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Abstract Deriving governing equations from a measured time series is an on-
going topic of research across different disciplines in science. One method studied
can derive the form of governing equations, however it cannot infer the coefficients
in front of each term. This is where our work comes in: given the form of gover-
ning equations and a measured time series, we propose an algorithm for finding the
correct coefficients of the governing equations describing the observed data best.
We achieve this by treating the data as primary system and coupling a secondary
system to it. Then by inducing synchronisation, we can change the parameters of
the secondary system in the direction minimising a loss function. After the loss has
reached its minimum, the found parameters are a good estimation of the real para-
meters producing the data. We applied our algorithm successfully on a number on
synthetic systems and even found a method for reconstructing signals masked by
chaotic data.

Zusammenfassung Die Herleitung von Gleichungen aus einer gemessenen
Zeitreihe ist ein aktives Forschungsthema in verschiedenen wissenschaftlichen Dis-
ziplinen. Eine der untersuchten Methoden kann die Form der zugrunde liegenden
Gleichungen herleiten, jedoch nicht die Koeffizienten vor jedem Term. Hier setzt
unsere Arbeit an: Wenn die Form der zugrunde liegenden Gleichungen und eine
gemessenen Zeitreihe gegeben sind, stellen wir einen Algorithmus vor, um die richti-
gen Koeffizienten der zugrunde liegenden Gleichungen zu finden. Wir erreichen dies,
indem wir die Daten als primäres System betrachten und ein sekundäres System
an dieses koppeln. Durch Herbeiführen von Synchronisation, können wir dann die
Parameter des sekundären Systems in die Richtung ändern, die eine Verlustfunktion
minimiert. Nachdem die Verlustfunktion ihr Minimum erreicht hat, sind die gefun-
denen Parameter eine gute Schätzung der echten Parameter, die die Daten erzeugt
haben. Wir haben unseren Algorithmus erfolgreich auf eine Reihe synthetischer Sys-
teme angewandt und sogar eine Methode gefunden um Signale zu rekonstruieren,
die durch chaotische Daten maskiert worden sind.
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Chapter 1

Introduction

We live in a world in which more and more data is produced and processed than ever be-
fore. Different techniques exist for utilising this data and building models and making forecasts
with it. However, most of modern approaches hide their functionality in an unexplainable,
high-dimensional space and can therefore be seen as “black box” approaches. In contrast, one
approach consists of deducing the governing equations from a given time series. This has the
advantage of rendering the obtained model understandable and explainable. Such models could
be used in the modelling of the climate and turbulent air flows, epidemics modelling, and even
in financial markets; all fields, where explainability can be as important as accuracy.

This work is a direct continuation of [1]. In their work, the authors present a framework
with which the form of governing equations can be reconstructed by measuring the causality
in the resulting time series. Subsequently, given the form of governing equations and the time
series, we want to calibrate the equations by finding the coefficients which describe the data
best. Current work on this topic exists, however it is limited to the Lorenz system and lacks
general applicability [2]. In [3] the authors present an overview of different algorithms for this
task. They are based on different approaches such as genetic algorithms [4] and particle swarm
optimisations [5]. For our work however, we focus on gradient descent based algorithm, since the
recent advent of deep learning technologies [6] lead to a family of improved first-order optimisers
[7], [8].

In this work we propose an optimisation algorithm for finding the set of coefficients on a
given structure of equations which describe a given time series best. For this we use synchroni-
sation and a touch of machine learning. We treat the discrete data points as a primary system
and couple a secondary system to it inducing synchronisation. We then apply gradient descent-
algorithms to find the set of parameters minimising the loss between the two systems. The set
of parameters minimising the loss are a good approximation of the parameters describing the
original dataset.

This work is structured as follows: in the next chapter, 2, we introduce the concept of a
complex system with the Lorenz system as the prime example. In chapter 3 we describe the
synchronisation of complex systems, where we present different approaches for achieving syn-
chronisation. In chapter 4 we propose our optimisation algorithm and explain its workings in
detail. In chapter 5 we apply our algorithm on synthetic systems and investigate its performance
on different noise levels and difference levels of confidence in the assumptions of the underlying
equations. Additionally, we compare it to a similar algorithm presented in [2]. In chapter 6 we
try to apply our algorithm on data stemming from real world applications and additionally break
an ‘encryption’ scheme based on complex systems. We conclude this work with a summary and
outlook in chapter 7.
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Chapter 2

Overview of Complex Systems

In the context of this work, we define complex systems as non-linear differential equations result-
ing in chaotic behaviour. While we acknowledge that some authors may differentiate between
a “complex system” and a “chaotic system”, in this work both terms are used interchangeably.
Even though chaotic behaviour has no rigorous, universally accepted, mathematical definition,
it manifests itself in various properties. One approach for defining chaotic systems in an intu-
itive way can be found in [9], where the author presents three properties in order to classify
a system as chaotic: aperiodic long-term behaviour, determinism, and sensitive dependence on
initial conditions.

In the following we will sketch these properties and illustrate their meaning with ideas bor-
rowed from [9]. Starting with the latter, being the most intuitive one, this property states that
small differences in the initial conditions will amplify and will cause the system to be in vastly
different states after few iterations. An example for this can be seen in figure 2.1b, where a
difference of the order of 10−12 in one coordinate will result in a difference of order 1 between
the two trajectories. Even though this sensitivity is one of the most prominent features of
chaotic systems, it is not sufficient as a definition, since other trivial systems, such as iterating
the doubling map x 7→ 2x for positive values, will also exhibit a similar sensitivity on initial
conditions.

Another important property of complex systems is each trajectory not settling down and not
converging towards a periodic orbit or a fixed point. Taking the aforementioned example of the
doubling map, each trajectory diverges towards positive infinity and never returns from there.
So, positive infinity acts as an attractive fixed point for that system, meaning it does not qualify
as a complex system. Trajectories of complex systems do not converge, instead they present an
aperiodic behaviour in the long run.

Lastly, we want to emphasize that complex systems are deterministic. The irregular be-
haviour is not based on stochasticity or random forces, instead it is caused due to the non-linear
properties of the dynamical system itself. A complex system with the exact same initial condi-
tions should produce the exact same trajectories. In practice this is hard to obtain, since it is
impossible to have numerically identical parameters due to the limited precision of computers.
By definition, this limited precision will eventually result in diverging trajectories.

An interesting property of complex systems is them having a so-called “strange attractor”.
While the presence of a strange attractor does not imply the existence of a complex system [10],
complex systems have strange attractors. Again, it is hard to define an attractor rigorously,
however intuitively an attractor can be seen as a set of points to which all neighbouring trajec-
tories converge [9]. So, fixed points and limit cycles are typical examples of attractors. Strange
attractors are even harder to define mathematically. Usually their definition includes the pres-
ence of a fractal structure. In the context of this work, the exact definition of a strange attractor
is not important, and an attractor can be labelled as “strange”, if its trajectories diverge locally,
but remain confined globally. An example for a strange attractor can be found in figure 2.1a.
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2.1 Lyapunov Exponent

In this section we want to formalise the idea of the sensitive dependence on initial conditions.
We use the argumentation described in [9]. Experimentally, e.g. in figure 2.1b, we can see that
nearby trajectories diverge exponentially fast. Formally this means that we take a point x ∈ A
on an attractor A and a second point x′ in the close vicinity of x. The second point x′ can be
modelled in time t as x′(t) = x+ δ(t), where δ describes the coordinate-wise difference between
the two points. Given an initial distance δ(0), we see that the distance between the two points x
and x′ is the norm of δ. Experimentally, this distance increases exponentially and can therefore
be written as:

‖δ(t)‖ = ‖δ(0)‖ exp (λ t) (2.1)

Colloquially, the parameter λ is called the “Lyapunov exponent”. However, its correct term
is “largest Lyapunov exponent”, since an n-dimensional system has n Lyapunov exponents.
An illustrative definition of Lyapunov exponents can be found in [11]: given an n-dimensional
dynamical system, we monitor an n-sphere of initial conditions. Due to its dynamic, this sphere
will evolve into an n-ellipsoid. By definition, at time t this n-ellipsoid has n principal axes
labelled pi(t). The i-th Lyapunov exponent can then be defined as:

λi = lim
t→∞

1

t
ln
pi(t)

pi(0)
(2.2)

For analyses however, usually only the largest Lyapunov exponent is relevant, since for large
times the diameter of the n-ellipsoid is controlled by the most positive Lyapunov exponent [9].
For this reason, in this work we will use the colloquial term and refer to the “largest Lyapunov
exponent” simply as the “Lyapunov exponent”.

Given the governing equations of a system, the largest Lyapunov exponent can be calculated
in an illustrative way: according to equation 2.1, a logarithmic plot of the distance δ over time
t should result in a linear relationship, as can be seen exemplarily in figure 2.1b. The slope of
the linear fit, marked in red in figure 2.1b, of the linear part is then the Lyapunov exponent λ.

We need to make three remarks about this calculation [9]: firstly, we can see in figure 2.1b
that the line is not perfectly straight, instead it shows some oscillations, since the exact distance
depends on the location of the trajectories on the attractor. Secondly, the distance saturates
after some time. This happens when the distance between the two starting points reaches the
order of the size of the attractor. Since both trajectories will not leave the attractor, their
maximum distance is bounded by the size of said attractor. For the calculation only the linear
regime of the plot, underlaid in grey in figure 2.1b, shall be considered. Lastly, the exact value
of the slope depends slightly on the initial conditions, which is why the average of multiple runs
should be considered. In subsection 2.1.1 we will perform a calculation for different synthetic
systems. However, we will not be using the illustrative approach, instead we will use a more
sophisticated method, which will be sketched in the following section 2.1.1.

The largest Lyapunov exponent is an important measure of a dynamical system. If the
exponent is positive, it means that nearby trajectories diverge exponentially fast and that the
dynamical system behaves chaotically [12]. Additionally, the largest Lyapunov exponent can
be used for defining a time horizon beyond which predictions breaks down [9]. This is done as
follows, where we follow the ideas of [9]: consider an initial uncertainty of ‖δ(0)‖ and a tolerance
a, which we use to define a prediction as incorrect if ‖δ(0)‖ > a. Using equation 2.1, we estimate
the order of the time thorizon, after which the prediction exceeds our tolerance, as follows:

thorizon ∼ O
(

1

λ
ln

a

‖δ(0)‖

)
(2.3)

Motivated by the upper equation, we can define a Lyapunov time as follows, where λ describes
the largest Lyapunov exponent [13]:

τλ = λ−1 (2.4)
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The Lyapunov time can be used as a measure for defining the quality of a prediction for chaotic
systems. We will use this measure throughout this work.

2.1.1 Calculation of Lyapunov Exponents for Different Systems

In this section we will discuss and perform the calculations of the largest Lyapunov exponent
for a variety of synthetic chaotic systems. In the past section, we defined the largest Lyapunov
exponent as the slope of the linear part of the logarithmic distance of two nearby trajectories
over time. Therefore, the calculation would require finding the linear regime of the logarithmic
distance. However, this turns out to be a non-trivial task, and even though the upper definition
is a great visual definition of the Lyapunov exponent, for its calculation more sophisticated
methods have been developed. In this work we use the method described in [14]. The algorithm
is sketched in the following section.

The main focus of this work is not the calculation of the largest Lyapunov exponents for
different chaotic systems. In fact, the Lyapunov exponents are only introduced for defining
the quality of a prediction for chaotic systems by utilising the Lyapunov time. Therefore, we
cannot build the complete mathematical framework described in [14] needed to fully understand
the algorithm. Instead, we sketch the main ideas of the algorithm and refer to [14] for a proper
mathematical treatment. For an easier understanding, we use the notation of the aforementioned
article in this section and in the algorithm 2.1.

Given a time t dependent deviation w(t) from a point on an attractor, the largest Lyapunov
exponent λ can be calculated in the limit of the following quantity X. This idea is analogous to
the definition used in equation 2.2.

X(t) =
1

t
ln
‖w(t)‖
‖w(0)‖

(2.5)

λ = lim
t→∞

X(t) (2.6)

However, numerically we run into problems, since the quantity w(t) grows exponentially in
time t, and we cannot store arbitrarily large numbers. To overcome this problem, we use
the deterministic behaviour of our system. Therefore, we can reach a time t by integrating
towards it piecewise with small time steps τ until we reach t = kτ , with k ∈ N. Now, we
can rewrite equation 2.5 as follows, where we expand the upcoming fraction with the product
‖w(τ)‖ · · · ‖w((k − 1) τ)‖.

X(kτ) =
1

kτ
ln
‖w(kτ)‖
‖w(0)‖

=
1

kτ
ln

(
‖w(kτ)‖

‖w((k − 1)τ)‖
‖w((k − 1)τ)‖
‖w((k − 2)τ)‖

· · · ‖w(2τ)‖
‖w(τ)‖

‖w(τ)‖
‖w(0)‖

)
=

1

kτ

k∑
i=1

ln
‖w(iτ)‖

‖w((i− 1)τ)‖
(2.7)

Denoting the norm of the initial deviation w(0) with D0, and the norm of the i-th iteration of
w(iτ) with Di, the author in [14] shows that we can rewrite equation 2.7 as follows:

X(kτ) =
k∑
i=1

ln
Di

D0
=:

k∑
i=1

lnαi (2.8)

Using equations 2.6 & 2.8, we can now rewrite the largest Lyapunov exponent, for understanding
the algorithm 2.1, as:

λ = lim
k→∞

1

kτ

k∑
i=1

lnαi (2.9)
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For the actual calculation, we use a unitary vector for w(0), so its norm D0 = 1, and is therefore
not relevant for the calculation. Additionally, after we calculate αi, we renormalise the vector
w(kτ) to having a norm of 1, but keeping its direction. For each successive time interval, we
therefore compute αi and in the end, we estimate the largest Lyapunov exponent λ using 2.9.

In our implementation of the algorithm, we stay close to the algorithm presented in [14],
however we extend it by two small points. Firstly, we take the average over a number of runs,
since the Lyapunov exponent depends slightly on the initial conditions of the system. Secondly,
for each run we use a point on the attractor as initial condition for that run. This is achieved
in our algorithm by utilising a random point from the so-called “master sequence” as initial
condition for the subsequent run. The algorithm of [14] together with our modifications leads to
following algorithm 2.1 for calculating the largest Lyapunov exponent of any dynamical system.

master sequence← integrate(global initial condition, Nm, ∆t)
master sequence← trim from beginning(master sequence, 1

10 Nm)
Λ← initialise empty list(Ne)
for i← 1 ... Ne do

local initial condition← choose random point(master sequence)
chaotic sequence← integrate(local initial condition, Ns, ∆t)
w ← random normed vector( )
A← initialise empty list(Ns − 1)
for k ← 1 ... Ns − 1 do

next deviated step← integrate(chaotic sequence[k] + w, 1, ∆t)
w ← next deviated step− chaotic sequence[k + 1]
α← ‖w‖
A[k]← α
w ← w

α

end

λ← 1/(Ns − 1) ∆t
∑Ns−1

s=1 lnA[s]
Λ[i]← λ

end
return mean(Λ)± standard deviation(Λ)

Algorithm 2.1: This algorithm was adapted from [14] and returns the largest Lyapunov exponent for
a given dynamical system. The exact value of the “global initial condition” is not important, as long
as it ensures a convergence towards the attractor. We use the convention to store the lower-case values
in an upper-case list: the values for α are stored in the list A, similarly for λ and Λ. The calculations
have been performed using Nm = 105 and ∆t = 10−3. Ne describes the number of times to estimate the
largest Lyapunov exponent. Here, we chose to run each chaotic system for a thousand times, meaning
Ne = 103. Ns describes the number of steps to integrate each realisation of the dynamical system. In
this work we used Ns = 2× 105.

The results of upper calculation can be found in table 2.1: as expected, for each chaotic
system the largest Lyapunov exponent is greater than zero. For some systems, such as the
Four-wing system or the Thomas system, the Lyapunov exponent is barely above zero meaning
that their nearby trajectories do not diverge as strong as for the Lorenz63 system.
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Table 2.1: This table shows the results of the calculations of the largest Lyapunov exponent. For each
system, the standard parameters, which are defined at the introduction of each system, have been used.
For the Lorenz63 system the parameters can be consulted in section 2.2. The definitions and parameters
of the remaining systems can be found in the appendix A.

Chaotic system Largest Lyapunov exponent

Dadras–Momeni system 0.60± 0.05
Four-wing system 0.007± 0.014
Halvorsen system 0.321± 0.007
Lorenz63 system 0.902± 0.013
Lorenz86 system 0.63± 0.04
Lotka–Volterra system 0.21± 0.04
Rabinovich–Fabrikant system 0.05± 0.03
Rössler system 0.067± 0.008
Thomas system 0.009± 0.011
Three-scroll unified system 0.161± 0.012

2.2 The Lorenz System

The Lorenz63 system, colloquially just referred to as “Lorenz system”, is probably the most
prominent example of a chaotic system. Initially used as a model for atmospheric convection
[15], it has since been used as the prime object of study for chaotic, dynamical systems. We
take this example to illustrate the ideas introduced in section 2.

The Lorenz63 system is a three-dimensional system of ordinary differential equations. It is
defined as follows [15]:

ẋ1 = −σ x1 + σ x2 (2.10)

ẋ2 = −x1 x3 + ρ x1 − x2

ẋ3 = x1 x2 − β x3

The standard parameters known to cause chaotic behaviour are: σ = 10, ρ = 28, and β = 8
3 .

If not stated otherwise, the Lorenz63 system will be used exclusively with these parameters in
this work.

Figure 2.1 visualises the characteristics of complex system presented in section 2. Figure
2.1a shows the attractor of the Lorenz system, and there the globally confined structure of
the attractor becomes apparent. Concerning the Lyapunov exponent, figure 2.1b shows the
exponentially fast diverging trajectories for almost identical initial conditions. However, the
trajectories do not diverge forever, instead their difference settles down to the order of the size
of the attractor. As the most prominent complex system, the Lorenz system depicts all typical
features very prominently.
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(a)

(b)

Figure 2.1: Figure (a) shows two trajectories of the Lorenz system on the attractor. Looking at the
shape, we can see where the term “strange” comes from. For both trajectories the standard parameters
have been used and each trajectory has been integrated for 106 steps with an integration step of 10−3.
The first trajectory in blue has the initial condition (1, 1, 1)ᵀ, and the second trajectory in brown has the
initial condition (1 + 10−12, 1, 1)ᵀ. Since both colours are clearly visible in the plot, this shows that the
trajectories take different paths on the attractor. Figure (b) shows the norm of the difference between
the two trajectories on a logarithmic scale. We can clearly observe a linear dependence in the beginning
phase marked in grey, from which the largest Lyapunov exponent λ can be estimated through the linear
interpolation shown in red.
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Chapter 3

Synchronisation of Complex Systems

Coupled dynamical systems can exhibit an interesting behaviour of synchronisation. Synchroni-
sation can be understood as a strong correlation between the behaviours of two or more systems,
and in its most elementary form it describes the property of two systems behaving identically.
In this chapter we will look at two different coupling methods and we will analyse whether they
will eventually lead to synchronisation. The first coupling method describes finding a variable,
which drives a sub-system to synchronisation, whereas the second method introduces an addi-
tional term for inducing synchronisation in the systems. This chapter will mostly follow the
ideas of [16] and we refer to it for a more detailed analysis.

3.1 Synchronisation Through a Driving Variable

In [17] the authors noted the possibility to synchronise certain complex systems. For that they
divided the system into a driving variable and into a sub-system. By choosing a specific driving
variable and inserting it into a secondary sub-system, they were able to synchronise the secondary
sub-system to the primary system supplying the driving variable. The necessary criterion for
synchronisation seems to be a negative sign for all Lyapunov exponents of the sub-system [17].

While in their article they presented this phenomenon for the Lorenz and Rössler system,
in this work we will use the Lorenz system as the prime example. Table 3.1 indicates that for
the Lorenz system the first two variables can be used to create a secondary system driven by a
primary variable. Exemplary, taking x1 as the driving variable, we can construct the governing
equations of the coupled system as follows. The primary system is described by the standard
Lorenz equations 2.10 and the secondary system is described by the following equations:

ẏ1 = ẋ1 (3.1)

ẏ2 = −x1 y3 + ρ x1 − y2

ẏ3 = x1 y2 − β y3

The equations are analogous to the equations in 2.10, with the significant difference being that
the variable y1 has been replaced with the driving variable x1. Meaning, there is no additional
term for the variable ẏ1, since by definition the behaviour of the variable y1 is described entirely
by x1. Figure 3.1 visualises the connection between the primary and the secondary system and it
emphasises the distinction between the driving variable x2 and the resulting sub-system (y1, y3).

We precede analogously for the remaining two driving variables and define the responding
sub-systems accordingly. The results are shown in figure 3.2, where the observations of [17] can
be reproduced: We see in figures 3.2a and 3.2b that using x1 and x2 as driving variables will
lead to synchronisation of the systems. However with x3 as the driving variable, the systems
will not synchronise.

9



Table 3.1: This table, copied from [17], shows the Lyapunov exponents for the Lorenz system for each
possible permutation of driving variable and resulting sub-system. The article uses the Lorenz system
with the parameters σ = 10, ρ = 60, and β = 8

3 .

Driving variable Responding sub-system
Lyapunov exponents
of responding sub-systems

x1 (y2, y3) (−1.81,−1.86)
x2 (y1, y3) (−2.67,−9.99)
x3 (y1, y2) (+0.0108,−11.01)

Figure 3.1: This figure shows the connection between a primary system and a secondary, driven system
taking the Lorenz system, with the configuration shown in the second row of table 3.1, as an example.
More specific, it illustrates how the driving variable of the primary system affects the secondary, driven
system.

(a) x1 as driving variable (b) x2 as driving variable

(c) x3 as driving variable

Figure 3.2: This figure shows the synchronisation (and in case (c) the lack thereof) for two coupled
Lorenz systems. Figure (a) shows x1, figure (b) shows x2, and figure (c) shows x3 as the driving variable.
The sub-systems are defined as stated in table 3.1. For each Lorenz system we used the parameters
σ = 10, ρ = 60, and β = 8

3 and an integration step of 10−3. The primary system has the initial condition
(5, 5, 5)ᵀ and each secondary system has the initial condition (1, 1)ᵀ.
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3.1.1 Synchronisation Using Active-Passive-Decomposition

While the authors in [17] present a rather descriptive view on this topic, the idea is generalised
and formalised in [18]. In the following we want to present their ideas, since this kind of
synchronisation is used in comparable work such as [2] and [16]. So, the following passage
describes the active-passive decomposition as presented in [18].

An arbitrary N -dimensional dynamical system can be described the following way:

xn+1 = F (xn; θ) (3.2)

In this case, xn ∈ RN is the state of the system at step n and θ ∈ Rm encapsulates the m
parameters of the dynamical system F : RN → RN . Here, x is an autonomous system. However,
we want to rewrite this system into a non-autonomous one driven by a time-dependant signal
sn ∈ RN ′

with N ′ ≤ N . Formally, we can describe this as:

xn+1 = p(xn, sn; θ) (3.3)

The function p: RN× RN ′ → RN is the non-autonomous decomposition of F . The signal sn is
also a function of the state xn and can formally be defined as:

sn = a(xn) with a: RN → RN
′

(3.4)

The functions a and p are a decomposition of the original system F [18]. Concretely, this means
that replacing the signal into the description of 3.3 will lead back to equation 3.2:

p(xn, a(xn); θ) = F (xn; θ) (3.5)

Now we define a secondary system y
n

analogously to equation 3.3 as follows:

y
n+1

= p
(
y
n
, sn; θ

)
(3.6)

The key idea now is, that for specific choices of the function a any secondary system y
n

will
synchronise to the primary system xn, meaning:

lim
n→∞

∥∥∥y
n
− xn

∥∥∥ = 0 (3.7)

Note that for each secondary system y the function p and the parameters θ have to be identical,
solely the coordinates in y may differ. The synchronisation in equation 3.7 can be reformulated
in a different way using the error term e = x− y: if the time evolution of the error term has a
stable fixed point at the origin e = 0, the systems 3.2 and 3.6 synchronise. The time evolution
of the error is given by:

en+1 = p
(
y
n
, sn; θ

)
− p(xn, sn; θ)

= p(xn + en, sn; θ)− p(xn, sn; θ) (3.8)

For some systems this can be proven analytically be analysing the stability of the linearised
system, where Dp denotes the Jacobian matrix.

en+1 = Dp(xn, sn; θ) en (3.9)

However, in general the stability has to be checked numerically by requiring that all Lyapunov
exponents of the non-autonomous sub-system are negative as described by [17]. If this condition
is met, p is the passive and a is the active decomposition of the system 3.2.
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Active-Passive-Decomposition of the Lorenz System

We want to demonstrate the analytical application of equation 3.9 and for that purpose we use
the Lorenz system, since in comparable work [2] the active-passive-decomposition of the Lorenz
system is introduced, but not proven.

In aforementioned article the authors propose the following decomposition of the Lorenz system,
where equation 3.10 describes the passive decomposition and 3.11 describes the scalar, driving
signal.

p
(
y
n
, sn; θ

)
=

 −σ y1 + σ sn
−y1 y3 + ρ y1 − y2

y1 y2 − β y3

 (3.10)

a(xn) = x2 = sn (3.11)

This leads to the following set of equations for the secondary, coupled Lorenz system:

ẏ1 = −σ y1 + σ x2 (3.12)

ẏ2 = −y1 y3 + ρ y1 − y2

ẏ3 = y1 y2 − β y3

The existence of a fixed point at e = 0 is trivial using equation 3.8. The interesting question
regards the stability of that fixed point, and for that we utilise equation 3.9 and calculate the
Jacobian matrix of 3.10:

Dp =

 −σ 0 0
ρ− y3 −1 −y1

y2 y1 −β

 (3.13)

This Jacobian matrix has the following eigenvalues:

ν 1 = −σ (3.14a)

ν 2,3 =
1

2

(
±
√
β2 − 2β − 4y2

1 + 1− β − 1

)
(3.14b)

Evaluating the eigenvalues at the standard parameters θ =
(
10, 28, 8

3

)ᵀ
leads to all negative

real-parts of the eigenvalues, indicating that the fixed point is stable. The stability of the fixed
point in turn shows that the signal in 3.11 can be used to drive any passive decomposition
3.10 as visualised in figure 3.3, where synchronisation is shown for a variety of differing initial
conditions. We want to emphasize at this point that the parameters θ for each system have to
be identical — and in this specific case be the standard parameters for the Lorenz system — for
synchronisation to occur.
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Figure 3.3: This figure visualises the synchronisation of numerous secondary systems (each defined by
equation 3.10) to a single primary system providing the signal as specified in equation 3.11. We can
see clearly that eventually, each secondary system behaves identically to the primary system. For each
Lorenz system the standard parameters have been used with an integration step of 10−3. The primary
system has the initial condition (5, 5, 5)ᵀ, whereas for the initial condition of each secondary system three
random numbers between −50 and 50 were used. This figure shows fifty secondary systems.

Figure 3.4: This figure shows the connection between a primary system and a secondary, driven system
for the active-passive decomposition of the Lorenz system described in equations 3.10f.

Comparing the figures 3.1 and 3.4, we can see that in both cases we have a single variable
causing the synchronisation. However, the active-passive decomposition is a more subtle way to
synchronise two systems, since instead of replacing a whole variable and essentially propagating a
system with reduced dimensionality, as it is done in figure 3.1, the active-passive-decomposition
inserts a single variable, which in turn leads to synchronisation. Notice that in both cases, the
secondary systems are synchronised to the primary system, meaning that in the long run, the
secondary systems will behave exactly like the primary system.

Once found, the active-passive-decomposition works exceptionally well. Nevertheless, the
major limitation of this method is finding a suitable decomposition. Performing the calcula-
tions in equations 3.10ff. is time-intensive. In practice, those calculations are emitted entirely
in favour of a simple “trial-and-error” approach for finding a suitable decomposition leading
to synchronisation. However, as of today, there is limited research on the existence of such a
driving variable for general complex systems and therefore, there is no guarantee that such a
driving variable must exist.

Even though this method is highly limited to a handful of systems, it is used in compara-
ble work to induce required synchronisation [2]. This means that the algorithm presented in
aforementioned article is limited to such systems, where a driving variable can be discovered. In
this work we aim to generalise the results and propose an algorithm, which works for arbitrary
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complex systems by using an external coupling to induce synchronisation. For that, we need a
general way of inducing synchronisation, which we present in the following section.

3.2 Synchronisation of General Systems by External Coupling

In the past section we introduced a way of synchronising two chaotic systems. However, that
method only worked for specific systems and no generalisation could be formulated. In this
section we will present a general method for synchronising two non-linear systems. At first, we
will synchronise the systems to each other citing the findings by [16]. However, for our calibration
we need a unidirectional coupling with a driving system and a driven system in the framework
of section 3.1. We will develop the unidirectional coupling as a corollary of the bidirectional
coupling in a second step in section 3.2.2.

3.2.1 Bidirectional Synchronisation

In their article the authors presented a general way of synchronising two systems to each other.
Using their method, both systems will synchronise towards a common behaviour. We will present
those findings and follow the argumentation of that article closely in subsequent section [16].

Two coupled, arbitrary N -dimensional systems can be described by following equations:

ẋ = F (x) + γH
(
y − x

)
(3.15a)

ẏ = F
(
y
)

+ γH
(
x− y

)
(3.15b)

Here x, y ∈ RN are the states of each system, and F : RN → RN describes the evolution of the
original dynamical system in the absence of any coupling. We emphasize that the states x and
y are naturally time dependant, but for the sake of readability we refrain from explicitly noting
it. However, time dependence is always implied. Note, that the description has to be identical
for both systems. The matrix H: RN → RN describes the coupling between the two systems
x and y, and the parameter γ ∈ R+ named “coupling strength” determines the strength of the
coupling. We require H(0) = 0, meaning that for synchronised systems the coupling vanishes
and both systems evolve without the influence of the additional coupling term. We can illustrate
the need for this requirement by two intuitive arguments: firstly, if for two initial conditions
the systems were already synchronised, the coupling should not have any effect. Secondly, once
both systems are eventually synchronised, the coupling should not affect their further evolution.

In their article [16], the authors show that if the coupling is sufficiently strong, the systems
described by equations 3.15 will synchronise. Adapting the criterion in equation 3.7 to the
continuous case, synchronisation between two systems is defined by: limt→∞

∥∥y − x∥∥ = 0. In
the following we will present the argumentation of aforementioned article.

For the rest of the argument we consider the identity coupling, meaning H = 1, with 1
being the identity matrix. This simplifies the coupling terms in equations 3.15 to γH

(
y − x

)
=

γ
(
y − x

)
and γH

(
x− y

)
= γ

(
x− y

)
respectively. Additionally, we define a difference variable

z = x−y. The evolution of the new variable z can be described as follows, using equations 3.15:

ż = ẋ− ẏ
= F (x)− F

(
y
)
− 2 γ z (3.16)

Furthermore, synchronisation can be redefined with respect to new variable z as follows:
limt→∞ z = 0. Since we are interested in synchronisation, meaning z = x − y = 0, we can

Taylor-expand the system F
(
y
)

at said criterion x = y, leading to:

F
(
y
)

= F (x) + DF (x)
(
y − x

)
+O

(∥∥y − x∥∥2
)

= F (x)−DF (x) z +O
(
‖z‖2

)
(3.17)
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Again, DF (x) describes the Jacobian matrix of F (x). Plugging in the Taylor-expansion in
equation 3.17 into the definition of the difference variable z in equation 3.16 leads to the following
first-order approximation at the synchronisation criterion for z:

ż = (DF (x)− 2 γ 1) z (3.18)

We note that equation 3.18 is a non-autonomous equation, since it depends explicitly on the
solution x, so analysing it is non-trivial. For an easier treatment, we introduce the variable
w = exp (2 γ t) z, in order to get rid of the term −2 γ 1 z in equation 3.18. The derivative of
the new variable w is given by following expression, where we have to apply the chain rule
considering the time dependence correctly:

ẇ = 2 γ exp (2 γ t) z + exp (2 γ t) ż (3.19)

Using the definition of w and its derivative in equation 3.19, equation 3.18 now simplifies to:

ẇ = (DF (x)) w (3.20)

Equation 3.20 is the first variational equation for x solving ξ̇ = F
(
ξ
)
.

Now, let Φ be the fundamental matrix for equation 3.20. This matrix is a function of x.
By definition, this means that any solution of w can be written as w = Φw(0) for any initial
condition w(0), and by substitution the same can be done for z. In a next step, we consider
the matrix ΦᵀΦ. In [19] the author states, that the largest Lyapunov exponent is the square
root of the largest eigenvalue of the matrix ΦᵀΦ. Therefore, if λ denotes the largest Lyapunov
exponent of x, the following inequality holds for the difference variable w [16], [20]:

‖w‖ ≤ C exp (λ t) (3.21)

Resubstituting the definition of z into upper equation yields the following inequality:

‖z‖ ≤ C exp ((λ− 2 γ) t) (3.22)

Reminding that z describes the difference of the two systems x and y, we see that if the exponent
in equation 3.22 is negative, the difference between the systems x and y will tend to 0 as time
progresses. Therefore, we define a critical coupling γc so that the exponent is negative:

γc =
λ

2
(3.23)

If the coupling strength γ is bigger than γc, the two systems will synchronise. This finding is
visualised in figure 3.6 for two chaotic systems, where we can clearly observe a sharp drop in
the synchronisation loss between the two systems. For that, we defined the synchronisation loss
as the average deviation from synchronisation between two systems as follows:

Es =
1

n

n∑
i=1

∥∥∥x i − y i∥∥∥ (3.24)

Meaning that for each iterated step i in the number of analysing iteration steps n, we calculated
the norm of x i − y i and summed it in order to form an error over the interval n. This error
shows how much, on average, the two systems differ from each other. Figure 3.6 shows that if
the coupling between the two systems exceeds the critical coupling as defined in equation 3.23,
the two systems will synchronise with each other: hence the synchronisation loss drops to zero
after the red line indicating the critical coupling strength, which is half the Lyapunov exponent.
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Figure 3.5: This figure shows the connection between a primary system and a secondary system for
the bidirectional external coupling, as described in equations 3.15, using the identity matrix as coupling
matrix H. This representation describes an arbitrary three-dimensional chaotic system.

This method of synchronising two systems has one caveat however. As sketched in figure 3.5,
the influence of this coupling method is bidirectional. This is in major contrast to the previous
coupling schemes in figures 3.1 & 3.4, where the coupling was directed from the primary system
towards the secondary one. This means that with the external coupling, it is not possible to
make a secondary system behave identically to a primary system and keep the primary system
unchanged. Instead, the difference between primary and secondary system tends towards zero
and both systems will behave identically to each other, but differently than they would have
without the coupling term. For our calibration method however, we require a clear distinction
between a driving system and a driven system. In the next section we will propose a coupling
introducing this distinction while maintaining the generality of this method.

We want to mention that the schemes in figures 3.1 & 3.4 are specific to the Lorenz system,
whereas the scheme in figure 3.5 is system-agnostic, meaning it represents any three-dimensional
complex system. This illustrates the generality of this approach compared to the limited use
case of previous methods.
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(a) Lorenz system

(b) Dadras–Momeni system

Figure 3.6: Figure (a) shows the synchronisation loss Es, as defined in equation 3.24, for the Lorenz
system and figure (b) shows it for the Dadras–Momeni system. The definition of the latter system can
be found in appendix A.1. For both systems their respective standard parameters have been used and
for each coupling strength γ a hundred iterations have been calculated. For each iteration an integration
step of 10−2 has been used and iterated for a total of 106 steps. For the calculation of the error the
last 105 steps have been used. The initial condition for each Lorenz system were three random numbers
between 1 and 20, and for each Dadras–Momeni system three random numbers between 0 and 1. The
red line shows half the largest Lyapunov exponent as calculated in table 2.1.
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3.2.2 Unidirectional Synchronisation

For our calibration algorithm we need a clear distinction between a driving system and a driven
system, since we want vary the parameters of the driven system until the system synchronises
to the primary system. In order to achieve the clear distinction, we propose the following new
coupling method as a corollary to the previous coupling discussed in section 3.2.1.

Given two arbitrary N -dimensional systems x, y ∈ RN , we propose adding the coupling

αH
(
x− y

)
to the system y; thus rendering it the driven system. The system x then becomes

the primary, driving system. This leads to the following description:

ẋ = F (x) (3.25a)

ẏ = F
(
y
)

+ αH
(
x− y

)
(3.25b)

Again, F : RN → RN describes the evolution of the dynamical system and the matrix H: RN →
RN describes the coupling of the secondary system to the primary system. The matrix H is
subject to the same constraint as in section 3.2.1 and we fix it to the identity matrix 1 for the
scope of this work. The parameter α ∈ R+, named “coupling strength”, describes the magnitude
of the coupling of the secondary system y to the primary system x.

Following an analogous argumentation as in previous section 3.2.1, we define a difference
variable z = x− y and find the following inequality as analogue to equation 3.22:

‖z‖ ≤ C exp ((λ− α) t) (3.26)

The parameter λ represents the largest Lyapunov exponent of system F . We can again de-
fine a critical coupling strength αc, which when exceeded will cause the secondary system to
synchronise to the primary:

αc = λ (3.27)

The results of this corollary are visualised in figures 3.7f. Figure 3.7 shows how each sec-
ondary path converges towards the primary, driving system leading to synchronisation via a
unidirectional coupling. Figure 3.8 shows the rapid decline of the synchronisation error after the
coupling α exceeds the critical coupling αc, indicating that the systems behave identically. Using
this coupling, we can synchronise two arbitrary complex systems to each other while maintaining
the notion of a driving system and a driven system.
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Figure 3.7: This figure visualises the unidirectional synchronisation of numerous secondary systems
(each defined by equation 3.10) to a single primary system providing the signal as specified in equation
3.11. We can see clearly that eventually, each secondary system behaves identically to the primary system.
For each Lorenz system the standard parameters have been used with a coupling strength α = 2 and an
integration step of 10−2. The primary system has the initial condition (5, 5, 5)ᵀ, whereas for the initial
condition of each secondary system three random numbers between −10 and 10 were used. This figure
shows fifty secondary systems.

19



(a) Lorenz system

(b) Rössler system

Figure 3.8: Figure (a) shows the synchronisation loss Es, as defined in equation 3.24, for the Lorenz
system and figure (b) shows it for the Rössler system. The definition of latter system can be found in
the appendix A.6. For both systems their respective standard parameters have been used and for each
coupling strength α a hundred iterations have been calculated. For each iteration an integration step of
10−2 has been used and iterated for a total of 106 steps. For the calculation of the error the last 105

steps have been used. The initial condition for each Lorenz system were three random numbers between
1 and 20, and for each Rössler system three random numbers between 0 and 1. The red line shows the
largest Lyapunov exponent as calculated in table 2.1.
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While this coupling method guarantees a unidirectional synchronisation, equation 3.26 has
one caveat: due to the constant C it is not possible to estimate a time t, after which the distance
between the two systems ‖z‖ is sufficiently small [16]. Meaning that, while we can guarantee
synchronisation eventually, we cannot make a statement on how quickly the synchronised state
will be reached. However, experimentally, we find that with an increasing coupling strength α
we are able to reduce the time until synchronisation. This finding is intuitive when analysing
equation 3.26, since the higher the magnitude of the exponent, the quicker the distance ‖z‖
decays. The experimental results are plotted in figure 3.9, where we can clearly observe a reduc-
tion in time to synchronisation with increasing coupling strengths for different systems. For our
optimisation algorithm, this means that we can fix the coupling length α to a comparably high
value, since it will only affect the time to synchronisation. The sooner the systems synchronise,
the better is the starting point of our optimisation algorithm, as we will discuss in the following
chapter 4.

Figure 3.9: This figure visualises the decay time to synchronisation for increasing coupling strengths α
for the Rössler system with standard parameters. For this case, we define the “time to synchronisation”
as the time ttts, for which the synchronisation error Es of the interval [ttts, ttts + τλ] is the first time
smaller than 5% of the uncoupled baseline error. Here, τλ describes the Lyapunov time for each system.
The baseline error was calculated by averaging over a hundred realisations of two uncoupled Rössler
systems. For each coupling strength a hundred realisations were used too. For each realisation of the
baseline error and coupling strength the primary system had the initial condition (0.1, 0.2, 0.4)ᵀ and for
the initial condition of the secondary system three random numbers between zero and one were drawn.
In order to ensure synchronisation, the first coupling strength has been chosen as 1.3αc. We used an
integration step of 10−2.

For the sake of completeness, we present the coupling scheme of our corollary in figure 3.10.
Unlike as for the bidirectional coupling in previous section 3.2.1 represented with figure 3.5, we
can now clearly distinguish the coupling influence stemming from the primary system influencing
the secondary system. The secondary system does not influence the evolution of the primary
system.
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Figure 3.10: This figure shows the coupling scheme between a primary, driving system and a secondary,
driven system for the unidirectional external coupling, as described in equations 3.25, using the iden-
tity matrix as coupling matrix H. This representation describes an arbitrary three-dimensional chaotic
system.
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Chapter 4

Optimisation Algorithm

Calibrating systems of ordinary differential equations (ODEs) to data is an important task
when trying to understand causal connections and predicting future states of any system. In
this chapter we present an algorithm for calibrating a system of governing equations to an
experimentally obtained dataset. Our algorithm can be seen as an extension and generalisation of
the algorithm described by [2]. In this article, our algorithm uses the property of synchronisation
and a subsequent gradient descent-algorithm for finding the parameters that minimise a loss
function. However, we extend the existing framework by introducing two novel aspects to it:
firstly, we introduce a way of integrating a system of ODEs coupled to discrete data points —
as opposed to integrating systems simultaneously. Secondly, we apply the coupling described in
section 3.2.2 for ensuring applicability on arbitrary systems.

The general idea is to treat the discrete data points as a primary system in the sense of
chapter 3. Then, we vary the parameters of a synthetic, secondary system until it synchronises
to the data points making up the first system. After successful synchronisation, we can be
sure that the parameters found in the secondary system are the ones describing the primary
one. Experimentally we find, that the coupling used in the secondary system ensures a smooth
loss surface, on which gradient descent-algorithms of different flavours can be applied. Here,
the necessity of modifying the bidirectional external coupling to a unidirectional one becomes
obvious, since we cannot modify the data points, making up the primary system, to induce
synchronisation.

In this chapter we will describe our proposed optimisation algorithm detailedly focusing on
the new features. In section 4.1 we will illustrate the way we integrate ODEs coupled to data.
Afterwards in section 4.2, we will utilise the integration method and explain the coupling of
the systems and the calculation of the gradient thereof. Lastly in section 4.3, we will present
different flavours of gradient descent-algorithms and analyse their performance on this problem.
Section 4.4 sums the algorithm up and presents it in a concise way.

4.1 Integration of Ordinary Differential Equations

Integrating ordinary differential equations is a well known problem with an established standard
solution: the Runge–Kutta–Fehlberg method [21], [22], [23]. In this section we will first sketch
the standard integration technique and then explain how we modified it for our needs.

4.1.1 Runge–Kutta–Fehlberg Integration

The Runge–Kutta–Fehlberg method is designed to solve first order ordinary differential equa-
tions of the following form [24]:

ẏ = F
(
t, y
)

(4.1)

Here, ẏ is the derivative with respect to time t of the state y and therefore F : RN → RN
describes the time-evolution of said system. We note that this method is also applicable to any
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N -dimensional system F .

In order to get an intuition for the Runge–Kutta–Fehlberg method, we first introduce two
simpler methods. A first approach would be to evaluate the system piecewise using a small
step size of ∆t, leading to the following integration rule: y(t+ ∆t) = y(t) + ∆t ẏ(t) = y(t) +

∆t F
(
t, y(t)

)
. This is known as the “Euler method” of integration [25]. An important metric of

integration schemes is the local truncation error (LTE). The LTE describes an upper bound of
the error between the exact solution and the integrated one after each single integration step.
Using Taylor-expansion, we can show that the local truncation error of the Euler method is of
order (∆t)2 [25]. For most applications this error is too big and more sophisticated integration
methods are required.

In their works the authors developed the so-called set of “Runge–Kutta methods” [21], [22].
The main idea of those is to consider a specifically weighted average of specifically chosen,
intermediate steps between two time steps. Those intermediate steps and their weighting stem
from utilising the Taylor-expansion. This method reduces the error drastically. The fourth order
variant of the Runge–Kutta method is commonly used and it has a local truncation error of the
order (∆t)5. Given a system in the setting of equation 4.1, the integration rule is defined the
following way [25]:

y(t+ ∆t) = y(t) +
1

6
∆t (k 1 + 2k 2 + 2k 3 + k 4) (4.2)

The intermediate steps k i are defined as follows:

k 1 = F
(
t, y(t)

)
(4.3)

k 2 = F

(
t+

∆t

2
, y(t) + ∆t

k 1

2

)
k 3 = F

(
t+

∆t

2
, y(t) + ∆t

k 2

2

)
k 4 = F

(
t+ ∆t, y(t) + ∆t k 3

)
So far, the step size ∆t has been constant for the Euler method and the Runge–Kutta

method. In his work, Fehlberg extended this framework and introduced an adaptive step size
in order to further decrease the truncation error. The basic idea is to estimate the truncation
error at each integration step and, depending on its size, to halve the integration step or to keep
it at its current value [23]. The truncation error is estimated by calculating two different orders
of the Runga–Kutta method. A modern implementation can be found in [26] and the remaining
section follows the findings thereof. Consider the following intermediary steps:

k 1 = F
(
t, y(t)

)
(4.4)

k 2 = F

(
t+

1

4
∆t, y(t) +

1

4
k 1

)
k 3 = F

(
t+

3

8
∆t, y(t) +

3

32
k 1 +

9

32
k 2

)
k 4 = F

(
t+

12

13
∆t, y(t) +

1932

2197
k 1 −

7200

2197
k 2 +

7296

2197
k 3

)
k 5 = F

(
t+ ∆t, y(t) +

439

216
k 1 − 8k 2 +

3680

513
k 3 −

845

4104
k 4

)
k 6 = F

(
t+

1

2
∆t, y(t)− 8

27
k 1 + 2k 2 −

3544

2565
k 3 +

1859

4104
k 4 −

11

40
k 5

)
Again, the weighting of each coefficient in the arguments of the intermediate steps can be derived
using the Taylor-expansion. We use those intermediate steps to calculate two estimations of
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different orders [26]:

y(t+ ∆t) = y(t) + ∆t

(
25

216
k 1 +

1408

2565
k 3 +

2197

4104
k 4 −

1

5
k 5

)
(4.5a)

z(t+ ∆t) = y(t) + ∆t

(
16

135
k 1 +

6656

12825
k 3 +

28561

56430
k 4 −

9

50
k 5 +

2

55
k 6

)
(4.5b)

Equation 4.5a describes the fourth order Runge–Kutta step and equation 4.5b describes the
fifth order integration step. The difference between the two numerical estimates provides a
convenient estimation of the local truncation error: εLTE =

∣∣y(t+ ∆t)− z(t+ ∆t)
∣∣. If the error

exceeds a defined threshold ε, the integration step ∆t can be reassigned to the following value
for that single step, which will ensure the new error being below the desired threshold [26]:

∆t← ∆t

(
ε

2 εLTE

) 1
4

(4.6)

In this work, this integration method was the default method when integrating systems, for which
a continuous functional description existed: meaning that each system F could be evaluated at
any arbitrary time t. In the cases where this was not possible — because the primary system
consisted of discrete data points — the integration method presented in section 4.1.2 was used.

Integration of Coupled ODEs

For the calculations in chapter 3 we needed to integrate coupled systems. The systems typically
consisted of a primary system {x} and a secondary system

{
y
}

. Here the curly brackets describe
the set of all states. Using the coupling scheme of section 3.2.2, a primary system is described by
an autonomous function F : RN → RN and a secondary system is described by a non-autonomous
function G: RN × RN → RN . We can represent this as follows:

ẋ = F (t, x) ∈ RN (4.7a)

ẏ = G
(
t, y, x

)
∈ RN (4.7b)

In order to integrate the systems simultaneously, we defined a super-system combining both
systems resulting in the following:

ϕ =

(
x
y

)
∈ R2N (4.8a)

ϕ̇ =

(
ẋ
ẏ

)
=

(
F (t, x)
G
(
t, y, x

)) ∈ R2N (4.8b)

After evaluating the system
{
ϕ
}

, we can split it back to the systems {x} and
{
y
}

. This method
assumes however, that we can evaluate arbitrary states of the primary system. Since we want
to develop our algorithm to work on a discrete set of data, this assumption cannot hold. It is
not possible to evaluate a given set of data at points which the set does not contain. Therefore,
we need a new method of integrating coupled ODEs, in which the primary system is described
by discrete data. Such a method is described in the following section.

4.1.2 Integration of ODEs Coupled to Data

In this section we present our scheme for evaluating a secondary system coupled to a primary
system consisting of discrete data points, considering the definitions of section 3.2.2. The main
idea is to keep the primary data constant in each integration step of the secondary system.
Meaning, when the Runge–Kutta step requires a function evaluation of the primary system at
time where no value is available, we approximate that value with value of the beginning of
that interval. This can be viewed as using the data points of the primary system as additional
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parameters, which change at each integration step. Using this method has two implications:
firstly, we need to know the step size, at which the data constituting the primary system was
sampled from. Secondly, we cannot use the Runge–Kutta–Fehlberg method, since a variable
step size is not sensible any more. We are bounded by the step size the data describing the
primary system provides and that defines the maximum precision we can obtain. For each
single integration step we here use the unmodified Runga–Kutta method in fourth order.

Concretely this means, given a set of data stemming a primary system F with parameters
θ, we need to define a secondary system G the following way:

ẏ = G
(
y; Θ

)
= F

(
y; θ

)
+ 1α

(
χ− y

)
(4.9)

Here, capital Θ holds the parameters θ of the system F and the state of the primary system
χ. Note that we changed the notation for the primary system from x to χ for emphasising that
the data of the primary system is treated as a constant in that specific step. The values of χ
change with every increment of time. The parameter α describes the coupling strength between
the secondary system and the data, primary system. It has to be larger than the Lyapunov
exponent of the system F . The algorithm 4.1 emphasises the use of the data in this scheme and
the constant need for updating the parameters Θ.

input: A discrete realisation of the primary system, evaluated with parameters θ and a
step size of ∆t, labelled ‘data’

l← length(data)
y ← initialise empty list(l)

y[0]← initial state

for i← 1 ... l do

Θ←
(

θ
data[i− 1]

)
y[i]← Runge-Kutta stepG

(
y[i− 1], Θ, ∆t

)
end
return y

Algorithm 4.1: This algorithm describes the evolution of a secondary system y coupled to a primary
system consisting of discrete data points. The function Runge-Kutta stepG performs a single iteration
of the fourth order Runge–Kutta method of the system of ODEs G defined in equation 4.9 with the step
size ∆t. The coupling strength α of aforementioned equation shall be encoded in the function description.

The effectiveness of the algorithm 4.1 is visualised in figure 4.1. There we are able to observe
synchronisation for different initial conditions, effectively recreating the figure 3.7 in section 3.2.2
— with the main distinction being that the secondary systems are not coupled to a primary
system F . Instead, they are coupled to discrete data points. Nevertheless, they synchronise
to a given trajectory. This justifies our use of this integration technique for our optimisation
algorithm.
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Figure 4.1: This figure visualises successful synchronisation of secondary paths to a primary system
consisting of data. As an example the Lorenz system with the standard parameters has been used.
The primary system, shown in red, was evaluated using a time step of 10−4 with an initial condition of
(5, 5, 5)ᵀ. From that, every thousandth point was sampled resulting in the red crosses. Each grey line has
a random number from −20 to 20 for each coordinate as initial condition and was integrated using the
algorithm in 4.1 and hence coupled to the red crosses. It is important to emphasise that the grey lines
have been coupled to the discrete, red points: the red line is solely a visual aid. This figure shows fifty
realisations of the secondary system, and we can see synchronisation in each. Note, that the secondary
systems do not show a smooth behaviour due to the effective step size of 0.1. A coupling strength of
α = 5 has been used.

4.2 Loss Function and Gradient

The main part of this optimisation algorithm is the loss function we are trying to minimise.
In this section we will first present the loss function and show its properties. Afterwards, we
calculate the gradient for performing steps to minimise the loss function.

4.2.1 The Loss Function

Following the article [2], we use a loss function L which describes the distance between the
evolution of a primary system and the evolution of the secondary system. This means that the
loss function is not dependent on the absolute states {x} and

{
y
}

(primary and secondary system

respectively). Instead, it is dependent on their derivatives {ẋ} and
{
ẏ
}

. The reason for this is as
follows: in our algorithm we try to vary the parameters of a system in order to minimise a loss
function. The states of each system are not explicitly dependent on the parameters. Rather,
they depend on the integration method used. So by utilising the derivative, we cut back on
an intermediary step when applying the chain rule. Additionally by construction, we know the
the initial state of the secondary system, since it is the first data point available to us. If two
systems have the same initial condition and the same derivative, they will evolve equally; being
another argument for not requiring the absolute states of the system. We conclude that the loss
function L is a function dependent on the primary and secondary system of the form L

(
ẋ, ẏ

)
.

In general, the loss function can be any norm in the mathematical sense. In practice, we find
the mean squared error a useful error measure.

For our algorithm we use a fixed number of time steps to perform the optimisation on. This
fixed number of steps is denoted “evaluation length” le in this work. We calculate the loss as
sum of the mean squared error over each step in the evaluation length. The loss for each single
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time step i is `i, so we obtain the complete loss L by summing over each loss of each individual
step:

`i =
(
ẋ i − ẏ i

)2
(4.10a)

L
(
{ẋ} ,

{
ẏ
})

=
1

le

le∑
i=1

`i (4.10b)

Meaning that we add together the loss of each individual sample i in the set of all available
derivatives {ẋ} and

{
ẏ
}

. We note that the loss function has the secondary, coupled system in

it, meaning the term of equation 4.9 with the coupling α is represented in
{
ẏ
}

.

Experimentally, we noted that using the coupling we obtain a smooth loss surface, as visu-
alised in figure 4.2. It is impossible to try to run an optimisation for finding the minimum on the
surface in 4.2a, since a clear direction towards the minimum of the loss, represented by the black
line, cannot be found. However, the loss surface 4.2b shows a convex shape meaning that the
application of gradient-descent algorithms is justified and promising. We therefore can conclude
that applying the coupling as discussed in section 3.2.2 smooths the loss surface making classical
gradient-descent algorithms applicable.

4.2.2 Calculation of the Gradient

As we have shown in figure 4.2, utilising the external coupling presented in section 3.2.2 trans-
forms a non-convex loss surface to a convex one. Therefore, calculating the gradient of the loss
function with respect to the parameters θ and making steps in the negative direction of the gra-
dient will lead to those parameters minimising the loss function, and hence describe the primary
system. Since our algorithm requires a primary system based on data, we need to calculate the
numerical derivative of our measured states

{
χ
}

— and thus exchanging ẋ with χ̇ in equation
4.10a.

The loss function ` is not directly dependant from the parameters θ, instead the evolution
of the secondary system ẏ is. Therefore, we need to apply the chain rule when calculating the
the derivative of the loss function with respect a spefic parameter θ in the parameter vector θ.
Additionally, equation 4.10a implies a sum over each coordinate n of an N -dimensional system,
since we are dealing with vector-valued systems. So generally, the following equation for j-th
entry gj of the gradient g holds, where we calculate the derivative of equation 4.10a:

gj =
∂L
∂θj

=
1

le

le∑
i=1

∂`i
∂θj

(4.11a)

∂`

∂θj
= −2

N∑
n=1

(χ̇n − ẏn)
∂ẏn
∂θj

(4.11b)

For the sake of readability we ommited the index i in equation 4.11b. It is understood however,
that equation 4.11b shows the loss term of a single sample i. Note also, that if a particular
dimension n is not dependent on the parameter θi, that term in the sum over the coordinates
will be 0.

Gradient of the Lorenz system

In the following we perform the calculation of the gradient for the Lorenz system. The Lorenz
system has three parameters θ = (σ, ρ, β)ᵀ and is a three-dimensional system. Calculating the
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gradient in equation 4.11b for each parameter leads to the following result:

∂`

∂σ
= −2 (χ̇1 − ẏ1) (y2 − y1) (4.12a)

∂`

∂ρ
= −2 (χ̇2 − ẏ2) y1 (4.12b)

∂`

∂β
= +2 (χ̇3 − ẏ3) y3 (4.12c)
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(a) Loss for uncoupled systems

(b) Loss for coupled systems

Figure 4.2: This figure shows the loss L as defined in equations 4.10 for the reduced Lorenz system,
where the parameter β has been kept constant at 8

3 . The primary system is the Lorenz system with the
standard parameters. The secondary system is the Lorenz system with the parameters from the grid.
Figure (a) shows the loss for the uncoupled systems. Figure (b) shows the loss for the systems, whereby
the secondary system is coupled to the primary system via the unidirectional coupling from section 3.2.2
with a coupling strength of α = 10. Each Lorenz system was integrated with an initial state of (5, 5, 5)ᵀ

and a step size of ∆t = 10−2. The losses were calculated over an evaluation length of le = 103. The black
line marks the true parameters of the primary system.
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4.3 Update Step

Once we calculated the gradient, we need to update the system parameters in the direction min-
imising the loss function. The most basic approach is utilising the “gradient descent” algorithm,
where we subtract the direction with the negative slope from the parameters:

θ k = θ k−1 − η � g k (4.13)

Here, � symbolises the Hadamard product between two vectors. The index indicates the k-th
step of the optimisation, and we perform the optimisation until the all the parameters have
converged. The vector η describes the learning rate, meaning the size of the update step we
take after each optimisation step k. Since complex systems can be more sensitive on certain
parameters than on others, we choose a different learning rate for each parameter. Heuristically,
we discovered that setting the learning for each parameter in such a way, that the change of the
first update step is of order 10−1, leads to convergence for a variety of systems:

η j1 g
j
1 ∼ O

(
10−1

)
(4.14)

The subscript 1 emphasises that we are considering the first optimisation step at k = 1. The
superscript j indicates that this relationship holds for each single parameter. For each subsequent
optimisation step we keep the learning rate constant to this value.

This optimisation works well, however with the rise of machine learning, more sophisticated
first-order optimisers have been developed. In the following we will present two all-purpose
optimisers and analyse their performance against the plain gradient descent-method.

Adam Optimiser

In this section we present the “Adam” optimiser proposed in [7] and we follow their findings
hereafter. According to the authors, the name “Adam” is derived from “adaptive moment
estimation”, which describes the main idea of their optimiser: they compute individual learning
rates utilising first and second moment estimations of the gradient. Those estimates are obtained
by exponentially weighting past gradients (first moment) and past squared gradients (second
moment). The first moment is captured in the vector m and the second moment is captured in
the vector v. With g

k
being the gradient at optimisation step k, the moment estimations are

updated as follows [7]:

m k = β1m k−1 + (1− β1) g
k

(4.15)

v k = β2 v k−1 + (1− β2)
(
g
k
� g

k

)
(4.16)

Both vectors, m and v, are initialised with 0. The authors noted that by doing so, the estimates
are biased towards 0. For that reason, they propose the following bias-corrected estimate:

m̂ k =
1

1− βk1
m k (4.17)

v̂ k =
1

1− βk2
v k (4.18)

Here the superscript k actually represents taking the value to the k-th power. This results in
the following update step:

θ k = θ k−1 − η � m̂ k �
(√

v̂ k + ε
)

(4.19)

Here, � symbolises the element-wise division and the square-root is understood to be taken over
each element of v̂ k. The step size for each parameter η has been estimated using the method
discussed in section 4.3. The authors recommend the following values for the remaining free
parameters: β1 = 0.9, β2 = 0.999, and ε = 10−8. As can be seen in figure 4.3, this optimisation
works and leads to convergence of the parameters.
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AMSGrad Optimiser

In their article the authors found scenarios in which the Adam optimiser does not converge to
the optimal solution [8]. They show that this is based on considering the moving average of
past squared gradients — one of the key features of Adam. The issue is, that under certain
circumstances the Adam optimiser may take steps too large [8]. This happens if the second
moment estimate v̂ jk for a parameter j at step k gets too small. They mitigated this issue by
considering the element-wise maximum value of the new estimate and the previous estimate.
This way they ensure that the step size will not increase for each parameter:

v̂ jk = max
(
v̂ jk−1, v

j
k

)
∀j ∈ {1, ...,dim θ} (4.20)

Additionally, they simplify the optimiser by discarding the bias correction terms. Therefore, the
complete update step can be calculated by:

m k = β1m k−1 + (1− β1) g
k

(4.21a)

v k = β2 v k−1 + (1− β2)
(
g
k
� g

k

)
(4.21b)

v̂ k = max
(
v̂ k−1, v k

)
(4.21c)

θ k = θ k−1 − η �m k �
√
v̂ k (4.21d)

The maximum function in equation 4.21c is applied element-wise for each variance estimation of
each parameter. In their article the authors mainly use the following values for the coefficients:
β1 = 0.99, β2 = 0.999. Unlike the original article, we use a different reference learning rate η for
each parameter as described in section 4.3.

Comparison

In this section we briefly compare the different optimisation methods and showcase their concrete
usage in figure 4.3. There we can see that all optimisation algorithms eventually converge to the
right solution. However, the sophisticated optimisers converge faster than plain gradient descent.
Additionally, we note that the AMSGrad optimiser oscillates around the true parameters while
the Adam optimiser does not show any. We did not note any negative effect on the optimisation
from the oscillations. In the following we will use the AMSGrad optimiser, since it converges in
more cases than the Adam optimiser [8].
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Figure 4.3: This figure visualises the convergence of the three different optimisation algorithms presented
in this work. For these experiments we tried to fit the parameters of a Lorenz system. The true system
was created using the standard parameters θ = (σ, ρ, β)

ᵀ
=
(
10, 28, 8

3

)ᵀ
, a time step of ∆t = 10−3,

and an initial state of (5, 5, 5)ᵀ. The optimisation was performed as described in algorithm 4.2 with
the respective optimisation step. For an equal comparison, the hyperparameters for each optimisation
algorithm were kept constant and had following values: we used an evaluation length of le = 103 and a
coupling strength of α = 103.

4.4 Summary

In this section we want to present a concise summary of our optimisation algorithm for finding
the correct parameters of complex systems using data. The complete algorithm is found in
algorithm 4.2. This algorithm solves a specific use case: algorithms exist, which are capable of
reconstructing governing equations, in the sense of ODEs, out of data. However, some algorithms
can only reconstruct the equations parameterless meaning that the coefficients are not calibrated
(concretely, they are given a value of one). We developed our algorithm specifically for this case.
We are given data stemming from a system ODEs, and we know those ODEs even though they
have the wrong, uncalibrated parameters. By synchronising the secondary system to the given
data, we are able to find the original parameters.

In chapter 5 we will apply this algorithm to an ample selection of synthetic systems and
we will show that we are able to reconstruct the correct set of parameters for each of them.
Additionally, this algorithm can work as an error correction to some degree: we will show, that
it is possible to cancel out wrong terms in the systems of ODEs. This means that if the data
stems from a set of ODEs, but our initial believe of that set is a superset of the actual ODEs,
we are able to cancel out the wrong terms which are non-existent in the data. We will give an
example for this in section 5.2.2.
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input: This optimisation algorithm needs three external inputs: first, the ‘data’, a
discrete realisation of the primary system, stemming from the ODE in question
with parameters θ and a step size of ∆t. Secondly, we need a coupling strength
α between the data and the system. Lastly, we need the evaluation length le.

true data← data[: le]
true derivative← derive numerically(true data)
θ ← initialise list of ones(np)
m, v, v̂ ← initialise empty list(np)
η ← find learning rate()

c̄← 1
while c̄ do

estimated system← data-based Runge-Kutta stepG (true system, θ, ∆t, α)
estimated derivative← derive numerically(estimated data)
g ← calculate gradient(true derivative, estimated derivative)

θ, m, v, v̂ ← AMSGrad update step(g, η, m, v, v̂)

c̄← check for convergence(θ)

end
return θ

Algorithm 4.2: This algorithm gives a high-level overview over our optimisation algorithm utilising
the AMSGrad optimiser. The function find learning rate chooses the learning rate η in such a way
that it satisfies equation 4.14. The function data-based Runge-Kutta stepG integrates the estimated
system coupled to the first one with coupling strength α as described in algorithm 4.1 in section 4.1.2.
Again the subscript G implies that our knowledge about the parameterless ODE, on which we try to fit
the data on, is embodied in this function. The function calculate gradient calculates the gradient as
described in equations 4.11. The variable c̄ holds the information whether the problem is not converged:
if all the parameters converged, c̄ will be 0.
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Chapter 5

Results and Applications to
Synthetic Systems

We applied our new algorithm on an ample selection of different, synthetic, complex systems and
found promising results in each of them. In this section we will present our findings for those
synthetic systems and explore the limitations of our algorithm. Additionally, we will study the
effect of different choices for the hyperparameters.

For assessing the quality of our optimisation, we monitor two metrics: firstly, we calculate the
predictable time tp. This time describes the time after which the prediction differs substantially
from the true time series. Since the absolute predictable time is highly correlated to the largest
Lyapunov exponent λ of the system, we measure it in units of the Lyapunov time τλ for ensuring
comparability among different systems:

τp =
tp
τλ

= tp λ (5.1)

For our work, we define a prediction as wrong when it differs substantially from the true time
series and follows a different path on the attractor. Small deviations of the prediction from the
true time series are acceptable as long as they do not persist. For that reason, we define the
predictable time, as that time when the error in the interval [tp, tp + 1

10 τλ] is for the first time
bigger than 15% of the scale s of the system. The mathematical formulation of the prediction
time can be found in the following equation:

s =
1

τλ

∫ τλ

0
‖x(t)‖dt (5.2)∫ tp+ 1

10
τλ

tp

‖x(t)− x̂(t)‖dt > 15% s (5.3)

Here, x describes the true time series and x̂ describes the predicted time series. By using this
metric, we can compare different systems with each other as this metric relies solely on system
properties and uses the characteristic time and size of each system. The fractions in equation
5.3 were chosen heuristically to reflect the requirement to allow small temporary deviations, but
trigger at bigger deviations over a period of time.

The second metric we monitor is the mean absolute error Eθ of the fitted parameters θ̂ with
respect to the real parameters θ:

Eθ =
1

dim θ

dim θ∑
i=1

∣∣∣θi − θ̂i∣∣∣ (5.4)

This metric allows us to understand the numerical precision of our optimisation.

In order to analyse the general applicability of our proposed algorithm, we apply it on
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synthetic systems. The results are shown in figure 5.1, where we can clearly see that the
parameter reconstruction is precise to the first digit. Using this precision we are able to predict
the systems a handful of Lyapunov times ahead. Solely the “Four wing system” is the one
odd out in this scenario, since despite a good parameter reconstruction, we cannot predict that
system for a meaningful amount of time. Additionally, we observe due to the proximity of
points for one system in this figure, that our optimisation algorithm is stable against the initial
condition and hence the position on the attractor.

(a) (b)

Figure 5.1: This figure shows the quality of the parameter reconstruction for a selection of different
systems. Here, figure (a) shows the parameter error Eθ as defined in equation 5.4 and figure (b) shows
the predictable time as defined in equation 5.3 in units of the Lyapunov time. Each system, besides the
“Lorenz63 system”, and its respective standard parameters θ are defined in the appendix A. For most
systems the optimisation has been performed multiple times with a different initial condition for each
run. The initial condition has been chosen as a random point on the attractor. For each run and each
system an integration step of ∆t = 10−3, an evaluation length of le = 104, and a coupling strength of
α = 103 have been used.

Lorenz96 System

So far, we only applied our optimisation algorithm on three-dimensional systems with a handful
of parameters. In the following we want study the applicability of this optimisation on high
dimensional problems. For this purpose, we consult the “Lorenz96 system”, as it describes
a system where the dimensionality can be increased as wished. The “Lorenz96 system” was
introduced as a climate model and the dimensionality was intended to split up the earth’s
surface in different zones [27]. For that reason, all the parameters of the system are equal and
an N -dimensional system is defined as follows:

ẋd = (xd+1 − xd−2) xd−1 − xd + F d ∈ {1, ..., N} (5.5)

We assume cyclic boundary conditions described by: x−1 = xN−1, x0 = xN , and xN+1 = x1.

We need to extend this model for our purposes, since our initial guess for the parameters
almost perfectly aligns with the real parameters in equation 5.5. For this, we introduce a
parameter in front of each variable in each dimension, which leads to the following, parametrised
Lorenz96 system:

ẋd =
(
p 3(d−1)+1 xd+1 − p 3(d−1)+2 xd−2

)
xd−1 − p 3(d−1)+3 xd + p 3N+1 d ∈ {1, ..., N} (5.6)

The parameters are stored in a (3N+1)-dimensional vector p. Note that in our parametrised
Lorenz96 system we followed the original Lorenz96 system and kept the forcing constant F equal
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among each dimension d. We stored the forcing constant as the last value in the vector p, which
is why it was renamed to p 3N+1 in equation 5.6. The parameters in front of the variables, p 1 to
p 3N , were drawn from a uniform distribution in interval [0, 1] and the forcing constant, p 3N+1,
was assigned the value 8 in accordance to the original model [27].

For the calculation of the gradient for our optimisation we utilise the nomenclature intro-
duced in section 4.2, where the primary system consisting of discrete data points is denoted by
{χ} and the secondary system coupled to the primary one is denoted by {y}. For each dimension
d ∈ {1, ..., N} the gradients with respect to the parameters are calculated by:

∂`

∂ p 3(d−1)+1
= −2 (χ̇d − ẏd) yd+1 yd−1 (5.7a)

∂`

∂ p 3(d−1)+2
= +2 (χ̇d − ẏd) yd−2 yd−1 (5.7b)

∂`

∂ p 3(d−1)+3
= +2 (χ̇d − ẏd) yd (5.7c)

∂`

∂ p 3N+1
=

N∑
d=1

−2 (χ̇d − ẏd) (5.7d)

The results of the optimisations of the Lorenz96 system are shown in figure 5.2. There we can
see that the optimisation works for a wide range of dimensions and is reproducible for vectors
with different random parameters. It has to be noted, that due to considerations of computa-
tion time, the high dimensional Lorenz96 systems were only calculated once. As expected, we
noted that with an increasing dimensionality each step in our algorithm gets computationally
more expensive. For a feeling for the optimisation duration, we report that a single optimisa-
tion iteration for the five-dimensional Lorenz96 system takes around twenty seconds. For the
64-dimensional Lorenz96 system in contrast, it takes around four-hundred seconds, which is
roughly a factor of twenty more.

Nevertheless, we have shown that this algorithm is capable of finding the correct set of pa-
rameters in a 64-dimensional system with 193 different free parameters. Since we used algorithm
4.2, we did not have any prior knowledge about any parameter. Figure 5.2b shows that the pre-
dictability does not suffer with an increasing dimensionality. For each dimension we are able to
predict a couple of Lyapunov times ahead, as we are able with the three-dimensional systems in
figure 5.1b. Instead, we note that our algorithm does not prefer a specific region of dimensions.
This demonstrates the applicability of this algorithm to high-dimensional systems with a large
number of free parameters.

In figure 5.2a, we note that the mean absolute parameter error Eθ is of order 10−3 across
some dimensions. The uncertainty is on that digit due to our choice on how we check for con-
vergence: in this setting we say a parameter has converged, if its change is of order 10−4 for
twenty consecutive optimisation steps. This leads to a precision on the third digit.

We have shown in this section that our proposed optimisation algorithm works for a wide
variety of different systems and a wide variety of different dimensionalities. This emphasises the
general applicability of this algorithm.
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(a)

(b)

Figure 5.2: This figure shows the quality of the parameter reconstruction for different dimensionalities
of the Lorenz96 system. Figure (a) shows the mean absolute parameter error Eθ as defined in equation
5.4 and figure (b) shows the predictable time as defined in equation 5.3 in units of the Lyapunov time.
The arrows point to outlier values which do not fit on this scale. For each dimension and each run in that
dimension, a different vector of random factors p was created. The Lyapunov exponent of each different
parameter vector was calculated using the algorithm described in section 2.1.1. The initial condition in
each case was the vector x(0) = (8 + 10−3, 8, ..., 8)ᵀ ∈ RN , as described in the original paper [27]. Due
to the high dimensionality of these systems, a finer update step of ∆t = 10−4 was used for countering
the effects of numerical imprecisions. The evaluation length was chosen to be le = 104 and the coupling
strength was chosen to be α = 104 for each run. For most dimensions, multiple runs with different
random parameter vectors p were performed.
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5.1 Effect of Hyperparameters

In our proposed optimisation algorithm we introduced two new hyperparameters: the coupling
strength α and the evaluation length le. The coupling strength indicates how strongly the sec-
ondary system is coupled to the data points making up the primary system, and the evaluation
length describes the amount of data used as primary system. In this section we analyse the
dependency of our algorithm from the choice of those hyperparameters.

For that we performed a grid-search over different values for the two new hyperparameters.
The grid was spanned over several orders of magnitude, since small changes in the hyperparam-
eters proved to have virtually no effect. The details of the calculations and the results thereof
are shown in figure 5.3: analysing the dependence on the coupling strength, we can observe
that all systems with a coupling strength greater equal to 100 converge and are predictable to
the expected extend of a couple of Lyapunov times. For the converging coupling strengths, a
longer evaluation length may seem to lead to a better performance compared to a shorter one,
since both plots tend to get darker in the direction of better performance. Interestingly, for the
longest (50 000) and the shortest (100) evaluation length the coupling strength has no effect and
we observe convergence across the whole spectrum of coupling strengths. This is a surprising
result and at this point we do not have a hypothesis explaining this phenomenon.

At this point, we have to note that finding the correct hyperparameters is a trade-off between
computation time and performance. Increasing the evaluation length naturally leads to an in-
creased computation time, since we simply need to calculate more steps. However unintuitively,
we also observed that the computation time increased with a higher coupling strength. Meaning
that we cannot set the coupling strength to an arbitrarily high value, since this would mean
non-feasible computation time.

In the end we conclude that our optimisation algorithm is generally robust against the exact
choice of hyperparameters. As a reasonable starting point, we propose a coupling strength of
103 and an evaluation length of 104. This is based on our results from figure 5.1 and on the
findings in this section. Starting from there, if needed a better performance may be obtained
by trial-and-error.
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(a) (b)

Figure 5.3: This figure shows the results of the grid-search for different hyperparameters utilising the
Lorenz63 system with the standard parameters as primary system. For each run we used an initial
condition of (5, 5, 5)ᵀ for the primary system and an integration step of ∆t = 10−3. In our scan we
used the following values for the coupling strength α: 10, 100, 200, 500, 1 000, 2 000, 5 000, and 10 000.
For the evaluation length le we used the following values: 100, 1 000, 2 000, 5 000, 10 000, and 50 000.
We calculated the mean absolute prediction error Eθ and the predictability time tp for each possible
combination of the two hyperparameters.

5.2 Robustness Against Noise & Incorrect Knowledge

So far, all calculations have been performed on synthetic systems, which are precise and error-
free by construction1. However, data obtained from real-world systems is never error-free and
has always a certain noise, an uncertainty, with it. Additionally, until now we assumed perfect
knowledge of the term structure of the governing ODEs producing the primary data. This
assumption may not necessarily hold for real-world systems, as the deriving of the equations
also suffers from the uncertainty in the data in its measurements [1]. Therefore, in this section
we want to analyse the robustness of our proposed optimisation algorithm. We analyse the
robustness with respect to two factors: firstly, noise in the data, and secondly an imperfect
assumption about the governing equations.

5.2.1 Robustness Against Noisy Data

We begin by analysing the robustness against noise in the data making up the primary system.
For that, we simulate the classical Lorenz63 system with its standard parameters and add a
Gaussian noise on each data point and each coordinate. The Gaussian noise is drawn from
a normal distribution with zero mean and a standard deviation σ. In our experiments, the
standard deviations σ range from 0.01 to 2. Before adding the Gaussian noise to the precise
data, we calculate the signal-to-noise ratio (SNR) as the ratio of the power of the signal to the
power of the noise [28]. With the power being calculated as the squared amplitude A, we can
express the SNR with the following equation:

SNR =

(
Asignal

Anoise

)2

(5.8)

1At this point we want to note that different integration methods may lead to different results when integrating
over many steps due to the finite precision of computers and the chaotic nature of these systems.
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The signal-to-noise ratio is often reported on a logarithmic scale in decibel:

SNR = 10 log10

(
Asignal

Anoise

)2

dB (5.9)

The amplitude A of a time series x(t) can be calculated as follows:

A =

√
1

t

∫ t

0

∥∥x(t̃ )∥∥2
dt̃ (5.10)

We ran two distinct experiments and in the first we analysed the dependency of the noisy data
on the coupling strength, and the other time the dependency on the evaluation length. In
general, we can state that using the proposed configuration in previous section 5.1, we obtain a
meaningful predictability starting from around 30 dB, meaning that the power of the signal has
to be 103 stronger than the power of the noise. To get a feeling for the noise levels, figure 5.4
shows the Lorenz attractor for different noises.

Dependency on the Coupling Strength

Regarding the dependency on the coupling strength, we consult figure 5.5. There we see an
interesting pattern emerge in figure 5.5a: the parameter errors seem to follow a power law in a
certain region. The cut-off of this power law-behaviour at an error of about 10−2 stems from our
convergence criterion for these runs. We observe that a lower coupling strength leads to a more
negative exponent in the fit of said observed power law. This implies a better performance for
lower coupling strengths, since it means that the error does not grow as quick with a rising noise
level. This finding can be confirmed by figure 5.5b, where we see that the lower the coupling
strength, the more noise is acceptable for levels of predictability. Again confirming the finding
that a lower coupling strength works better on noisy data. This result is not intuitive as we
would expect a higher coupling strength to perform better. Our working hypothesis for this
effect is that the original data is noisy and therefore imprecise. If we couple too strongly to the
imprecise data, we optimise on a wrong system. However, if the coupling is not too strong, the
effect of the noisy data remains limited.
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(a) SNR = 50.15 dB, σ = 0.05 (b) SNR = 40.61 dB, σ = 0.15

(c) SNR = 30.15 dB, σ = 0.5 (d) SNR = 20.04 dB, σ = 1.6

Figure 5.4: This figure shows the Lorenz attractor for different levels of noise. The Lorenz attractor
was calculated with the standard parameters, an initial condition of (5, 5, 5)ᵀ, and an integration step of
∆t = 10−3. A Gaussian noise with zero mean and standard deviation σ was added on each time step
and each coordinate. The red part of each plot visualises an evaluation length of 103: the part of the
attractor which the parameters are actually calibrated upon.
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(a)

(b)

Figure 5.5: This figure shows the results of the optimisation algorithm in dependence to the level of noise
present. Figure (a) shows the mean absolute parameter error Eθ and figure (b) shows the predictable
time tp in terms of Lyapunov time. This experiment was performed with the Lorenz63 system with the
classical parameters and the initial condition (5, 5, 5)

ᵀ
. The possible standard deviations for the Gaussian

noise ranged from 0.01 to 2 in increments of 0.01. The signal-to-noise ratio has been calculated using the
equations 5.8f. The coupling strength 102 shows 1 718 realisations, the coupling strength 103 shows 1 594
realisations, and the coupling strength 104 shows 726 realisations. For all runs the evaluation length le
was 103.

43



Dependency on the Evaluation Length

In this section we analysed the performance of our optimisation algorithm on noisy data with
regard to the evaluation length while keeping the coupling strength constant. For that, we chose
the best performing coupling strength from previous section, namely α = 102 and perform the
same experiment as before — only this time we vary the evaluation length and keep the coupling
strength constant.

The findings of this experiment are shown in figure 5.6, where we observe inconclusive results:
we note that an evaluation length of 102 seems to be too short for the algorithm. Meaning that
a hundred data points is not enough. Even on data sets where the noise level is very low, e.g.
the signal being a million times more powerful than the noise, we find that the evaluation length
of 102 performs an order of magnitude worse than the longer evaluation lengths. However,
when comparing the results of the evaluation lengths of 103 and 104 with each other, we see a
very similar performance with the shorter one performing a little bit better. This confirms our
findings from section 5.3, where we did not observe a big dependence on the evaluation length.
For noisy data, this experiment puts the additional constraint on the evaluation length of it
being sufficiently large. If the evaluation length is too small, the algorithm will not perform well
on noisy data.

Figure 5.6 nicely illustrates the trade-off discussed in previous section 5.1. We can clearly
see the effect of the evaluation length on the required computational time by the amount of
performed experiments. The experiments for evaluation lengths le = 103 and le = 104 ran on
the same computing cluster with the same configuration for each two days. While we were able
to calculate 1 718 optimisations for the evaluation length of 103, we were only able to run 295
optimisations for the longer evaluation length. Nevertheless, both show similar performance.
Studying these results, we recommend starting with small evaluation lengths and increasing
them until an acceptable precision is reached, since a longer evaluation length offers no tangible
benefit.

Figure 5.6: This figure shows the results of the optimisation algorithm working on different noise levels
with different evaluation lengths le. We present the the mean absolute parameter error as defined in
equation 5.4. This experiment was performed using the Lorenz63 system with its standard parameters
and the initial condition (5, 5, 5)ᵀ. The coupling strength was kept at a constant value of α = 102 for
each experiment with the possible values for the standard deviations of the Gaussian noise ranging from
0.01 to 2. The evaluation length le = 102 shows 1 506 realisations, the evaluation length le = 103 shows
1 718 realisations and the evaluation length le = 104 shows 295 realisations.
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5.2.2 Robustness Against Imprecise Knowledge of the Governing Equations

Up until now, we assumed perfect knowledge of the term structure of the underlying equations
producing the data. However, this assumption may not hold in every case, which is why in
this section we analyse the performance of our algorithm for an imprecise assumption of our
governing equations.

There are two ways in which the underlying equations can be incorrect: they can either
include terms which are not responsible for creating the data, or they could leave terms out which
are indeed responsible for creating the data. The strategy for countering the over-inclusion of
terms is setting the factor of each wrong term to 0 — or at least very close to it — so its effect
on the governing equations is highly limited. However, at this point we note that our algorithm
is helplessly exposed to the under-inclusion of terms and we have to viable strategy to deal with
that problem.

In their article the authors presented a framework with which the structure of governing
equations can be reconstructed from data; however, they also noted that the reconstruction
can include wrong terms in the equations [1]. Their algorithm is built in a way to over-include
terms, rather than not including them. Therefore, they are more concerned with the first type
of uncertainty mentioned previously.

In the following we present a synthetic example and analyse how well our algorithm handles
the over-inclusion of terms. For this purpose we introduce an alternate form of the Lorenz63
system with two additional terms, a linear one and a non-linear one:

ẋ1 = −σ x1 + σ x2 + κx2 x3 (5.11)

ẋ2 = −x1 x3 + ρ x1 − x2 + ξ x3

ẋ3 = x1 x2 − β x3

The gradient of the parameters σ, ρ, and β of this system are the same as for the classical
Lorenz63 system in equations 4.12. However, with the introduction of the two additional pa-
rameters κ and ξ, we obtain two two additional gradients of the following form:

∂`

∂κ
= −2 (χ̇1 − ẏ1) y2 y3 (5.12a)

∂`

∂ξ
= −2 (χ̇2 − ẏ2) y3 (5.12b)

Again we used the notation introduced in section 4.2.2, with y describing the secondary system
and χ the data points making up the primary system.

We perform the optimisation as described in algorithm 4.2: Our data, primary system,
consists of data points of the classical Lorenz63 with its normal parametrisation. However,
when we calculate the secondary system (‘estimated system’ in aforementioned algorithm) we use
modified Lorenz96 system in equations 5.11 as foundation. Consequently, we need to calculate
the gradients for all five parameters using the combined equations 4.12 and 5.12. In the end this
means, that we try to fit the data coming from the classical Lorenz63 system onto the equations
5.11 containing wrong terms, which did not contribute to the data.

The results of the parameter optimisation are shown in figure 5.7. There we can see that
our algorithm is capable of correctly identifying that the terms ‘+κx2 x3’ & ‘+ξ x3’ of equations
5.11 were not contributing to the observed data points, and therefore put their coefficient to
a value close to zero. However, we note that the parameters are not exactly zero. This result
means that this algorithm can be used to a certain extent as a corrective measure when deriving
the governing equations of systems from data.
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Figure 5.7: This figure shows the results of the optimisation algorithm using a wrong assumption on the
governing equation. In fact, we are trying to fit data stemming from the classical Lorenz63 system with
parameters (σ, ρ, β)ᵀ =

(
10, 28, 83

)ᵀ
and initial condition (5, 5, 5)ᵀ on the wrong equations 5.11. We used

an integration step of ∆t = 10−3, a coupling strength of α = 102, and an evaluation length of le = 103.

In figure 5.8 we analyse the effect of incorrect assumptions on the predictability. For that,
we optimise the same run on two different assumptions: the correct and incorrect one. We then
compare the predictability of each run. Additionally, we compare the predictability when we
discard the terms with a coefficient close to zero. Our findings are as expected: the predictability
decreases with the incorrect equation assumption. Removing the terms with the coefficients
close to zero, leads to an increase in the predictability. However, we note that these effects are
marginal and barley noticeable. Additionally, removing terms leads to another judgement call
when deciding which coefficients are “close to zero”. This can get especially problematic when
dealing with systems which have small coefficients by construction.

Figure 5.8: This figure compares the predictable time tp for different assumptions of the governing
equations of the Lorenz system. We performed ten runs and the grey markers connected by a dotted
line show the result for a single run. The black dot with the bar shows the mean with one standard
deviation for each category. For each run we performed two different optimisations one with the correct
assumption for the governing equation and one with the incorrect one. For the last column, we removed
the terms where the optimisation set the coefficients close to zero. For each run we used a different initial
condition, where each coordinate was chosen as a random number between −10 and 10. As incorrect
assumption of the Lorenz system we used equations 5.11. We used an integration step of ∆t = 10−3, a
coupling strength of α = 102, and an evaluation length of le = 103.
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Looking at these results it can be prompting to use this optimisation as an algorithm for
finding the governing equations from a time series using a library of terms. The basic idea being
that we chose a highest order and include all possible terms for that order. The hypothesis being
that the optimisation will set all the terms to zero not responsible for creating the data; just as
it did in previous example.

For a three-dimensional time series with a library including terms up to order two, the
skeleton system would be defined as the following system of ODEs:

ẋ1 = c1 x1 + c2 x2 + c3 x3 + c4 x
2
1 + c5 x

2
2 + c6 x

2
3 + c7 x1 x2 + c8 x1 x3 + c9 x2 x3 + c10 (5.13)

ẋ2 = c11 x1 + c12 x2 + c13 x3 + c14 x
2
1 + c15 x

2
2 + c16 x

2
3 + c17 x1 x2 + c18 x1 x3 + c19 x2 x3 + c20

ẋ3 = c21 x1 + c22 x2 + c23 x3 + c24 x
2
1 + c25 x

2
2 + c26 x

2
3 + c27 x1 x2 + c28 x1 x3 + c29 x2 x3 + c30

Here the vector c ∈ R30 holds the parameters for this system. Performing this optimisation,
using Lorenz data as primary system, shows very interesting results: the parameters converge
towards ‘wrong’ values, as can be seen in figure 5.9.

Figure 5.9: This figure shows the results of applying our optimisation algorithm utilising data from the
Lorenz system as primary system and the shell equations 5.13 as assumption for the governing equations.
We performed the optimisation five times using different initial conditions on the attractor, and we can
see that the results are stable. We used an integration step of ∆t = 10−3, a coupling strength of α = 103,
and an evaluation length of le = 104.

However, it is hard to classify the found parameters as wrong: the shell equation 5.13
together with the found parameters shown in figure 5.9 produce an attractor, which is a carbon
copy of the Lorenz attractor. This can be seen in figure 5.10, where the black line shows a
path on the Lorenz attractor, and the colourful paths show trajectories following equation 5.13.
These colourful paths with different initial conditions show that the equations 5.13 with found
coefficients behave chaotically and form an attractor.

Looking at characteristic numbers classifying an attractor, the correlation dimension D [29]
and the largest Lyapunov exponent are often used. In our calculations we discovered that both
attractors differ in their largest Lyapunov exponents: λLorenz63 = 0.902± 0.0013, λShell system =
0.64 ± 0.06. Nevertheless, this result raises questions about the uniqueness of attractors. How
many sets of equations exist reproducing the butterfly shape of the Lorenz attractor? We have
shown that using the library of equations 5.13 results in always the same set of coefficients. To
which coefficients other libraries of equations converge to, and whether they reproduce the same
attractor remain questions for further research.

47



Figure 5.10: This figure shows the classical Lorenz attractor with its standard parameters in black with
the initial condition (5, 5, 5)ᵀ. The colourful trajectories follow the equations 5.13 with the parameters
from figure 5.9. Each trajectory has been integrated for 105 steps with an integration step size of
∆t = 10−2.
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5.3 Comparison to Similar Work

In this section we compare our algorithm to a similar piece of work presented in [2]. Since our
algorithm describes a further development of the algorithm in [2], it is not surprising that these
two approaches are similar in nature. In their article they propose the following algorithm, where
the starting situation is a primary system and a secondary system coupled to the primary one:
they change the parameters of the secondary system in the direction minimising a loss function
until the secondary system synchronises with the primary one. Once they are synchronised, the
parameters of the secondary system are an estimation of the parameters of the primary system
[2]. The special property of their algorithm is, that it works “online” meaning that they do not
visit the same dataset multiple times. Instead, they only visit the data once and perform the
parameter update-step after each integration step. This is in contrast to our algorithm, where
we iterate multiple times over the data containing le data points.

The authors state that the primary system may consist of discrete data points. However,
in their article the authors only presented the results for simultaneous integration, where the
primary system is given by equations, which can be evaluated for any arbitrary values. In order
to compare it to our proposed algorithm, we use our integration method presented in section
4.1.2. With that integration method, we implemented their algorithm to work with discrete
data as primary system: the results for a optimisation are shown in figure 5.11, visualising that
their approach works for the Lorenz system.

Figure 5.11: This figure shows the result of the optimisation for the Lorenz63 system using the algorithm
in [2]. The primary system consists of discrete data points of a Lorenz realisation with the standard
parameters, an initial condition of (10, 8, 20)ᵀ, and an integration step size of ∆t = 10−3. The learning
rate vector used in equation 5.16 is η =

(
10−3, 10−3, 10−4

)ᵀ
.

In the following, we want to present the algorithm in [2] in more detail, where we use their
article as source. The authors consider the following loss function L in the interval I of length
T , which is the continuous version of our loss function in equations 4.10:

L =
1

T

∫
I

∥∥ẋ(t)− ẏ(t)
∥∥2

dt (5.14)

They then calculate the gradient and the update step resulting from that gradient the following
way:

∇L =

(
∂L
∂θ 1

, ...,
∂L
∂θN

)ᵀ

(5.15)

θ i+1 = θ i − η �∇L (5.16)
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Here the superscript signalises the n-th entry in a N -dimensional vector and the subscript
indicates the current iteration step. Again, � symbolises the Hadamard product.

In their article they used the Lorenz system as an example with a continuous primary system,
which they could evaluate at arbitrary values. However, since the case with a discrete primary
system is more application-related2, we present that in the following. We use data from the
standard Lorenz as defined in equations 2.10 as primary system. As a secondary system they
use the system coupled via the active-passive-decomposition introduced in section 3.1.1. Here
the coupling is visualised in red.

ẏ1 = −σ y1 + σ χ2 (5.17)

ẏ2 = ρ y1 − y1 y3 − y2

ẏ3 = −β y3 + y1 y2

Note, that these equations are structurally identical to equations 3.12; however, we replaced
x with χ to highlight the fact, that the primary system consists of discrete points treated as
coefficients in this system.

Calculating the partial derivative with respect to the parameters leads to the following
gradients, where we introduce ‖e‖2 =

∥∥χ̇(t)− ẏ(t)
∥∥2

for the sake of readability:

∂ ‖e‖2

∂σ
= −2(χ̇1 − ẏ1) (χ2 − y1) (5.18a)

∂ ‖e‖2

∂ρ
= −2(χ̇2 − ẏ2) y1 (5.18b)

∂ ‖e‖2

∂β
= +2(χ̇1 − ẏ1) y3 (5.18c)

Here, it is worth pointing out, that these gradients are not identical to the gradients of our
algorithm for the Lorenz system in equations 4.12. More precisely, the gradient with respect to
the parameter σ is different for our system (equation 4.12a) and this system (equation 5.18a).
The difference is signalised by the red colour: due to the coupling by inserting a variable of the
primary system, this gradient is directly dependant from the data. This could possibly lead to
numerical instabilities when considering noisy data.

As mentioned, the optimisation is performed online, meaning: first, we integrate a single step
of the secondary system y

i+1
using our integration method of section 4.1.2. We then calculate

the gradients using equations 5.18. Lastly, we perform the update step in equation 5.16 and
obtain a new estimation for our set of parameters. We repeat these steps until the parameters
have converged. A result of this optimisation is shown in figure 5.11, where we can see the
algorithm working.

The advantage of this algorithm is, that it is very fast compared to our proposed one, since
it only visits the data once. However, in their presentation the algorithm has a major limitation:
it only works for the Lorenz63 system or systems for which an active-passive-decomposition can
be found. As we have stated before, there is no guarantee that such a decomposition must exist
and therefore the applicability remains limited. Additionally, the optimiser is not sophisticated
and the determination of the learning rate η in equation 5.16 has to be done by trial-and-error.

In the following we analyse the stability of the algorithm in [2] against noisy data and
incorrect assumptions of the governing equations and compare it to the performance of our
algorithm in said categories.

2For integrating the primary system on the spot, the correct parameters have to be known a priori. This
defeats the purpose of calibrating data to a set of equations.
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Robustness Against Noisy Data

In this section we compare the algorithms with respect to their performance on noisy data.
For this purpose, we use the same experimental setting as in section 5.2.1 and produce the
same noisy data as described there. Figures 5.13 show the results for a single optimisation run.
There, we observe the algorithm of [2] to be very unstable compared to ours. This is expected
behaviour, since in the algorithm of [2] the gradient is calculated after each data point and since
each data point contains noise, the gradient jumps with that noise. Whereas in our proposed
algorithm the noise is averaged over the evaluation length leading to smoother gradients and
smoother evolution of the parameters with an actual convergence. Nevertheless, we need to
point out that taking the average over a late window of optimisation steps leads to good results
for the algorithm of [2], as visualised as grey boxes in figure 5.13a.

In figure 5.12 we can see a comparison between the two algorithms for multiple runs with
different noise levels. Interestingly, the points stemming from the algorithm in [2] do not show
an apparent power law-behaviour, instead the results seem to be more scattered compared to
the ones of our algorithm. For a given noise level, our algorithm seems to produce more stable
results than the algorithm in [2]. Additionally, while the algorithm in [2] produces sometimes
better results, our proposed algorithm seems to perform better on average.

Figure 5.12: This figure compares the results from the algorithm in [2] to our proposed algorithm on
the optimisation on noisy data. This experiment was performed using the noisy Lorenz63 system with
its standard parameters, an initial condition of (5, 5, 5)ᵀ, and an integration step size of ∆t = 10−3. For
each time step and each variable, a noise value was drawn from a Gaussian distribution with zero mean
and a standard deviation of σ. The standard deviations σ ranged from 0.01 to 2 in increments of 0.01.
For our algorithm we used an evaluation length of le = 103 and a coupling strength of α = 102. For the
algorithm in [2] we calculated a thousand steps and obtained the parameters by averaging over the last
hundred iterations. For our algorithm we show 1 718 realisations and the algorithm of [2] shows 1 990
realisations.
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(a) Algorithm presented in [2]

(b) Our proposed algorithm

Figure 5.13: This figure compares the optimisation for the algorithm presented in [2] in figure (a), and
figure (b) shows the optimisation from our proposed algorithm. The data to be fitted on consists of a
noisy Lorenz system with standard parameters, an initial condition of (10, 8, 20)ᵀ, and an integration
step of ∆t = 10−3. The noise was created by adding a random value drawn from a Gaussian distribution
with zero mean and a standard deviation σ = 1 to each time step and each coordinate. This resulted in a
signal-to-noise ratio of SNR ≈ 26 000 = 44.15 dB. For the algorithm in [2] in figure (a) we used a learning
rate of η =

(
10−3, 10−3, 10−4

)ᵀ
. The number in the grey box indicates the averaged value in that interval

for that parameter. For our optimisation algorithm in figure (b) we used an evaluation length of le = 103

and a coupling strength of α = 102.
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Robustness Against Imprecise Knowledge of the Governing Equations

In this section we analyse the performance based on incorrect assumption on the governing
equations. Here, we perform the same experiment as in section 5.2.2 and we use the same Lorenz
with additional terms as introduced in equations 5.11. Due to the active-passive-decomposition
chosen by the authors, we need to modify the governing equations of 5.11 and exchange y2 with
the primary system x2 for the equation of ẏ1 to ensure the coupling stays as desired. This results
in the following equations, where the changing term is visualised in red:

ẏ1 = −σ y1 + σ χ2 + κχ2 y3 (5.19)

ẏ2 = −y1 y3 + ρ y1 − y2 + ξ y3

ẏ3 = y1 y2 − β y3

This also changes the gradients; while the gradients for the parameters σ, ρ, and β are the as in
equations 5.18, the gradients for the parameters κ and ξ are different to 5.12 due to the different
coupling of this algorithm:

∂ ‖e‖2

∂κ
= −2(χ̇1 − ẏ1)χ2 y3 (5.20a)

∂ ‖e‖2

∂ξ
= −2(χ̇2 − ẏ2) y3 (5.20b)

The result for this optimisation is shown in figure 5.14, where we can see the parameters con-
verging to the wrong value. Note the absurdly huge values the parameters σ and κ reach: orders
of 1017. Interestingly, the parameter β converges to the correct value. The parameter β is in
the only equation containing correct terms.

Figure 5.14: This figure shows the result for the optimisation using the algorithm in [2]. The data,
primary system, was created using the Lorenz system with its classical parameters, an initial condition of
(10, 8, 20)ᵀ, and an integration step of ∆t = 10−3. The secondary system was described by equations hold-
ing incorrect assumptions and therefore wrong terms. Specifically, the equations 5.19 with the gradients
in equations 5.18 & 5.20 were used. As learning rate we used η =

(
10−3, 10−3, 10−4, 10−5, 10−5

)ᵀ
.
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Conclusion

When comparing the algorithm presented in [2] to our proposed algorithm, we first note that due
to our coupling, our algorithm is applicable to arbitrary systems. The algorithm in [2] is orders
of magnitude faster than ours, since it has to visit the data only once and performs an online
optimisation. However, this online optimisation leads to instabilities against noise and incorrect
knowledge of the governing equations. We observed that our algorithm is more robust against
those two instabilities. Therefore, unless computational speed is a concern, we recommend to
use our proposed algorithm for calibrating governing equations of complex systems to data.
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Chapter 6

Applications to Real Systems

So far we have shown that our optimisation algorithm works on a plethora of synthetic systems,
in each of which the data making up the primary system was solely created by equations. In
that sense we only analysed “pure” systems — with an additive noise at best. However, the
real world is noisy and messy. Models which may be created to reflect real world-phenomena
may only capture so much of the measurable dynamics. In this section we analyse how well our
algorithm works on models built for real-world applications and using measured data as primary
system. For that we experiment on the Lotka–Volterra equations [30], [31], the coupled logistic
map [32], and a financial model introduced in [1]. Lastly, we apply our optimisation on data
masked by complex systems and show that it is possible to reconstruct the masked signal; thus
rendering such algorithms obsolete.

6.1 Lotka–Volterra System

In their works the Lotka–Volterra equations have been introduced as a system of two non-linear,
first order, coupled ODEs describing the interplay between predators and prey [30], [31]. The
basic idea of the model is simple and intuitive: if the number of predators is low, the prey can
reproduce and the number of prey increases. However, the high number of prey makes it easier
for predators to reproduce themselves and therefore increases the number of predators. The
high number of predators in turn decreases the number of prey. This results in oscillating prey-
predators numbers, as can be seen in red in figure 6.2a. This model was inspired by biological
arguments and this oscillating behaviour can also be observed in nature [33]. It has been shown
that the Lotka–Volterra equations behave chaotically and the generalised form of the equations
form an attractor for more than two agents in the system [34]. The equations for this model
reproducing the previously described behaviour are as follows [31]:

ẋ1 = a x1 − b x1 x2 (6.1)

ẋ2 = −c x2 + d x1 x2

Here, x1 describes the evolution of the prey population and x2 describes the population of the
predators. The gradients with respect to the parameters of upper equation for our algorithm
are calculated as follows:

∂`

∂a
= − (χ̇1 − ẏ1) y1 (6.2a)

∂`

∂b
= + (χ̇1 − ẏ1) y1y2 (6.2b)

∂`

∂c
= + (χ̇2 − ẏ2) y2 (6.2c)

∂`

∂d
= − (χ̇2 − ẏ2) y1y2 (6.2d)
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Again, we used the notation introduced in section 4.2.2, where y describes the secondary system
and χ describes the data measured points making up the primary system. The measured data,
acting as primary system, shows the abundance of Didinium (predator) and Paramecium (prey)
and was obtain from the supplementary material from [35]. It is shown in red in figure 6.2a.
The fit is shown and in black. While we see the parameters converging in figure 6.2b, we can
clearly see that the found parameters do not describe the data adequately. Our algorithm seems
to find a Lotka–Volterra structure in the data, however it cannot reconstruct the data correctly.
Running a stability analysis, we at least observe out algorithm to be stable we, as we can see in
figure 6.1. We ran the algorithm with five different initial conditions taking the fist data point
in the first run, the second data point in the second run, and so on. For each different initial
condition we found almost identical parameters.

This bad performance can have a few reasons: firstly, our assumption is, that the data can
be completely described by equations 6.1. However, this assumption is very weak since the data
stems from a real world system where additional effects are present, which are not accounted
for in these equations. So with respect to the equations 6.1, we have to treat this data as very
noisy. Secondly, we observed in figure 5.6 that even for synthetic systems with a bit of noise an
evaluation length of 102 is not sufficient. With the dataset providing only 71 observations, this
renders a successful application difficult.

Additionally, we can exclude that the optimisation fails because of specific properties of the
Lotka–Volterra system, since we have shown in figures 5.1 that the optimisation works for the
Lotka–Volterra system utilising synthetic data as primary system.

Figure 6.1: This figure shows the converged parameters for fitting the data from [35] on the Lotka–
Volterra system using different initial conditions. For the first run we used the first data point as initial
condition, for the second run we used the second, and so on. We used a coupling strength of α = 10, and
the evaluation length was the number of available data points. We used an integration step of ∆t = 0.5,
since in [35] it was implied that the data was measured every twelve hours. We chose to omit a legend,
since all the data points lie so close on each other.
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(a)

(b)

Figure 6.2: Figure (a) shows the measured data in red, which should in theory follow a Lotka–Volterra
structure. The data was taken from the supplementary material in [35]. The black line shows our
estimation of the data after the parameters converged. Figure (b) shows evolution of the parameters
using our optimisation algorithm. We used the algorithm with a low coupling strength of α = 10, an
evaluation length of le = 71 consisting of the whole available dataset. For better performance we set the
order of the first gradient in equation 4.14 to 10−4. The parameters converged to the following values:
a = 1.419, b = 0.0267, c = 1.8978, and d = 0.01158. The precision was determined by the standard
deviation of each parameter for the last hundred steps.
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6.2 Financial Markets

In their work the authors presented a framework from which the form of governing equations can
be reconstructed by utilising causality measures and measuring causality within discrete data
[1]. However, they are not able to reconstruct the parameters for each term, which is where our
algorithm becomes applicable.

In their article they considered the stock indices of six major world economies: USA (US),
China (CN), Europe (EU), Japan (JP), Emerging Markets (EM), and Pacific excluding Japan
(PX). They analysed the impact of the COVID-19 pandemic on the structure of the governing
equations [1]. For that, they used daily logarithmic returns of the respective stock indices as
data for their algorithm. For the baseline equations describing the pre-COVID-19 time, they
used the data from October 2019 until January 2020 and found the following set of equations
for the logarithmic returns [1], where we added the corresponding coefficient in grey:

ẋUS = c1 xUS + c2 xCN + c3 xEU + c4 xJP + c5 xEM + c6 xPX + c7 xCN xPX (6.3)

ẋCN = c8 xUS + c9 xCN + c10 xEU + c11 xEM + c12 xPX + c13 xUS xEU

ẋEU = c14 xUS + c15 xCN + c16 xEU + c17 xJP + c18 xEM + c19 xPX + c20 xEU xPX

ẋJP = c21 xCN + c22 xJP + c23 xPX + c24 xUS xCN + c25 xUS xEU + c26 xUS xJP

+ c27 xUS xEM + c28 xCN xEU + c29 xCN xJP + c30 xCN xPX + c31 xEU xEM

+ c32 xEU xPX + c33 xEM xPX

ẋEM = c34 xUS + c35 xCN + c36 xEU + c37 xJP + c38 xJP + c39 xPX + c40 xJP xPX

ẋPX = c41 xCN + c42 xEU + c43 xJP + c44 xEM + c45 xPX + c46 xUS xPX

We applied our optimisation algorithm on upper equations using the introduced data: while
we observed the parameters converging, we noted that the evaluation of the found set of equations
does not describe the data as can be seen in figure 6.3. The first evaluation step seems to have the
correct direction towards the true returns shown in red, however the evaluated set of equations
converges towards zero after a few iterations for all dimensions. The found equations seem to
not maintain the dynamics observed in the data. Smoothing out the real returns before the
optimisation using a Wiener filter [36] did not lead to better performance; however, it changes
the values the parameters converge to.

Figure 6.3: This figure shows the result of our optimisation algorithm applied on financial data. In
red the historical logarithmic returns r of the respective stock market are shown. In black we show the
evaluation of equations 6.3 with the parameters found in our optimisation. For our optimisation we used
a coupling strength of α = 10, and the evaluation length was the available number of data points: 88.
As an integration step we used ∆t = 1, since we are handling daily data. The data was obtained from
the author in [1].
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As a consistency check we try to fit random returns on the equations 6.3. Even though the
returns are not normally distributed and exhibit a skewness and excess kurtosis [37], for the
sake of simplicity we fit a Gaussian distribution onto the returns. Disregarding the correlation
between assets, we sample from the six Gaussian distributions independently, obtaining a dataset
made up from random returns. We then apply the same optimisation algorithm as with the real
data, and try to fit equations 6.3 onto the random data. We would expect the parameters to
diverge, since we would assume that the equations 6.3 cannot adequately describe the dynamics
exhibited by the random data.

However, we still observe the parameters converging. The time series, with the parameters
converged on the random data, can be seen in figure 6.4. Evaluating the system at the found
parameters, we observe a similar behaviour as in figure 6.3: the estimated system cannot describe
the “true” system. Therefore, at this point we must conclude that our optimisation algorithm
is not able to find dynamics in financial data, better than it does in a random dataset, since
in both cases the algorithm converges. As the random data is assumed to have no inherent
dynamics1, our optimisation algorithm also converges in the absence of dynamics. This finding
does not give the results in 6.3 too much weight.

Figure 6.4: This figure shows the result of our optimisation algorithm applied on random data. In green
we show the random logarithmic returns simulating their respective market. In black we show again the
evaluation of equations 6.3 with the parameters found in our optimisation. We used the same parameters
as in previous experiment: a coupling strength of α = 10, an evaluation length of le = 88 for setting
equal conditions, and an integration step of ∆t = 1, since we are still handling daily data.

1Here, we disregard a possible dynamics stemming from only being able to generate pseudorandom numbers.
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6.3 Reconstruction of Signals Masked by Complex Systems

Due to their nature, predicting complex system is an inherently difficult task. For this reason a
lot of authors had the idea of hiding a transmitting signal in the seemingly random behaviour of
a complex system: a lot of research was published utilising this idea [38], [39], [40], [41]. Even
though each published algorithm works a bit differently and introduces a new nuance, most of
them rely on the same basic idea: synchronise two chaotic systems with each other, so both the
sender and the receiver can evaluate the same trajectory of a chaotic system. Then, the sender
adds his signal on top of the chaotic system with a relatively low power and transmits it to
the receiver. The receiver can then subtract the chaotic signal from the received total signal —
since he knows exactly how the chaotic signal propagates due to synchronisation — and obtains
the pure message. The parameter of the chaotic system then make up the key. This method
seems secure, since chaotic systems ought to be unpredictable. However, we have shown in this
work that it is possible to reconstruct the exact parameters of complex systems using their time
series. Thus making them predictable. This works even if the time series is noisy, meaning that
it carries an interesting signal on top of it.

For this work we rebuild the most basic idea of these masking algorithm presented in [38],
since it is the most intuitive one. In their article they use the Lorenz system as working example.
For the secondary system they induced synchronisation via the active-passive-decomposition
introduced in section 3.1.1. For that, they replaced y1 of the secondary system in ẏ2 and ẏ3

with the signal r. The signal r is the sum of the first coordinate x1 of the primary system with
the signal of interest s: r = x1 + s. This results in the following secondary system, where the
coupling is visualised in red:

ẏ1 = σ y2 − σ y1 (6.4)

ẏ2 = −r x3 + r ρ− y1

ẏ3 = r y2 − β y3

The idea is now to add the signal s onto the x1 coordinate of the emitting Lorenz system to
create the total signal r. This r is then used to synchronise the secondary system in equations
6.4 to the primary Lorenz delivering x1. Once the secondary system is synchronised to the
primary one, the estimate of the signal ŝ can be reconstructed by:

ŝ = r − y1 (6.5)

As we have stated in section 3.1.1, this type of synchronisation only works when the primary
and secondary systems are identical. Meaning that the set of parameters σ, ρ, and β need to
be identical in the primary and secondary system for this type of transmission to work. Hence,
the set of parameters σ, ρ, and β can be viewed as a key for this kind of “encryption”2 [16].

We implemented this method with the following signal

s(t) =
1

10
(sin(10 t) + sin(50 t) + cos(30 t)) (6.6)

We added the signal onto the x1-coordinate of the Lorenz system with the following parameter
vector in accordance to [38]: θ = (σ, ρ, β)ᵀ = (16, 45.92, 4)ᵀ . We then reconstructed the signal
by using the Lorenz coordinate with signal to drive a secondary system with equations 6.4 and
reconstructed the signal using equation 6.5. The results can be seen in figure 6.5: There we
can see that it is possible to reconstruct the signal s from the driven signal. However, we also
note that the reconstruction is not perfect and a reconstruction error is clearly visible in figure
6.5. This reconstruction error was expected [16]. Figure 6.5 also shows, that assuming a wrong
set of parameters worsens the reconstruction of the signal. This means that the correct set of
parameter is needed for the best reconstruction.

2We refrain from calling this method “encryption”, since the data is only masked by a stronger signal and not
altered by itself.
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Figure 6.5: This figure visualises the functionality of the algorithm presented in [38], where the red
line shows the original signal s, and the black line shows the reconstructed signal ŝ using the correct
parameters. The faint colours show the reconstruction using a wrong set of parameters, where the
parameters are written in the form (σ, ρ, β). For each simulation we used a step size of ∆t = 10−3.

We applied our parameter reconstruction-algorithm on the problem stated in previous para-

graph and reconstructed the following parameter vector from the data: θ̂ =
(
σ̂, ρ̂, β̂

)ᵀ
=

(13.98, 45.87, 4.01), where we just reported two decimal places. A certain error in the recon-
struction of the parameter is expected, since in this case the signal s acts as a noise for our
algorithm working on pure data. In fact, we have a signal-to-noise ratio of 40.00 dB on the
first coordinate of the Lorenz system. As we have seen in section 5.2.1, at that level of noise
we expect an imprecision in the reconstruction of the parameters. We can see the results of
the application of our algorithm in figure 6.6: there we find that for about a single Lyapunov
time we can reconstruct the signal to the same precision as the original method intended. After
about a Lyapunov time, our reconstruction fails. However, nothing stops us from repeating
the optimisation and the subsequent prediction for each interval of length one Lyapunov time.
Using that strategy, we should be able to reconstruct the signal as long as it persists.

We note that one possible caveat of reconstructing the parameters using this method may
be that the chaotic systems has to be known. However, we point out that if the attractor is
not known, the method presented in [1] can be used to reconstruct the governing equations.
Additionally, if only one coordinate was transmitted, Takens’ theorem [42] could be used to
construct a shadow manifold using delay coordinates. This should hint at the correct complex
system in question, since only a handful of them are published and used regularly.

The goal of this section was to show that in general, encryption algorithms based on the
chaotic behaviour of systems are inherently unsafe. The assumption that complex systems are
not predictable simply does not hold any more. Instead, we have shown that they are indeed
predictable by reconstructing the parameters. Other algorithms presented in [39], [40], or [41]
are more sophisticated than this example and introduce additional steps. However, as long as
those steps are differentiable, or their derivative can be approximated reasonably, a respective
loss function can be built. Applying the chain rule on the modified loss function should result
in gradients leading to the correct parameters. Therefore, we strongly recommend to not use
these kind of encryption algorithms outside of academic exercises.
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Figure 6.6: This figure compares the reconstruction of the red signal using the intended method pre-
sented in [38] against the reconstruction using our proposed algorithm. The original signal is described
by equation 6.6. For our proposed algorithm we used a coupling strength of α = 102 and the whole data
as evaluation length: le = 2 000. A step size of ∆t = 10−3 was used for this experiment. The upper plot
shows the true signal and its reconstructions. The lower plot shows the mean squared error (MSE) of each
method. The Lyapunov exponent of the Lorenz system with the parameters θ = (σ, ρ, β)

ᵀ
= (16, 45.92, 4)ᵀ

is λ = 1.499± 0.012, so the black line shows one Lyapunov time.
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Chapter 7

Summary & Outlook

The aim of this work was to develop an algorithm for estimating the parameters of complex
systems using data. The posed problem was rather specific and asked whether it was possible
to reconstruct the parameters, if the structure of the governing equations and a time series
stemming from the target system were known. In this work we have shown that it is possible to
reconstruct the parameters given those assumptions, and we presented a framework for applying
this on arbitrary systems. However, the real world is not limited to the Lorenz system, which is
why we needed to expand this method for application on arbitrary sytems.

For achieving this, we borrowed ideas from synchronisation and machine learning. Specif-
ically, we coupled a secondary system, of which we can control the parameters, to a primary
system being entirely described by the data. The secondary system encodes our assumptions
on the structure of governing equations. We then modified the parameters of the secondary
system using gradient descent-based algorithms to minimise the loss between the two systems.
The values of the parameters minimising the loss are a good estimate of parameters describing
the real data.

In this work we have shown that our algorithm is applicable to a plethora of different syn-
thetic systems with predictabilities of a few Lyapunov times: figure 5.1. Additionally, we have
shown that this algorithm also works in a high dimensional space with a large number of free
parameters: figure 5.2. Up to a certain extent, our algorithm is robust against noise in the data
and incorrect assumptions of the structure of the governing equations: figures 5.5 & 5.7. We are
more stable than the comparable algorithm in [2]. Solely the applicability on real world-systems
remains a challenge: figures 6.2 & 6.3. This can be mainly attributed to the fact that data
stemming from real world systems is rarely described by a single set of governing equations.
While equations provide a useful model for gaining valuable insights, they may fail to capture
all aspects making up the dynamics. Lastly, we have shown that this algorithm can be used for
reconstructing signals which are masked by complex systems and thus cracking these kinds of
‘encryptions’: figure 6.6.

At this point we want to mention that our group is currently performing research on reservoir
computing [43] and such a calibration as explained here could be achieved using ‘next generation
reservoir computing’ [44]. However, details about a comparison with regards to applicability and
stability remain subject to further research.

When trying to strain this algorithm for deducing not only the coefficients but also the
general form of governing equations, we found hints that the governing equations of complex
system may not be unique: figure 5.10. This path needs more attention and future work needs
to be done in order to analyse this finding in greater detail. Specifically, the different sets of
equations describing the visually same attractor need to be evaluated with regard to commonly
used metrics for classifying chaotic system. Additionally, we need to analyse different chaotic
systems and need to examine whether the finding in section 5.2.2 is a more general fact or a
peculiarity of the Lorenz system.

63



This work, together with [1], can be embedded in the greater topic of reconstructing govern-
ing equations from time series. Using [1] for deriving the structure of the governing equations
and afterwards our algorithm for calibrating the coefficients can be a way to infer the dynam-
ical equations describing the data at hand. This method could then be used across different
disciplines for making interpretable, data-driven forecasts.
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Appendix A

Complex Systems Studied in this
Work

In this section we introduce the governing equations and the respective gradients for all systems
studied in this work. For each system we introduce, we use the notation used throughout this
work: with x we denote the primary system, y symbolises the secondary system coupled to a
primary one, and χ represents the primary system made up from discrete data points. The
gradients are calculated as described in section 4.2.2.

A.1 Dadras–Momeni System

The Dadras–Momeni system was introduced in [45] and is described by the following governing
equations:

ẋ1 = x2 − a x1 + b x2 x3 (A.1)

ẋ2 = c x2 − x1 x3 + x3

ẋ3 = d x1 x2 − e x3

Its standard parameters are: θ = (a, b, c, d, e)ᵀ = (3, 2.7, 1.7, 2, 9)ᵀ. The gradient of the loss
function with respect to the parameters can be calculated as follows:

∂`

∂a
= +2 (χ̇1 − ẏ1) y1 (A.2)

∂`

∂b
= −2 (χ̇1 − ẏ1) y2 y3

∂`

∂c
= −2 (χ̇2 − ẏ2) y2

∂`

∂d
= −2 (χ̇3 − ẏ3) y1 y2

∂`

∂e
= +2 (χ̇3 − ẏ3) y3

A.2 Four-Wing System

The Four-wing system was introduced in [46]. For our analysis we use a simplified version, which
the authors present in their work:

ẋ1 = a x1 + x2 x3 (A.3)

ẋ2 = b x1 + c x2 − x1 x3

ẋ3 = −x3 − x1 x2
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Its standard parameters are: θ = (a, b, c)ᵀ = (0.2, 0.01,−0.4)ᵀ. The gradient of the loss function
with respect to the parameters can be calculated as follows:

∂`

∂a
= −2 (χ̇1 − ẏ1) y1 (A.4)

∂`

∂b
= −2 (χ̇2 − ẏ2) y1

∂`

∂c
= −2 (χ̇2 − ẏ2) y2

A.3 Halvorsen System

The Halvorsen system was never published by itself, however it can be found in [47]. It is defined
as follows:

ẋ1 = −a x1 − 4x2 − 4x3 − x2
2 (A.5)

ẋ2 = −a x2 − 4x3 − 4x1 − x2
3

ẋ3 = −a x3 − 4x1 − 4x2 − x2
1

Standardly, its parameter is set to a = 1.89. The gradient of the loss function with respect to
its parameter can be calculated as follows:

∂`

∂a
= +2 (χ̇1 − ẏ1) y1 + 2 (χ̇2 − ẏ2) y2 + 2 (χ̇3 − ẏ3) y3 (A.6)

A.4 Lorenz86 System

The Lorenz86 system was introduced in [48] and it is governed by the following set of equations:

ẋ1 = −a x1 − x2
2 − x2

3 + a f (A.7)

ẋ2 = −x2 + x1 x2 − b x1 x3 + g

ẋ3 = −x3 + b x1 x2 + x1 x3

Its standard parameters are: θ = (a, b, f, g)ᵀ = (0.25, 4, 1.1, 8)ᵀ. The gradient of the loss function
with respect to the parameters can be calculated as follows:

∂`

∂a
= −2 (χ̇1 − ẏ1) (−y1 + f) (A.8a)

∂`

∂b
= +2 (χ̇2 − ẏ2) y1 y3 − 2 (χ̇3 − ẏ3) y1 y2 (A.8b)

∂`

∂f
= −2 (χ̇1 − ẏ1) a (A.8c)

∂`

∂g
= −2 (χ̇2 − ẏ2) (A.8d)

Here, it is interesting to note that this is the only system where the gradients depend on the
current state of the parameters as can be seen in equations A.8a & A.8c.

A.5 Lotka–Volterra System

The Lotka–Volterra system was introduced independently from each other in [30], [31]. It is
defined in equations 6.1 and its gradient is defined in equations 6.2. As standard parameters we
use: θ = (a, b, c, d)ᵀ = (2, 0.4, 2, 0.8)ᵀ.
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A.6 Rössler System

The Rössler system was introduced in [49] and is described by the following equations:

ẋ1 = −x2 + x3 (A.9)

ẋ2 = x1 + a x2

ẋ3 = b+ x3 (x1 − c)

Its standard parameters are θ = (a, b, c)ᵀ = (0.1, 0.1, 14)ᵀ. The gradient of the loss function with
respect to the parameters can be calculated as follows:

∂`

∂a
= −2 (χ̇2 − ẏ2) y2 (A.10)

∂`

∂b
= −2 (χ̇3 − ẏ3)

∂`

∂c
= +2 (χ̇3 − ẏ3) y3

A.7 Sprott System

The Sprott system was introduced in [50] and is described by the following set of equations:

ẋ1 = x2 + a x1 x2 + x1 x3 (A.11)

ẋ2 = 1− b x2
2 + x2 x3

ẋ3 = x1 − x2
1 − x2

2

Its standard parameters are: θ = (a, b)ᵀ = (2.07, 1.79)ᵀ. The gradient of the loss function with
respect to the parameters can be calculated by:

∂`

∂a
= −2 (χ̇1 − ẏ1) y1 y2 (A.12)

∂`

∂b
= +2 (χ̇2 − ẏ2) y2

1

A.8 Thomas System

In his article, the author introduced a set of complex systems described by the following equation
[51]:

ẋ1 = −b x1 + f(x2) (A.13)

ẋ2 = −b x2 + f(x3)

ẋ3 = −b x3 + f(x1)

In aforementioned article multiple choices for the function f are presented. In our work we
limit ourselves to the following function: f(xi) = sinxi. The parameter b is standardly set to
b = 0.21. The gradient with respect to the parameter can be calculated as follows:

∂`

∂b
= +2 (χ̇1 − ẏ1) y1 + 2 (χ̇2 − ẏ2) y2 + 2 (χ̇3 − ẏ3) y3 (A.14)

A.9 Three-Scroll Unified Chaotic System

The Three-scroll unified chaotic system was introduced in [52] and is described by the following
set of equations:

ẋ1 = a (x2 − x1) + d x1 x3 (A.15)

ẋ2 = −x1 x3 + f x2

ẋ3 = −e x2
1 + x1 x2 + c x3
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Its standard parameters are θ = (a, c, d, e, f)ᵀ = (40, 5
6 , 0.5, 0.65, 20)ᵀ. The gradient of the loss

function with respect to the parameters can be calculated the following way:

∂`

∂a
= −2 (χ̇1 − ẏ1) (y2 − y1) (A.16)

∂`

∂c
= −2 (χ̇3 − ẏ3) y3

∂`

∂d
= −2 (χ̇1 − ẏ1) y1 y3

∂`

∂e
= +2 (χ̇3 − ẏ3) y2

1

∂`

∂f
= −2 (χ̇2 − ẏ2) y2
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[22] W. Kutta, “Beitrag zur näherungsweisen Integration totaler Differentialgleichungen,” Zeit-
schrift für Mathematik und Physik, vol. 46, pp. 435–453, 1901.

[23] E. Fehlberg, “New high-order Runge-Kutta formulas with step size control for systems of
first-and second-order differential equations,” Zeitschrift für Angewandte Mathematik und
Mechanik, vol. 44, no. 10-11, pp. 17–19, 1964.

[24] E. Hairer, S. P. Nørsett, & G. Wanner, Solving Ordinary Differential Equations I. Springer,
1993.

[25] K. A. Atkinson, An Introduction to Numerical Analysis. John Wiley & Sons, 1989.

[26] J. H. Mathews & K. D. Fink, Numerical Methods Using MATLAB. Prentice Hall, 1999.

[27] E. N. Lorenz, “Predictability — a problem partly solved,” in Predictability of Weather
and Climate, T. Palmer & R. Hagedorn, Eds. Cambridge University Press, 2006.

[28] R. Kieser, P. Reynisson, & T. J. Mulligan, “Definition of signal-to-noise ratio and its
critical role in split-beam measurements,” ICES Journal of Marine Science, vol. 62, no. 1,
pp. 123–130, 2005.

[29] P. Grassberger & I. Procaccia, “Characterization of Strange Attractors,” Physical Review
Letters, vol. 50, no. 5, pp. 346–349, 1983.

[30] A. J. Lotka, Elements of Physical Biology. Williams & Wilkins Company, 1925.

[31] V. Volterra, “Variations and Fluctuations of the Number of Individuals in Animal Species
living together,” ICES Journal of Marine Science, vol. 3, pp. 3–51, 1 1928.

[32] A. L. Lloyd, “The Coupled Logistic Map: A Simple Model for the Effects of Spatial Hetero-
geneity on Population Dynamics,” Journal of Theoretical Biology, vol. 173, pp. 217–230,
1995.

[33] B. G. Veilleux, “An analysis of the predatory interaction between Paramecium and Di-
dinium,” Journal of Animal Ecology, vol. 48, no. 3, pp. 787–803, 1979.

[34] J. A. Vano, J. C. Wildenberg, M. B. Anderson, et al., “Chaos in low-dimensional Lotka–
Volterra models of competition,” Nonlinearity, vol. 19, pp. 2391–2404, 2006.

[35] G. Sugihara, R. May, H. Ye, et al., “Detecting Causality in Complex Ecosystems,” Science,
vol. 338, pp. 496–500, 2012.

[36] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series. MIT
Press, 1949.

[37] R. Cont, “Empirical properties of asset returns: Stylized facts and statistical issues,” Quan-
titative Finance, vol. 1, pp. 223–236, 2 2001.

[38] A. V. Oppenheim, G. W. Wornell, S. H. Isabelle, et al., “Signal processing in the context of
chaotic signals,” in 1992 IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 4, 1992, pp. 117–120.
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die in der Arbeit angegebenen, Quellen und Hilfsmittel verwendet zu haben. Die aus fremden
Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.

Ort, Datum Davide Prosperino


