
Noname manuscript No.
(will be inserted by the editor)

Terrain trees: a framework for representing, analyzing and
visualizing triangulated terrains

Riccardo Fellegara · Federico Iuricich ·
Yunting Song · Leila De Floriani

the date of receipt and acceptance should be inserted later

Abstract We propose a family of spatial data structures for the representation and process-
ing of Triangulated Irregular Networks (TINs). We call such data structures Terrain trees. A
Terrain tree combines a minimal encoding of the connectivity of the TIN with a hierarchi-
cal spatial index. Connectivity relations are extracted locally at run-time, within each leaf
block of the hierarchy, based on specific application needs. Spatial queries are performed
by exploring the hierarchical data structure. We present a new framework for terrain analy-
sis based on Terrain trees. The framework, implemented in the Terrain trees library (TTL),
contains algorithms for morphological features extraction, such as roughness and curvature,
and for topology-based analysis of terrains. Moreover, it includes a technique for multivari-
ate visualization, which enables the analysis of multiple scalar fields defined on the same
terrain. To prove the effectiveness and scalability of such framework, we have compared the
different Terrain trees against each other and also against the most compact state-of-the-art
data structure for TINs. Comparisons are performed on storage and generation costs and on
the efficiency in performing terrain analysis operations.

Keywords terrain modeling, Triangulated Irregular Networks (TINs), spatial indexes,
terrain analysis, multivariate visualization

1 Introduction

Thanks to recent development of remote sensing technologies such as Light Detection and
Ranging (LiDAR), the amount of available spatial data, represented as raw massive point
clouds, has been increasing exponentially. LiDAR data is used in a variety of different fields,

Riccardo Fellegara
German Aerospace Center (DLR), Braunschweig, Germany E-mail: riccardo.fellegara@dlr.de

Federico Iuricich
Clemson University, Clemson, SC, USA E-mail: fiurici@clemson.edu

Yunting Song
University of Maryland, College Park, MD, USA E-mail: ytsong@umd.edu

Leila De Floriani
University of Maryland, College Park, MD, USA E-mail: deflo@umiacs.umd.edu

https://orcid.org/0000-0002-8758-2802
https://orcid.org/0000-0002-6605-9131
https://orcid.org/0000-0002-3053-1748
https://orcid.org/0000-0002-1361-2888

2 Riccardo Fellegara et al.

including urban modeling [69], climate study [3], earthquake analysis [47], disaster manage-
ment [75,43], flood risk mapping [71], forest analysis [37,12,74], and coastal morphology
analysis [73,65]. Surface models based on LiDAR data enable the extraction of features rel-
evant for several applications. As an example, the slope of a terrain is used to map seafloor
habitats [42], while pairing slope, roughness, and curvature of a terrain is used to model
coral distribution [17]. Also, the segmentation of a terrain according to its critical points
(i.e., peaks and pits) provides information about terrain morphology, which are fundamen-
tal for assessing the risk of landslides or floods. Research in these fields has been greatly
enhanced by the increasing availability of open data repositories.

A raster representation is often used for modeling a terrain or a surface from airborne
LiDAR data, mainly because of the availability of a large number of software tools for pro-
cessing raster data in Geographic Information Systems (GISs) and remote sensing. While it
is always possible to transform a point cloud into a raster representation, this is a computa-
tionally intensive operation, which can account for 70-80% of the time required by the total
analysis pipeline [6,1]. Also, artifacts might be created due to the resolution of the raster
grid, especially if the original point cloud contains noise due to acquisition errors, or if it
contains missing data, due to the presence of occlusions.

Adaptive alternatives to raster representations are Triangulated Irregular Networks (TINs),
which are used for encoding irregular distributed data at the cost of a higher memory con-
sumption with respect to raster-based elevation models (usually called Digital Elevation
Models (DEMs)). But compact and widely-used data structures for encoding TINs suffer
from scalability issues. For instance, using the most compact state-of-art data structure for
triangle meshes, we can process meshes up to 150 million of vertices (300 million of tri-
angles) on our workstation with an Intel Xeon E5-2630 v4 CPU at 2.20Ghz and 64GB of
RAM, which is much lower than the size of currently available data sets (see, for instance,
the OpenTopography repository1).

We propose here a new data structure for in-memory processing of TINs, the Terrain
tree, which encodes the topology of a triangulated terrain combined with a spatial index
built on the triangle mesh. We present, discuss and compare three spatial indexes which
together form the Terrain tree family. By encoding the vertices incident in each triangle as
well as the field values associated with each vertex, we provide the minimum amount of
information required for extracting the full mesh connectivity and for processing such fields
locally. On the other hand, the spatial index provides the ability to navigate the triangle mesh
at a global scale. These two components enable the efficient extraction of connectivity in-
formation and guarantee compactness and scalability. Our work builds on a short paper [23]
in which we have introduced a single spatial index for triangle meshes, using point-based
decomposition of the domain, and we discuss the extraction of some basic morphologi-
cal terrain features, as slope, curvature and critical points identification. In this work, we
have developed a new distributed approach for extracting such morphological information
on all Terrain trees. Moreover, we have developed distributed algorithms for computing and
analyzing the topology of a terrain by using discrete Morse theory [30]. Such algorithms
require an efficient navigation of a triangle mesh, which is a challenging task in hierarchical
and modular mesh data structures like the Terrain trees.

Morse theory [52] has been used for computing segmentations of the graph of 2D and
3D scalar fields based on the critical points of the field, like the critical net, which consists
of the critical points and of the separatrix lines connecting them, or Morse decompositions,
defined by the regions of influence of the critical points. Due to the discrete nature of the

1 https://opentopography.org/

https://orcid.org/0000-0002-8758-2802
https://opentopography.org/

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 3

problem, recent research has focused on discrete Morse theory [29] which is a combinatorial
counterpart of smooth Morse theory [52]. Discrete Morse theory is based on the definition
of a discrete vector field, also called a Forman gradient, which emulates the gradient of the
original function. By means of the Forman gradient, the connectivity of the critical points
and the Morse decomposition can be extracted, thus providing an efficient and compact
representation of the terrain topology [15,38].

It is common in applications to study a terrain in combination with additional fields
defined on it, and we can find such data in several domains, like forest management, weather
predictions and geological sciences [40]. On geological data, such fields usually represent
gravity and intensity of the magnetic field. In the case of LiDAR point clouds, these fields
can be either: (i) generated by the instrument used for creating the point cloud (e.g., the
elevation of each point), (ii) directly derived from the raw data (e.g., the slope or the airborne
laser scanning cover), or (iii) computed by a domain expert at run-time (e.g., estimating the
curvature and roughness values from the elevation of each point). These types of data sets are
referred to as multifield datasets, and they are formally represented by triangle meshes and
collections of scalar values at the vertices of the mesh. To analyze such multifield datasets,
we have extended the strategy defined by Nagaraj et al. [53] for computing a new scalar
function capturing the relationships among the multifield data.

The remainder of the paper is organized as follows. In Section 2, we review some back-
ground notions on triangle meshes and on discrete Morse theory. In Section 3, we discuss
related work on connectivity-based data structures for triangle meshes, on spatial indexes
for triangle meshes and maps, and on techniques from topological data analysis relevant to
our work. In Section 4, we present the Terrain trees, describing the different subdivision
rules and how they are generated, and, in Section 5, their encoding structure and how to
execute basic spatial and topological queries on them. In Section 6, we describe how to ex-
tract classical morphological terrain features, namely triangle and edge slope, curvature and
roughness in the Terrain trees framework. In Section 7, we define how to perform topology-
based terrain analysis on Terrain trees by using a discrete Morse gradient. First, we introduce
a distributed algorithm for extracting a discrete gradient field, and, then, a distributed pro-
cedure for extracting the critical net on the critical points of the gradient. In Section 8, we
depict how multivariate visualization is performed in Terrain trees. In Section 9, we provide
an experimental evaluation of the Terrain trees by comparing the performances of the differ-
ent spatial indexes also against a state-of-the-art compact data structure for meshes. Finally,
in Section 10, we draw some concluding remarks and discuss directions for future work.

2 Background Notions

In this Section, we review some background notions on triangle meshes, which are at the
basis of triangulated terrains, and on Morse and discrete Morse theories, which are at the
basis of the terrain analysis developed in this work.

2.1 Triangulated Irregular Networks (TINs)

A Triangulated Irregular Network (TIN) is a digital terrain model defined by a finite set of
irregularly distributed points in the plane, each of which has an elevation value associated. A
TIN consists of a triangle mesh connecting the points in the plane and of a piecewise linear
interpolating function defined on the triangles of such mesh.

4 Riccardo Fellegara et al.

To define a triangle mesh, we need to introduce the concept of a simplex. A k-simplex
σ is the convex hull of k+ 1 independent points in the Euclidean space En (with k ≥ 0). k
is the dimension of σ . A 0-simplex is a vertex, a 1-simplex is an edge and a 2-simplex is
a triangle. An h-facet σ ′ of a k-simplex σ is an h-simplex (0 ≤ h < k) generated by h+ 1
vertices of σ . For instance, a triangle has three 0-facets, its vertices, and three 1-facets, its
edges. The set of all the facets of a simplex defines its boundary. Conversely, the star of a
simplex σ is the set of simplices that have σ as a facet. For instance, the star of a vertex is
the set of triangles and edges incident in it. The link of a simplex σ is the set of all the facets
of simplices in the star of σ that are not incident in σ . A triangle mesh Σ is a collection
of vertices (0-simplices), edges (1-simplices), and triangles (2-simplices) such that, given
any two triangles in Σ , either they have an empty intersection or they intersect at a common
simplex (edge or vertex).

The incidences and adjacencies among the simplices of a triangle mesh are captured by
connectivity relations [16]. We distinguish among boundary relations, which relate a sim-
plex to its facets, co-boundary relations, which relate a simplex to the simplices for which it
is a facet, and adjacency relations, which relate simplices sharing a facet. For instance, the
Triangle-Vertex (TV) relation is a boundary relation that associates with a triangle t its three
vertices. The Vertex-Triangle (V T) relation is a co-boundary relation that associates with a
given vertex the triangles in its star. The Triangle-Triangle (T T) relation is an adjacency
relation that associates with a triangle t the three triangles sharing an edge with t.

2.2 Morse theory

Let us consider a domain D ⊆ R2 and a smooth (i.e., C∞) scalar function f defined over D
[70]. A point p∈D is called a critical point of f if and only if the gradient of f vanishes at p.
The determinant of the Hessian matrix Hessp(f) of the second order partial derivatives of f ,
evaluated in p, provides additional information about the critical points of f . The number of
negative eigenvalues of Hessp(f), called the index of p, defines the type of the critical point.
A critical point of index 0 is a minimum, a critical point of index 1 is a saddle, and a critical
point of index 2 is a maximum. For each critical point p, the eigenvectors of Hessp(f) define
the directions in which function f decreases. The lines everywhere tangent to the gradient
of function f are called integral lines. An integral line connecting two critical points of
consecutive index is called a separatrix line.

Morse theory [52] has been developed for smooth functions f such that all the critical
points of f are non-degenerate, i.e., Hessp(f) ̸= 0. In such cases f is said to be a Morse
function. The set of critical points and integral lines define a decomposition of D based on
the regions of influence of the critical points. If we consider a critical point p of index k,
the integral lines converging at p form a k-cell, called the descending manifold of p. The
descending manifold of a maximum is a region, the descending manifold of a saddle is a
line and that of a minimum, a point. The collection of all descending manifolds form the
descending Morse complex. Dually, integral lines originating at p form a (2−k)-cell, called
the ascending manifold of p. Here, the ascending manifold of a maximum is a point, the
ascending manifold of a saddle is a line and that of a minimum a region. The collection of
the ascending manifolds forms the ascending Morse complex.

Figure 1(a) shows the critical points of f , namely minima (), saddles (), or max-
ima (). Lines indicate integral lines, while bold lines indicate separatrix lines connecting
minima to saddles and saddles to maxima. In Figure 1(b), we depict in red the descending
manifold defined by the integral lines having destination in the maximum. In Figure 1(c),

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 5

(a) (b) (c)

(d) (e)

Fig. 1 (a) Minima (), saddles (), and maxima () and the integral lines connecting them. (b) Descending
manifold corresponding to a maximum. (c) Ascending manifold corresponding to a minimum. (d) Descending
Morse complex and (e) ascending Morse complex.

we depict in yellow the ascending manifold defined by the integral lines having their origin
at the minimum. The collection of all descending and ascending manifolds defines the de-
scending and ascending Morse complexes, respectively, depicted in Figure 1(d) and Figure
1(e). In this work, we are specifically interested in the critical net that compactly describes
the terrain morphology. The critical net is a network having its nodes at the critical points,
and as arcs the separatrix lines connecting critical points of consecutive indexes. In Figure
1(a) the critical net is depicted as a set of lines in bold connecting critical points.

2.3 Discrete Morse theory

In the applications we deal with scalar fields sampled at discrete locations within a domain.
To this aim, the results of Morse theory, defined in the smooth case, have been extended by
its discrete counterpart, called Discrete Morse Theory [29]. By assuming a scalar function F ,
defined at the vertices of a triangle mesh Σ , discrete Morse theory allows for the computation
of a combinatorial gradient approximating the gradient of F , also called Forman gradient.
The Forman gradient is defined by a collection of simplex pairs such that a k-simplex of Σ
is paired with a (k− 1)-simplex or a (k+ 1)-simplex, and each simplex of Σ is in at most
one pair. A k-simplex involved in no pairs is called a critical simplex of index k.

A gradient pair can be viewed as an arrow formed by a head (k-simplex) and a tail
((k − 1)-simplex). In a triangle mesh, we have arrows formed by a triangle and an edge
(triangle-edge pair) and by an edge and a vertex (edge-vertex pair). In a triangle mesh,
unpaired simplices can be: critical triangles indicating maxima, critical edges indicating
saddles, and critical vertices indicating minima. Figure 2(b) shows the Forman gradient
computed on the triangle mesh shown in Figure 2(a). Black arrows indicate gradient pairs.
Red points indicate critical triangles, green points indicate critical edges, and blue points
indicate critical vertices.

In the same way, critical simplices are the discrete counterpart of critical points, and
sequences of gradient pairs are the discrete counterpart of the integral lines. We call a V -

6 Riccardo Fellegara et al.

(a) (b) (c)

Fig. 2 (a) A TIN with elevation depicted according to a diverging blue-red colormap. (b) Forman gradient,
(d) separatrix V -paths, and (c) the corresponding critical net.

path a sequence of simplices [σ0,τ0, ...,σi,τi, ...,σq,τq] such that σi and σi+1 are on the
boundary of τi and (σi,τi) are paired simplices, where i = 0, ...,q. A separatrix V-path is a
triple (τ,ρ,σ), where τ and σ are two critical simplices having consecutive indexes and ρ
is a V -path connecting τ to σ . In a triangle mesh Σ , we have separatrix V1-paths connecting
a critical edge to a critical vertex and separatrix V2-paths connecting a critical triangle to a
critical edge. In Figure 2(c) separatrix V -paths are depicted in red.

V -paths and separatrix V -paths are used to extract features from the Forman gradient,
including the critical net. Specifically, within the framework of Forman theory, the vertices
of the critical net are the critical simplices of V . Arcs of the critical net are the separatrix V -
paths connecting them. A geometrical interpretation of the critical net is given by connecting
tails and heads of all the arrows in the separatrix V -paths. Figure 2(d) shows in red the critical
net computed by following the separatrix V -paths.

3 Related Work

In this Section, we review some related work on connectivity-based data structures for tri-
angle meshes, on hierarchical spatial indexes for maps and meshes, and on techniques for
topological data analysis.

3.1 Connectivity-based data structures

Connectivity-based data structures extend graph-based data structures for supporting the ef-
ficient extraction of connectivity relations (see [16] for a survey). A variety of connectivity-
based data structures have been developed in the literature for triangle meshes [16]. The
most widely used data structures are triangle-based ones, which encode the vertices and the
triangles of the mesh but not the edges. The most compact triangle-based representation is
the indexed data structure, which encodes the vertices and the triangles of the mesh, and,
for each triangle, the references to its vertices. The Indexed data structure with Adjacencies
(IA data structure) [59,55] extends the indexed data structure by explicitly encoding the ad-
jacencies between triangles through the Triangle-Triangle relation and, for each vertex, the
index of a triangle incident into it.

Other triangle-based data structures are the Corner Table (CoT) [61] and the Sorted Op-
posite Table (SOT) [32] data structures, in which the connectivity of the triangles is encoded
through the concept of corner. Given a triangle t, a corner is a reference to an edge-adjacent
triangle of t associated with one the vertices of t. Each triangle is thus identified by three

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 7

corners. The storage requirement of the CoT data structure is the same that of the IA data
structure, as shown in [16]. The SOT data structure introduces a compact version of the CoT
and IA data structures, by encoding only the triangles of the mesh and the Triangle-Triangle
relation, thus requiring about 50% of the storage of the other two representations. How-
ever, the SOT data structure is only suited for static meshes and static applications, since
modifications to the mesh require the global reconstruction of the Triangle-Vertex relation.
Edge-based data structures are also used for triangle meshes, but they have been shown
to be more verbose than triangle-based ones [16], while providing the same computational
performances.

3.2 Hierarchical spatial indexes

Hierarchical spatial indexes use a recursive subdivision of the space on which the objects
of interest are embedded according to different refinement rules. The main classification is
between regular refinement and bisection refinement [5]. Regular refinement on rectangu-
lar blocks generates quadtrees in 2D space, and octrees in 3D space, while the bisection
refinement of axis-aligned hyper-rectangles bisected by axis-aligned hyperplanes generates
kD-trees. These decompositions have been originally defined for indexing point sets. They
subdivide the space either into blocks of equal size, generating Point-Region (PR) quadtrees
and kD-trees [57] or by using the positions of the points, generating point quadtrees and
point kD-trees [28]. In the following, we review spatial indexes dealing with connected en-
tities and maps (see [63] for an in-depth treatment of the subject).

The class of Polygonal Map (PM)-quadtrees [64] extends the PR-quadtree to represent
polygonal maps in 2D space, considered as collections of segments intersecting only at
most at their extreme vertices. There are three variants of a PM-quadtree, namely the PM1-
quadtree, the PM2-quadtree and the PM3-quadtree. These differ in their subdivision rule,
but they all maintain a list of edges in their leaf blocks.

The Randomized Polygonal Map (PMR)-quadtree [54,35] is an index for collection of
line segments in the plane (not necessarily forming a polygonal map). In a PMR-quadtree,
if the insertion of an edge causes the number of edges in a leaf block to exceed a given
threshold, the block is split, but only once, thus generating an order-dependent quadtree
subdivision. In [45] it has been proven that the number of blocks in a PR-quadtree is pro-
portional to the number of line segments and is independent of the depth of the tree.

A first attempt to extend the PM2-quadtree to index triangle meshes is the PM2-Triangle
quadtree (PM2T-quadtree) [13], in which triangles, in place of edges, guide the partition into
blocks. However, the PM2T-quadtree has two fundamental limitations. The first one is that
each block indexes just one vertex, leading to a very deep hierarchy. The second limitation
is that the spatial index is stored on top of the IA data structure, leading to a verbose data
structure, which greatly limits its scalability.

Spatial indexes have been widely used for terrain rendering [10,31], providing efficient
ways to generate adaptive meshes in in-core and out-of-core environments. Such represen-
tations are optimized for rendering, but not for geometric processing, as required in terrain
analysis. We refer an interested reader to [58] for a description of such approaches.

8 Riccardo Fellegara et al.

3.3 Methods from topological data analysis

Morse theory [52] has been the basis for extracting topological structures, like Morse and
Morse-Smale complexes [33]. Morse theory is defined for smooth functions, but recently
two discrete counterparts have been developed, piecewise linear Morse theory [4] and Dis-
crete Morse Theory [30]. In our work we are focusing on this latter, and we refer the reader
to [15] for a complete analysis of these methods.

Among the many algorithms defined for computing a Forman gradient [15], the most
efficient ones are those computing the gradient from a function sampled at the vertices of a
triangle or tetrahedral mesh, or of a regular grid. The algorithm described in [41] is based
on a divide-and-conquer approach and has the main drawback of introducing many spurious
critical simplices. In [67], a similar approach, based on a weighted discrete function, has
been defined for computing a Forman gradient on 2D regular grids. The algorithm is well
suited for parallelization and significantly reduces the number of spurious critical cells. In
[60], an algorithm is proposed for 3D regular grids that processes the lower star of each
vertex independently. The lower star of a vertex v is the set of grid cells in the star of
v, on which the function values at the vertices different from v is lower than the function
value at v. This algorithm does not generate spurious critical cells. The algorithm has been
extended to triangle [24] and tetrahedral meshes [72] by using a new implicit encoding of
the discrete gradient. It has been shown [44] that for triangle meshes, the discrete Forman
gradient finds a critical vertex for each piecewise linear minimum (i.e., a minimum found
by applying piecewise linear Morse theory), while piecewise linear saddles and maxima are
on the boundary of critical edges and critical triangles.

Recently, a great interest arose in the visualization community in the analysis of datasets
having several scalar values per sampled point, called multifield data. Critical features are
extracted from such data to highlight information about the scalar fields therein defined.
Examples of such structures are the Reeb space [20], the Joint Contour Nets (JCNs) [7],
fiber surfaces [8,68], the Jacobi set [18] and the Pareto sets [36]. Based on discrete Morse
theory, a few approaches appeared extending to the multivariate case the extraction of a
discrete gradient [2]. The first algorithm capable of dealing with real data of reasonable size
is discussed in [39]. In the case of triangulated terrains, capturing the relationships among
the different scalar fields in an "aggregate" value results particularly effective as it reduces
the problem to a single scalar field visualization problem. A recent technique proposed by
Nagaraj et al. [53] aims at computing an aggregate value for the multiple fields, indicating
the presence of Jacobi sets [18]. This technique will be discussed in Section 8 together with
our extension to triangle meshes for multifield analysis and visualization on terrains.

4 Terrain Trees

Terrain trees are a family of spatial data structures for triangulated terrains based on a nested
subdivision of the terrain domain. Given a set S of data points, with each point being char-
acterized by x and y coordinates plus an elevation value), we consider the projections of
the points of S on the plane and we call D the square domain in the plane containing such
projections. A Terrain tree built on S consists of:

1. a triangle mesh Σ connecting the projections on the plane of the points in S;
2. a quadtree describing the nested subdivision of the domain D into square blocks in such

a way that the vertices and triangles of Σ are associated with the leaf blocks of the
quadtree subdivision.

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 9

(a) PR-T subdivision (b) PM-T subdivision (c) PMR-T subdivision

Fig. 3 Given the triangle mesh of Figure 4, a vertex threshold kV = 2 and a triangle threshold kT = 2, the
Figure shows the spatial subdivision obtained with a PR-T Tree (a), a PM-T Tree (b) and a PMR-T Tree (c).
In black are highlighted the spatial decomposition caused by the vertices threshold, while in red those caused
by the triangles one. For the PMR-T tree we also highlight the triangle insertion order that drives the spatial
decomposition (note that kT is not a bucketing threshold for the PMR-T tree).

The association of the vertices and triangles with a leaf block is defined as follows. A
vertex is associated with the only block containing it. A triangle is associated with all leaf
blocks having a non-empty intersection with it. Note that a block is considered closed at
the two edges incident in its lower-left corner, and open at the remaining two edges. More
precisely, a block consists of all points (x,y) such that x1 ≤ x < x2 and y1 ≤ y < y2, where
(x1,y1) is the lower-left corner and (x2,y2) is the upper-right corner of the block. Blocks
having the upper or the rightmost edge on the boundary of D are closed on the corresponding
edge.

Similarly to spatial indexes for 2D maps, we have defined different criteria for domain
subdivision, based only on the TIN vertices, on the TIN triangles and on both vertices and
triangles. Thus, the Terrain trees family consists of three spatial data structures, namely the
PR-Terrain tree (PR-T tree), the PM-Terrain tree (PM-T tree) and the PMR-Terrain tree
(PMR-T tree), which are bucketed versions of the PM3-quadtree, of the PM2-quadtree, and
of the PMR-quadtree for maps, respectively [64,54,55]. As we demonstrate in Section 9,
bucketing is a crucial aspect for our spatial indexes, since it allows the indexing of much
larger datasets, compared to existing representations in the literature.

A PR-T tree subdivides the domain D based on the vertices of Σ . Its subdivision rule
uses a threshold kV on the number of vertices contained in a leaf block b. If b contains more
than kV vertices, then b is recursively split into four blocks until this condition is met. An
example of a PR-T tree is shown in Figure 3(a). The generation of a PR-T tree is entirely
guided by the vertices of Σ , and, thus, the first step in the generation process is exactly the
same as for the PR-quadtree [62]. Then, each triangle t of Σ is added to all the leaf blocks
intersecting t, without affecting the spatial decomposition.

A PM-T tree uses the same subdivision rule defined for the vertices of Σ as the PR-T
tree. A splitting rule on the triangles is also defined, based on a threshold kT on the number
of triangles per leaf block, as follows:

(1) a block b containing up to kT triangles is a leaf block;
(2) a block b that contains more than kT triangles is a leaf block if and only if all triangles

intersecting b are incident in the same vertex v, which can be either inside or outside b;
(3) otherwise, the block is recursively split until either condition (a) or (b) is met.

10 Riccardo Fellegara et al.

An example of the subdivision obtained with the PM-T tree is shown in Figure 3(b).
Note that a PM-T tree extends the PM2 quadtree defined for maps, by adding bucketing
thresholds kV and kT for both vertices and triangles. The generation of the initial hierarchical
decomposition in a PM-T tree is entirely guided by the vertices, like in PR-T trees. Then,
each triangle t in Σ is added to a leaf block b intersecting t, if and only if b contains less than
kT triangles. Otherwise, b is split until either condition (1) or (2) is met.

A PM-T tree is a sort of bucketed version of the PM2T-quadtree with some fundamental
differences. The PM-T tree has a bucketing threshold for both vertices and triangles. The
lack of a bucketing threshold in the PM2T-quadtree produces much deeper decompositions
with a number of leaf blocks that is at least four times the number of vertices in Σ (see [14]
for details). The PM-T tree uses a simple indexed representation encoding only Triangle-
Vertex relations while the PM2T-quadtree encodes the triangle mesh through the IA data
structure (see Section 5).

The subdivision strategy for the PMR-T tree is driven only by the triangles of Σ . It
extends to triangle meshes the subdivision approach defined for sets of segments in the
plane in [54]. A leaf block b is split if b intersects more than kT triangles, where kT is a user-
defined threshold, but b is split only once, not recursively. The decomposition and, thus, the
shape of the tree depends on the insertion order of the triangles. In [54] it has been proven
that in a PMR quadtree built on the edges of a map, the number of edges intersected by
a leaf block cannot exceed the sum of the splitting threshold and of the depth of the leaf
block. For a PMR-T tree this result still holds and, thus, the number of triangles in a leaf
block of a PMR-T tree can be at most equal to db + kT , where db is the depth of the leaf
block and kT is the splitting threshold. An example of PMR-T tree is shown in Figure 3(c).
For instance, in leaf block b there are three triangles indexed by it (i.e., triangles 2, 6 and 8),
but no split operation is triggered, as the space is decomposed once when inserting triangle
8. Also condition db + kT is verified as b is at depth 3. Notice that the split condition may
trigger unnecessary splits. For example, in Figure 3(c) the insertion of triangles 7 and 8
causes unnecessary split operations on the vertices sharing these two triangles.

A PMR-T tree is generated as follows. For each triangle t, and for each leaf block b
intersecting t, t is added to b if and only if b contains less than kT triangles. Otherwise, b is
split and its triangles are distributed to the newly generated leaf blocks (i.e., the children of
b). Triangle t is also added to the children of b intersecting it.

5 Implementation of Terrain trees

In this section, we describe the implementation of the Terrain trees in the Terrain trees
library (T T L). The kernel of the tool contains the implementation of the three Terrain trees,
the PR-Terrain tree (PR-T tree), the PM-Terrain tree (PM-T tree) and the PMR-Terrain tree
(PMR-T tree), plus their generation algorithms and algorithms for answering basic spatial
and connectivity-based queries. Other functions currently implemented and discussed in the
following sections are the extraction of morphological features (see Section 6), the extraction
of topology-based features (see Section 7), and the analysis of multivariate terrain data (see
Section 8).

The encoding of the triangle mesh Σ in a Terrain tree consists of two arrays ΣV and
ΣT , storing the vertices and the triangles of Σ , respectively. Each vertex v and triangle t is
represented by a unique index, iv and it within arrays ΣV and ΣT , respectively. ΣV encodes
the geometry of the terrain Σ by storing the longitude, latitude, and elevation and the other

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 11

(a) PR-T tree (b) Mesh (c) Spatial hierarchy

Fig. 4 (a) Triangle mesh and PR-Tree as encoded in a Terrain tree. (b) The mesh topology is organized
by encoding, for each triangle, the boundary relation with its vertices. (c) The PR-T represents a hierarchy
where each leaf block encodes the list of vertices contained in the block and the list of triangles intersecting
the block.

field value(s) associated with each vertex v in Σ . ΣT encodes the connectivity of each triangle
by storing its three vertex indexes (see Figure 4(b)).

We use a pointer-based representation for the hierarchy describing the nested subdivi-
sion of a Terrain tree (see Figure 4(c)). Each internal block of a Terrain tree contains a
reference to its parent block and a reference to its children. Each leaf block contains a ref-
erence to its parent block plus the information about the vertices and triangles, or only the
triangles in the case of a PMR-T trees.

To encode the information associated with the leaf blocks, we use the compact encoding
proposed in [27] for an arbitrary-dimensional connectivity-based data structure for simpli-
cial complexes based on a vertex clustering. Such encoding uses the sequential range en-
coding (SRE), a variant of the run-length encoding [34], that represents a run of consecutive
indexes using two integers. The first (negative) index encodes the starting index of the run,
while the second encodes the number of remaining elements of the run. The effectiveness
of this compression increases with longer runs. This is exploited by representing all vertices
inside a leaf block with a single run. Once we obtain the spatial decomposition, a single tree
traversal is sufficient to reindex the vertices. The vertices indexed into the same leaf block
get a contiguous range of indexes in the reindexed vertices array ΣV . Within each leaf block,
this range is represented as a pair of integers. Exploiting the spatial coherence for the tri-
angles is more involved. The reindexing and compression of triangles is performed in such
a way that, at the end, triangles indexed by the same set of leaves have contiguous indices
in ΣT . To obtain this representation, we traverse first the tree to extract, for each triangle
t, the tuple of leaf blocks indexing t. Then, we extract the dual relation, i.e., we associate
the list of triangles with each tuple of leaf blocks. Given this inverted relation, we extract
a coherent ordering for the triangles of ΣT , where triangles indexed by the same leaf tuple
have contiguous indexes. Once we have this spatial ordering on the triangles, we apply it to
the triangle list of each leaf block, and we compress this list by using the SRE compression.
Finally, we update ΣT to be consistent with this spatial ordering.

12 Riccardo Fellegara et al.

5.1 Spatial and connectivity-based queries in a Terrain tree

We have developed algorithms on Terrain trees for answering two fundamental spatial queries,
namely a point location and a window query, and for extracting connectivity-based relations
(described in Section 2), which enable the local traversal and processing of the underly-
ing mesh. The point location query consists of finding the triangle (or triangles) containing
a given query vertex, while the window query consists of finding all the triangles which
intersect an axis-aligned rectangular window.

We have implemented algorithms for connectivity-based queries which extract the con-
nectivity relations discussed in Section 2. Since the indexed TIN representation underlying
a Terrain tree encodes the TIN vertices and triangles, extracting the vertices and edges of
a triangle (these latter being expressed as vertex pairs) does not require the use of the tree
structure unless we combine the extraction of such information with a window query when
focusing on portions of the TIN. Extracting co-boundary relations at the vertices of the mesh
efficiently and massively, as our experiments show, are fundamental for computing morpho-
logical features, the discrete Forman gradient estimators, and the critical net (see Sections 6
and 7). We describe here how we extract some fundamental co-boundary relation, namely
the Vertex-Triangle (VT), the Vertex-Vertex (VV), and the Vertex-Edge (VE) relations, and the
Edge-Triangle (ET) relation, as well as the Edge-Vertex (EV) relation inside a leaf block of
the Terrain tree. These are used in the terrain analysis algorithms presented in the following
sections.

Extracting the VT relations in a block b requires knowing the set of vertices contained in
b. The range of indexes of the vertices contained in any given block b is explicitly encoded
in the PR-T and PM-T trees. A PMR-T tree encodes only the triangles indexed by a block b.
In this case, the set of vertices in b are extracted by performing a point-in-block test for each
of the bounding vertices of the triangles in b. Then, the VT relation for the vertices in block b
is extracted by cycling over the set of triangles in b. For each triangle t, the algorithm iterates
through the vertices of t. For each vertex v of t, if v is indexed by b, t is added to the list of
triangles incident in v. The strategy for extracting the Vertex-Vertex (VV) and Vertex-Edge
(VE) relations in a block b combines the V T relation with either the Triangle-Vertex (TV)
relation, which provides the list of the vertices of a given triangle, or the Triangle-Edge (TE)
relation, which provides the list of the edges of a given triangle. For the VV relation, for each
vertex v of a triangle t, if v is indexed by b, we add the other two vertices in the boundary
of t, namely vi and v j, to the set of vertices adjacent to v. Similarly, for the VE relation of v,
we pair vi and v j with v to get the two edges of t that are incident in v.

Extracting the Edge-Triangle (ET) relations in a block b is slightly more involved, since
the edges are not explicitly encoded in a Terrain tree. The algorithm iterates over the trian-
gles in a block b and extracts the edges on their boundary provided by the TE relation. An
edge e belonging to the boundary of a triangle t is considered internal to b if it has at least
one vertex indexed by b. Each internal edge e is encoded in a local associative array having
as key e and as value a pair containing the index of the two triangles in the co-boundary
of e. These two triangles are identified during a single iteration on the triangles in b. The
strategy for extracting the Edge-Vertex (EV) relation in a block b is similar to the one for
extracting the ET relation. The algorithm iterates over the triangles of b and extracts their
edges. Since each edge is encoded as a pair of vertex indices, we add those edges having at
least one vertex indexed by b to the output.

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 13

6 Morphological Terrain Features

We have developed and implemented in the Terrain trees library algorithms which extract
classical morphological terrain features, namely triangle and edge slope, curvature and
roughness. An experimental comparison among the various Terrain trees and the IA data
structure in computing such features is presented in Section 9.

The slope of an edge or a triangle in a TIN represents the steepness and the direction of
its extent, where the steepness is the absolute value of the slope. A zero value of the slope
indicates horizontality. The direction is increasing if the slope is positive and decreasing if
the slope is negative. Specifically, the edge slope of an edge e is the angle between e and its
projection on the horizontal plane defined by the z-coordinate of its lowest endpoint. In other
words, given vi = {vix ,viy ,viz} and v j = {v jx ,v jy ,v jz} the endpoints of e. Let vi the endpoint
of e with the minimum z-value, we consider the projection v′j of vertex v j on the plane z= viz .

The slope of edge e is the angle v̂ jviv′j. For computing edge slopes, we need to extract the
edges as pair of vertices, by using the TV relation, since the edges are not explicitly encoded.
Extracting the edges requires an auxiliary data structure. The decomposition of the mesh
defined by the blocks becomes computationally relevant, since the auxiliary data structure is
created in each block independently and discarded after processing the block. This makes it
possible to compute slopes in a region of interest without iterating through the entire domain.

In a similar way, the triangle slope is defined as the angle between the normal to the
plane to which the triangle belongs and a vector aligned with the z-axis. The computation
of triangle slopes requires only the Triangle-Vertex (TV) relation for each triangle, which is
stored in the triangle array of a Terrain tree.

We approximate the curvature at the vertices of a TIN by using a discrete approach.
In our previous work [49,50], we have developed three discrete curvature approximations
of Gaussian and mean curvature, and compared and evaluated them in [48] for curvature
estimation on a TIN. Our results showed that all curvature estimators provide similar results,
also when used as the basis for TIN segmentation, and that concentrated curvature is the
least sensitive to noise.

We consider a TIN Σ and a vertex v of Σ . Let t1,, tn the triangles incident in v. Let
vi and v′i the two vertices in the triangle ti, different from v. The concentrated curvature is
defined as Kc(v) = 2π −Θv, for internal vertices, and Kc(v) = π −Θv, for boundary vertices,
where Θv = ∑n

i=1 v̂ivv′i.
The computation of curvature requires extracting, for each vertex v of the TIN, the set

of triangles incident at v, i.e., extracting the Vertex-Triangle relation, which is performed
as discussed in Section 5.1. As the internal vertices and boundary vertices have different
equations for estimating concentrated curvature, a preprocessing step to identify boundary
vertices is performed. For each vertex v, we check the number of edges |e| and the number
of triangles |t| in the boundary of the star of v. A vertex is on the boundary when 2|e| ̸= 3|t|.

There are several ways to define surface roughness, and the most commonly used is the
standard deviation of local elevation at each vertex, evaluated based on the neighbors of the
vertex itself [66]. We have extended the definition that is given for raster grids to TINs by
considering the vertices adjacent to a vertex v, which are the ones sharing an edge with v.
Based on that definition, the roughness at a vertex v in a TIN is computed as:

R(v) =

√
∑m

i=1(zi − z)2

m
(1)

14 Riccardo Fellegara et al.

where m is the number of vertices adjacent to v plus v itself, z1,z2,...,zm are the elevations
at such vertices, and z is the average of those elevations. From Equation 1, the roughness
computation requires the extraction of the VV relation of v (see Section 5.1 for details).

7 Topology-based Terrain Segmentation

The basis for terrain analysis is a segmentation of the terrain based on its critical points, their
regions of influence and how they are connected together in the critical net. The approach we
consider here is rooted in discrete Morse Theory, which supports an efficient computation of
a discrete gradient on large meshes and the efficient computation of topological descriptors
like the Morse decompositions and the critical net.

In Subsection 7.1, we present the general strategy for computing a discrete Morse (For-
man) gradient and a distributed approach based on Terrain trees. In Subsection 7.2, we dis-
cuss how to compute the critical net and present an algorithm for Terrain trees.

7.1 Forman gradient computation

We consider a triangle mesh Σ and an elevation function f : ΣV −→R defined on the vertices
of Σ . The algorithm for computing the Forman gradient is based on the extension to TINs
of the algorithm proposed for regular grids [60]. It consists of three major steps, which are
described below and illustrated by referring to Figure 5.

Step 1 (Indexing). The first step requires computing a total order I on the vertices of Σ .
The total order will serve as guiding schema for the subdivision of the triangles, edges and
vertices of Σ in independent sets. This is done by Simulation of Simplicity [21], i.e., by
sorting the vertices of Σ in ascending order and by assigning a unique index to each of
them. In Figure 5(a) we indicate the index in I of each vertex of a triangle mesh. On Terrain
trees, Step 1 is executed by sorting the vertices stored in the global vertex array.

Step 2 (Partition). Σ is then subdivided by associating each vertex v with the set of edges
and triangles having the same value of I as v. I is extended to the edges and triangles of Σ
via I(σ) := maxv∈σ I(v), where σ is either an edge or a triangle of Σ and v is a vertex on the
boundary of σ . For each edge or triangle σ , we denote as v the vertex of σ with maximum
value of I. For this reason, this set of triangles and edges associated with v is called the lower
star of v according to I and denoted LI(v). It can be proved that each triangle or edge in Σ
belongs to exactly one lower star. Then, the lower stars associated with the vertices form a
partition of Σ and thus they can be processed in parallel. In Figure 5(a) the lower star of
vertex 6 is depicted with bold lines.

On Terrain trees, Step 2 is implemented through a tree traversal where each leaf block
b is processed once. In a leaf block b, the algorithm extracts the lower star LI(v) for each
vertex v in b by retrieving the set of triangles incident in v (Vertex-Triangle (VT) relation) and
the set of edges (Vertex-Edge (VE) relation), and by computing their values of I at runtime.

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 15

(a) (b) (c)

(d) (e) (f)

Fig. 5 Homotopy expansion [60] computed on the simplices belonging to the lower star of vertex 6.

Step 3 (Pairing). Pairings of edges and vertices, and edges and triangles are computed
through a process called homotopy expansion on each lower star. Recall that the discrete
gradient is a collection of vertex-edge and edge-triangle pairs.

We initialize a set LS with LI(v). If LS = {v}, v is declared as a critical vertex. Otherwise
the pair (v,e) is created by pairing v with the edge e in LS having minv∈e I(v). In Figure 5(b)
edge (6,1) is selected to be paired with vertex 6.

Then, for each triangle t in LS, we compute the number of unpaired edges on the bound-
ary of t, which are also in LS. We are interested in two cases:

– if t has no unpaired edges on its boundary, then it is classified as critical,
– if t has exactly one unpaired edge e on its boundary, then it is paired with e

If by cycling over all triangles in LS, no triangle is paired, at the end of the cycle a new
edge is classified as critical, and we start again.

In Figure 5(c), triangle (6,3,1) is paired with its unique unpaired boundary edge (6,3).
In Figure 5(d), no triangle has either zero or exactly one unpaired edge, then edge (6,4)
is declared as critical. In Figure 5(e), triangle (6,5,4) gets paired with its unique unpaired
boundary edge (6,5). Figure 5(f) shows the discrete gradient computed within the lower star
of vertex 6.

On Terrain trees, Step 3 is performed by considering each leaf block independently, and
performing computation locally to the block on the lower stars of the vertices which belong
to the block.

7.2 Extracting the critical net

Computing the critical net means visiting all the separatrix V1-paths connecting critical ver-
tices and edges, and all the separatrix V2-paths connecting critical edges and triangles (see

16 Riccardo Fellegara et al.

(a) (b) (c) (d)

Fig. 6 Reconstruction of a portion of the critical net connecting a critical saddle with two critical minima.
(a) Starting from a critical edge, the boundary vertices are connected with the edge. (b) The edge e1 paired
with v1 is added to the stack. (c) The edge e1 is extracted from the stack, connected with its paired vertex
v1. The other vertex on the boundary of e1 (i.e., v2) is retrieved and its paired edge e2 is added to the stack.
(d) The portion of the critical is reconstructed repeating the same steps until both paths reach critical vertices
(minima).

Section 2.3). The geometrical representation of the critical net is computed by connecting
the barycenters of the triangles and edges visited in the separatrix V -paths. For the vertices
of the triangle mesh, we consider the points themselves.

Extracting separatrix vertex-edge paths (V1-paths). Given a critical edge, the two vertices
in its boundary are first extracted. For each vertex, we extract its paired edge and we insert
such edges into a stack Q. The stack is used to implement a depth-first traversal of the path.
At each iteration, we extract an edge e from Q and we compute its boundary vertices. For
each vertex v, we compute its paired edge e′ and we add e′ to Q if e′ ̸= e. This retrieves
the connections of critical edges with the critical vertices. The lines of the critical net re-
constructed at this stage are obtained by connecting the barycenters of each edge with the
boundary vertices.

Figure 6 shows the extraction of the critical net limited to a critical edge and two critical
vertices. Starting from the critical edge (Figure 6(a)) the two vertices in its boundary are
extracted and connected with the critical edge. Edges paired with such vertices are inserted
in the stack Q. In Figure 6(b), edge e1 is extracted from the stack and connected with its
boundary vertex v1. In Figure 6(c), the other vertex on the boundary of e1 (i.e., v2) is con-
nected to e1 and its paired edge e2 is added to the stack Q. The depth-first traversal continues
in the same manner until two critical vertices are encountered (Figure 6(d)).

Extracting separatrix edge-triangle paths (V2-paths). Given a critical edge, all the triangles
in its co-boundary are extracted. For each such triangle, we extract its paired edge and we
insert the edge into a stack Q. Each time we extract an edge e from Q, we compute the
triangles in its coboundary. For each of such triangles t, we compute the edge e′ paired
with t and we enqueue e′ if e′ ̸= e. The lines of the critical net reconstructed at this stage are
obtained by connecting the barycenters of each triangle with the barycenters of the boundary
edges encountered during the visit.

Figure 7 shows the extraction of the critical net limited to a critical edge and a critical
triangle. Starting from a critical edge (Figure 7(a)) the triangle t1 in its coboundary is re-
trieved. The edge e1 paired with t1 is inserted in the stack Q. In Figure 7(b), the edge e1
is extracted from the stack and connected with the triangle paired with it (i.e., triangle t1).
In Figure 7(c), the next triangle on the coboundary of e1 (i.e., t2) is connected to e1 and its
paired edge e2 is added to the stack Q. The depth first traversal continues in the same manner
until a critical triangle is encountered (Figure 6(d)).

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 17

(a) (b) (c) (d)

Fig. 7 Reconstruction of a portion of the critical net connecting a critical saddle with a critical maxima. (a)
Starting from a critical edge, the coboundary triangle (i.e., t1) is visited. (b) The traversal starts by adding the
edge e1, paired with t1, to the stack. (c) The edge e1 is extracted from the stack and connected with its paired
triangle t1. The other triangle in the coboundary of e1 (i.e., t2) is extracted and its paired edge e2 is added
to the stack. (d) The portion of the critical is reconstructed repeating the same steps until a critical triangle
(maximum) is reached.

As the extraction of the separatrix V -paths involves an intense mesh traversal, the leaf
blocks of Terrain trees need to be visited multiple times. Thus, for efficiency, we use an
auxiliary cache for encoding a subset of the connectivity relations required. Extracting sep-
aratrix V1-paths, which are composed of edges and vertices, requires the Edge-Vertex (EV)
relation. Extracting separatrix V2-paths, which are composed of edges and triangles, requires
the Edge-Triangle (ET) relation. The cache uses a Least-Recent-Used replacement policy
(LRU-cache) which let us improve processing times with a negligible storage overhead.

Within each leaf block b of a Terrain tree, we execute the following steps:

1. expand the leaf block representation by computing and storing in the block the connec-
tivity relations required, as discussed above;

2. extract the separatrix V -paths in b;
3. save in cache the connectivity relations of b.

During the computation of the separatrix V -paths, it can happen that a V -path will go
outside of the leaf block b currently processed. To deal with this situation, we introduced
the notion of dangling path, where a dangling path is a V -path whose continuation is out-
side the block currently processed. Our strategy uses the dangling paths for postponing the
construction of certain V -paths, thus limiting the number of times we have to enter and exit
a leaf block.

The extraction of the gradient V -paths within a leaf block b is performed as follows:

– the new V -paths starting from the critical edges indexed by b are visited. Notice that
an edge could be shared by two blocks. To process each critical edge once, we use the
following convention: a critical edge is indexed by b if and only if b indexes the vertex
with the higher label value in the vertex array Σ ;

– the dangling paths that are entering b are then expended. Each time a dangling path is
expanded, the corresponding entry in the auxiliary data structure storing dangling paths
is removed. In this way, the storage requirement of this structure is kept negligible during
the extraction process.

Notice that the visit of a V -path can be interrupted several times, as it can cross multiple leaf
blocks. Once the visit of the V -paths in b is terminated, the connectivity relations computed
are saved into the cache.

18 Riccardo Fellegara et al.

8 Multifield Visualization

Multifield data are scientific data characterized by multiple field values. An example of this
type of data is airborne LiDAR data where, for each point, multiple measures are recorded
such as the intensity of the laser pulse, the point classification (i.e., ground, canopy, water,
etc.), RGB bands, scan angle, and direction.

Extracting and visualizing descriptive information for multifield data is a major chal-
lenge. The technique implemented in this work relates to the notion of Jacobi set [19]. The
Jacobi set of a collection of real-valued Morse functions defined on a common manifold is
the set of all points where the function gradients are linearly dependent, which is directly re-
lated to the rank of the Jacobian matrix. This definition inspired numerical techniques aimed
at rendering a single function built out of the multiple scalar fields in a way compatible with
the relationships among scalar fields. In [53], a comparative measure is defined as measure
for the evaluation of the local coherence among different scalar fields based on the gradient
of the fields.

Given a point v, we can write the matrix of partial derivatives as follows:

dF(v) =

δ f1
δx1

(v) · · · δ f1
δxn

(v)
...

. . .
...

δ fm
δx1

(v) · · · δ fm
δxn

(v)

The multifield comparison measure in [53] is defined as the norm of such matrix ηF(v)=

||dF(v)||. To speed up the computation, the estimation of ηF(v) is reduced to the root of the
maximum eigenvalue of the matrix (dF(v))T (dF(v)). To compute ηF(v), when v is a ver-
tex of a TIN, we need to estimate partial derivatives at v. In [46] several methods have been
analyzed, and the best method has been shown to be the Average Gradient on Star (AGS)
method [51], which is both accurate and efficient. In AGS, the gradient at a vertex v is
approximated by taking the average of the gradients estimated at the triangles incident in v.

In particular, given a scalar function f defined on the vertices of a TIN Σ , the gradient
at a triangle t of Σ , denoted as ▽ ft , is calculated as follows:

▽ ft = (f (v j)− f (vi))×
(pi − pk)

⊥

2At
+(f (vk)− f (vi))×

(p j − pi)
⊥

2At

where ⊥ denotes the 90 degrees rotation of a vector, At is the area of the triangle t,
vi,v j,vk are the three vertices of t, and pi, p j, pk are vectors representing the x- and y- coor-
dinates of vi,v j and vk, respectively.

To compute the gradient at vertex v, we need to compute the so-called mixed area [51].
Let t be a triangle and pi, p j, pk the vectors of coordinates of its three vertices. If t is non-
obtuse, the contribution of t to the mixed area is 1

8 (|pi pk|2cot∠p j + |piq j|2cot∠pi pk). If
t is obtuse, there are two cases: if the angle at v is obtuse, the mixed area will be half of
the triangle area, while if the angle at v is not obtuse, then the area will be a quarter of the
triangle area. Then, the gradient at v is the weighted average of gradients computed at each
triangle incident in v weighted by the corresponding mixed area.

Since the computation of the gradient at vertex v relies on the gradients at all the triangles
intersecting at p, the computation of such gradient in the Terrain trees requires extracting
the Vertex-Triangle (VT) relation, as discussed in Section 5.1.

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 19

Table 1 Overview of experimental datasets. For each terrain, we list the number of vertices |ΣV | and triangles
|ΣT |.

Terrain

GREAT S. CANYON SONOMA SONOMA BIG SONOMA SONOMA
MOUNT. LAKE COUNTY 1 COUNTY 2 CREEK COUNTY 3 COUNTY 4

|ΣV | 34M 49M 105M 135M 151M 154M 193M

|ΣT | 68M 98M 210M 271M 303M 309M 386M

9 Experimental Results

In this section, we study the performances of the Terrain trees family. TINs used are com-
puted from LiDAR point clouds by means of a Delaunay triangulation algorithm from the
CGAL library [9].

The characteristics of each TIN are reported in Table 1. We have used a total of seven
TINs with a number of vertices ranging from 34 million to 193 million. GREAT SMOKEY

MOUNTAIN, CANYON LAKE GORGE and BIG CREEK are three datasets provided by the
OpenTopography repository[56]. For each of them we have computed a single TIN. The
original SONOMA COUNTY dataset includes more than 60 billion points. We created four
different datasets by subsampling the original point cloud at four different resolution levels.
For each point cloud obtained we have computed a TIN that is used in our experiments.

Our experimental evaluation addresses five aspects: (i) calibration of the thresholds guid-
ing the construction of Terrain trees, (ii) evaluation of the requirements for initializing Ter-
rain trees, (iii) extraction of connectivity-based relations, (iv) computation of morphological
and topology-based features, and (v) analysis and visualization of multifield data. The hard-
ware configuration used for these experiments is a dual Intel Xeon E5-2630 v4 CPU at
2.20Ghz, and 64GB of RAM. The source code of the Terrain trees library implementing the
Terrain trees is available at [26]. The source code of the LibTri library implementing the IA
data structure is available at [25].

9.1 Selection of thresholds for Terrain trees generation

Terrain trees are generated based on, at most, two input values. One is the maximum num-
ber of vertices per leaf block, denoted as kv. The second one is the maximum number of
triangles per leaf block, denoted as kt . Since the number of triangles in a TIN is about twice
the number of its vertices, in the following, we set kt = 2kv. To efficiently calibrate such
thresholds, we performed a preliminary evaluation to identify non-optimal values, that cre-
ate either too deep or too coarse hierarchies. This evaluation also established an initial test
range such that each leaf block contains between 1 millionth and 10 millionth of vertices
of the TIN. For each dataset, we create a total of 20 spatial indexes within this test range.
All triangle meshes are generated over irregularly distributed LiDAR point clouds. Since the
observed performance trend is similar on all datasets, in this section, we show just the plots
from GREAT SMOKEY MOUNTAIN dataset to evaluate the experimental results on thresh-
old selection. We provide the plots describing the performance trends of other datasets in
Appendix A. In order to evaluate the effects of varying kv and kt , we analyze the follow-
ing parameters: (i) storage costs, (ii) time requirements for generating a Terrain tree, and

20 Riccardo Fellegara et al.

50 150 250 350 450 550 700 800 900 1000
Leaf Block Threshold

0

50

100

150

200

250
St

or
ag

e
(M

bs
)

PR-T tree
PM-T tree
PMR-T tree

Fig. 8 The Storage costs for storing the hierarchical index of the Terrain trees on GREAT SMOKEY MOUN-
TAIN dataset using different values of kv and kt . The x-axis shows the threshold value on the vertices.

(iii) time requirements for answering the most common connectivity-based query, i.e., the
extraction of Vertex-Triangle relation.

Since all Terrain trees encode the TIN with the same indexed representation, we focus
only on the storage costs of the hierarchical index without considering the storage costs
for encoding information on the vertices and on the triangle connectivity. Figure 8 shows
these results. The storage costs show a sharp decrease with smaller thresholds, while they
remain nearly constant with larger ones. The differences in storage costs among the three
indices are more noticeable when the thresholds are small, while the costs become nearly
identical for larger ones. The storage cost of the hierarchical index is closely related to the
number of nodes in a Terrain tree. When using larger thresholds (i.e., kV greater than 550),
Terrain trees have the same number of nodes, and this means that the spatial index is losing
its effectiveness at decomposing the embedding space. This latter result highlights that the
threshold on the triangles is the one guiding the spatial decomposition when both thresholds
become larger.

Figures 9(a) shows the time required for generating the spatial decomposition of a Ter-
rain tree on GREAT SMOKEY MOUNTAIN dataset. Generation times decrease for all types of
Terrain trees when using larger thresholds since each leaf block can contain more vertices
and triangles, and the spatial decomposition is obtained by executing fewer split operations.
Also, since the subdivision rule for the PMR-T tree is not recursive, its construction is al-
ways faster than the other two rules, that, on average, have similar generation times.

We evaluate now how different thresholds affect the extraction of the Vertex-Triangle
(VT) relation. This relation is key to most of the applications defined in our framework. Fig-
ure 9(b) summarizes the results we have obtained. We notice that the larger the threshold
used, the faster the extraction of the VT relation is. The larger time drop is noticeable on
smaller thresholds, while for larger thresholds the time difference becomes smaller. Since
PR-T and PM-T trees explicitly encode the range of vertices, they show similar perfor-
mances, and are always faster than PMR-T trees, using from 30% to 70% less time, as the
latter has to compute such vertex ranges at run-time.

These results highlight how the performances of Terrain trees are affected by the two
user-defined thresholds. By considering only the storage requirements and generation tim-
ings, we see that by using larger thresholds, we reduce such quantities, since the decompo-
sition is coarser and the compressed encoding becomes more effective. However, for larger
values of kV and kT , the spatial index becomes less efficient, being more similar to a global

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 21

200 400 600 800 1000
Leaf Block Threshold

500

550

600

650

700

750

800

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(a) Generation time

200 400 600 800 1000
Leaf Block Threshold

7

8

9

10

11

12

13

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(b) VT extraction time

Fig. 9 Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in
Terrain trees on GREAT SMOKEY MOUNTAIN dataset using different values of kv and kt . The x-axis shows
the vertex threshold value.

Table 2 Overview of Terrain trees. For each Terrain tree, we list the thresholds kV and kT and the number of
blocks in the index (|N|).

GREAT S. CANYON SONOMA SONOMA
MOUNT. LAKE COUNTY 1 COUNTY 2

kV kT |N| kV kT |N| kV kT |N| kV kT |N|

PR-T 350 - 304K 450 - 295K 825 - 302K 950 - 476K

PM-T 350 700 377K 450 900 330K 825 1650 328K 950 1900 510K

PMR-T - 700 377K - 900 330K - 1650 328K - 1900 510K

BIG SONOMA SONOMA
CREEK COUNTY 3 COUNTY 4

kV kT |N| kV kT |N| kV kT |N|

PR-T 1000 - 401K 1100 - 445K 1300 - 474K

PM-T 1000 2000 442K 1100 2200 482K 1300 2600 493K

PMR-T - 2000 442K - 2200 482K - 2600 493K

representation. For such thresholds, leaf blocks encode more entities, leading to a reduced
speedup gain and to higher storage requirements for encoding application-specific auxil-
iary data structures. Based on the results and evaluations above, we choose thresholds that
generate trees having a number of nodes between 300K and 500K, as we have noticed that
such spatial indices are neither too coarse nor too deep, with overall good performances at
generating and encoding Terrain trees and answering connectivity queries.

9.2 Terrain trees evaluation

In this section, we compare the storage costs and timings for generating the spatial indices
of Terrain trees and IA data structure, as well as their performance at extracting the Vertex-
Triangle (VT) relations.

We generate a PR-T tree, a PM-T tree, and a PMR-T tree for each TIN. A single value
for kv and kt is selected for each dataset according to the results discussed in Section 9.1.
Table 2 shows the thresholds selected and the total number of internal and leaf nodes of
each Terrain tree. Notice that PR-T trees and PMR-T trees use only one threshold value

22 Riccardo Fellegara et al.

Table 3 Comparison of storage, expressed in megabytes (MB) and gigabytes (GB), for the underlying TIN,
Terrain trees and IA data structure. O.O.M. stands for Out Of Memory.

GREAT S. CANYON SONOMA SONOMA BIG SONOMA SONOMA
MOUNT. LAKE COUNTY 1 COUNTY 2 CREEK COUNTY 3 COUNTY 4

PR-T 21.5MB 20.7MB 21.4MB 33.7MB 28.4MB 31.4MB 33.4MB
PM-T 26.6MB 23.2MB 23.3MB 36.1MB 31.4MB 33.9MB 34.7MB

PMR-T 26.6MB 23.2MB 23.3MB 36.1MB 31.4MB 33.9MB 34.7MB
IA 908.0MB 1.31GB 2.80GB 3.62GB 4.04GB 4.12GB O.O.M.

TIN 1.56GB 2.24GB 4.80GB 6.20GB 6.93GB 7.06GB 8.83GB

Great S. Mount. Canyon Lake Sonoma 1 Sonoma 2 Big Creek Sonoma 30

10

20

30

40

50

Ti
m

e
(m

)

PR-T
PM-T
PMR-T
IA

Fig. 10 Comparison of total timings, expressed in minutes (m), for generating a Terrain tree or the IA data
structure.

(i.e., kv and kt , respectively), while PM-T trees use both. As shown in Table 2, the number
of nodes in a PM-T tree and a PMR-T tree of the same dataset is always similar, which leads
to comparable storage costs. The number of nodes in a PR-T tree is always smaller than in
the other two trees. These results match the ones of Section 9.1, which show that a PR-T
tree always has a lower storage cost compared to the other two Terrain trees.

Table 3 shows the storage costs of the Terrain trees and of the IA data structure. Since
both Terrain trees and IA data structure encode an indexed representation of the TIN, we
represent this storage requirement separately, and thus, the storage costs shown in Table
3 consider only the requirements for encoding the spatial index in a Terrain tree, and for
encoding adjacency and coboundary relations (i.e., Triangle-Triangle and partial Vertex-
Triangle relation) in the IA data structure. The total storage requirements can be easily
computed by adding the storage cost of the TIN to the corresponding Terrain trees or IA
data structure overhead cost. Note that the overhead cost of Terrain Trees is between 1%
and 3% of the overhead cost of the IA data structure. When considering also the cost of the
underlying indexed TIN representation, a Terrain tree can encode the same dataset using, on
average, 36% less storage than IA data structure. The differences between the three Terrain
trees are minimal. The PR-T tree is the most compact since it generates fewer leaf blocks
compared to the other two.

Figure 10 shows the time requirements for generating a Terrain tree or the IA data struc-
ture. The generation time do not consider the time needed to load the TIN from file, but
only the time for generating the corresponding data structure. The generation times for the
IA data structure are about 10% of those of Terrain Trees. This is expected since the IA
computes only the adjacencies between triangles and a partial VT relation. Terrain Trees,

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 23

Great S. Mount. Canyon Lake Sonoma 1 Sonoma 2 Big Creek Sonoma 30.00

0.25

0.50

0.75

1.00

1.25

1.50
Ti

m
e

(m
)

PR-T
PM-T
PMR-T
IA

Fig. 11 Comparison of total timings, expressed in minutes (m), for extracting the VT relations.

Great S. Mount. Canyon Lake Sonoma 1 Sonoma 2 Big Creek Sonoma 3 Sonoma 40

2

4

6

8

Ti
m

e
(m

)

PR-T
PM-T
PMR-T
IA

Fig. 12 Comparison of total timings, expressed in minutes (m), for extracting edge slopes.

instead, are created by first computing the spatial decomposition and then compressing its
representation, as described in Section 5. Also in this case, the differences between the three
Terrain trees are minimal, and the generation of a PMR-T tree is always 20% faster than that
of the other two, which is consistent with the findings in Section 9.1.

As shown in Figure 11, Terrain trees can always extract VT relations faster than the
IA data structure. PR-T and PM-T trees use from 57% to 72% less time than the IA data
structure. PMR-T trees use, on average, from 30% to 70% more time compared to the PR-T
and PM-T trees, still saving at least 30% time compared to IA data structure. The differences
among Terrain Trees are due to the encoding of the vertex ranges. In PR-T and PM-T trees,
such ranges are explicitly encoded, while in PMR-T trees, they are computed at run-time on
a block-by-block basis.

9.3 Computing morphological features

In this section, we evaluate the performances for computing morphological features, as de-
scribed in Section 6. Results are shown in Figures 12, 13, and 14.

Computing the triangle slope requires the Triangle-Vertex relation, while computing
the edge slope requires the (dual) Vertex-Triangle relation. Since both Terrain trees and
the IA data structure store the Triangle-Vertex relation explicitly we only compare their
performances in computing the edge slope.

24 Riccardo Fellegara et al.

Great S. Mount. Canyon Lake Sonoma 1 Sonoma 2 Big Creek Sonoma 3 Sonoma 40

1

2

3

Ti
m

e
(m

)
PR-T
PM-T
PMR-T
IA

Fig. 13 Comparison of total timings, expressed in minutes (m), for extracting concentrated curvatures.

Great S. Mount. Canyon Lake Sonoma 1 Sonoma 2 Big Creek Sonoma 3 Sonoma 40.0

0.5

1.0

1.5

2.0

Ti
m

e
(m

)

PR-T
PM-T
PMR-T
IA

Fig. 14 Comparison of total timings, expressed in minutes (m), for extracting roughness values.

As edges are not explicitly encoded neither in Terrain trees nor in the IA data structure,
we have to use an auxiliary lookup table in both implementations for encoding the slope
values without duplicates. Terrain trees enable the usage of a local data structure within
each leaf block, and this reduces both the cost of encoding and accessing the lookup table.
As shown in Figure 12, the slope estimation benefits by the use of a spatial index and a
modular structure. We notice that computing edge slopes on Terrain trees requires from
37% to 45% less time and less memory than by using the IA data structure (considering also
that the IA data structure goes out of memory five times). The difference among the three
Terrain Trees is limited, since the extraction time for the VT relation accounts for a small
portion of the overall slope computation time.

As discussed in Section 6, estimating the curvature requires visiting the star of each
vertex (i.e., extract the Vertex-Triangle relation). As in Figure 13, the implementation based
on Terrain trees is always faster than the one based on the IA data structure, as it requires
from 25% to 30% less time. Both Terrain trees and the IA data structure require the same
amount of space for encoding curvature values, while the size of the auxiliary data struc-
tures is negligible. The performances of the three Terrain trees are similar. This shows that
extracting the vertices in a block at run-time does not affect significantly the performances
of the spatial index.

Estimating roughness requires computing the Vertex-Vertex relation. In Terrain trees, the
roughness computation is pretty efficient (see Figure 14), being from 36% to 55% faster than
the corresponding procedure on the IA data structure. On larger datasets, PMR-T trees are

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 25

Great S. Mount. Canyon Lake Sonoma 1 Sonoma 2 Big Creek Sonoma 30

5

10

15

20

25

30
Ti

m
e

(m
)

PR-T
PM-T
PMR-T
IA

Fig. 15 Comparison of total timings, expressed in minutes (m), for computing the Forman gradient vector.

always slower than PR-T and PM-T trees, since they are less efficient at extracting the VV
relation.

9.4 Computing topology-based segmentations

In this section, we evaluate the performances in computing the Forman gradient, and in
extracting the critical net.

Forman gradient computation

As discussed in Section 7, computing the discrete gradient on a Terrain tree requires ex-
tracting the star of each vertex of the TIN, i.e., the Vertex-Triangle relation. As shown in
Figure 15, Terrain trees are always faster than the IA data structure requiring about 20% less
time. PMR-T trees are usually slightly faster than PR-T and PM-T trees, but overall the time
difference between the three Terrain trees is small.

Since Terrain trees have lower storage requirements than the IA data structure, they can
complete the Forman gradient computation on all datasets, i.e., there is enough memory
for encoding the discrete gradient and the auxiliary data structures used in the process. This
does not apply to the IA data structure, which goes out of memory on the two larger datasets.

Critical net extraction

In a Terrain tree, the extraction of the critical net requires an intense navigation of the spatial
index, and the extraction at run-time of connectivity relations that, in the IA data structure,
are either explicitly encoded (Triangle-Triangle relation) or efficiently extracted (Vertex-
Vertex relation). This application represents an interesting worst-case scenario for Terrain
trees.

Both Terrain trees and the IA data structure use auxiliary data structures for extracting
the critical net. The IA data structure uses a global stack to perform the TIN traversal. Con-
versely, a Terrain tree uses a cache of leaf blocks with expanded connectivity information
as well as a list of dangling paths, plus a local stack within each leaf block (see Section
7.2). As shown in Figure 16, thanks to the lower storage requirements of Terrain trees, such
auxiliary structures can be effectively encoded in memory, while the IA data structure goes
out of memory on the three larger datasets.

26 Riccardo Fellegara et al.

Great S. Mount. Canyon Lake Sonoma 1 Sonoma 2 Big Creek Sonoma 30

20

40

60

80

100

120
Ti

m
e

(m
)

PR-T
PM-T
PMR-T
IA

Fig. 16 Comparison of total timings, expressed in minutes (m), for computing the critical net.

(a) Satellite

(b) RGB (c) Elevation+Green (d) Elevation+RGB

Fig. 17 The satellite map and the visualization of the multifield comparison measure on an area with few
trees and some human artifacts. Figures show the satellite image (a), the multifield measure based on red,
green and blue values (b), based on elevation paired with green values (c), and based on elevation paired with
RGB values (d).

Comparing timings, PR-T and PM-T trees have comparable performances with respect
to the IA data structure, and use up to 10% more time, while PMR-T trees perform signifi-
cantly worse being up to 8 times slower than the IA data structure. Comparing Terrain trees,
PR-T and PM-T trees have similar performances and are at least 5 times faster than PMR-T
trees. As we have already observed with the other applications, this speedup is due since a
PMR-T tree has to compute the range of vertices at run-time.

9.5 Multifield data visualization

We evaluate the performances of Terrain Trees for computing the multifield measure de-
scribed in Section 8. We test our implementation for a visual analysis on two small datasets

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 27

(shown in Figures 17 and 18), and for a performance analysis against the IA data structure
on three different areas of the SONOMA COUNTY dataset. Each dataset has a total of five
scalar fields: elevation, a color field (encoded as a RGB triple), and roughness.

First, we visually analyze the algorithm performance on an area with few trees and some
human artifacts (a fence and a small building). Figure 17 presents the raster image of this
area (Figure 17(a)), and three output images obtained with our algorithm in which we used
as input scalar fields: (i) the RGB values (Figure 17(b)), (ii) the green band paired with the
elevation (Figure 17(c)), and (iii) the RGB values paired with the elevation (Figure 17(d)).
Just using the RGB values, the algorithm can identify the boundary of the buildings and their
shadows clearly, but it does not highlight precisely the trees. Pairing the green band with the
elevation improves the identification of trees, while the human artifacts result smoothed
and less clear. Lastly, if we pair the three RGB values and the elevation, the algorithm can
correctly highlight both trees and human artifacts.

In order to understand the performance of our strategy in distinguishing forest areas
from other land cover types (like rivers or streets), a region with higher tree density has
been used (see Figure 18). We compare the visualization results when using just the RGB
values (Figure 18(b)), and when pairing them with roughness (Figure 18(c)). In this case,
we pair the RGB values with roughness instead of the bare elevation, since roughness has
been proven to be a better estimator for identifying surface deformations in a terrain [66].
The visual comparison of the outputs shows that the multifield strategy is more precise in
highlighting the different cover types, when also a geometric field is added to the identifi-
cation procedure. Pairing roughness with the color values enables the identification of both
the road crossing the forest and areas of low vegetation (Figure 18(c)), that cannot be clearly
identified by just using the color (Figure 18(b)). Also, a narrow band representing the road
in the forest can be identified clearly only if we include roughness values in our input fields.

The visual analysis of the results shows that the multifield strategy can be effectively
used for highlighting key areas in satellite datasets, and that the identification improves
when pairing a geometric attribute with other scalar fields that are not spatial or geometric.

Finally, we compare the performance of Terrain trees and IA data structure at extracting
the multifield measure on three datasets based on SONOMA COUNTY. Results are reported
in Figure 19. Overall, the timing performances of the Terrain trees and IA data structure
are very similar, even if we notice that Terrain trees are about 5% faster than the IA data
structure. The performance difference is minimal if we compare the Terrain trees. Thanks to
the initial lower storage requirements, Terrain trees can compute the multifield measure on
all three datasets, while the IA data structure goes out of memory on the largest one.

10 Concluding Remarks

We have presented a family of spatial data structures, the Terrain trees, for the efficient
representation, analysis and visualization of triangulated terrains. A Terrain tree combines
a minimal connectivity-based encoding of the underlying triangle mesh with a hierarchi-
cal spatial index, thus implicitly encoding other connectivity relations. Terrain trees consist
of three spatial indexes that use different bucketed subdivision rules. By borrowing an idea
presented in [27] for a distributed data structure for simplicial complexes in arbitrary dimen-
sions, we use spatial coherence to reorder the indexed data, thus achieving the compression
of both vertex and triangle information inside the spatial index. This enables high storage
reduction and optimized algorithms.

28 Riccardo Fellegara et al.

(a) Satellite

(b) RGB (c) Roughness+RGB

Fig. 18 The satellite map and the visualization of the multifield comparison measure on an area with high
tree density. Figures show the satellite image (a), the multifield measure based on red, green and blue values
(b), and based on roughness paired with RGB values (c).

We have proven the effectiveness of our proposal by designing and implementing state-
of-the-art morphological estimators for terrain analysis, like slope, curvature, and roughness,
as well as a distributed technique based on discrete Morse theory for topology-based seg-
mentation of such terrains. Lastly, as it is common to study a terrain in combination with
additional fields attached to it, we have defined a distributed strategy for visualizing multi-
field data.

We have experimentally demonstrated how the bucketing thresholds on the Terrain trees
affect generation times, storage requirements, and performances in extracting a basic con-
nectivity relation. This has enabled the optimal identification of the most appropriate thresh-
old ranges. We have then experimentally demonstrated the efficiency of our data structure
by comparing it against the most common and compact connectivity-based data structure,
the IA data structure. Terrain trees require always less storage, they generally perform better
than the IA data structure, and their effectiveness increases with the dataset size. Conversely,
the difference in performances among the three Terrain trees is minimal. We have noticed,
however, that spatial indexes explicitly encoding the vertices in each leaf block have shown
better performances at computing those estimators which require the efficient extraction of

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 29

Sonoma 1 Sonoma 2 Sonoma 30

10

20

30

40

Ti
m

e
(m

)

PR-T
PM-T
PMR-T
IA

Fig. 19 Comparison of total timings, expressed in minutes (m), for computing the multifield measure.

the triangles incident in a vertex. The source code of Terrain trees library and of the library
implementing the IA data structure, called LibTri, are available in the public domain [26,
25].

The experimental results showed that encoding the triangle meshes has a relevant impact
on the storage cost. As future work, we will consider distributing the global arrays across the
leaf block of the Terrain trees. Also, we plan to design an algorithm for computing the TIN
at runtime, locally within each leaf block, and discard it when no longer needed. This will
further reduce the memory footprint and enable the handling of even larger point clouds.

For topology-based analysis of the terrain, we are currently extending our tool with
algorithms for geometric and topology-based simplification. Simplification algorithms have
been developed for reducing the size of a TIN based on the edge contraction operator, but
the major problem with TIN simplification algorithms is that they can create or remove
critical points in an uncontrolled way. Topology-aware operators [38] have been defined to
solve this issue by coarsening a TIN without affecting its topology. While effective, existing
algorithms are sequential in nature and are not scalable enough to perform well with large
terrains. We are currently developing a simplification algorithm in the Terrain Trees using
the topology-aware edge contraction operator first introduced in [38]. Thanks to the compact
and distributed representation of Terrain trees, this algorithm will improve both the memory
and time requirements of the simplification procedure. Furthermore, we plan to investigate
a new parallel topology-aware simplification algorithm that takes advantage of the spatial
domain decomposition at the basis of Terrain trees.

Algorithms for geometric and topology-based simplification intensively update both the
TIN and the Terrain tree. Currently, we are defining an update procedure that keeps the
Terrain tree up-to-date after a simplification, in such a way that performances are not largely
affected. In the future, we plan to extend this procedure to support also generic updates to the
TIN, like adding new points or removing TIN vertices. The generic mechanism to update
the Terrain tree is similar to the process performed after a simplification, but it might be
more challenging if larger portions of the TIN would need to be re-triangulated.

The morphology of a terrain, represented by the critical net, can also be simplified by
modifying the underlying discrete gradient [29]. Simplification strategies for the discrete
gradient have been defined for reducing noise and for obtaining clearer and accurate repre-
sentations of the critical net [22]. We plan to implement a simplification algorithm for the
discrete gradient. This will result in more robust descriptions of the terrain morphology.

Lastly, we are currently studying an extension of the Terrain trees for distributed frame-
works like Apache Spark [76] or MPI [11]. The distributed environment will increase the
scalability of our approach dramatically. The hierarchical representation of the Terrain trees

30 Riccardo Fellegara et al.

is well suited to be organized in the distributed framework. The challenge here is defining a
distributed algorithm for constructing the TIN in such context.

Acknowledgements This work has been mainly developed while Riccardo Fellegara was with the University
of Maryland at College Park, USA. This work has been supported by the US National Science Foundation
under grant number IIS-1910766. It has also been performed under the auspices of the German Aerospace
Center (DLR) under Grant DLR-SC-2467209. The BIG CREEK, CANYON LAKE GORGE, GREAT SMOKEY
MOUNTAIN, and SONOMA COUNTY point clouds are kindly provided by the OpenTopography Facility [56]
with support from the National Science Foundation under NSF Award Numbers 1833703, 1833643, and
1833632. We also acknowledge NASA Grant NNX13AP69G for the collection of SONOMA COUNTY dataset,
NSF Award number 1043051 for the collection of BIG CREEK, CANYON LAKE GORGE, and GREAT SMOKEY
MOUNTAIN datasets.

References

1. Agarwal, P.K., Beutel, A., Mø lhave, T.: TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids
Using a GPU. ACM Transactions on Spatial Algorithms and Systems 2(2), 1–31 (2016). DOI 10.1145/
2786757

2. Allili, M., Kaczynski, T., Landi, C., Masoni, F.: A new matching algorithm for multidimensional persis-
tence. ArXiv, Id:1511.05427 (2015). URL http://arxiv.org/abs/1511.05427

3. Baker, W.E., Emmitt, G.D., Robertson, F., Atlas, R.M., Molinari, J.E., Bowdle, D.A., Paegle, J., Hardesty,
R.M., Menzies, R.T., Krishnamurti, T., et al.: Lidar-measured winds from space: a key component for
weather and climate prediction. Bulletin of the American Meteorological Society 76(6), 869–888 (1995)

4. Banchoff, T.F.: Critical Points and Curvature for Embedded Polyhedral Surfaces. The American Mathe-
matical Monthly 77(5), 475–485 (1970). URL http://www.jstor.org/stable/2317380

5. Bentley, J.: Multidimensional binary search trees used for associative searching. Communications of the
ACM 18(9), 509–517 (1975)

6. Boissonnat, J.D., Cazals, F.: Smooth surface reconstruction via natural neighbour interpolation of dis-
tance functions. Computational Geometry 22(1-3), 185–203 (2002). DOI 10.1016/S0925-7721(01)
00048-7

7. Carr, H., Duke, D.: Joint contour nets: Computation and properties. In: Visualization Symposium (Paci-
ficVis), 2013 IEEE Pacific, pp. 161–168 (2013). DOI 10.1109/PacificVis.2013.6596141

8. Carr, H., Geng, Z., Tierny, J., Chattopadhyay, A., Knoll, A.: Fiber Surfaces: Generalizing Isosurfaces
to Bivariate Data. Computer Graphics Forum 34(3), 241–250 (2015). DOI 10.1111/cgf.12636. URL
http://onlinelibrary.wiley.com/doi/10.1111/cgf.12636/full

9. Computational Geometry Algorithms Library (CGAL) (2020). https://www.cgal.org/ [Online;
accessed February-2020]

10. Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., Scopigno, R.: BDAM – Batched Dy-
namic Adaptive Meshes for high performance terrain visualization. Computer Graphics Forum 22(3),
505–514 (2003)

11. Clarke, L., Glendinning, I., Hempel, R.: The MPI Message Passing Interface standard. In: K.M. Decker,
R.M. Rehmann (eds.) Programming Environments for Massively Parallel Distributed Systems, pp. 213–
218. Birkhäuser Basel, Basel (1994)

12. Dalponte, M., Bruzzone, L., Gianelle, D.: Fusion of hyperspectral and lidar remote sensing data for
classification of complex forest areas. IEEE Transactions on Geoscience and Remote Sensing 46(5),
1416–1427 (2008)

13. De Floriani, L., Dimitri, D., Facinoli, M., Magillo, P.: The PM2-Triangle quadtree. Tech. rep., Diparti-
mento di Informatica e Scienze dell’Informazione (DISI), Università degli Studi di Genova (2007)

14. De Floriani, L., Facinoli, M., Magillo, P., Dimitri, D.: A hierarchical spatial index for triangulated sur-
faces. In: Proceedings of the Third International Conference on Computer Graphics Theory and Appli-
cations (GRAPP 2008), pp. 86–91 (2008)

15. De Floriani, L., Fugacci, U., Iuricich, F., Magillo, P.: Morse complexes for shape segmentation and
homological analysis: discrete models and algorithms. In: Computer Graphics Forum, vol. 34, pp. 761–
785. Blackwell Publishing Ltd (2015). DOI 10.1111/cgf.12596

16. De Floriani, L., Hui, A.: Data structures for simplicial complexes: An analysis and a comparison. In:
Proceedings of the third Eurographics symposium on Geometry processing, pp. 119–es. Eurographics
Association (2005)

https://orcid.org/0000-0002-8758-2802
https://doi.org/10.5069/G91V5BX0
https://doi.org/10.5069/G9MS3QNS
https://doi.org/10.5069/G98050JG
https://doi.org/10.5069/G98050JG
https://doi.org/10.5069/G9G73BM1
https://doi.org/10.5069/G9G73BM1
https://doi.org/10.5069/G91V5BX0
https://doi.org/10.5069/G9MS3QNS
https://doi.org/10.5069/G98050JG
https://doi.org/10.5069/G98050JG
http://arxiv.org/abs/1511.05427
http://www.jstor.org/stable/2317380
http://onlinelibrary.wiley.com/doi/10.1111/cgf.12636/full
https://www.cgal.org/

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 31

17. Dolan, M.F., Grehan, A.J., Guinan, J.C., Brown, C.: Modelling the local distribution of cold-water corals
in relation to bathymetric variables: Adding spatial context to deep-sea video data. Deep Sea Research
Part I: Oceanographic Research Papers 55(11), 1564–1579 (2008)

18. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. In: Foundations of Computational
Mathematics, Minneapolis 2002, London Mathematical Society Lecture Note Series, vol. 312, pp. 35–
57. Cambridge University Press (2004). DOI 10.1017/CBO9781139106962.003. URL http://dx.
doi.org/10.1017/CBO9781139106962.003

19. Edelsbrunner, H., Harer, J.: Jacobi Sets of multiple Morse functions. In: Foundations of Computational
Mathematics, London Mathematical Society Lecture Note Series, vol. 312, pp. 37–57. Cambridge Uni-
versity Press (2004). DOI 10.1017/CBO9781139106962.003

20. Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In: Proceedings
of the Twenty-fourth Annual Symposium on Computational Geometry, SoCG ’08, pp. 242–250. ACM,
New York, NY, USA (2008). DOI 10.1145/1377676.1377720

21. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: A technique to cope with degenerate cases in
geometric algorithms. ACM Transactions on Graphics 9(1), 66–104 (1990). DOI 10.1145/77635.77639

22. Fellegara, R.: Spatial indexes for simplicial and cellular meshes. In: New Trends in Databases and
Information Systems, pp. 373–382. Springer International Publishing (2014)

23. Fellegara, R., Iuricich, F., De Floriani, L.: Efficient representation and analysis of triangulated terrains.
In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, SIGSPATIAL’17, pp. 74:1–74:4. ACM, New York, NY, USA (2017). DOI 10.
1145/3139958.3140050. URL http://doi.acm.org/10.1145/3139958.3140050

24. Fellegara, R., Iuricich, F., De Floriani, L., Weiss, K.: Efficient computation and simplification of dis-
crete Morse decompositions on triangulated terrains. In: Proceedings of the 22th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. ACM (2014)

25. Fellegara, R., Song, Y.: LibTri code repository. https://github.com/UMDGeoVis/Terrain_
Analysis_on_IA (2021)

26. Fellegara, R., Song, Y.: Terrain trees library code repository. https://github.com/UMDGeoVis/
Terrain_Trees (2021)

27. Fellegara, R., Weiss, K., De Floriani, L.: The Stellar decomposition: A compact representation for simpli-
cial complexes and beyond. Computers & Graphics 98, 322–343 (2021). DOI 10.1016/j.cag.2021.05.002

28. Finkel, R., Bentley, J.: Quad trees a data structure for retrieval on composite keys. Acta informatica 4(1),
1–9 (1974)

29. Forman, R.: Morse theory for cell complexes. Advances in Mathematics 134, 90–145 (1998)
30. Forman, R.: A user’s guide to discrete Morse theory. Sém. Lothar. Combin 48, B48c (2002)
31. Gobbetti, E., Marton, F., Cignoni, P., Di Benedetto, M., Ganovelli, F.: C-bdam–compressed batched

dynamic adaptive meshes for terrain rendering. In: Computer Graphics Forum, vol. 25, pp. 333–342.
Wiley Online Library (2006)

32. Gurung, T., Rossignac, J.: SOT: A compact representation for tetrahedral meshes. In: Proceedings
SIAM/ACM Geometric and Physical Modeling, SPM ’09, pp. 79–88. San Francisco, USA (2009). DOI
10.1145/1629255.1629266

33. Heine, C., Leitte, H., Hlawitschka, M., Iuricich, F., De Floriani, L., Scheuermann, G., Hagen, H., Garth,
C.: A Survey of Topology-based Methods in Visualization. Computer Graphics Forum 35(3), 643–667
(2016). DOI 10.1111/cgf.12933. URL http://doi.wiley.com/10.1111/cgf.12933

34. Held, G., Marshall, T.: Data compression; techniques and applications: Hardware and software consid-
erations. John Wiley & Sons (1991)

35. Hjaltason, G., Samet, H.: Speeding up construction of PMR quadtree-based spatial indexes. The VLDB
Journal, The International Journal on Very Large Data Bases 11(2), 137 (2002)

36. Huettenberger, L., Heine, C., Garth, C.: Decomposition and Simplification of Multivariate Data using
Pareto Sets. 20(12), 2684–93 (2014). DOI 10.1109/TVCG.2014.2346447

37. Hyde, P., Dubayah, R., Peterson, B., Blair, J., Hofton, M., Hunsaker, C., Knox, R., Walker, W.: Mapping
forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems.
Remote sensing of environment 96(3-4), 427–437 (2005)

38. Iuricich, F., De Floriani, L.: Hierarchical forman triangulation: A multiscale model for scalar field anal-
ysis. Computers & Graphics (2017). DOI https://doi.org/10.1016/j.cag.2017.05.015

39. Iuricich, F., Scaramuccia, S., Landi, C., De Floriani, L.: A discrete morse-based approach to multivariate
data analysis. In: SIGGRAPH ASIA 2016 Symposium on Visualization on - SA ’16, SA ’16, pp. 1–8.
ACM, New York, NY, USA (2016). DOI 10.1145/3002151.3002166. URL http://dl.acm.org/
citation.cfm?doid=3002151.3002166

40. J de Smith, M., Goodchild, M., Longley, P.: Geospatial Analysis: A Comprehensive Guide. The
Winchelsea Press, S.l. (2018)

http://dx.doi.org/10.1017/CBO9781139106962.003
http://dx.doi.org/10.1017/CBO9781139106962.003
http://doi.acm.org/10.1145/3139958.3140050
https://github.com/UMDGeoVis/Terrain_Analysis_on_IA
https://github.com/UMDGeoVis/Terrain_Analysis_on_IA
https://github.com/UMDGeoVis/Terrain_Trees
https://github.com/UMDGeoVis/Terrain_Trees
http://doi.wiley.com/10.1111/cgf.12933
http://dl.acm.org/citation.cfm?doid=3002151.3002166
http://dl.acm.org/citation.cfm?doid=3002151.3002166

32 Riccardo Fellegara et al.

41. King, H.C., Knudson, K., Neza, M.: Generating discrete Morse functions from point data. Experimental
Mathematics 14(4), 435–444 (2005). DOI 10.1080/10586458.2005.10128941

42. Lanier, A., Romsos, C., Goldfinger, C.: Seafloor habitat mapping on the oregon continental margin: A
spatially nested gis approach to mapping scale, mapping methods, and accuracy quantification. Marine
Geodesy 30(1-2), 51–76 (2007)

43. Lee, S., Har, D., Kum, D.: Drone-assisted disaster management: Finding victims via infrared camera and
lidar sensor fusion. In: 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering
(APWC on CSE), pp. 84–89. IEEE (2016)

44. Lewiner, T.: Critical sets in discrete Morse theories: Relating Forman and piecewise-linear approaches.
Computer Aided Geometric Design 30(6), 609–621 (2013). DOI 10.1016/j.cagd.2012.03.012

45. Lindenbaum, M., Samet, H., Hjaltason, G.R.: A probabilistic analysis of trie-based sorting of large col-
lections of line segments in spatial databases. SIAM Journal on Computing 35(1), 22–58 (2005)

46. Mancinelli, C., Livesu, M., Puppo, E.: Gradient Field Estimation on Triangle Meshes. In: M. Livesu,
G. Pintore, A. Signoroni (eds.) Smart Tools and Apps for Graphics - Eurographics Italian Chapter Con-
ference. The Eurographics Association (2018). DOI 10.2312/stag.20181301

47. Meigs, A.: Active tectonics and the lidar revolution. Lithosphere 5(2), 226–229 (2013)
48. Mesmoudi, M., De Floriani, L., Magillo, P.: Morphological analysis of terrains based on discrete cur-

vature and distortion. In: W. Aref, M. Mokbel, H. Samet, M. Schneider, C. Shahabi, O. Wolfson (eds.)
Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic infor-
mation systems, pp. 415–418. Irvine, CA, USA (2008). DOI 10.1145/1463434.1463498

49. Mesmoudi, M., De Floriani, L., Port, U.: Discrete distortion in triangulated 3-manifolds. Computer
Graphics Forum 27(5), 1333–1340 (2008). DOI 10.1111/j.1467-8659.2008.01272.x

50. Mesmoudi, M.M., De Floriani, L., Magillo, P.: Discrete distortion for surface meshes. In: International
Conference on Image Analysis and Processing, pp. 652–661. Springer (2009)

51. Meyer, M., Desbrun, M., Schroder, M., Barr, A.H.: Discrete differential-geometry operators for triangu-
lated 2-manifolds. In: H.C. Hege, K. Polthier (eds.) Proceedings VisMath 2002, pp. 35–57 (2003)

52. Milnor, J.: Morse Theory. Princeton University Press, New Jersey (1963)
53. Nagaraj, S., Natarajan, V., Nanjundiah, R.S.: A Gradient-Based Comparison Measure for Visual analysis

of Multifield Data 30(3), 1101–1110 (2011). DOI 10.1111/j.1467-8659.2011.01959.x
54. Nelson, R., Samet, H.: A consistent hierarchical representation for vector data. ACM SIGGRAPH Com-

puter Graphics 20(4), 197–206 (1986)
55. Nielson, G.M.: Tools for triangulations and tetrahedralizations and constructing functions defined over

them. In: G.M. Nielson, H. Hagen, H. Müller (eds.) Scientific Visualization: overviews, Methodologies
and Techniques, chap. 20, pp. 429–525. IEEE Computer Society, Silver Spring, MD (1997)

56. Opentopography - high-resolution topography data and tools (2020). http://www.
opentopography.org/ [Online; accessed February-2020]

57. Orenstein, J.A.: Multidimensional tries used for associative searching. Information Processing Letters
14(4), 150–157 (1982)

58. Pajarola, R., Gobbetti, E.: Survey of semi-regular multiresolution models for interactive terrain render-
ing. The Visual Computer 23(8), 583–605 (2007)

59. Paoluzzi, A., Bernardini, F., Cattani, C., Ferrucci, V.: Dimension-independent modeling with simplicial
complexes. ACM Transactions on Graphics (TOG) 12(1), 56–102 (1993)

60. Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete Morse complexes
from grayscale digital images. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8),
1646–1658 (2011). DOI 10.1109/TPAMI.2011.95

61. Rossignac, J., Safonova, A., Szymczak, A.: 3D compression made simple: Edge-Breaker on a Corner
Table. In: Proceedings Shape Modeling International 2001. IEEE Computer Society, Genova, Italy
(2001)

62. Samet, H.: The Design and analysis of spatial data structure. Addison Wesley (1990)
63. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann (2006)
64. Samet, H., Webber, R.: Storing a collection of polygons using quadtrees. ACM Transactions on Graphics

(TOG) 4(3), 182–222 (1985)
65. Saye, S., van der Wal, D., Pye, K., Blott, S.: Beachdune morphological relationships and ero-

sion/accretion: An investigation at five sites in england and wales using lidar data. Geomorphol-
ogy 72(1), 128–155 (2005). DOI https://doi.org/10.1016/j.geomorph.2005.05.007. URL https:
//www.sciencedirect.com/science/article/pii/S0169555X05001698

66. Shepard, M.K., Campbell, B.A., Bulmer, M.H., Farr, T.G., Gaddis, L.R., Plaut, J.J.: The roughness of
natural terrain: A planetary and remote sensing perspective. Journal of Geophysical Research: Planets
106(E12), 32777–32795 (2001)

67. Shivashankar, N., Senthilnathan, M., Natarajan, V.: Parallel computation of 2D Morse-Smale complexes.
IEEE Transactions on Visualization and Computer Graphics 18(10), 1757–1770 (2012). DOI 10.1109/
TVCG.2011.284

https://orcid.org/0000-0002-8758-2802
http://www.opentopography.org/
http://www.opentopography.org/
https://www.sciencedirect.com/science/article/pii/S0169555X05001698
https://www.sciencedirect.com/science/article/pii/S0169555X05001698

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 33

68. Tierny, J., Carr, H.: Jacobi Fiber Surfaces for Bivariate Reeb Space Computation 23(1), 960–969 (2017).
DOI 10.1109/TVCG.2016.2599017

69. Wang, R., Peethambaran, J., Chen, D.: Lidar point clouds to 3-d urban models : a review. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing 11(2), 606–627 (2018)

70. Warner, F.W.: Foundations of differentiable manifolds and Lie groups, vol. 94. Springer Science &
Business Media (1983)

71. Webster, T.L., Forbes, D.L., Dickie, S., Shreenan, R.: Using topographic lidar to map flood risk from
storm-surge events for charlottetown, prince edward island, canada. Canadian Journal of Remote Sensing
30(1), 64–76 (2004)

72. Weiss, K., Iuricich, F., Fellegara, R., De Floriani, L.: A primal/dual representation for discrete Morse
complexes on tetrahedral meshes. In: Computer Graphics Forum, vol. 32, pp. 361–370 (2013)

73. White, S.A., Wang, Y.: Utilizing dems derived from lidar data to analyze morphologic change in the
north carolina coastline. Remote sensing of environment 85(1), 39–47 (2003)

74. Xu, X., Iuricich, F., De Floriani, L.: A Persistence-Based Approach for Individual Tree Mapping. In:
Proceedings of the 28th International Conference on Advances in Geographic Information Systems, pp.
191–194. ACM (2020). DOI 10.1145/3397536.3422231

75. Yonglin, S., Lixin, W., Zhi, W.: Identification of inclined buildings from aerial lidar data for disaster
management. In: 2010 18th International Conference on Geoinformatics, pp. 1–5. IEEE (2010)

76. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster computing with
working sets. In: Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, pp. 10–10. USENIX Association, Berkeley, CA, USA (2010). URL http://dl.acm.
org/citation.cfm?id=1863103.1863113

http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113

34 Riccardo Fellegara et al.

A Appendix

100 200 300 400 500 600 750 850 950 1050
Leaf Block Threshold

0

20

40

60

80

100

120

St
or

ag
e

(M
bs

)

PR-T tree
PM-T tree
PMR-T tree

Fig. 20 The storage costs for storing the hierarchical index of the Terrain trees on CANYON LAKE GORGE
dataset using different values of kv and kt . The x-axis shows the threshold value on the vertices.

200 400 600 800 1000
Leaf Block Threshold

700

800

900

1000

1100

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(a) Generation time

200 400 600 800 1000
Leaf Block Threshold

10

11

12

13

14

15

16

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(b) VT extraction time

Fig. 21 Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in
Terrain trees on CANYON LAKE GORGE dataset using different values of kv and kt . The x-axis shows the
vertex threshold value.

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 35

75 225 375 525 675 825 1050 1200 1350 1500
Leaf Block Threshold

0

50

100

150

200

250

300
St

or
ag

e
(M

bs
)

PR-T tree
PM-T tree
PMR-T tree

Fig. 22 The storage costs for storing the hierarchical index of the Terrain trees on SONOMA COUNTY 1
dataset using different values of kv and kt . The x-axis shows the threshold value on the vertices.

200 400 600 800 1000 1200 1400
Leaf Block Threshold

1800

2000

2200

2400

2600

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(a) Generation time

200 400 600 800 1000 1200 1400
Leaf Block Threshold

20

25

30

35

40

45

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(b) VT extraction time

Fig. 23 Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in
Terrain trees on SONOMA COUNTY 1 dataset using different values of kv and kt . The x-axis shows the vertex
threshold value.

75 225 375 525 675 825 1050 1200 1350 1500
Leaf Block Threshold

0

100

200

300

400

500

St
or

ag
e

(M
bs

)

PR-T tree
PM-T tree
PMR-T tree

Fig. 24 The storage costs for storing the hierarchical index of the Terrain trees on SONOMA COUNTY 2
dataset using different values of kv and kt . The x-axis shows the threshold value on the vertices.

36 Riccardo Fellegara et al.

200 400 600 800 1000 1200 1400
Leaf Block Threshold

2200

2400

2600

2800

3000

3200

3400

3600

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(a) Generation time

200 400 600 800 1000 1200 1400
Leaf Block Threshold

30

40

50

60

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(b) VT extraction time

Fig. 25 Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in
Terrain trees on SONOMA COUNTY 2 dataset using different values of kv and kt . The x-axis shows the vertex
threshold value.

100 300 500 700 900 1100 1400 1600 1800 2000
Leaf Block Threshold

0

100

200

300

St
or

ag
e

(M
bs

)

PR-T tree
PM-T tree
PMR-T tree

Fig. 26 The storage costs for storing the hierarchical index of the Terrain trees on BIG CREEK dataset using
different values of kv and kt . The x-axis shows the threshold value on the vertices.

500 1000 1500 2000
Leaf Block Threshold

2750

3000

3250

3500

3750

4000

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(a) Generation time

500 1000 1500 2000
Leaf Block Threshold

30

35

40

45

50

55

60

65

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(b) VT extraction time

Fig. 27 Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in
Terrain trees on BIG CREEK dataset using different values of kv and kt . The x-axis shows the vertex threshold
value.

https://orcid.org/0000-0002-8758-2802

Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains 37

100 300 500 700 900 1100 1400 1600 1800 2000
Leaf Block Threshold

0

100

200

300

St
or

ag
e

(M
bs

)
PR-T tree
PM-T tree
PMR-T tree

Fig. 28 The storage costs for storing the hierarchical index of the Terrain trees on SONOMA COUNTY 3
dataset using different values of kv and kt . The x-axis shows the threshold value on the vertices.

500 1000 1500 2000
Leaf Block Threshold

2400

2600

2800

3000

3200

3400

3600

3800

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(a) Generation time

500 1000 1500 2000
Leaf Block Threshold

35

40

45

50

55

60

65

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(b) VT extraction time

Fig. 29 Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in
Terrain trees on SONOMA COUNTY 3 dataset using different values of kv and kt . The x-axis shows the vertex
threshold value.

300 500 700 900 1100 1300 1600 1800 2000 2200
Leaf Block Threshold

0

25

50

75

100

125

150

St
or

ag
e

(M
bs

)

PR-T tree
PM-T tree
PMR-T tree

Fig. 30 The storage costs for storing the hierarchical index of the Terrain trees on SONOMA COUNTY 4
dataset using different values of kv and kt . The x-axis shows the threshold value on the vertices.

38 Riccardo Fellegara et al.

500 1000 1500 2000
Leaf Block Threshold

3000

3200

3400

3600

3800

4000

4200

4400

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(a) Generation time

500 1000 1500 2000
Leaf Block Threshold

40

45

50

55

60

65

70

Ti
m

e
(s

)

PR-T tree
PM-T tree
PMR-T tree

(b) VT extraction time

Fig. 31 Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in
Terrain trees on SONOMA COUNTY 4 dataset using different values of kv and kt . The x-axis shows the vertex
threshold value.

https://orcid.org/0000-0002-8758-2802

	Introduction
	Background Notions
	Related Work
	Terrain Trees
	Implementation of Terrain trees
	Morphological Terrain Features
	Topology-based Terrain Segmentation
	Multifield Visualization
	Experimental Results
	Concluding Remarks
	Appendix

