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• Thick electrodes provide high energy densities, 

but suffer from ionic diffusion limitations.

• Laser perforation selectively removes material with spatial precisions of 

tenth of micrometers, thereby creating ion diffusion channels.

• The 3D-microstructure resolved simulation tool BEST[1] is used to determine 

the optimal trade-off between the competing factors of capacity loss and 

increase in ion conductivity due to material ablation.
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Perforation vs. Homogeneous References

Spatial Misalignment

Influence of the Hole Shape 
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• Optimal ablation of 

active material: 5%-10%

• Preferably, hole radius 

as small as possible

• Minimal hole radius is limited 

for real perforation setups

• System can be optimized depending 

on specific operation current

Perforation for Different Size Configuration
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• Comparison with a thinner and other more 

porous references shows:

The inhomogeneous perforation structure 

performs better than homogeneous reference 

structures

• Concluding: Not the additional electrolyte 

reservoir, but rather the inhomogeneous 

diffusion channels are the significant factor to 

the improvement of the rate capability 
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• Perforated structures show more homogeneous SOC distribution and 

thus a greater utilization of the active material

• This leads to a reduction in plating risk for perforated graphite for 2C

• Thermal simulation suggest even no plating risk  (ηPl > -30mV)

when accounting for heat evolution during charging

• The effect of misalignment on the charging performance is moderate

• Here it reduces the beneficial effect of perforation by 5% at 2C

• For plating: no significant influence is observed

• In manufacturing, cone shaped holes are fairly common in contrast to 

perfect cylindric shapes.

• Simulated pore transport increases only significantly for holes with 

entrance angles of >20°

• A small entrance angle can even be beneficial for the retained charge 

capacity

Symmetric Impedance Spectrum Relative Charge Capacity Gain

• Optimal perforation configurations depend on the specific operation.

• In general as small structures as possible lead to better results.

• Optimal ablation fractions are ca. 5%-10% of the active material .

• Typical manufacturing errors, on hole shape and alignment do not lead to 

a major reduction in performance.
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