

CCA Work Area Energy S2R Energy Saving Potential

EU Rail Innovation Days

07.12.2022

This project has received funding from the Shift2Rail Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 881791

WA Energy – S2R Energy Saving Potential

- 1. Energy calculation and simulation methodology Michel Mermet Guyennet (Alstom)
- 2. Energy saving due to S2R innovations Jürgen Ernst (Deutsche Bahn)
- 3. Innovative solutions to save HVAC energy in BEMUs Sylvio Donner (Deutsches Zentrum für Luft- und Raumfahrt, DLR)
- 4. Outlook Jürgen Ernst (Deutsche Bahn)

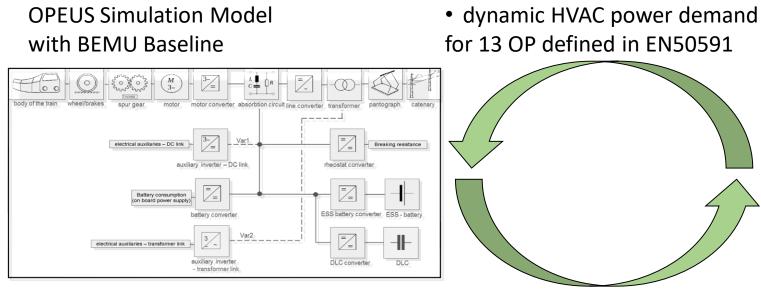
Introduction

Motivation: Reduction of CO2-emissions as well as the reduction of the HVAC energy demand in BEMUs

Why need of HVAC energy savings in BEMUs?

- In regional trains like BEMUs the share of HVAC energy compared to traction is higher than in longdistance trains
- > HVAC reduces the range; especially in winter

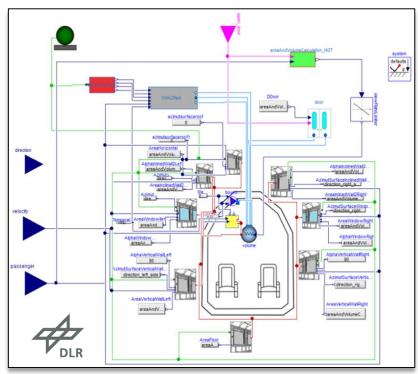
Objective of the HVAC study:


Identification of measures to reduce HVAC energy demand and increase BEMU range
Evaluation of potential range improvements and yearly energy savings

Step 1: Concept and modelling approach, simulation inputs Step 2: Definition of energy efficiency measures efficiency measures

Overall concept: Combination of OPEUS-Tool & Thermal Carbody Model

Step 2: Definition of energy


Step 3: Analysis of effect o

Step 1

Concept and modelling approach, simulation inputs

- OPEUS BEMU speed profile
- BEMU energy baseline carbody parameters

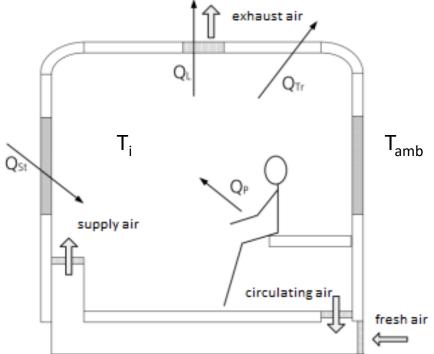
DLR Thermal Carbody Model (TCBM)

Modeling: DLR Thermal car body model (TCBM)

Characteristics of the TCBM:

Step 2: Definition of energy

Concept and modelling approach, simulation


 Description of the car body through various wall and window elements

Step 3: malysis of effect o

- A passenger model describes the heat and moisture emission
- The number of passengers defines the fresh air rate
- EN 14750 specifies the target temperature in the carbody
- By balancing of the supplied and dissipated heat the HVAC energy demand is determined

The TCBM has been validated in FINE-2 Deliverable D4.2

Inputs and boundary conditions

BEMU energy baseline:

Step 1

Concept and modelling approach, simulation inputs

 Definition of a reference vehicle and EN50591 service profile Regional 140

Step 3: Analysis of effect or

• Train and carbody parameters

Step 2: Definition of energy

Thermal boundary conditions:

- 13 operation points (OPs) according to EN 50591 in climate zone II
- Ambient temperature, occupancy, humidity,...

6



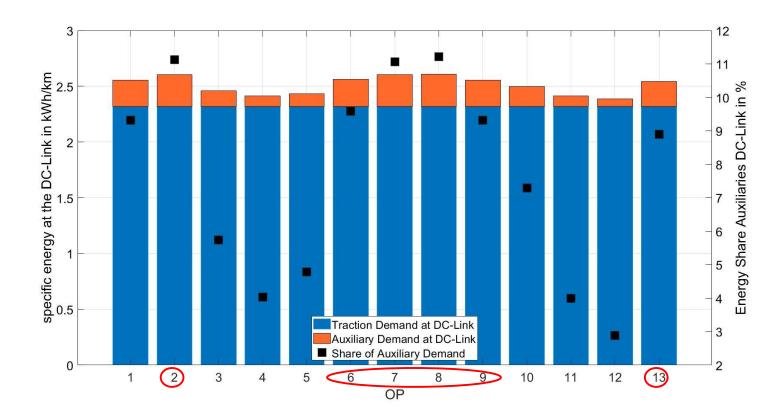
Bild B.2 – Normprofil REGIONALVERKEHR

Reference parameter	value
Number of carriages	2
Train length	40 m
Train mass	90 t (inc. battery)
Number of seats	100
Traction power	4 x 320 kW = 1280 kW

Identification of critical OPs with high energy demand

 Comparison of traction and HVAC energy demand for 13 EN50591 OP

Step 3: Analysis of effect or


Step 2: Definition of energy

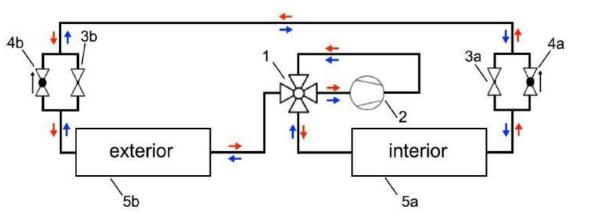
efficiency measu

Concept and modelling

approach, simulatio inputs

Operation point	Temperature Tamb in °C	Humidity <i>H</i> r, amb in %	Sun radiation in W/m²	Passenger load in %
1	-10	90	0	0
2	0	90	0	100
3	10	90	0	50
4	15	90	0	50
5	22	80	0	100
6	28	70	600	100
7	35	50	700	100
8	-20	90	0	0
9	-10	90	0	0
10	0	90	0	0
11	15	80	0	0
12	22	80	0	0
13	35	50	700	0

OPs with high or low ambient temperatures are most demanding in terms of HVAC energy demand


Reference BEMU: Use of a heat pump

 In modern reference vehicles heat pumps are integrated for covering heating demand in BEMUs

Step 2: Definition of energy

ncept and mo

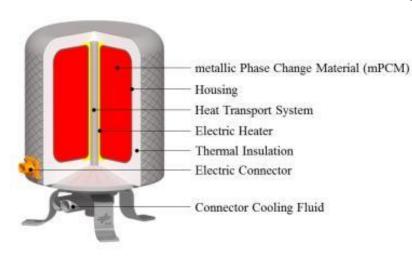
- Heat Pumps use technical work to take thermal energy from a reservoir with a lower temperature and transfers it as useful heat to a system with a higher temperature
- high efficiency (COP>1) by transfering electric power into heating

HVAC with reversable process. Blue – mass flow of cooling mode red – heat pump mode (Trygstad, 2017) The function of the two heat exchanger (condenser and evaporator) vary if operated in heatpump or cooling mode

- → This measure is regarded as state of the art in BEMU Baseline (reference)
- → The study evaluates the higher demand of a conventional solution with resistance heater

Energy efficiency measures for HVAC

Measure 1: Heat Storage

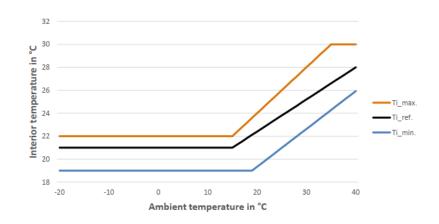

Step 2: Definition of energy

efficiency measure

Step 3: Analysis of effect o

Step 1: ncept and mod

. roach. simula



Measure 2: Improvement of heat transfer

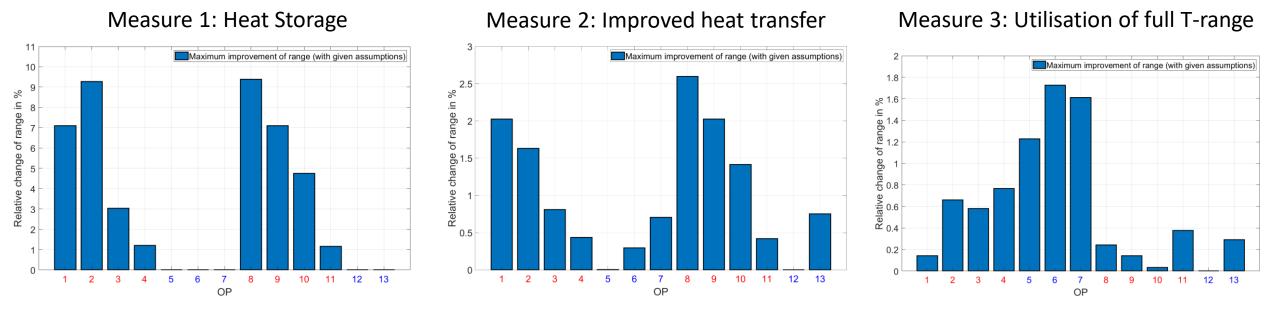
- Integration of high-performance thermal heat storage to relieve the HVAC-load on the traction battery
- Significant amount of heat in trains is lost through walls and windows
 → add insulation or use of materials with less thermal conduction

Measure 3: Utilisation of reference temperature limits

 Boundaries of comfort temperature are given by EN14750 → Reduction of HVAC energy demand by utilisation of the full temperature range

Results for each EN50591 OP in terms of additional BEMU range

Analysis of effect on


IVAC energy deman

Step 2: Definition of energy

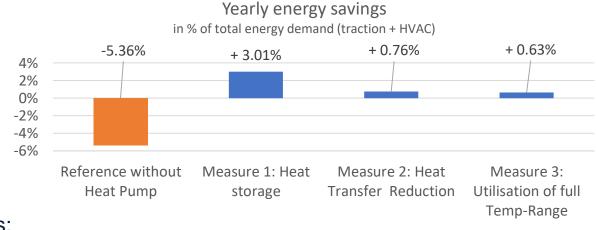
efficiency measu

Step 1: oncept and model

oach, simula

- → Heat storage is very effective in heating OPs, but inneffective in cooling OPs
- Improved Heat Transfer and Utilisation of full T-range are effective in heating and cooling OPs

 \pm urope s da


Comparison of yearly HVAC Energy Savings

Fur				in Integrated on, and Energ		
l.3 S	tudy or	D	control ue date o ctual subr	gy savings by of HVAC syste f deliverable: 30/0 nission date: 01/0 sible of this Delive	ems 08/2022 09/2022	s and sma
		Work Package Approval [Date or N/A]		TMT Approval [Date or N/A]	SC Approval [Date or N/A]	
	ment statu:					
Revision Date Description						
14			100000			
P	roject fund	ded from th		union's Horizon 20 ramme – Shift2Rail	20 research and inn	ovation
Disser	nination Le	vel				
PU	Public x					
co	Confidential, restricted under conditions set out in Model Grant Agreement					
CI	Classified, information as referred to in Commission Decision 2001/844/EC					
	rt date of p					nths

Step 2: Definition of energy

Step 3: Analysis of effect on IVAC energy deman

Step 1: Concept and modell approach, simulatic

Results:

- <u>Heat pump</u> replacing conventional AC is most promising candidate for energy saving in regional BEMU
- Application of <u>heat storage</u> system is most effective, but only in heating OP.
- <u>Modified passenger compartment temperature</u> control recommended in particular for OP with cooling, low-effort measure
- <u>Reduced heat transfer</u> through the car body by improved insulation has good effect, but high effort.

Thank you for your Attention

Any Questions or Remarks?

