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Motivation & Approach

 Thick electrodes provide high energy densities,
but suffer from ionic diffusion limitations.

* Laser perforation selectively removes material with spatial precisions of
tenth of micrometers, thereby creating ion diffusion channels.

* The 3D-microstructure resolved simulation tool BESTH is used to determine
the optimal trade-off between the competing factors of capacity loss and
increase in ion conductivity due to material ablation.

Simulation Results
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 Perforated structures show more homogeneous SOC distribution and
thus a greater utilization of the active material
 This leads to a reduction in plating risk for perforated graphite for 2C
* Thermal simulation suggest even no plating risk (N >-30mV)
when accounting for heat evolution during charging
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 The effect of misalignment on the charging performance is moderate
 Here it reduces the beneficial effect of perforation by 5% at 2C
* For plating: no significant influence is observed

Influence of the Hole Shape

a) Symmetric Impedance Spectrum b) Relative Charge Capacity Gain
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* |n manufacturing, cone shaped holes are fairly common in contrast to
perfect cylindric shapes.

* Simulated pore transport increases only significantly for holes with
entrance angles of >20°

A small entrance angle can even be beneficial for the retained charge
capacity

Conclusion

 Optimal perforation configurations depend on the specific operation.

* |n general as small structures as possible lead to better results.

* Optimal ablation fractions are ca. 5%-10% of the active material .

* Typical manufacturing errors, on hole shape and alignment do not lead to
a major reduction in performance.
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