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Abstract— In-orbit space assembly has been proposed as a
method to overcome the obstacles for deployment of large spatial
structures. To make such assemblies economically feasible, they
must rely on robotic arms to perform the required manipulation
actions. The operations with the robotic arm inevitably affect
the attitude and orientation of the spacecraft. This influence
is well understood for simple trajectories; however, assembly
sequences for full structures require multiple repetitive motions,
with and without load, which significantly affect the attitude
and orbital control of the satellite. This paper analyzes such
perturbations for a complex assembly task, the construction of
the primary mirror for a space telescope, using a hybrid planner
with two levels: a low level that considers individual motions
of the robotic arm, and a high level that generates the overall
assembly sequence while minimizing the perturbations created
on the attitude control system. The method effectively minimizes
perturbations during orbital assembly tasks, therefore minimiz-
ing fuel or energy consumption in the spacecraft.
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1. INTRODUCTION
The deployment of large structures in space is limited by
the size of the cargo areas in existing launchers. In-orbit
assembly has emerged as a possibility to allow construction of
such large structures, by launching the required materials or
modules with standard carriers, and performing the assembly
directly in space [1]. Although such assembly operations
could be performed by astronaut workforce, as in the case
of the International Space Station (ISS), this requires highly
demanding and complex operations from the astronauts, and
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results in very expensive missions for completing such con-
structions. Autonomous robotic assembly holds the promise
of decreasing the need of astronaut workforce for such tasks.

The operations with a robotic arm mounted on a free floating
base in space significantly affect the attitude and orientation
of the satellite. This influence is well understood for simple
point to point motions, where the arm path can be computed
in such a way that it minimizes the perturbations on the base
[2], [3]. However, for assembling more complex structures,
such as a space telescope, the manipulator must execute
multiple motions, with and without additional loads. In
addition, the inertial properties of the satellite are modified
as the assembly process progresses, i.e., the center of mass
and inertial properties of the satellite and assembled structure
change over time [4]. This requires the consideration of
the perturbations to the floating base within the in-space
assembly planning problem.

In this work we propose a two-level planner to solve the
problem of minimizing the perturbation on the spacecraft
during a space-based assembly task. As a particular example
we consider the assembly of the primary mirror for a space
telescope using segmented mirror tiles [5]. The proposed
planner ensures that the generated assembly sequence fulfills
constraints such as mechanical stability, power transmis-
sion and data interconnectivity during the assembly process,
which can be considered through a semantic constraint rep-
resentation. The planner also computes the manipulator joint
motions in order to minimize the perturbations on the base
or to guarantee that such disturbances are within prescribed
values. The planner is composed by two levels: a high-
level planner that creates the overall assembly plan, and a
low-level planner that computes the manipulator joint mo-
tions to be executed. The high-level planner constructs a
graph representation on the assembly process and assigns
costs to the transitions between different sub-assemblies (sub-
states). The costs are later used to find the cost-optimal
assembly plan. In addition, this representation allows the
identification of repetitive sequences using pattern matching
algorithms, which leads to a reduction of the overall planning
time. The low-level planner implements a path planner based
on Stochastic Trajectory Optimization for Motion Planning
(STOMP, [6]), to provide the individual manipulator joint
motions during the full assembly process. This algorithm
uses a cost function based on a dynamic model of the system,
which computes the disturbances created on the free floating
system by the robotic arm displacements.

The low-level planning tool is tested on hardware in the
OOS-SIM (On-Orbit Servicing Simulator, [7]) at the Ger-
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man Aerospace Center (DLR). The tests verify the dynamic
model used during the computation of the cost function for
the STOMP algorithm. A dynamic simulation verifies the
correct behavior of the high-level assembly planner. The
simulated experiments show the flexibility of our system by
providing feasible plans for different assemblies. The created
plans minimize the base perturbations, and thus consume less
spacecraft fuel, when compared to an assembly plan focused
only on the robotic operations.

2. RELATED WORK
We identify three main categories of related work: Sys-
tems targeting autonomous assembly in space, algorithms
that employ hybrid planning, and algorithms for optimizing
manipulator trajectories.

Autonomous assembly in space

On-orbit (free-flying) robotic systems include a satellite,
equipped with thrusters and/or reaction wheels, that carries
(at least) one robotic manipulator. These space manipulator
systems have been mainly constructed for on-orbit servic-
ing missions, such as ETS-VII [8] and Orbital Express [9].
A well-known example is the Special Purpose Dexterous
Manipulator (SPDM), or Dextre [10], a dual arm robot
mounted on the ISS that has also been used for servicing
and maintenance tasks on the ISS and for on-orbit servicing
as in the Robotic Refueling Mission (RRM) [11]. Although
mainly used for servicing so far, these space-based robotic
manipulators have the potential to carry out more complex
tasks, including autonomous assembly. Initial ideas about
autonomous assembly in space were proposed in the early
80s [12], [13]. Several concepts followed this direction.
For instance, a proposal for hybrid in-space fabrication and
assembly using a multi-arm robot was developed by Tethers
Unlimited with the SpiderFab [14]. NASA is expanding
the work in this area with the OSAM-1 and OSAM-2 mis-
sions. OSAM-1 (formerly known as Restore-L) is focused
on rendezvous, grasp and refueling of a satellite using the
SPIDER (Space Infrastructure Dexterous Robot) robotic arm
(developed in the former project Dragonfly). OSAM-2 (for-
merly known as Archinaut) combines additive manufacturing
with robotic assembly for creating large space structures. In
Europe, several projects took initial steps in the direction
of On-Orbit Assembly, such as PULSAR (Prototype of an
Ultra Large Structure Assembly Robot, [15]) and MOSAR
(MOdular Spacecraft Assembly and Reconfiguration, [16]).
Currently, two parallel projects are developing phases A/B1
for on-orbit servicing missions: PERIOD (PerAspera In-
Orbit Demonstration), for developing a satellite factory in
space, and EROSS+ (European Robotic Orbital Support Ser-
vices), for exploring on-orbit services using the DLR CAE-
SAR robotic arm [17].

Hybrid Planners

Traditional task planning is focused on symbolic represen-
tations, mainly based on transforming geometric constraints
into a semantic representation. This representation, typ-
ically implemented using the Planning Domain Definition
Language (PDDL, [18]), allows a fast solution of different
planning problems. However, not all the problem constraints
can be represented symbolically, which led to the creation of
hybrid planners. These planners have been widely used in
the last years to solve Task And Motion Planning (TAMP)
problems.

Hybrid planners combine two domains, a purely symbolic
representation, and a geometric representation of the world.
One of the first hybrid planners proposed for simple robotic
manipulation tasks was the Asymov system [19]. MIT (Mas-
sachusetts Institute of Technology) has done great progress
in this area in the last years by showing that symbols can
also be used to show the effect of actions [20]. These effects
can also be learned autonomously to solve more complex
tasks [21]. Thus, a hybrid planner could perform preparation
tasks based on geometric constraints by understanding how
such tasks will impact the robot capabilities to interact with
the environment.

For solving TAMP tasks, we have taken the approach of
executing the robot tasks in simulation, and learning from
the constraints that appear while specifying the problem [22],
[23]. These constraints are not only related to the domain
itself, but also to the own capabilities or skill sets of the robot.
Following this approach, we are able to test how different
failures may affect the robot task execution and how they
impact the overall plan [24]. In this work we follow the same
ideas, keeping the robot within the planning loop, and via
simulation we measure the limitations of the system and try
to optimize an action plan based on such measures.

Trajectory Optimization

Robot motion planning can be solved using two different ap-
proaches: sampling- or optimization-based motion planning.
Sampling-based motion planners, such as the Probabilistic
Roadmap Method (PRM) [25] and the Rapidly-Exploring
Random Trees (RRT) [26], construct a search tree via random
sampling. These methods are particularly efficient for solving
complex, high dimensional motion planning problems with
narrow passages, but generate sub-optimal trajectories and
require post-processing steps to generate sensible motions.
Optimization-based methods excel in motion planning prob-
lems with low obstacle density. These methods start with an
initial trajectory and iteratively optimize it based on external
constraints, for example joint and torque limits, and collision
with obstacles. Examples of these methods include the use
of sequential convex optimization (TrajOpt) [27], covariant
gradient-descent (CHOMP) [28], and stochastic gradient-
descent (STOMP) [6]. While these methods cannot solve
any arbitrarily complex motion planning problem and are
susceptible to local minima, experiments have shown that
they usually converge quickly to directly executable trajec-
tories, with low search complexity in most of the cases.
Due to the large portion of free space around the robotic
manipulator during in-orbit assembly problems, our method
employs trajectory optimization (in the physical layer of the
planner) for obtaining robot joint trajectories for the required
motions. We chose STOMP for our implementation due to
its ability to overcome local minima during the search for
a feasible trajectory, and to handle general cost functions
without the need for an explicit gradient computation.

3. ARCHITECTURE OF THE HYBRID PLANNER
The problem of planning an assembly with a space robotic
system while considering the perturbations on the attitude of
the satellite can be efficiently solved using a hybrid planner.
To illustrate our method, we will employ as use case the
assembly of the primary mirror for a space telescope, using
segmented mirror tiles [4]. As an input, the planner requires
only the final desired configuration of the mirror. It is
assumed that there is no other restriction in the order that
the mirror can be built, except for a maximum number of
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Figure 1: Overall architecture of the hybrid planner. Both layers are connected via the cost of the transitions between states.

segmented mirror tiles that can be moved at the same time.
It is also assumed that all the mirror tiles are identical, and
that the robotic system has full access to all of them. Finally,
only collision with the satellite body, other SMTs, and the
robotic system itself are considered. The outcome of the
whole planning process is a sequence of steps that allows the
robot to incrementally construct the desired structure while
minimizing the disturbances created in the base of the system.

A hybrid planning approach is commonly used for scenarios
where a combination of discrete and continuous conditions
needs to be fulfilled. For this case, the discrete conditions
correspond to the semantic constrains that guarantee me-
chanical, power and data connectivity of the mirror tiles,
while the continuous conditions correspond to the motion
of the robotic arm for changing its configuration during the
assembly execution. A hybrid planner is composed by two
layers, a logic one and a physical one. By separating the
planning process in these two layers, the solutions can be
sequentially checked. First, a verification of the structure of
the solution in the logic layer is performed, considering only
symbolic constraints. Second, a more time-consuming check
is performed in the physical layer to analyze the dynamics
of the solution while computing the disturbances suffered in
the base. The overall architecture of the proposed planner is
shown in Fig. 1. This core approach is similar to the one we
used in [4], but with several extensions in the implementation
of both layers to cope with the increased complexity of the
planning problem, which now considers the effects on the
satellite base (not considered in the planner proposed in [4]).

The logic layer or high-level planner deals with the step
sequence required to assemble the telescope in the correct
way. In this layer the problem is formalized as a graph search,
where the nodes represent sub-assemblies, and the transitions
between nodes represent the robot actions required to convert
the structure from one sub-assembly to another one. In our
previous work in [4] only single tiles could be added at a
given step. Now, to better consider even larger structures,
we include the possibility to assemble up to 3 mirror tiles
at the same time in a sub-module, which is later added to
the overall structure. The search of a feasible sequence in
the graph representation is performed using a Breadth-First
search algorithm together with a heuristic to prioritize the best
transitions.

The physical layer takes care of the dynamical effects of the
assembly process. Indeed, up to this point the sequence plan

is merely symbolic; this layer incorporates the robot dynam-
ics. This is performed by adapting the STOMP planning
algorithm, which provides the joint motions for the robot arm,
with a suitable cost function that considers the attitude distur-
bances created in the base of the satellite. The trajectories
provided by this layer correspond to the transitions between
sub-states (nodes) in the graph representation of the logic
layer. The values provided by the cost function are tested and
verified with the OOS-SIM simulator system to experimen-
tally show the reduction of disturbances on the satellite base
when a robot arm follows the optimized trajectories instead
of the non-optimized ones.

The logic and physical layer are connected via the cost
assigned to the transitions between nodes. The physical
layer computes these values and the logic layer uses them
to prioritize some sub-assemblies during the search process.
In this way, the disturbances are not only minimized by the
motion planner in a point to point motion, but also during the
overall assembly sequence.

4. PHYSICAL (LOW-LEVEL) LAYER
This section presents the formulation required for obtaining
the cost function that computes the attitude disturbances on
the satellite base according to the movement of the robot arm.
We integrate this cost function in the STOMP algorithm to
improve the trajectory and minimize the perturbations on the
satellite base.

Dynamics of disturbances in the base

An illustration of an Orbital Robotic Assembly Ve-
hicle (ORAV) is shown in Fig. 2. Its complete
configuration is given by (gb, q) ∈ SE(3)× Rn, where
gb ≡ (Rb, pb) ∈ SE(3) denotes the pose of the spacecraft
base frame {B} relative to the inertial frame {I}, and q ∈ Rn

is the vector of n holonomic joint positions. The pose
gb consists of the orientation Rb ∈ SO(3) and the position
vector pb ∈ R3. The differential kinematics for the pose,
gb, is given by ġb = gbV

∧
b , where Vb = [VT Vω] ∈ R6

is the spacecraft body velocity, and VT and Vω are the
translational and rotational components, respectively. The

operation V ∧
b =

[
Vω× VT

0 0

]
is used, where (•)× is the

skew-symmetric form of the argument, and (V ∧
b )∨ = Vb.
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Figure 2: Frames assigned in the ORAV for the dynamic
formulation.

Considering the full configuration velocity V =
[
V ⊤
b q̇⊤

]⊤
,

the motion equations for the ORAV are described using a
floating-base dynamics formulation [29], [30]. The motion
equations are

M(q)

[
V̇b
q̈

]
+ C(V )

[
Vb
q̇

]
=

[
Fb
τ

]
(1)

where Fb ∈ R6 ∼= se(3)∗ is the spacecraft actuation wrench
and τ ∈ Rn is the actuation of the robotic assembly
system, respectively. Also, C ∈ R(6+n)×(6+n) is the
non-unique Coriolis and Centrifugal (CC) dynamic ma-

trix, and M =

[
Mb Mbq

M⊤
bq Mq

]
is the coupled inertia, where

Mb,Mbq,Mq are the locked, coupling and manipulator in-
ertias, respectively [7]. Further details about these equations
are provided in [31].

In contrast to (1), an alternative way of describing the mo-
tion equations of the ORAV is through the total dynam-
ics of its shape (joints) and momentum. These equations
reveal a block-diagonalized inertia, which enables writing
the shape dynamics as an Euler-Lagrange equation. In
particular, the full system velocity is written alternatively as
ξ =

[
µ⊤ q̇⊤

]⊤ ∈ R6+n, with locked velocity µ obtained as
µ = Vb +Al(q)q̇, where Al = M−1

b Mbq [32]. The locked
velocity µ has a physical interpretation of being the ve-
locity of the instantaneous equivalent rigid body system by
locking the joints of the orbital robot, and Al is known as
the dynamic-coupling factor [33] in orbital robotics. The
commonly-known generalized momentum, J , is related1 to µ
as J = Ad−⊤

gb
Mbµ. Firstly, note that a linear transformation

of V leads to ξ, as ξ = T (q)V , where T =

[
I6,6 Al
0n,6 In,n

]
.

Secondly, using T , a transformation of (1) is obtained [34,

1J has been employed in other works [34] instead of µ to define the new
system velocity coordinates.

eq. 15-18], to get the new motion equations as[
Mb(q) 06,n
0n,6 Λq(q)

] [
µ̇
q̈

]
+

[
Γb(V ) Γbq(V )
−Γbq(V )⊤ Γqq(V )

] [
µ
q̇

]
=

[
Fb

τ −A⊤
l Fb

] (2)

where Γ(•) are the transformed CC terms, and Λq is the
reduced inertia matrix [33]. The top and bottom of (2) are
the momentum and reduced joint dynamics [33], respectively.
For the sake of illustration of the key concept, the following
assumption is used.

Assumption 1: The ORAV is operating in a zero momentum
state, i.e., J = µ = 06 after all residual momentum has been
dumped out, and no external actuation is used, i.e., Fb = 06.

Under Assumption 1, the second row in (2) can be compactly
written as,

Λq(q)q̈ + Γqq(q, q̇)q̇ = τ (3)

The differential kinematics for the spacecraft pose gb
is ġb = gb

(
−Al(q)q̇

)∧
, where −Al acts as an inertia-

dependent Jacobian that maps joint velocities q̇ to the
spacecraft body velocity, Vb. Considering the components

Al =

[
AlT
Alω

]
, we obtain,

Ṙb = Rb

(
−Alω(q)q̇

)∧
(4)

To solve (4), the following assumption is required.

Assumption 2: The trajectory in joint-space is such that Alω
remains nearly constant. This condition is fulfilled by a
typical ORAV because, in a practical mission scenario, the
spacecraft is likely much larger in inertia than the robotic
mechanism.

Using Assumption 2, (4) is solved as,

Rb(tf ) = exp
(
−
∫ 1

0

(Alω q̇)
∧dt

)
= exp

(
−
∫
∂C

(Alωdq)
∧)
(5)

where ∂C is the path in joint-space. Note that in (5) the
second equality results simply from converting the time-
integral to a path integral. Using the inverse of the exp map
(see [35]) on (5), we obtain,

ω = log(Rb)
∨ = −

∫
∂C

Alωdq ≈
N∑

k=1

Ak
lω∆qk︸ ︷︷ ︸
ωk

∈ R3 (6)

where N is the number of steps in the trajectory, and
∆q(t) = q(t)− q(t− 1) is a trajectory slice. Note that the
last approximation follows after applying Assumption 2 and
assuming piecewise constant ∆q, which can be guaranteed
by the planner. The total platform disturbance for the whole
trajectory, ω, is composed of individual trajectory slide distur-
bances, ωk in (6). This mathematical machinery is exploited
here for trajectory planning to minimize the platform distur-
bances over the whole trajectory.

STOMP application

To minimize the base disturbance we used STOMP (Stochas-
tic Trajectory Optimization for Motion Planning), as it allows
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the usage of non-linear and non-differentiable cost func-
tions [6]. Thus, it is easy to add new cost functions to the
optimizer, including for instance joint limits or other binary
checks.

We use for our optimization three cost functions together:
collision cfcoll, joint limits cfjoint, and attitude movement of
the base cfωbase, all depending on θθθt, the joint configuration
of the robot at time t.

cf(θθθt) = cfcoll(θθθt) + cfjoint(θθθt) + cfωbase(θθθt) (7)

The first two functions cfcoll and cfjoint are smoothed Heav-
iside step functions. When a collision occurs or a joint limit
is exceeded, these functions return a high cost, otherwise
they return zero. In this way, the solutions will converge to
be collision free and within the joint limits. The third cost
function, cfωbase, is associated to the attitude change of the
base, which we want to minimize. We are using the L1 norm
to measure the change of rotation of the baseωωωt = Alωt∆q(t)
around α, β, γ at the time-step t. Here, λωbase is the weight
associated to this cost.

cfωbase(θθθt) = λωbase∥ωωωt∥1 (8)

The algorithm computes the cost of a trajectory by summing
up all costs for the N time steps, plus one smoothing term.

Q(θθθ) = λsθθθ
TRRRθθθ +

N∑
t=1

cf(θθθt) (9)

Here, λsθθθ
TRRRθθθ denotes the squared acceleration of the trajec-

tory, with a weight of λs [6]. The factor penalizes differences
between two time steps, ensuring smoothness of the trajec-
tory.

To find a valid trajectory we initialize the STOMP algorithm
with a trajectory that connects the start and end pose in the
Cartesian space. The algorithm computes for the trajectory
an associated cost at each time step. Based on this cost,
and following the equations in [6], a family of trajectories
is generated. Among this family, the trajectory with the
minimal cost is chosen to start a new iteration. During this
process the cost monotonically decreases. The algorithm has
no particular convergence criteria, the process is stopped after
a predefined number of iterations. The final value of cost
strongly depends on the start and goal configuration of the
trajectory, since these may alter the local minimum found
by STOMP. Fig. 3 shows an example of the evolution of the
trajectory cost after several iterations of STOMP.

5. LOGIC (HIGH-LEVEL) LAYER
This section describes the logic layer, which is in charge
of generating the sequence of steps required to assemble
the segmented mirror. First, the formal representation of
the problem as a graph search is introduced. Then, an
explanation on how the search is performed over this graph
and how the performance is enhanced is given. Finally, an
extension of the planning formulation to reuse previously
planned configurations for new assemblies is presented.

Formal representation

The assembly planning problem is represented using a graph,
where the nodes represent the sub assemblies of the final

Figure 3: Example of cost optimization in STOMP for a
particular trajectory.

telescope and the edges of the graph represent the transitions
between sub-assemblies, as presented in Fig. 4. Such tran-
sitions require motions of the robotic arm that have certain
influence on the satellite base orientation, i.e. they create
the disturbances we want to minimize. To find feasible
assembly sequences, we employ a disassembly-for-assembly
strategy, starting with the final assembly, and removing parts
consecutively until obtaining the initial mirror tile.

Figure 4: Graph representation of the assembly planning
problem. Each node represents a sub-assembly, starting from
the final configuration and transforming it until only the initial
(central) tile is left. The lowest cost path is the solution for
the assembly planning problem in the logic layer.

Formally, we define the graph G = (V,E), where V is the
set of nodes and E is the set of edges. Calling SMT to the
set of all the mirror tiles in the final telescope, then a node
n ∈ V contains a set of tiles smtn ⊆ SMT . An edge e is
defined between the nodes start and end, which involves the
movement of a set of mirrors smte = smtend − smtstart.
In the real system the set smte represents the tiles that are
pre-assembled before being set in their final position. For
simplicity of the analysis in this work, we assume ∀e ∈ V
that |smte| ≤ 3, which means that only up to 3 mirror tiles
can be assembled in one transition (see Fig. 5). Each of
the transitions has an assigned cost indicating the disturbance
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generated in the base by the movement required for the robot
to perform this assembly step. These costs are minimized in
the physical layer via the STOMP algorithm.

Figure 5: Example of the robotic system manipulating three
SMTs at the same time (golden ones). In our definition of the
problem, we assume that the robot is only able to move up to
3 tiles to simplify the computation of the motions.

The logic layer is also in charge of verifying certain con-
straints that the transitions must follow. First, it verifies that
all the mirrors in smte are connected between them. Such
condition ensures that the full set of mirrors can be moved in
one transition. The other condition checked in this layer is
the feasibility to connect the mirrors in smte to the already
placed mirrors. This is illustrated in Fig. 6, where valid states
are identified when none of the mirror tiles in smte has 3 or
more neighbors already placed, and the tiles in the remaining
assembly are all connected. These constraints are problem-
specific, i.e. they apply for our particular case of hexagonal
mirror tiles, but may vary for other shapes. Nevertheless, the
representation in the logic layer using nodes for subassem-
blies and edges for transitions can be generalized to other
shapes or assembly problems.

Figure 6: Examples of valid and invalid transitions. a) is a
valid transition, as all moving tiles (green) are connected and
none has 3 or more neighbors. b) is invalid since one tile in
the set smte (in red) has 3 or more neighbors. c) is invalid
since the already placed tiles do not form a unique island of
mirrors. d) is invalid because the tiles moved in one transition
are not connected between them.

The problem of minimizing the disturbances in the base dur-
ing the whole process is translated into a graph search. The
optimal path is the one minimizing the sum of the cost of the
edges, which is a well known problem in graph search. For-
mally, we look for the sequence of edges {ê1, ê2, ê3, ..., êt}
that minimizes

∑t
i=1 cost(ê

i) subject to êt.end = SMT ,
ê1.start = smt0 and êi.end = êi+1.start ∀i ∈=
{1, 2, 3, ..., t − 1}. This search is performed using an A*
algorithm, as explained in more detail below.

A* search

For the graph representation used in this problem, the most
common approach to find the cheapest path employs the
Dijkstra algorithm. This algorithm is useful when the cost
of all the edges is known, but in our case all these costs must
be first computed by the physical layer. Such computation is

possible but very time consuming, which is not desirable for
very large configurations due to the large number of possible
transitions. Therefore, the nodes and edges to be computed
have to be chosen in an intelligent manner, as provided by the
A* search.

The heuristic chosen for the A* search is the accumulated
disturbance in the base until reaching the given configuration,
divided by the amount of placed mirrors. Despite not being
a heuristic that guarantees finding the optimal solution, it
provides good empirical guidance for finding an adequate se-
quence fast. Another advantage of introducing such heuristic
is limiting the branching factor. Since the amount of possible
transitions in a given state is too high (in the order of hundreds
for a 20-tile mirror), it is good practice to prune already
some of the states that are not promising. This translates in
reducing the amount of nodes that are selected to be analyzed
in the future, which speeds up the planning process. The
pruning process is represented in Fig. 7.

Figure 7: Graph exploration during planning time, using
a branching factor of four as example. Only the best four
transitions according to the heuristic are kept to be analyzed
in the future, if required.

Re-use of previous planning

Given the modular nature of the segmented mirror tiles, it
is normal that previously planned structures appear as sub-
problems for new configurations. As the system evolves over
time, more information is gathered for each new configura-
tion planned. When a solution is found, it was already opti-
mized in both layers in a time-consuming process. Also, all
the sub-steps done in the solution are also optimal according
to the used heuristic. This can be reused recursively, in case
that the sub configuration is repeated again in future steps.
Because of this, not only the initial configuration solution is
stored, but also all the intermediate steps. We can extend the
algorithm as shown in Algorithm 1 to profit from previously
explored sub-steps in the assembly process.

6. EXPERIMENTS
In order to verify the correct behavior of our planner, we
exposed it to different scenarios and ran experiments to
verify each layer. For the physical layer we show two main
points. First, we verify the dynamic equations in a real
robotic system by executing trajectories and comparing our
simulation results with the measurements of the system, in
order to show that the whole model preserves zero momentum
in the system. Second, we verify the decrease of disturbances
in the base when the optimized trajectory is used, compared
to a non-optimized one.
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Algorithm 1: Search for solutions in the logic layer.
1PriorityQTELESCOPE ← ∅;
2SEARCH LOGIC LAYER (SMT, knownSOL, bMAX)
3 tactual ← SMT ;
4 while tactual ̸∈ knownSOL do
5 PriorityQNEW ← GENTRANSITIONS(tactual);
6 for bMAX do
7 tnew ← PriorityQNEW .pop(0);
8 tnew.parent← tactual;
9 tnew.accCost← tnew.accCost + tactual.cost;

10 PriorityQSAT .add(tnew);
11 end
12 tactual ← PriorityQTELESCOPE .pop(0);
13 end
14 while tactual! = SMT do
15 knowSOL.add(tactual);
16 tactual ← tactual.parent
17 end
18 knowSOL.add(tactual)

For the logic layer we show three different points. First, we
show how reusing previous plans can enhance the planning
times by requesting less calls to the physical layer. For this,
we run our planner for different telescope designs, with an
increasing number of mirror tiles (from 4 to 10). In all the
cases the central tile of the mirror is already placed, and
the robot places the remaining tiles. Second, we compare
the total disturbance perceived in the base for different cases
in two scenarios, one with our complete planning system
and another one without optimizing the assembly order nor
the trajectories. Again, the experiments are held for con-
figurations between 4 and 10 segments. Third, we show
the capabilities of our system for planning the assembly of
a telescope with a large number of mirrors (20). For all
these experiments, collisions between the mirror segments,
the robot arm and the satellite are taken into account.

Physical Layer

Figure 8: OOS-SIM setup, including a servicer satellite
carrying a robotic arm.

The verification of the physical model in the simulation and
the validation of the proposed optimization approach was
performed using the On-Orbit Servicing Simulator (OOS-
SIM) [7]. In the OOS-SIM (Fig. 8), a KUKA KR120 robot

generates the motion of the floating vehicle (satellite) using a
model-based multibody hardware-in-the-loop approach with
consistency of momentum [32]. A 7-DoF KUKA LWR-4+
robot is mounted on the satellite mock-up to provide the
actual robotic manipulator. The manipulator is equipped with
a gripper, which has a mass of 4.02Kg and inertia tensor of
I = diag (0.05, 0.05, 0.04), with diag indicating a diagonal
matrix. All the experiments were performed with this load.

The first objective of the physical experiments was to demon-
strate the compliance between the satellite motion in a rele-
vant environment (OOS-SIM) and the simulations employed
in this paper. Fig. 9 compares the disturbance of the satellite
base over a complete trajectory. Note that there is a minor
difference between the physical robot behavior and the simu-
lation, which is mainly attributable to unmodeled effects that
include joint encoder noise and admittance dynamics of the
KR120 robot.

Figure 9: Attitude of the OOS-SIM satellite base over
time for simulated (“sim”) data vs OOS-SIM measured data
(“real”).

We also tested the performance of our optimization of the
base disturbance. For our experiments we first selected a goal
pose of the end-effector in Cartesian space. Then, we use the
STOMP algorithm to find a path using 30 samples along the
trajectory. These 30 sample points are then interpolated to get
a smooth trajectory, which is sent to the robot controller with
a sampling rate of 1ms. Fig. 10 and Fig. 11 show the non-
optimized and optimized trajectory, respectively. Note that
for the non-optimized trajectory the start and goal configura-
tions are connected quite directly with a cubic interpolation.
However, the optimized trajectory performs a more complex
motion in joint space in order to minimize base disturbances.

The generated trajectories can be reliably followed by the
robotic system. Thus, the next step is to measure the changes
in the attitude in the base, taking a closer look to the attitude
around the α, β, γ axis for the non-optimized (Fig. 12) and
optimized (Fig. 13) joint paths. The final displacement
around the α axis is 6 and 3 degrees for the non-optimized
and optimized trajectories respectively, already showing a
significant improvement. For the β axis in both cases the
displacement ends up in zero, but it is important to point out
that we want to minimize the disturbance over the complete
trajectory, not only in the final configuration. The peak
displacement in the β axis is 2.5 and 1.5 degrees for the
non-optimized and optimized trajectory respectively, again
showing an improvement.

We tested the approach with 11 different end effector poses.
In all the trajectories we were able to optimize the cost. How
big this improvement was correlates with the change of the
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Figure 10: Joint values of the LWR manipulator over time,
showing the incoming values q̂n from STOMP (using 30
timesteps) and the interpolated values q̂n, with n the joint
number, for the non-optimized trajectory.

Figure 11: Joint values of the LWR manipulator over time,
showing the incoming values q̂n from STOMP (using 30
timesteps) and the interpolated values q̂n, with n the joint
number, for the optimized trajectory.

base attitude, in the best case an improvement of around 45%,
and an average of 18% for single trajectories, are obtained.
Note that the optimizer tries to move from the start to the
goal pose staying as close as possible to the center of mass of
the whole system2.

Finally, to prove the physical consistency of the experiments,
the locked velocity µ, which is proportional to the total
momentum generated on the OOS-SIM facility, is shown in
Fig. 14 for the optimized case. Note that µ ≈ 06 with peaks
within the bounds [−0.004, 0.004], which agrees well with
the experimental requirement of the zero-momentum case.
The variations in Fig. 14 arise due to the admittance dynamics
of the KR120. This is because it is required to track the model
based on the interpolated joint trajectory of only 30 sample
points, which leads to fast accelerations in the robot joints.

Logic Layer

The first aspect to verify with the logic layer enhancements
is how they speed up the search for a solution. As the
calls to the physical layer are the most time-consuming part
of our planner, minimizing them has direct impact on the
total time the system takes to solve a configuration. For the
analysis, several configurations were given to the planner, in
an increasing degree of difficulty (larger number of mirrors).
On one hand, the experiment is done without storing any
information, and on the other hand the information about

2A video of this experiment can be found in https://youtu.be/
r-Htx_MBGRc

Figure 12: Attitude of the base around α, β, γ for the non-
optimized trajectory, with data measured directly from the
OOS-SIM system.

Figure 13: Attitude of the base around α, β, γ for the opti-
mized trajectory, with data measured directly from the OOS-
SIM system.

previous solutions is used. Table 1 compares the number of
calls to physical layer when the system re-uses information
and when it does not. The results show a clear advantage
when information is re-used, particularly for complex cases,
where the amount of states to be visited grows exponentially.

The second analysis performed is the comparison of the
proposed planner using both layers, against non-optimized
trajectories nor sequences. In this case, for the collision and
dynamic model we used a satellite endowed with a robotic
arm (CAESAR, [17]) mounted on a linear rail, to enhance
its reachability (Fig. 15). The model includes the collision
models and masses and inertia tensors for all parts. In this
experiment we compare our method against a naive approach
were we simply compute collision-free trajectories, and the
mirror tiles are added one by one starting from the center and
going outwards. The metric for comparison is the sum of
the displacement α, β, γ added over the 30 time steps of the
trajectories, and also added over all the transitions required
for the assembly. The results are shown in Table 2. Even
for the small cases, an improvement of more than 50% is
detected. This happens for all the telescope sizes, reaching
improvements of almost 80% in two cases. This shows the
importance of an assembly planner that can consider the
dynamical requirements into the sequence plan. Such results
can have a big impact on the real execution, as this reduction
of changes in the base attitude is translated into less energy
required for the thrusters or reaction wheels to keep a fixed
position and orientation of the satellite.

As a final experiment, we show the capability of our system
to plan assembly sequences for big telescopes. For this, a
20 mirror tile telescope is created and given as an input. Our
system was fed with the previous examples, and has stored the
experience of those planned solutions. The solution sequence
to our problem is shown in Fig. 16. Note that the system
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Figure 14: Measured locked velocity (µ), which is propor-
tional to the total momentum generated on the OOS-SIM
facility during the experiment with optimized trajectory.

Table 1: EVALUATION OF NUMBER OF CALLS TO PHYSI-
CAL LAYER BY REUSING INFORMATION

# of
mirrors

calls to
physical layer

without
reusing

information

calls to
physical layer

with
reuse of

information

%
reduction

4 6 6 0.0%
5 12 12 0.0%
6 20 11 45.0%
7 38 34 10.5%
8 125 42 66.4%
9 58 36 89.9%

10 149 15 91.6 %

prefers to do transitions with larger sub-assemblies, and tries
to keep the sub-assembly symmetry around the axis defined
by the rail.

7. CONCLUSIONS AND FUTURE WORK
We have developed a planning system that generates the
assembly sequence and manipulator motions required to con-
struct the primary mirror for a telescope using segmented
mirror tiles. The approach uses a hybrid planner, with
a physic and a logic layer, which is able to diminish the
disturbances (changes in orientation) in the base significantly:
By as much as 65 % in some cases. The planner is also
capable of generating plans for large structures of up to 20
mirror tiles, and given more time to keep learning new partial
solutions, it can scale up to many more.

We have verified that the dynamic models on which our sim-
ulations in the physical layer are based are correct, by com-
paring the predictions of our simulations with measurements
taken in a real robotic system. In this scenario, we were also
able to verify how STOMP helps to significantly diminish the
disturbances in the base. Regarding the logic layer, we have
shown the importance of reusing information of previously
planned sequences. The number of calls to the physical layer
planner considerably decreased when the number of mirror
tiles increased. Lowering these calls has a direct impact on
the total planning time, since this computation is by far the
most time-consuming step.

We have demonstrated how the hybrid planner can solve
an assembly planning problem using as cost function the
minimization of perturbations on the satellite base. However,

Figure 15: Satellite setup for experiment done with a tele-
scope of 12 mirror tiles. The satellite consist of a rail where
the DLR CAESAR robot arm can translate and perform the
assembly operations. The image displays optimized motions
to grasp and place the last mirror tile at the desired position.
The optimized trajectory reduced 34% of the cost with respect
to the original trajectory. The red line shows the movement
of the mirror tile for its placement. Note that the optimizer
tries to keep the tile as close as possible to the center of mass
of the structure.

Table 2: EVALUATION OF THE TOTAL DISTURBANCE EX-
PERIENCED BY THE SATELLITE

# of
mirrors

Disturbances
non-optimized

plan (rad)

Disturbances
optimized plan

(rad)
%

reduction

4 1.08 0.50 53.3%
5 1.28 0.42 67.7%
6 1.62 0.57 65.1%
7 1.92 0.62 67.9%
8 2.10 0.44 79.0%
9 2.20 0.76 65.7%
10 2.37 0.52 78.1 %

any other cost function could be designed to adapt the planner
to a different domain. By separating the problem in two
layers we were able to perform a complex high level plan
while taking into consideration the dynamic constraints of the
system. This would not have been possible if we had seen the
whole process in only one dimension.

Another potential use of this planner is in risk assessment for
assembly operations. Thanks to the two-layer approach, it
is simple to keep a same plan in the logic layer but giving
more limitations in the physical layer. By doing so we could
test for instance the same sequence of tasks but reducing
or enhancing the capabilities of the robot (to analyze the
influence of other factors such as joint failures, limited skill
sets or modified lengths of the robot links), which would
provide a better idea of the robustness to failures of the overall
assembly plan.

Finally, there are some aspects that could be improved. For
instance, STOMP cannot ensure an optimal solution in a finite
amount of time, so we can only approach the overall optimum
with certain probability. Also, better feedback might be used
between both layers to extend the knowledge gathered in one
execution, so that the acquired knowledge can be applied
not only for the assemblies that repeat exactly the same
pattern, but also for other assemblies that include similar (not
identical) sub-assembly patterns.
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Figure 16: Solution given by our planner for assembling a large telescope with 20 mirror tiles. The sequence of steps is provided
for the disassembly, the assembly process would follow the inverse order. The black rectangle in the first configuration shows
the position of the linear rail (Fig. 15).
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closed form computation of the dynamic matrices and
their differentiations,” in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2013, pp. 2364–
2359.

[31] H. Mishra, M. De Stefano, A. M. Giordano, R. Lam-
pariello, and C. Ott, “A geometric controller for fully-
actuated robotic capture of a tumbling target,” in Proc.
American Control Conf. (ACC), 2020, pp. 2150–2157.

[32] H. Mishra, A. M. Giordano, M. De Stefano, R. Lam-
pariello, and C. Ott, “Inertia-decoupled equations for
hardware-in-the-loop simulation of an orbital robot with
external forces,” in Proc. IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS), 2020, pp. 1879–1886.

[33] K. Yoshida and D. N. Nenchev, “A general formulation
of under-actuated manipulator systems,” in Robotics
Research, Y. Shirai and S. Hirose, Eds. Springer, 1998,
pp. 33–44.

[34] G. Garofalo, B. Henze, J. Englsberger, and C. Ott, “On
the inertially decoupled structure of the floating base
robot dynamics,” IFAC-PapersOnLine, vol. 48, no. 1,
pp. 322–327, 2015.

[35] H. Mishra, M. De Stefano, A. M. Giordano, and C. Ott,
“A nonlinear observer for free-floating target motion
using only pose measurements,” in Proc. American
Control Conf. (ACC), 2019, pp. 1114–1121.

BIOGRAPHY[

Ismael Rodrı́guez received his degree
of Ingeniero en Electrónica from Uni-
versidad ORT Uruguay in 2015. Since
2016 he is pursuing a Ph.D. in Robotics
at the German Aerospace Center (DLR)
in Weßling. His research is focused on
the development of an assembly planner
that is aligned with the requirements of
the mass customization phenomenon.

Jean-Pascal Lutze received his B.Eng
degree in Robotic and Automation from
Heilbronn University of Applied Sci-
ences. Since 2017, he is part of the Insti-
tute of Robotics and Mechatronics at the
German Aerospace Center (DLR). Since
2019 he is pursuing his Master degree in
Robotics, Cognition, Intelligence at the
Technical University of Munich (TUM).
His main focus is space robotics.

Hrishik Mishra is a research associate
at the German Aerospace Center (DLR),
focused on orbital robotic systems. He
received his M.Sc. in Satellite Appli-
cation Engineering from the Technical
University of Munich (TUM), Germany,
in 2017. In 2010 he received his B.Tech.
in Electrical and Electronics Engineer-
ing from the Biju Patniak Unversity of
Technology (BPUT), India. At DLR, his

research is directed towards whole-body control, shared con-
trol, and hardware-in-the-loop simulation of orbital robots.

Peter Lehner is a researcher at the
Institute of Robotics and Mechatronics,
German Aerospace Center (DLR), since
2014. He received his master’s degree
in Computer Engineering from the Tech-
nical University of Berlin in 2014. His
current research activities include devel-
oping methods for autonomous motion
generation for mobile manipulation sys-
tems to empower mobile robots to au-

tonomously interact with their environment.
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