results of the other clusters.

Observations: water

The results for class 0 and 1 in water are shown in Fig. 5.7 and Fig. 5.8 for the first two
cavitation valleys. These results are not very informative compared to the LN2 results.

Most interesting is the initial oscillation in S1 which mainly consists of a frequency close
to 5 kHz but with multiple overtones. This frequency is rising by roughly 2 kHz in a time of
t/tref = 5.

Interestingly, even though the median is used for this analysis, peaks in S1 are more visible
than when considering the whole frequency range from 1 to 30 kHz. Especially the increase,
mainly of high-frequency noise, towards t/tref = 10 in cluster 1 deviates from this global
consideration (compare Fig. 5.4).

At positions S2 and S3 no significant differences between frequency ranges are detectable
apart from the general difference in intensity between low and high frequencies.

5.1.3 Discussion

From these results one can see the great differences between the noise characteristics in water
and liquid nitrogen. In water the noise in the liquid phase (S2, S3) seems to be independent
from what is assumed to be the cavitation region (S1) at first glance. The noise sets on as
the tension wave passes. In LN2 in contrast it is evident that the noise behavior is strongly
coupled between the different regions in the pipe. A similar pattern is observed at the different
sensor positions, shifted in time, which would suggest propagation of the noise through the
fluid. However, the propagation doesn’t seem to be trivial and unidirectional. While in water
the noise seems to be random over time, a periodicity can be seen in LN2.

Multiple questions arise, some of which will be investigated in the following part of the
chapter: The nature of the peaks that cause a relatively high mean and IQR in water at S1
is unclear yet, as they seem to appear randomly. As mentioned before, no coupling between
(S2,S3) and S1 is obvious from the previous observations. But only for complete column
separation such a decoupling would be imaginable. In this case, however, no such peaks in
the vapour region would be expected. The results in LN2 partially fit to the theory of a main
pressure wave travelling between the tank and the cavitation. It should be investigated in
more depth how well the pressure readings fit to this theory. The propagation of the noise
related to the first characteristic peak in LN2 is not obvious and should be further investigated.
Another unclear phenomenon is the step-wise increase in noise intensity in water at S2 and S3.
Especially for the step at 2 · tref no explanation is obvious to the author. However, this aspect
won’t be covered in this thesis.
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Figure 5.7: Water, cluster 0: Frequency dependent noise over time for the first (left column) and
second (right column) cavitation valley, at sensors S1 (top), S2 (middle), S3 (bottom)
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Figure 5.8: Water, cluster 1: Frequency dependent noise over time for the first (left column) and
second (right column) cavitation valley, at sensors S1 (top), S2 (middle), S3 (bottom)
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5.2 Pressure Peak Analysis

Peaks in the pressure readings were observed previously and raised various questions, which
shall be explored in the following.

5.2.1 Water

A dominant feature in the water tests is the presence of strong, short duration pressure peaks
in S1 during the cavitation phase as mentioned in the previous section. Traudt et al. [26]
supposed that those peaks originate from the primary water-hammer wave and explained
the anomalous timing with an extremely slowed down wave propagation speed due to the
multiphase conditions.

It is apparent that at positions S2 and S3 also many short duration peaks are measured.
Those peaks are more frequent than in S1. See the example plotted in Fig. 5.9. The primary
water-hammer wave is not expected to manifest itself as short pressure peaks within the liquid
column but rather as a rise in pressure that lasts until the reflected wave passes the sensor
position again. Therefore the hypothesis is made that the peaks originate from the collapse of
cavitation bubbles. In this case, the collapse might be caused by the primary waves, but the
actually measured pressure peaks do not display this pressure wave and might therefore be
delayed in time.

To test this hypothesis, an analysis method is proposed which tries to interrelate the peaks
measured at the different sensors. The delays between those peaks might provide insight into
the mechanism causing the peaks.

Figure 5.9: Examples of peaks in different sensors
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5.2.1.1 The method

The basic principle of this method is to consider all possible combinations of peaks between
the three sensors, that could possibly originate from the same source. The assumption is made
that there is no cavitation between sensors S2 and S3 and that the wave propagation speed is
therefore constant and equals the speed of sound of the liquid phase. By theory the cavitation
is mainly accumulated at the valve [3]. The sensors S2 and S3 are positioned close to the tank
and are close to each other, reducing the chance of cavitation in this area. The assumption
is further justified by the observations in [26] that no cavitation was observed in an optical
access between sensors S2 and S3. This information can be used to filter only those peak
combinations for which a propagation from S2 to S3 or in the opposite direction is observed.
This will be described later in more detail. All other peaks are considered in the beginning,
to assure an unbiased approach. There is no physical justification for narrowing down the
range around the S1-peaks in which potentially linked S2- and S3-peaks are searched, since
it cannot be assumed at this point, that the wave propagation speed along the whole pipe
is known. Physical considerations will be made later to filter out combinations that are not
possible. Still, this approach will inevitably consider many combinations that do not actually
have a common source. The delays between the peaks in those combinations will be randomly
distributed. The idea behind this method is that the physical mechanisms that actually occur
cause an accumulation of certain delays that deviate from the random distribution.

Peak Detection

The first step of this analysis is the detection of the peaks. This is done via a prominence
condition as in section 4.2.1. One common threshold prominence δth is used for the peak
detection in all sensors, which is independent from the one in section 4.2.1. The choice of this
parameter will be discussed in section 5.2.1.3. The peaks are referred to as ΛS1,i, ΛS2,j and
ΛS3,k in the following, with i, j, k being counter variables.

For the S1-signal the lio value from chapter 4.2.1 is used. Peaks that lie within the initial
oscillation phase are excluded, since this oscillation is not found in the other two sensors and
does not correspond to the sharp pressure peaks that shall be investigated here. Since the
highest peaks sometimes have non-monotonous edges, peaks might be detected on the edge.
Therefore it has been shown to be advisable to keep only those peaks that are the highest
point within a range of ±NS1 samples.

Peak Combinations

Since the aim of this analysis is to investigate combinations C (ΛS1,i, ΛS2,j , ΛS3,k) of peaks
which can potentially originate from the same source and propagate through the pipe, the
peaks detected in S2 and S3 can be reduced by a simple consideration: As mentioned before,
it can be assumed that there is no cavitation between S2 and S3 so the propagation speed
a23 is known and constant. It should be noted, that the drop in pressure can cause previously
dissolved gas to come out of solution, which alters the speed of sound. The pressure spikes
considered here, however, are of relatively large amplitude (> 1bar). Therefore they do not
represent acoustical perturbations and their propagation speed is not affected in the same
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way. Since the distance between S2 and S3 is short, the possibility of peaks being radiated
from a source between S2 and S3 is neglected. If the above mentioned hypothesis is true, this
assumption is valid since no cavitation is expected in this range. Otherwise the impact of this
assumption is relatively small as it only concerns ≈ 9% of the pipe.

With these considerations it becomes clear, that only those (ΛS2,j , ΛS3,k) need to be
considered, that have a delay corresponding to the wave travel time between S2 and S3. A
delay matrix D23 is calculated with

(D23)j,k = t(ΛS2,j) − t(ΛS3,k), (5.2)

with the timestamps t of the individual peaks. This matrix contains an entry for every
combination of ΛS2,j and ΛS3,k. A positive delay consequently corresponds to a propagation
from the tank towards the valve and vice versa. For the entries in this matrix, the following
condition must be satisfied:

∆x23
a0 · (1 + η+) ≤ (D23)j,k ≤

∆x23
a0 · (1− η−)

or (5.3)

− ∆x23
a0 · (1− η−) ≤ (D23)j,k ≤ −

∆x23
a0 · (1 + η+)

Here, ∆x23 is the distance between sensors S2 and S3, a0 is the speed of sound obtained from
the measured temperature TS1,0 and pressure data php,0 at the time just before valve closure.
Since these measurements can deviate slightly from reality, a tolerance η+/− is introduced
with 0 ≤ η+/− < 1. The choice of η+/− will be discussed in section 5.2.1.3.

All peak combinations (C23)j,k for which (D23)j,k does not satisfy these conditions, are
discarded. An exemplary S2-S3 delay matrix for a single test is shown in Fig. 5.10. Discarded
combinations are greyed out.
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Figure 5.10: Examples of delay matrices, visualization of selection. Left: S2-S3-delays, right:
S1-S3-delays

43



5. Analysis

Let C23 be the set of remaining combinations (C23)j′,k′ , for which from now on the notation
(C23)j′,k′ = (C23)h is used, where h is any combination of the remaining j′ and k′. Then a
delay matrix D13 can be created with

(D13)i,h = t(ΛS1,i) − t(ΛS3,h) (5.4)

for all combinations (C123)i,h of all peaks ΛS1,i with all combinations (C23)h. ΛS3,h is the
S3-peak from the combination (C23)h.

For some of those combinations it can be shown, that they are physically impossible. For
that consider the following cases:

• The source of the peaks is located between valve and S1: In this case the peak
will first appear in the S1-reading, then in the S2-reading and lastly in the S3-reading(︂

t(ΛS1) < t(ΛS2) < t(ΛS3)
)︂
.

• The source is located between S1 and S2: In this case multiple scenarios are
possible:

– t(ΛS1) < t(ΛS2) < t(ΛS3)

– t(ΛS2) < t(ΛS1) < t(ΛS3)

– t(ΛS2) < t(ΛS3) < t(ΛS1)

• The source is located between S3 and the tank or in the tank: In this case the
order in time of the three peaks has to be t(ΛS3) < t(ΛS2) < t(ΛS1), with the condition
that ∆t13 ≥ ∆x13

a0·(1+η+) , since the wave propagation might be lowered by the cavitation
but it cannot be increased. The wave travel speed between S2 and S1 cannot be higher
than between S3 and S2.

Those cases are visualized in Fig. 5.11 (only the relevant part of the propagation path is shown
here). This leads to the finding, that the following combinations are impossible:

• t(ΛS1) < t(ΛS3) < t(ΛS2), since that would mean, that the wave would skip S2 while
traveling from S1 to S3,

• t(ΛS3) < t(ΛS2) ∧ t(ΛS3) < t(ΛS1) ∧ ∆t13 < ∆x13
a0·(1+η+) , since that would mean that the

wave would speed up between S2 and S1.

An exemplary S1-S3 delay matrix is shown in Fig. 5.10 with the invalid combinations
blanked out.
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5.2 Pressure Peak Analysis

Figure 5.11: Visualization of the different possibilities for the source location

Weighting

Not all peaks found during peak detection are equally significant. In general it can be stated
that peaks are especially significant if they have a high prominence and stand out strongly
compared to the vicinity in the signal. As a measure for how strongly a peak stands out, the
"uniqueness" u for a peak Λ from a signal

¯
p is defined.

If the signal belongs to sensors S2 or S3, first the moving average
¯
pavg of

¯
p is calculated

with a filter size Navg. A corrected signal is calculated as
¯
p′ =

¯
p−

¯
pavg. This is meant to correct

for low-frequency fluctuations in the signals which would distort the significance. Consider a
strong peak that stands out from its close neighborhood but the whole region lies well below
the average value due to low-frequency drop in pressure. Since in a next step the standard
deviation will be used, as a threshold, this strong peak would not stand out anymore. This
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situation is visualized in Fig. 5.12 with the peak at 45.6 ms. In the bottom plot only the mean
of the whole signal is subtracted instead of the moving average.

For the S1-signal, this is not useful, since low frequency fluctuations are less common and
the signal is mostly at a steady level only with upwards peaks. Instead, the corrected pressure
is here obtained by

¯
p′ =

¯
p− pref using the reference pressure defined in chapter 4.2.1.

From the corrected signal the moving standard deviation
¯
σ is calculated with a filter size

Nσ. Now the distance of Λ to the moving standard deviation is evaluated, while leaving the
possibility to scale the moving standard deviation by ε, since there is no physical reasoning
for

¯
σ as a threshold and the influence of this choice needs to be considered in a sensitivity

analysis at a later point:
d (Λ) =

(︂
¯
p′
)︂

Λ
− ε (

¯
σ)Λ . (5.5)

Intuitively, d looses its comparative meaning at high values. On the other hand, peaks with
negative d have a very poor significance and can be discarded. Therefore d is wrapped in a
scaling function to obtain u:

u (Λ) =


0, d (Λ) < 0
d(Λ)
dmax

, 0 ≤ d (Λ) ≤ dmax

1, d (Λ) > dmax.

(5.6)
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Figure 5.12: Demonstration of uniqueness. Top: moving average subtracted, bottom: simple mean
subtracted
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5.2 Pressure Peak Analysis

Based on the uniqueness u and prominence δ of each associated peak a weight can be
assigned to each combination (C123)i,h, resulting in a weight matrix W123 with

(W123)i,h = fw

(︂
u (ΛS1,i) , u (ΛS2,h) , u (ΛS3,h) , δ (ΛS1,i) , δ (ΛS2,h) , δ (ΛS3,h)

)︂
. (5.7)

Later it will be seen that an additional feature should be included in the weight function.
Many formulations for fw(...) are conceivable and there is no single right definition. However,
it is necessary to evaluate how the conclusion of this method is influenced by the choice of the
weight function. This will be considered in section 5.2.1.3.

5.2.1.2 Preliminary results

For a preliminary consideration some initial values for the parameters used above need to be
chosen.

Prominence threshold δth: Inspection of a large portion of tests showed that a threshold
of δth = 1bar is an appropriate choice which includes peaks that seem to be important while
excluding obviously unimportant ones.

Range around S1-peaks NS1: It makes sense to choose a value which corresponds to the
typical width of the corresponding peaks at their base. This peak width lies in the range of
0.5 ms, so that NS1 = 40 samples is an appropriate choice.

Tolerances for speed of sound η−, η+: The measurement errors of pressure and
temperature alone, stated in chapter 3, would suggest that a tolerance of ±0.6% is sufficient.
However, a0 was calculated from the initial conditions and might therefore be altered at the
time of consideration. Moreover the width of the peaks introduces an additional error. As
a reference of how strongly a deviates from the theoretical a0 the delay between the rising
and falling edges of the first water hammer peak were considered. A rough estimation showed
deviations of up to 20%. That was therefore used as an initial value.

Moving average filter size Navg: Since the subtraction of the moving average is used
to reduce the effect of low frequency fluctuations, it is reasonable to choose the filter size
according to the expected period of those fluctuations. It was observed that the fluctuations fit
to twice the wave travel time between S2 and the tank. Therefore Navg = 187 samples is used.

Moving standard deviation filter size Nσ: This filter size defines the width of the
neighborhood that influences the significance of the peaks. The choice of this parameter is
empirical. It was found that Nσ = 413 samples leads to reasonable results, which corresponds
to half the wave travel time between valve and tank.

Scaling ε: This parameter shifts the lower threshold within the uniqueness function. At this
point there is no reason for adjustment, so it can be set to ε = 1, so that the threshold is solely
determined by σ.
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Range for uniqueness scaling function dmax: Considering that the standard deviation
usually lies well below 2 bar, a peak that exceeds σ by 1 bar can be considered a strong outlier.
Therefore dmax = 1 bar is chosen.

Weight function fw (...): Here a simple formulation is chosen that treats the S2- and
S3-peak as a pair and therefore only takes into account the minimum prominence δ and
uniqueness u from both peaks:

fw = u (ΛS1) ·min [u (ΛS2) , u (ΛS3)] ·
(︂
δ (ΛS1) + min [δ (ΛS2) , δ (ΛS3)]

)︂
. (5.8)

The procedure described in section 5.2.1.1 is executed for all tests individually. All peak
combinations C123 are collected with their respective delays ∆t13 and weights. A histogram
can be created from those delays, weighted by the respective weight.

The histogram, resulting from the parameter choice described above, is depicted in Fig. 5.13.
It consists of the entirety of detected peaks in all water tests. It is noticeable that delays around
-5 ms stand out strongly. A wave that travels from the valve to the tank would be captured
with a delay of -5.19 ms between S1 and S3. A second but much wider peak is apparent around
+11 ms.

Due to the nature of this method, this distribution includes many combinations that share
one or more common peaks. However, if the pressure peaks are travelling through the pipe, a
single peak can in reality only be part of one combination. That means if a specific combination
is assumed to be real, all coupled combinations would have to be discarded. The impact of
this fact can be visualized as follows:

During the collection of combinations a specific delay ∆t′
13 is selected which is assumed

to be "the true" delay. That means, if an S1-peak is part of a combination with a delay
∆t13 = ∆t′

13, all other combinations including this S1-peak are discarded. If an S1-peak is
part of more than one combination with this specified delay, the combination with the highest
weight is kept. For S1-peaks with no combination with this delay, all combinations are kept.
This can be done for all possible ∆t′

13 which results in one histogram per selected ∆t′
13. This

collection of histograms is plotted in Fig. 5.13 on the right. Note that in this consideration
only the coupling via S1-peaks is taken into account. Obviously, peak combinations can be
coupled via S2- or S3-peaks as well. The results can be interpreted as follows:

It is expected, that this procedure reduces the weighted frequency for all delays, even for
∆t′

13. The frequency for ∆t′
13 however will be reduced less. The more the selection of a specific

∆t′
13 reduces the overall frequencies, the more the corresponding combinations are coupled

to others and the more likely it is that the frequency of this delay is overestimated. It can
be seen that delays shortly above 0 ms are highly coupled. Picking one of those reduces the
frequency of the others almost to zero.

This demonstrates the need of an additional penalization in the weight function considering
the coupling.
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Figure 5.13: Preliminary results. Left: weighted delay histogram, right: cross-dependence via S1

5.2.1.3 Sensitivity Analysis

As stated before, the parameter choices are often empirical. There is no right choice of those
parameters but it is important to know how the choice influences the result. Therefore a
sensitivity study is performed for all of those parameters.

Weight function

The formulation of the weight function is also considered as such a parameter. As stated before,
the coupling between different peak combinations is advisable. Two high-level versions of the
weight functions are defined, which incorporate the function fw (...). The first one does not
include the coupling and is simply

ws

(︂
(C123)i,j,k

)︂
= fw

(︂
(C123)i,j,k

)︂
. (5.9)

For the second one the set C↔,i,j,k of all combinations C123 coupled with (C123)i,j,k needs to
be determined. This set is visualized in Fig. 5.14, where each combination is represented by
a cube and the blue colored cubes are the combinations from C↔,i,j,k for (C123)i,j,k, which is
colored red.

Now the wrapping function is defined as

wl

(︂
(C123)i,j,k

)︂
=

fw

(︂
(C123)i,j,k

)︂
∑︁

(C123)l∈C↔,i,j,k

fw ((C123)l)
. (5.10)
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Figure 5.14: Visualization of the coupling between combinations

The following base functions are tried out (for the sake of clarity the notations u (ΛS1) = uS1

and δ (ΛS1) = δS1 are used):

fw1 (C123) = uS1 ·min [uS2, uS3] · (δS1 + min [δS2, δS3]) , (5.11)

fw2 (C123) = uS1 · uS2 · uS3 · (δS1 + δS2 + δS3) , (5.12)

fw3 (C123) = mean [uS1, uS2, uS3] ·mean [δS1, δS2, δS3] , (5.13)

fw4 (C123) = min [uS1, uS2, uS3] ·min [δS1, δS2, δS3] , (5.14)

fw5 (C123) = uS1 · uS2 · uS3, (5.15)

fw6 (C123) = uS1 ·min [uS2, uS3] , (5.16)

fw7 (C123) = mean [uS1, uS2, uS3] , (5.17)

fw8 (C123) = min [uS1, uS2, uS3] (5.18)

and for reference:

fw0 (C123) = 1. (5.19)

For each definition fwx the analysis is performed and the distribution is normalized by its
maximum weighted frequency. This is done with both ws and wl as wrapping function. The
other parameters are kept equal as chosen above. The results are shown in Fig. 5.15. Refer
to A.22 for a closer look into the middle range of the distribution. It can be seen that the
weight functions emphasize the peak at -5 ms. The steep edge is present in the reference case
as well, but the peak is much less pronounced. Including the prominence (plotted in blue) in
the weight function enhances this peak relative to the range around +5 ms. The qualitative
conclusion would be the same for all fw, but it is more obvious for fw1 and fw2. Taking the
coupling between combinations into account in contrast has a big effect. The range around
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Figure 5.15: Sensitivity analysis: weight function

+11 ms is strongly attenuated, which was expected, considering the results seen in Fig. 5.13.
Interestingly, a peak at +5 ms persists and an additional peak approximately at 0 ms arises.

Some of the remaining parameters are expected to have a strong cross influence as they
influence the same aspect of the method. Those are

• the upper and lower tolerance for the speed of sound η− and η+,

• the window size for the moving standard deviation Nσ and the scaling factor ε and

• ε and the uniqueness scaling range dmax.

Obviously other pairs of parameters or even larger groups of parameters can have cross
influences, but considering all those possibilities would be disproportionally complex since the
goal of this study is only to estimate whether the choice of parameters changes the conclusion
of the method.

To be able to evaluate the coupled influence of those parameters, a one-dimensional
parameter is needed, describing the deviation of the distribution from a reference distribution.
As reference the distribution resulting from the parameter choice described in section 5.2.1.2
is used but with the more elaborate weight wrapping function wl. For the following sensitivity
analysis the parameters that are not under investigation are set to these values. The deviation
of a distribution F from the reference distribution Fref is defined as the sum of the absolute
differences, but with the sign of the sum of the raw differences. That way, differences do not
cancel each other out, but information about whether F tends to be above or below Fref is
preserved:

∆F = sgn
(︂∑︂

(F − Fref)
)︂
·
∑︂

abs (F − Fref) . (5.20)

The distribution of ∆F over the two involved parameters can be used to find parameter
ranges that seem to differ from each other. From those ranges single parameter combinations
can be picked and the complete delay distribution can be evaluated.
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Prominence threshold δth

The prominence threshold is investigated in a range from 0.5 bar to 3 bar. For each value the
delay distribution is calculated and normalized. Those distributions are plotted as a color plot
in Fig. 5.16. It can be seen that the peak at roughly +5 ms is only present for low thresholds.
The peak around 0 ms is as well reduced for larger thresholds. The peak at -5 ms remains
prominent for the whole considered range. Additionally, a higher thresholds leads to a more
narrow distribution.

Range around S1-peaks NS1

Ranges between NS1 = 1 and NS1 = 100 are considered. This parameter has a similar effect
as the prominence threshold but less pronounced. The results can be found in Fig. 5.16.

0 25 50 75

NS1 (samples)

−40

−20

0

20

40
d

el
ay

s
∆
t 1

3
(m

s)

0.0

0.2

0.4

0.6

0.8

1.0

n
or

m
al

iz
ed

fr
eq

u
en

cy

1 2 3

prominence δth (bar)

−40

−20

0

20

40

d
el

ay
s

∆
t 1

3
(m

s)

0.0

0.2

0.4

0.6

0.8

1.0

n
or

m
al

iz
ed

fr
eq

u
en

cy

Figure 5.16: Sensitivity analysis: prominence threshold δth (left) and range around S1-peaks NS1
(right)

Speed of sound tolerances η−, η+

The tolerances are investigated in a range from 0.003 to 0.5, with increasing step size towards
higher tolerances. The results are presented in Fig. 5.17. The peak at -5 ms seems to be
prominent for a wide range of η−−η+ combinations and the distributions do not differ strongly.
Large η− and relatively small η+ however lead to high values in the range of +5 to +10 ms, as
can be seen in the enlarged plot in Fig. A.23. Very small tolerances lead to deviating results.
Examples can be seen in Fig. A.23, which covers the parameter range within the hatched
square in Fig. 5.17 on the left. However, combination 11 (shown in Fig. A.23) is the only one
for which the peak at -5 ms is not significantly pronounced. At those small tolerances only
very few combinations C23 are kept, so small changes in the tolerance can lead to massive
differences since the impact of every single combination becomes great.

52



5.2 Pressure Peak Analysis

0.1 0.2 0.3 0.4 0.5

η−

0.1

0.2

0.3

0.4

0.5

η
+

ref

1

2
3

4

5

6

7

8

−40 −20 0 20 40

delays ∆t13 (ms)

0.0

0.2

0.4

0.6

0.8

1.0

n
or

m
al

iz
ed

fr
eq

u
en

cy

ref

1

2

3

4

5

6

7

8

−10

−5

0

5

10

∆
F

Figure 5.17: Sensitivity analysis: the speed of sound tolerances η−, η+. ∆F (left) and delay
distributions for selected parameter combinations (right)

Moving standard deviation Nσ, ε

Nσ is investigated in a range between 53 and 773 samples. The scaling factor ε is varied within
a range of 0.5 to 1.5. Qualitatively all combinations that were considered in detail showed a
similar result. See Fig. 5.18 for an overview. Combination 3 deviates in that the peak at -5 ms
is slightly less pronounced, combination 1 shows lower values around +5 ms.
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Figure 5.18: Sensitivity analysis: moving standard deviation filter width Nσ and scaling ε. ∆F
(left) and delay distributions for selected parameter combinations (right)

Uniqueness scaling dmax, ε

The scaling range was tested for values between 0.5 and 3. The factor ε was tested in the same
range above. The results can be seen in Fig. 5.19. Again, the peak around -5 ms is almost
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Figure 5.19: Sensitivity analysis: uniqueness scaling dmax and ε. ∆F (left) and delay distributions
for selected parameter combinations (right)

unaffected by the parameter changes. The values around 0 ms and +5 ms are lowered by large
values for dmax and even more so for combinations with additionally large ε.

Moving average filter width Navg

The moving average is varied between Navg = 61 and Navg = 781. As can be seen in Fig. 5.20,
the influence of the filter width is very weak. The peak at +5 ms seems to gain in prominence
slightly with high filter sizes, while the peak at -5 ms is lowered marginally.
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Figure 5.20: Sensitivity analysis: moving average filter width Navg
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It has become apparent, that the qualitative result is relatively stable regarding the free
parameters. Especially the peak at -5 ms is very prominent in almost all distributions considered
before. The ratio between this peak and the values at delays around +5 to +10 ms varies
between the parameter choices. The values for those positive delays are often reduced by
parameters that reduce the impact of low-amplitude peaks (like dmax and δth).

Based on this findings the parameter combination used so far can be kept and used for the
final conclusion. As stated before, this is not considered to be the right choice, but based on
the sensitivity analysis, the results are consistent within a wide parameter range.

5.2.1.4 Results and discussion

The resulting distribution is depicted in Fig. 5.21. To be able to assess how meaningful the
frequencies of certain delays are, a random reference distribution is considered. This distribution
is obtained by altering the position of the S1-peaks randomly within the range specified by
the cavitation valley length of the individual tests. The rest of the method is kept the same.
This way 30 random distributions are calculated and the mean of those is used as a reference.

It becomes apparent that the peaks at -5 ms and around 0 ms in the measured distribution
deviate strongly from the reference distribution. The third peak around +5 ms is present in
the reference as well but at a lower level. The reason for this sharp edge in the distributions
gets clear when the combinations are considered separately according to the direction of
propagation between S2 and S3 (see Fig. 5.22). The distribution of peaks traveling from the
tank towards the valve is sharply cut at approximately 5 ms. This is due to the condition
applied before. 5 ms is roughly the delay for a wave traveling with the liquids speed of sound
from S3 to S1. Delays ∆t13 below that for pressure peaks traveling from the tank towards the
valve are not possible since that would mean that the wave speeds up between S2 and S1.

It is obvious that much more combinations are found for peaks traveling towards the tank
than for peaks coming form the tank. In addition the distribution for S2←S3 is close to the
corresponding reference distribution.

As mentioned before, a delay ∆t13 of -5.19 ms would correspond to a wave being created
somewhere between the valve and S1. The extreme prominence of the corresponding bin in
the distribution supports the initial hypothesis that the cavitation bubble collapse causes the
peaks. If the peaks would directly correspond to the main water-hammer waves, the preferred
direction of propagation would be expected to be S3→S2, since in theory during the cavitation
phase tank pressure waves would propagate towards the valve and would be reflected as vapor
pressure waves at the cavity. However the distribution around 0 ms does not fit well to the
expectation. The hypothesis would lead to the expectation that the distribution has its highest
point at -5.19 ms and decreases steadily with delays >-5.19 ms. That is because the largest
cavitation bubbles are expected to exist close to the valve, both because of theory (the tension
is strongest at the valve, bubbles have more time to grow) and observations from the footage
from Traudt et al. [26]. The increase observed between -5 and 0 ms is therefore surprising. It
would correspond to an accumulation of large bubbles in the center between S1 and S3, but
there is no physical reason to assume that this is actually the case. These conclusions about
the location of the peaks source rely on the assumption that the wave propagation speed is
constant along the pipe and equal to the liquids speed of sound. This is not guaranteed due to
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Figure 5.21: Results of water peak delay analysis

intense cavitation, however the peak at -5 ms suggests that in many cases this is actually the
case, at least for the corresponding peaks (which might be of especially high amplitude) and
between S1 and S3.

Of course, this distribution must not be interpreted as a representation of the actually
occurring peak combinations. As a result of the method the distribution includes many
combinations whose peaks are not caused by a single common event, even though it would be
theoretically possible. Only deviations from the reference distribution, which represents the
methods inherent noise, are relevant.
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Figure 5.22: Results of water peak delay analysis, split by direction of propagation

5.2.2 Liquid nitrogen

The method described in section 5.2.1 cannot be applied to the LN2 tests. The characteristics
of the pressure readings are vastly different between water and liquid nitrogen. These sharp
peak that can be found in water are not present in LN2. Instead the fluctuations are of rather
low frequency. However, a prominent feature in the LN2 tests is the strong and relatively wide
peak in the S1-readings after approximately twice the wave travel time through the pipe. This
feature occurs during tests of clusters zero and one. Intuition suggests that this is the pressure
wave traveling between cavity and tank which is predicted by theory. Comparing the pressure
readings at sensor positions S1 and S2 supports this assumption. One can see the pressure rise
at S2 before the peak in S1 and drop after the pressure has dropped in S1 (Fig. 5.23). However,
the S3 reading contains an additional oscillation with twice the expected frequency. Klein et
al. [14] attributed this frequency to a standing wave with open/open boundary conditions. In
general the shape of the waves in S2 and S3 shows that the rectangular shape of the S1-peak
is not just explainable by the simple theory of fluid hammer with column separation. It should
therefore be investigated in more detail in the following.

5.2.2.1 Timing

First, it should be quantified how well the timing of those peaks coincides with theory. The
timing includes both position in time and the duration of the peak. The clustering in section
4.2 succeeded in grouping the tests that show such peaks in clusters 0 and 1. Almost all tests
within those clusters feature such a peak. This allows for a very simple method for determining
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Figure 5.23: Exemplary pressure readings in LN2

the position of the rising and falling edge of the peak, since such methods usually get complex
due to anomalous data, that still has to be treated accurately.

The S1 pressure reading is scaled again, according to equation (4.3). To exclude the initial
transient, the noise onset tno defined in section 4.2.1 is used. Setting the timestamp of the first
sample of the valley to 0 ms, the data is only considered from tno/2 on. The rising and falling
edges are now simply defined by the crossings of the pressure signal and a threshold p̃th. The
rising edge is the sample ir where the signal exceeds the threshold the first time. The falling
edge is the sample if where the signal falls below the threshold again, with the condition
if ≥ ir + noffset. See Fig. 5.24 for a visualization. This condition ensures that high-frequency
oscillations during rise do not lead to an if which still lays on the rising edge. Since the number
of tests is manageable, it was determined by trial and error, that noffset = 20 has the desired
effect.

The threshold p̃th needs to be chosen in an appropriate way. Therefore a parameter study
is performed. In steps of 0.01 the rising and falling edges are detected for all associated tests
for thresholds between 0.05 and 1. The deviation between two consecutive thresholds thj and
thj+1is defined as the sum of squares of the deviations of all tests:

dr =
∑︂(︂

(ir)thj
− (ir)thj+1

)︂2
(5.21)

or
df =

∑︂(︂
(if )thj

− (if )thj+1

)︂2
(5.22)
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Figure 5.24: Visualization of peak edge detection

respectively. The accumulated deviation is plotted in Fig. 5.25. It can be seen that there is
very little change between the thresholds in the range of 0.12 to 0.52. A slight gradient is
noticeable in the falling edge branch until thresholds shortly below 0.4. The number of tests in
which the peak is detected is decreasing from around th = 0.43 with increasing threshold since
the peak is not equally strong in all tests. This is visualized in Fig. 5.25 as well. Therefore
th = 0.4 is chosen as a threshold with little impact.

Figure 5.25: Parameter study of threshold used for edge detection
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The distribution of time tr corresponding to the sample ir over all applicable tests can be
evaluated. Since t = 0 is determined from the S1 reading, it should be treated as the point of
wave passage through position S1 at x1. The expected time according to theory is therefore
texp = 2 · l−x1

a . The distribution of tr is shown in Fig. 5.26 on the left. The expected time
is displayed as a range according to the measurement errors for p and T which result in a
deviation of a. It can be seen that the center of the distribution lies outside of this range.
The peak often occurs slightly later than expected. The duration of the peak ∆t = tf − tr

can be evaluated the same way. Here the expected duration is ∆texp = 2 · x1
a . The resulting

distribution is shown on the right of Fig. 5.26. Here it can be seen that the peak is slightly
shorter than the theory would suggest.

In both cases the observations are close to the theory but trying to explain the deviations
simply by a reduced speed of sound due to cavitation fails as the shorter peak suggests the
contrary. If there is a column separation at the valve, the boundary to the liquid could act as
a point of reflection instead of the valve, which could explain the deviations.
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Figure 5.26: Timing of characteristic peak. Left: time until peak, right: duration.

5.2.2.2 High frequency noise

A prominent feature during the characteristic peak is a high frequency noise that seems to
occur directly with the rising edge of the peak. The frequency content of this noise will be
investigated in the following. It is apparent from the waveform that the noise decays only
slowly and is still present after the falling edge of the peak. For the frequency analysis an
extended part of the signal can therefore be used. Not only the peak itself but a time span with
five times the peak duration, starting at the rising edge, is used. This is visualized in Fig. 5.24.
For each test the spectrum is calculated via FFT. To be able to calculate a mean spectrum,
all participating spectra need to have a common frequency resolution. Therefore the spectra
are downsampled to the minimum frequency resolution. The resulting mean spectrum and the
amplitude range between minimum and maximum are shown in Fig. 5.27. It is evident, that
frequencies around 25 kHz stand out strongly. In Fig. A.24 the distribution of the frequency
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Figure 5.27: Mean frequency spectra. Left: during peak, right: before peak.

with maximum amplitude within the range of 20-30 kHz over all corresponding tests is depicted.
It can be seen, that the peak at 25 kHz is not due to a few outliers but this frequency is
dominant for the majority of tests. A comparison with the spectrum obtained from the part of
the cavitation valley before the rising edge shows that this noise is characteristic for the peak
(see Fig. 5.27).

For the sake of completeness it should be noted how the conversion of the amplitudes into
decibels takes place. Since the power spectrum is considered, the following conversion is used

A = 10 · log10

(︄
P 2

P 2
ref

)︄
dB, (5.23)

where P 2 is the output of the FFT. The reference Pref is chosen to be the uncertainty of
measurement of the pressure sensors. Since the pressure signals were scaled, this uncertainty
needs to be scaled the same way.

It is noteworthy that this noise seems to consist mainly of one discrete frequency. Since
this noise occurs during intense cavitation, it is reasonable to consider the possibility of bubble
oscillations as a cause. The bubble size necessary for oscillation with 25 kHz would be well
below 1 mm, according to equation (2.20). This seems plausible, however at those small sizes
the bubbles would probably be present as clouds. Bubble clouds can have a much lower natural
frequency than the individual bubbles [36].

Interestingly, when analysing the frequency content of the signal during the rising edge
of the first main fluid hammer peak, a similar frequency seems to be standing out. For that,
simply the time interval ∆t = tref right at the first pressure rise is considered. This is visualized
in Fig. 5.28 on the left. In the same figure on the right the measured frequency spectrum is
shown. At approximately 26 kHz, the prominent frequency is slightly higher than during the
characteristic peak during cavitation.

One possible explanation for this observation could be that a very sharp increase in pressure,
as it is present during both the first fluid hammer peak and the characteristic peak, might
excite vibrations in the structure. In this case the measured noise could be the result of a fluid
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Figure 5.28: Frequency analysis of first rise. Left: considered slice of pressure signal, right:
spectrum.

structure interaction and the frequency difference mentioned above could be due to the two
phase conditions during the cavitation phase.

It can be seen that this high frequency noise is present in all three sensors. The noise onset,
however, does not simply go along with the rising edge of the pressure wave. Instead it appears
as if the noise originates from some point along the pipe and propagates from there towards
the valve and the tank.

By comparing the pressure traces of the three sensors in 5.23 it is apparent that the pressure
rise during the first wave passage is much steeper at position S1 than at S2 or S3. From gas
dynamics it is known that a pressure wave travelling through a compressible medium becomes
steeper over time. Since the speed of sound in compressible fluids is dependent on the pressure,
the low pressure part of a rising edge of a pressure wave will travel more slowly than the high
pressure part. From literature a homogeneous two-phase mixture would be expected in LN2

during cavitation, which could explain the compressibility of the fluid. That would mean that
the noise is excited at the point in the pipe where the rising edge of the pressure wave reaches
some critical steepness.

It should be made clear that this hypothesis goes beyond the scope of this thesis since the
available data is not sufficient for robust claims on this theory. However, it demonstrates the
importance of a detailed investigation of the onset of this high frequency noise, which will be
conducted in the following. The following two questions shall be investigated:

(1) Can the noise onset in all three sensors be traced back to one common source?

(2) If so, can a relationship be found between the position of this source and the boundary
conditions of the tests?

5.2.2.3 Noise source tracking

The idea of the method for determining the location of the noise source is the following:

• Determine the point of time of the noise onset at all sensor positions.

• Calculate the delays between the three noise onsets.
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5.2 Pressure Peak Analysis

• Assume a constant speed of propagation, since even the high frequency noise has a large
amplitude compared to acoustic disturbances.

• With this information calculate the theoretical origin of the noise.

This principle is visualized in Fig. 5.29.
Since only the specific 25 kHz noise is relevant, the signals are band-pass filtered, keeping the

frequency band between 22 and 28 kHz. Onset detection is usually done with more sophisticated
approaches operating in frequency domain [37]. However, since the considered signal is now of
very narrow bandwidth, such approaches are not applicable. Therefore amplitude and time
based approaches have to be used.

The basic method after band-pass-filtering is the following: Use the first part of the signal
with a time-span of tref as reference. It was checked that the noise onset never occurs within
this time for any sensor. The RMS-value of this part is calculated and referred to as p̂ref in the
following. Since the problem is well constrained it can be seen that the leftover signal can be
cropped to a duration of 4 · tref in order to reduce complexity of the following steps. After this
time the noise has already decayed.

On this signal a moving RMS p̂ is calculated. A small filter size is desired here to reduce
the error due to a smearing of the transients. Manual inspection showed, that 25 samples
produces reasonable results.

In the signal from sensor S1 the onset is very sharp and therefore easy to detect. Here the
noise onset can be defined as the first sample at which the condition p̂ > p̂ref + p̂th is met.
The threshold p̂th is set to 0.02 bar. Manual inspection showed that the onset is characterized
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Figure 5.29: Schematic of noise onset tracking
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correctly in all corresponding tests by this method. Since the onset is very sharp, there is no
need for analyzing the influence of p̂th. It can clearly be seen, that this choice produced the
very good results. The only uncertainty comes from the filter size of the moving RMS and is
therefore small enough to be neglected for the purpose of this analysis.

For sensors S2 and S3 the onset definition is not as easy. The onset differs in sharpness
and the amount of ground noise even before the noise onset is not consistent between the
tests. The chance of misdetection is considerably higher than for S1 using the simple approach
described above. Additionally, even with manual inspection it is not clear where exactly the
noise sets on.

It was found that the waveforms of the filtered S2 and S3 signals are usually similar. The
delay between those two signals can therefore be determined via cross-correlation. Calculating
the cross-correlation simply on the bandpass filtered signals, however, proved to be unreliable
in this case. A few pre-processing steps need to be carried out:

• The positive envelopes
¯
e of the signals

¯
p̂ are calculated as shown in Fig. 5.30 a).

• The mean of the envelope is set to zero by
¯
e−mean (

¯
e).

• The shifted envelope is scaled to an absolute maximum of 1 by
¯
e/max (abs (

¯
e)).

• Since the matching features between both signals often are relatively short peaks,
additional scaling is applied in order to increase the relative amplitude of those peaks:

¯
es =

¯
e · [abs (

¯
e) · (1− s) + s] . (5.24)

With this scaling function each value is scaled according to the term in rectangular brackets.
The parameter s determines the degree of scaling. For s = 1 there is no scaling since the
term would be equal to 1. For s = 0 each value is scaled by its absolute value. To increase
the robustness, the cross correlation is performed for multiple values for s between 0.1 and
0.9. Moving forward, the mean of the resulting cross-correlations is used. An exemplary cross-
correlation is depicted in Fig. 5.30 b). The delay ∆t23 between sensors S2 and S3 is then
obtained from the lag τ with the maximum cross-correlation value.

The moving RMS of both signals calculated before can be shifted according to this delay
(
¯
p̂′) and summed up to:

¯
p̂′

sum
=

¯
p̂′

S2 +
¯
p̂′

S3. (5.25)

The condition for the noise onset is now
¯
p̂′

sum
> (p̂ref)S2 + (p̂ref)S3 + p̂th2 (see Fig. 5.30). The

time of the noise onset found here is offset with the ∆t23 to find the onset time in the original
signal. The delay between S2 and S3 is not affected by this definition but is solely defined
by the cross-correlation. The delays ∆t12 and ∆t13 however are based on this definition. The
cross-correlation is used to achieve more consistent results. The cross-correlation is more likely
to find the true delay ∆t23 than the RMS-threshold alone.

With those delays one can calculate the theoretical location of the source. As mentioned
before, for this the speed of propagation has to be assumed to be constant. The noise under
consideration with amplitudes around 0.1 to 0.2 bar cannot be considered as an acoustic
oscillation. Therefore the reduction of the propagation speed can be less severe. As known
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5.2 Pressure Peak Analysis

from theory, shock waves can travel through a bubbly liquid with velocities much higher than
the reduced speed of sound [19]. It was also seen, that the main wave seems to travel with
approximately the speed of sound of the liquid phase. Therefore here, the speed of propagation
is assumed to be constant and equal to the speed of sound in the liquid phase. This assumption
still is a simplification and the quantitative results should be treated with caution.

The delays between source and the sensors can then be obtained by

∆t01 = l1
a

, ∆t02 = l2
a

, ∆t03 = l3
a

. (5.26)

The observed delay between two sensors can then be expressed as

∆t12 = ∆t02 −∆t01 = l2
a
− l1

a
, ∆t13 = l3

a
− l1

a
, ∆t23 = l3

a
− l2

a
. (5.27)

See Fig. 5.29 for a visual explanation of those variables. Since

l1 + l2 = x2 − x1, l1 + l3 = x3 − x1, l2 + l3 = x3 − x2 (5.28)

are known, the equations above can be resolved for any l. Since this is a 1D-problem, two
sensors would be enough for localization in between those two sensors. The third sensor can
be used to check for consistency. The source position will be expressed as distance to S1 (l1).
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Figure 5.30: Schematic of onset detection in S2 and S3
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This can be done in two ways:

l1 = x12 − a∆t12
2 or (5.29)

l1 = x13 − a∆t13
2 . (5.30)

Equations (5.29) and (5.30) are identical if a ·∆t23 = x3 − x2. Since the noise onset in S2 and
S3 depends on the choice of the threshold p̂th2 and since it is not obvious how to define a
correct threshold, the position is calculated for various different thresholds between 0.01 and
0.2. The results are scattered in Fig. 5.31 over the initial tension which is expressed by the
difference of the theoretical Joukowsky pressure according to (2.1) and the "distance" between
system pressure and vapor pressure. For every test, the distribution of calculated positions
for the different thresholds is visualized by a standard boxplot. To check for consistency, l2 is
considered according to

l2 = x23 − a∆t23
2 (5.31)

and is plotted in Fig. 5.31 on the top. Note that the threshold p̂th2 has no influence here,
because ∆t23 depends on the cross-correlation only. Since l2 is calculated from sensor pair
(S2, S3), a source position outside the range between both sensors cannot be resolved. It
would therefore be expected that for l1 < x2 − x1 the condition l2 = 0 m holds. Likewise,
l1 is expected to lay between 0 m and ∆x12 = 3.8 m. The results in Fig. 5.31 show mostly
good agreement with those expectations. The calculated distance l2 has a small relatively
constant offset from 0 m which indicates a small deviation in the speed of sound. Considering
the deviation of ±9% only due to the measurement resolution of the pressure and temperature
sensors, this is not unexpected. A few tests, however, show relatively strong deviation. It can
be seen that the tests with l1 < 0 m also have an anomalous l2. Those tests show an anomalous
behavior in general as it is noticeable that for those tests the noise onset is only detected for
small thresholds p̂th2 . The values exceeding ∆x12 at high tensions indicate a slower speed of
sound between S2 and S1 than calculated. This was seen in the timing analysis of the rising
edge as well and is therefore not surprising.

Given that for the majority of tests the conditions are met or deviations are small and
explainable, it can be safely assumed that the noise in all three sensors indeed has a common
origin.

From Fig. 5.31 it is also clear that the calculated source position follows a trend depending
on the boundary conditions. The higher the initial tension, the closer the position l1 is to the
tank.
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Figure 5.31: Noise source tracking results

5.2.2.4 Discussion

The localization of the source has a lot of uncertainty. The possible error of the calculated
speed of sound is relatively large and the assumption of a constant speed of sound is a
simplification, even though the results suggest that the reality is not far off. Otherwise it would
be expected that the calculated values for l1 and l2 violate the consistency conditions more
severely. Additionally the determination of the noise onset in S2 and S3 is still vague. However,
for the purpose of this analysis only qualitative information is needed, which is satisfactorily
provided by this method.

The main findings of the noise onset analysis are the following:

• The noise onset in the different sensors can be tracked back to a common point of origin.
The noise appears to be excited at some location in the pipe between S1 and S2 as the
wave passes through.
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• This location depends on the tension on the fluid. A higher tension goes along with a
location closer to the tank.

The results fit to the theory mentioned previously, that the main pressure wave becomes
steeper while travelling through the pipe, eventually leading to the excitation of the high-
frequency vibration. If this is true, a likely cause for the steepening is the presence of a
homogeneous two-phase mixture due to the cavitation. Even though the compressibility of
liquid nitrogen itself is comparably high, it is not sufficient to explain the fast steepening
observed in the measurements, as the estimation in A.2 shows. It also fits that the position of
the source shifts towards the tank with increasing tension. Given the considerations above, this
would indicate that the cavitation region is spread further into the pipe with higher tension,
which fits to theory.

These considerations are merely one possible interpretation of the observations. Even
though the results of this analysis are consistent with the hypothesis proposed above, it cannot
be ruled out that a different mechanism would cause the same observations. By no means the
results can be viewed as evidence for the hypothesis. Additional insight would be needed by
more dense instrumentation and preferably an optical access. The assumption that the noise
is caused by fluid-structure interactions would have to be checked by a dedicated analysis of
the test bench.

68



6
Conclusion

The aim of this thesis was to provide insight into certain aspects of pressure fluctuations during
the cavitation phase following pressure surges. The noise in general was considered as well as
short duration peaks in the pressure readings.

The measurement data consisted of a multitude of individual tests. In order to allow for a
meaningful statistical evaluation, the tests were clustered first according to the characteristics
of the pressure readings at the sensor position closest to the valve during the first cavitation
phase. Seven parameters were proposed to describe those characteristics. It was found that
the clustering in this 7-dimensional space lead to reasonable clusters in the space of the tests
boundary conditions as well.

Based on these clusters the behavior of the noise over time was evaluated statistically. It
was found that in water the noise in the liquid phase is independent from the noise in the
cavitation region. No matching pattern was observed between those two regions. In contrast,
the noise in liquid nitrogen showed a strong coupling between the cavitation and liquid phase
regions. The dependence of the noise on the main pressure wave seems to be much more
obvious in LN2 than in water.

Short duration peaks were noticed in the water tests, especially at sensor S1. The previous
statistical evaluation indicated that those peaks occur rather randomly and do not accumulate
at certain points in time. To investigate the nature of those peaks a tracking method was
proposed which interrelates the occurrence of those peaks at the different sensor positions
in order to analyze the delays for clues to the origin of the peaks. Since only three sensor
positions were available, the peaks measured at those positions could not be clearly correlated
and a broad approach was needed. Conclusions could be drawn from statistical accumulations
of delays and the deviation from the random reference. It was observed that an extraordinarily
large portion of peaks originate from the part of the pipe between valve and sensor S1. This
supports the theory that the peaks are caused by the collapse of cavitation bubbles, since the
largest bubbles are expected to be located in this region.

In liquid nitrogen, a characteristic peak resembling a square wave pulse was observed
in many tests at the sensor position closest to the valve. Certain aspects of this dominant
feature were observed in more detail. It was shown that the timing of these peaks is in rough
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agreement with the timing of the main pressure wave which is expected by theory during the
cavitation phase. However, deviations suggest a reduced speed of sound, possibly due to the
cavitation. The duration (or width) of the peaks also matches the theory with some deviations.
Those deviations seem to contradict the deviations of the timing at first glance. A possible
explanation could be the presence of a column separation at the valve.

It was observed that these peaks often go along with a high frequency noise with a discrete
frequency of approximately 25 kHz. A method was developed to determine the onset of this
noise at all three sensor positions in order to locate the origin of the noise. It was shown that
the noise indeed seems to originate from a point in the pipe which usually lies between sensor
positions S1 and S2. It seems to be excited upon wave passage. The position of this point
of origin was shown to depend on the boundary conditions of the test. At higher tensions
the origin lies closer to the tank. This finding is especially interesting since the cavitation
is expected to spread further into the pipe at higher tensions as well. A hypothesis for the
mechanism causing the noise was put forward.

Based on literature and previous considerations the expectation is, that a main difference
between water and LN2 lies in the number and size of the cavitation bubbles. In water, larger
bubbles and an inhomogeneous distribution is expected, while for LN2 theory would suggest a
fog-like appearance, i.e. many small homogeneously distributed bubbles. The observations of
this work are in line with these expectations: The decoupling between cavitation region and
liquid column, which was observed in water during the investigation of the noise over time,
indicates a vastly different nature of the cavitation than in LN2. The pressure spikes observed
in water seem to originate from bubble collapse which would suggest relatively large bubbles. In
LN2 no such spikes were observed. Instead wave steepening and the excitation of high-frequency
noise were seen which could potentially be explained by a distributed homogeneous two-phase
mixture.

However, those are merely interpretations of the observations. For robust claims on the
nature of the cavitation more extensive instrumentation would be needed. With a larger
number of pressure sensors spread along the pipe the propagation of the pressure waves and
peaks could be tracked more reliably which could enable more far-reaching conclusions. A
definite proof of the differences in the nature of the cavitation would require an optical access.
It would be best to have multiple such accesses distributed over the pipe in order to evaluate
the spread of the cavitation and potentially observe the pressure waves visually.
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Figure A.1: Gradients per cluster parameter
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Figure A.3: Cluster sizes. Left: water, right: LN2
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Figure A.4: Visualization of cluster centers for LN2

Figure A.5: Visualization of cluster centers for water
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Figure A.6: LN2, cluster 2: Noise over time for the first (left column) and second (right column)
cavitation valley
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Figure A.7: LN2, cluster 3: Noise over time for the first (left column) and second (right column)
cavitation valley
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Figure A.8: LN2, cluster 4: Noise over time for the first (left column) and second (right column)
cavitation valley
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Figure A.9: Water, cluster 2: Noise over time for the first (left column) and second (right column)
cavitation valley

79



A. Appendix

0.0

0.2

0.4

0.6

0.8

p
rm

s
(S

1)

mean

median

IQR

#tests

0.0

0.2

0.4

0.6

0.8

1.0

1.2
mean

median

IQR

#tests

0.0

0.2

0.4

0.6

0.8

p
rm

s
(S

2)

mean

median

IQR

#tests

0.0

0.2

0.4

0.6

0.8

1.0

1.2
mean

median

IQR

#tests

0 5 10 15 20 25

normalized time t/tref

0.0

0.2

0.4

0.6

0.8

p
rm

s
(S

3)

mean

median

IQR

#tests

0 5 10 15 20 25

normalized time t/tref

0.0

0.2

0.4

0.6

0.8

1.0

1.2
mean

median

IQR

#tests

0

2

4

6

8

10

12

#
in

vo
lv

ed
te

st
s

0

2

4

6

8

10

12

#
in

vo
lv

ed
te

st
s

0

2

4

6

8

10

12
#

in
vo

lv
ed

te
st

s

Figure A.10: Water, cluster 3: Noise over time for the first (left column) and second (right
column) cavitation valley
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Figure A.11: Water, cluster 0: Noise over time for the third (left column) and fourth (right
column) cavitation valley
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Figure A.12: Water, cluster 1: Noise over time for the third (left column) and fourth (right
column) cavitation valley
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Figure A.13: Water, cluster 2: Noise over time for the third (left column) and fourth (right
column) cavitation valley
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Figure A.14: LN2, cluster 2: Frequency dependent noise over time for the first (left column) and
second (right column) cavitation valley

84



A.1 Supplementary figures

10−3

10−2

p
r
m
s

(b
ar

)
(S

1)

10−3

10−2

p
r
m
s

(b
ar

)
(S

2)

0.0 2.5 5.0 7.5 10.0

normalized time t/tref

10−3

p
r
m
s

(b
ar

)
(S

3)

0

4

9

#
te

st
s

5

10

15

20

25

f-
b

an
d

m
ea

n
(k

H
z)

10−3

10−2

10−1

5

10

15

20

25

f-
b

an
d

m
ea

n
(k

H
z)

10−3

10−2

10−1

0.0 2.5 5.0 7.5 10.0

normalized time t/tref

5

10

15

20

25

f-
b

an
d

m
ea

n
(k

H
z)

10−3

10−2

10−1

Figure A.15: LN2, cluster 3: Frequency dependent noise over time for the first (left column) and
second (right column) cavitation valley
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Figure A.16: LN2, cluster 4: Frequency dependent noise over time for the first (left column) and
second (right column) cavitation valley
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Figure A.17: Water, cluster 2: Frequency dependent noise over time for the first (left column)
and second (right column) cavitation valley
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Figure A.18: Water, cluster 3: Frequency dependent noise over time for the first (left column)
and second (right column) cavitation valley
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Figure A.19: Water, cluster 0: Frequency dependent noise over time for the third (left column)
and fourth (right column) cavitation valley
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Figure A.20: Water, cluster 1: Frequency dependent noise over time for the third (left column)
and fourth (right column) cavitation valley
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Figure A.21: Water, cluster 2: Frequency dependent noise over time for the third (left column)
and fourth (right column) cavitation valley
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Figure A.22: Sensitivity analysis: weight function (details)
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Figure A.23: Sensitivity analysis regarding the speed of sound tolerances η−, η+ with focus on
small tolerances
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A. Appendix

A.2 Estimation of wave steepening in LN2

In this thesis, wave steepening was observed in liquid nitrogen. A rough estimation of the
influence of the pressure on the speed of sound shall help to assess whether this steepening
can be the explained by the compressibility of the liquid nitrogen alone.

Exemplary, representative values are based on the rising edge of the first pressure wave
shown in Fig. 5.23. A pressure rise of ∆p = 12 bar is considered. The conditions before the
pressure rise are assumed as T0 = 75 K and p0 = 0.76 bar. An adiabatic compression is
assumed, leading to a temperature increase of

∆T = T0 · α0
ρ0 · cp0

·∆p (A.1)

with the thermal expansion coefficient α0, the density ρ0 and the specific heat capacity cp0 .
This was derived for example in [1].

In this case, this leads to a temperature T1 after the pressure rise of approximately 75.3 K.
Since now all required conditions (T0, T1, p0, p1) are known, the speed of sound can be
determined at both states. The results are

a0 = 875.28 m/s, (A.2)

a1 = 881.91 m/s. (A.3)

Over a length of ∆x12 = 3.79 m, this leads to a difference in travel time of approximately
0.03 ms. Given that the rise time of the rising edge of the pressure wave is in the order of
magnitude of 4 ms, it appears unlikely that the compressibility of the LN2 alone causes the
steep rising edge observed in S1.
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