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Abstract

The major task of laminar-turbulent transition modeling for the boundary layer is to predict
the transition line on solid surfaces in order to accurately compute the skin friction. A correct
computation of the skin friction is important for the design of the surface geometry of new aircrafts,
especially for the wing. One method of transition prediction is the local correlation-based transition
modeling, which strongly relies on the use of transition criteria. There are separate transition
criteria for different transition mechanisms. In this thesis, three different transition criteria for
crossflow instability dominated transition (CFT) are analyzed: The C1 criterion of Arnal et al.
(1984), the helicity criterion of Grabe et al. (2018), and the criterion of Langtry et al. (2015). They
are assessed with regard to their accuracy, judged by means of simulations of several wind tunnel
experiments reported in the literature. The transition in the simulations is either set manually
(fixed transition) or computed by the γ-R̃eθt transition model with CFT extension using the C1
criterion (free transition).
The present analysis is motivated by the following facts: For certain test cases the prediction of the
transition line based on the C1 and the helicity criteria is inaccurate in comparison to other test
cases. In addition, the transition prediction using Langtry’s criterion is not implemented in the used
fluid dynamics solver TAU, yet. But evaluating the accuracy of Langtry’s criterion with respect to
transition prediction by means of fixed transition simulations is possible nevertheless. The analysis
shows whether the implementation of approach of Langtry et al. (2015)would be worth the effort.
These are the findings for the C1 criterion: For shape factors H12 > 2.43 the crosswise displacement
thickness Reynolds number Reδ2 at the transition location can be correlated well with the shape
factor for many test cases. For lower shape factors the original correlation equation is suited good
for the flow around a prolate spheroid and an infinite swept cylinder but not for the flow around
two wing-like geometries. Therefore, for low shape factors a reformulation of the C1 criterion is
proposed, which is implemented into the fluid dynamics solver. It is presented that computations
with the γ-R̃eθt transition model with CFT extension using the adapted C1 criterion yield almost
no improvement of the transition lines compared to computations with the original C1 criterion.
Explanations for that fact are suggested which show general deficiencies of the transition prediction
model.
The helicity Reynolds number ReHe relevant for the helicity criterion cannot be well-correlated
with the shape factor H12 at the transition location among the several test cases. It is concluded
that the parameters of the helicity criterion are less appropriate for CFT prediction than the ones
of the C1 and Langtry’s criteria.
The momentum thickness Reynolds number Reθ of Langtry’s criterion can be correlated very well
with the non-dimensional crossflow strength Hcf at the transition location. As the original equation
of Langtry’s criterion does not cover the test cases optimally, an improved formulation is proposed.
The implementation of Langtry’s approach into the fluid dynamics solver TAU is recommended.
However, the sensitivity of the transition line prediction to an inaccurately computed momentum
thickness Reynolds number is high, as the transition momentum thickness Reynolds number Reθt
may have a streamwise slope similar to the one of the computed momentum thickness Reynolds
number Reθ.
Generally, the parameters for the CFT-criteria are approximated locally in the frame of the γ-R̃eθt
transition model with CFT extension. For the C1 approach, the accuracy of this approximation
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Abstract

is improved by recalibration of a certain model parameter, called critical-to-transition ratio C.
In the formulation of Grabe et al. (2018) it is a constant, but in present work a dependency of
the optimal value on the Reynolds number based on the streamwise chord length of the surface
geometry and the boundary layer edge state is found. The new C-correlation is implemented into
the fluid dynamics solver. Preliminary results for one test case are shown and discussed. Next steps
for a continuation of the work are suggested.

IV



Danksagung (Acknowledgements)

Ich danke der Abteilung C2A2S2E Göttingen des Instituts für Aerodynamik und Strömungstechnik
des Deutschen Zentrums für Luft- und Raumfahrt für die Möglichkeit der Erstellung diese Arbeit.
Insbesondere muss ich mich bei Dr. Daniela François für die großartige Betreuung bedanken: You
helped me a lot in our numerous discussions, so thank you very much!
Auch ihrem Kollegen Dr. Normann Krimmelbein gilt mein Dank dafür, dass ich an seinem reichen
Erfahrungsschatz zur Transitionsmodellierung, insbesondere der linearen Stabilitätstheorie, teilhaben
konnte. Ich möchte mich auch beim Gruppenleiter Dr. Andreas Krumbein für die wertvollen
Anmerkungen zu meiner Arbeit bedanken.
Ebenso danke ich Prof. Dr. Julius Reiss vom Fachgebiet Numerische Fluiddynamik der Technischen
Universität Berlin für die Begutachtung dieser Arbeit. Seinem Kollegen Dr. Mathias Lemke danke
ich dafür, dass er bei organisatorischen Fragen immer nur ein Telefonat entfernt war.

V



Contents

Abstract III

Danksagung (Acknowledgements) V

List of figures XI

List of tables XII

Nomenclature XIII

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theoretical Fundamentals and State of the Art 4
2.1 Mean Flow Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Mathematical Description and Non-Dimensional Parameters . . . . . . . . . 4
2.1.2 Boundary Layer Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Flow Around a Swept Wing Flow . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Turbulence Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Turbulence Modeling with the Menter Shear Stress Transport k-ω Model . . . . . 12
2.4 Transition Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Transition Types in Swept Wing Flows . . . . . . . . . . . . . . . . . . . . 16

2.5 Transition Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Relationship to the Turbulence Model . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 The eN -Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Local Correlation-Based Transition Modeling with Transition Criteria . . . 21
2.5.4 The γ-R̃eθt Transition Transport Model . . . . . . . . . . . . . . . . . . . . 22
2.5.5 Extension of the γ-R̃eθt Model to Transition due to Crossflow Instabilities . 24

3 Numerical Methods 30
3.1 Statement of the Numerical Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Requirements for an Accurate Numerical Solution . . . . . . . . . . . . . . . . . . . 35

4 Definition of Calibration Test Cases 37
4.1 Identification of Appropriate Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Selection of Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Identification of the Wind Tunnel Test Conditions . . . . . . . . . . . . . . 38
4.1.3 Specification of the Simulation Domain . . . . . . . . . . . . . . . . . . . . 38

4.2 Description of the Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 ONERA D Infinite Swept Wing . . . . . . . . . . . . . . . . . . . . . . . . . 39

VI



Contents

4.2.2 NLF(2)-0415 Infinite Swept Wing . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 NACA 642A015 Infinite Swept Wing . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 HQ26N/14.82 Infinite Swept Wing . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.5 Infinite Swept Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.6 TELFONA Pathfinder Wing . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.7 Inclined 6:1 Prolate Spheroid . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.8 TU Braunschweig Sickle Wing . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Assessment of Transition Criteria by Simulations with fixed Transition 63
5.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Results for Individual Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 ONERA D Infinite Swept Wing . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 NLF(2)-0415 Infinite Swept Wing . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 NACA 642A015 Infinite Swept Wing . . . . . . . . . . . . . . . . . . . . . . 68
5.2.4 HQ26N/14.82 Infinite Swept Wing . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.5 Infinite Swept Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.6 TELFONA Pathfinder Wing . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.7 Inclined 6:1 Prolate Spheroid . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.8 Sickle Wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Synopsis of the Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.1 C1 Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 Helicity Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.3 Langtry’s Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Application of the Adapted C1 Criterion for Free Transition Prediction . . . . . . 75
5.4.1 NLF(2)-0415 Infinite Swept Wing . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 TELFONA Pathfinder Wing . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.3 Inclined 6:1 Prolate Spheroid . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.4 Infinite Swept Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Recalibration of the Critical-to-Transition Ratio for the local C1 Approach 95
6.1 Recalibration Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Derivation of a New Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Application of the New Correlation for Free Transition Prediction . . . . . . . . . . 99

7 Conclusion 102
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Deutsche Zusammenfassung 106

B List of Test Cases for Crossflow Instability Dominated Transition 108

C Lists of the Selected Test Case Configurations 109

D Local Approximations of integral Boundary Layer Parameters 114
D.1 The Local Approach of Langtry and Menter . . . . . . . . . . . . . . . . . . . . . . 114
D.2 Local C1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
D.3 Local Helicity Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

VII



Contents

D.4 Langtry’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

E Sensitivity of the Transition Prediction to Inaccurate Reynolds Numbers 118

F Alternative Correlations for Crossflow Instability Dominated Transition 120

G Mathematical Conventions for this Thesis 124

Bibliography 125

VIII



List of Figures

2.1 Velocity profile of a three-dimensional boundary layer . . . . . . . . . . . . . . . . 10
2.2 Reynolds decomposition of a fluctuating variable . . . . . . . . . . . . . . . . . . . 11
2.3 Tollmien-Schlichting waves (here created by a forced excitation of the boundary

layer) [43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Tollmien-Schlichting instability dominated transition of a boundary layer [56] . . . 17
2.5 Sketch of the stationary crossflow instability vortices on a swept wing [43] . . . . . 18
2.6 Amplification factor N for different wave frequencies (here denoted by ωi, i = 1, ...)

[43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 ONERA D test case: View of the grid around the airfoil . . . . . . . . . . . . . . . 40
4.2 ONERA D test case: Comparison of the measured and computed pressure coefficient

cp distributions, given as the pressure coefficient of the corresponding unswept wing
cp,Λ=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 NLF(2)-0415 test case: View of the airfoil together with the upper and lower wind
tunnel walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 NLF(2)-0415 test case: View of the grid around the airfoil . . . . . . . . . . . . . . 43
4.5 NLF(2)-0415 test case: Comparison of measured and computed pressure coefficient

cp distributions for the Reynolds number Recsw,usw
∞ = 3.725 · 106 . . . . . . . . . . . 44

4.6 NACA 642A015 test case: View of the grid around the airfoil . . . . . . . . . . . . 46
4.7 NACA 642015 test case: Comparison of the measured and computed pressure

coefficient cp distributions. Sweep angle Λ = 50◦, streamwise angle of attack
α = −2.5◦, Reynolds number Recsw,usw

∞ = 4.01 · 106, Mach number Ma = 0.0320 . . 47
4.8 NACA 642015 test case: Recreation of the plots of Boltz et al. [7] . . . . . . . . . . 48
4.9 NACA 642015 test case: Recreation of the plots of Boltz et al. [7] (points considered

for this thesis are marked) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.10 HQ26N/14.82 test case: View of the grid around the airfoil . . . . . . . . . . . . . 50
4.11 HQ26N/14.82 test case: Comparison of the measured and computed pressure coeffi-

cient cp distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.12 Swept cylinder test case: View of the grid around the cross section . . . . . . . . . 52
4.13 Swept cylinder test case: Comparison of the measured and computed pressure

coefficient cp distributions (sweep angle Λ = 55◦, Reynolds number Recn,usw
∞ =

1.6 · 106, Mach number Ma = 0.147) . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.14 TELFONA Pathfinder wing test case: View of the airfoil normal to the leading edge 54
4.15 TELFONA Pathfinder wing test case: View of the grid around the wing-body

configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.16 TELFONA Pathfinder wing test case: Comparison of the measured and computed

pressure coefficient cp distributions for Reynolds number Rec̄,usw
∞ = 20 · 106, lift

coefficient cL = 0.401, lower wing side . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.17 Prolate spheroid test case: View of the grid around the spheroid . . . . . . . . . . 57
4.18 Prolate spheroid test case: Evaluation points for CFT . . . . . . . . . . . . . . . . 58
4.19 TU Braunschweig Sickle Wing test case: Overall view of the grid . . . . . . . . . . 60
4.20 TU Braunschweig Sickle Wing test case: View of the grid around the airfoil . . . . 61

IX



List of Figures

4.21 TU Braunschweig Sickle Wing test case: Comparison of the measured and computed
pressure coefficient cp distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.22 TU Braunschweig Sickle Wing test case: Depiction of the analyzed transition locations
~xt on the upper surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 ONERA D test case: CFT criterion plot for the C1 criterion . . . . . . . . . . . . 78
5.2 ONERA D test case: CFT criterion plot for the helicity criterion . . . . . . . . . . 78
5.3 ONERA D test case: CFT criterion plot for the Langtry’s criterion . . . . . . . . . 79
5.4 NLF(2)-0415 test case: CFT criterion plot for the C1 criterion . . . . . . . . . . . 79
5.5 NLF(2)-0415 test case: CFT criterion plot for the helicity criterion . . . . . . . . . 80
5.6 NLF(2)-0415 test case: CFT criterion plot for Langtry’s criterion . . . . . . . . . . 80
5.7 NACA 642A015 test case: CFT criterion plot for the C1 criterion . . . . . . . . . . 81
5.8 NACA 642A015 test case: CFT criterion plot for the helicity criterion . . . . . . . 81
5.9 NACA 642A015 test case: CFT criterion plot for Langtry’s criterion . . . . . . . . 82
5.10 HQ26N/14.82 Test case: CFT criterion plot for the C1 criterion . . . . . . . . . . . 82
5.11 HQ26N/14.82 Test case: CFT criterion plot for the helicity criterion . . . . . . . . 83
5.12 HQ26N/14.82 Test case: CFT criterion plot Langtry’s criterion . . . . . . . . . . . 83
5.13 Swept cylinder test case: CFT criterion plot for the C1 criterion . . . . . . . . . . 84
5.14 Swept cylinder test case: CFT criterion plot for the helicity criterion . . . . . . . . 84
5.15 Swept cylinder test case: CFT criterion plot for Langtry’s criterion . . . . . . . . . 85
5.16 TELFONA Pathfinder test case: CFT criterion plot for the C1 criterion . . . . . . 85
5.17 TELFONA Pathfinder test case: CFT criterion plot for the helicity criterion . . . 86
5.18 TELFONA Pathfinder test case: CFT criterion plot for Langtry’s criterion . . . . 86
5.19 Prolate spheroid test case: Some wall-projected boundary layer edge streamlines

SE→Γ at the angle of attack α = 30◦ . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.20 Prolate spheroid test case: CFT criterion plot for the C1 criterion . . . . . . . . . 87
5.21 Prolate spheroid test case: CFT criterion plot for the helicity criterion . . . . . . . 88
5.22 Prolate spheroid test case: CFT criterion plot for Langtry’s criterion . . . . . . . . 88
5.23 Sickle Wing test case: CFT criterion plot for the C1 criterion . . . . . . . . . . . . 89
5.24 Sickle Wing test case: CFT criterion plot for the helicity criterion . . . . . . . . . 89
5.25 Sickle Wing test case: CFT criterion plot for Langtry’s criterion . . . . . . . . . . 90
5.26 C1 criterion plot for all test cases combined . . . . . . . . . . . . . . . . . . . . . . 90
5.27 Helicity criterion plot for all test cases combined . . . . . . . . . . . . . . . . . . . 91
5.28 Langtry’s criterion plot for all test cases combined . . . . . . . . . . . . . . . . . . 92
5.29 NLF(2)-0415 test case: Integral boundary layer parameters at the location of inter-

mittency production onset ~xP (γ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.30 TELFONA Pathfinder wing test case: Integral boundary layer parameters at the

location of intermittency production onset ~xP (γ) . . . . . . . . . . . . . . . . . . . 93
5.31 Prolate spheroid test case: Simulated skin friction coefficient cf distribution at angle

of attack α = 30◦, simulated with the adapted C1 criterion . . . . . . . . . . . . . 93
5.32 Swept cylinder test case: Computed streamwise distribution of the skin friction

coefficient cf and the intermittency γ at the wall normal position of the maximum
crosswise displacement thickness Reynolds number Redelta2. . . . . . . . . . . . . . 94

6.1 Flow chart of the recalibration approach for the critical-to-transition ratio C . . . 96

X



List of Figures

6.2 Optimal critical-to-transition ratio C for the local C1 approach for all test cases
combined with the momentum thickness Reynolds number Reθ is the argument . . 97

6.3 Plot of the chordwise distributions of crosswise displacement thickness Reynolds
numbers Reδ2 for the adapted C1 criterion, together with characteristic locations
marked by vertical lines (Test case configuratoin: NLF(2)-0415 infinite swept wing
with Recsw,usw

∞ = 2.486 · 106) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4 Optimal critical-to-transition ratio C for the local C1 approach, with the Reynolds

number Rec,e based on the streamwise chord and the boundary layer edge state as
argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 NLF(2)-0415 test case: Computed transition locations ~xt,cf in comparison to the
transition locations given by the adapted C1 criterion ~xt,criterion for different C-
correlation calibrations. Note that the C1 criterion does not take into account the
surface roughness, which is why the points for the different roughnesses collapse to a
single curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 Optimal critical-to-transition ratio C after one iteration of recalibration. The drawn
regression curve is given by equation 6.4. . . . . . . . . . . . . . . . . . . . . . . . . 101

F.1 Wall normal maximum Non-dimensional crossflow strenght max
yn∈[0,δ(~xt)]

HCF,B(~xt, yn)

vs. shape factor H12(~xt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
F.2 Momentum thickness Reynolds number Reθ(~xt) vs. shape factor H12(~xt) . . . . . . 121
F.3 Crosswise displacement thickness Reynolds number Reδ2(~xt) vs. wall normal maxi-

mum Non-dimensional crossflow strenght max
yn∈[0,δ(~xt)]

HCF,B(~xt, yn) . . . . . . . . . . 121

F.4 Wall normal maximum helicity Reynolds number max
yn∈[0,δ(~xt)]

ReHe,B(~xt, yn) vs. wall

normal maximum Non-dimensional crossflow strenght max
yn∈[0,δ(~xt)]

HCF,B(~xt, yn) . . . 122

F.5 Wall normal maximum helicity Reynolds number max
yn∈[0,δ(~xt)]

ReHe,B(~xt, yn) vs. cross-

wise displacement thickness Reynolds number Reδ2(~xt) . . . . . . . . . . . . . . . . 122
F.6 Momentum thickness Reynolds number Reθ(~xt) vs. crosswise displacement thickness

Reynolds number Reδ2(~xt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
F.7 Momentum thickness Reynolds number Reθ(~xt) vs. wall normal maximum helicity

Reynolds number max
yn∈[0,δ(~xt)]

ReHe,B(~xt, yn) . . . . . . . . . . . . . . . . . . . . . . . 123

XI



List of Tables

2.1 Root-mean-square roughnesses for different surface finishes for the NLF(2)-0415
infinite swept wing [49] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 ONERA D test case: Mesh properties . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 NLF(2)-0415 test case: Mesh properties . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 NACA 642A015 test case: Mesh properties . . . . . . . . . . . . . . . . . . . . . . 46
4.4 HQ26N/14.82 test case: Mesh properties . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Swept cylinder test case: Mesh properties . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 TELFONA Pathfinder wing test case: Mesh properties . . . . . . . . . . . . . . . . 55
4.7 Prolate spheroid test case: Mesh properties . . . . . . . . . . . . . . . . . . . . . . 57
4.8 TU Braunschweig Sickle Wing test case: Mesh properties . . . . . . . . . . . . . . 59

C.1 ONERA D test case: List of the selected CFT configurations of the experiments
by Manie et al. [36], augmented by eN -method results by Dr.-Ing. Normann
Krimmelbein. The normal angle of attack of the experiments is αn = 6◦. The
transition is detected at the lower wing side. . . . . . . . . . . . . . . . . . . . . . . 109

C.3 NACA 642A015 test case: List of the selected CFT cases of the experiments by Boltz
et. al. [7]. The transition measurements are for the upper wing side. . . . . . . . 109

C.3 NACA 642A015 test case: List of the selected CFT cases of the experiments by Boltz
et. al. [7]. The transition measurements are for the upper wing side. . . . . . . . 110

C.3 NACA 642A015 test case: List of the selected CFT cases of the experiments by Boltz
et. al. [7]. The transition measurements are for the upper wing side. . . . . . . . 111

C.2 NLF(2)-0415 test case: List of the selected CFT configurations of the experiments by
Dagenhart and Saric [11]/Radeztsky et al. [49], augmented by eN -method results by
Dr.-Ing. Normann Krimmelbein. The sweep angle is Λ = 45◦. The angle of attack is
α = −4◦. The transition is detected at the upper wing side. . . . . . . . . . . . . 112

C.4 HQ26N/14.82 test case: List of the selected CFT configurations of the experiments
by Seitz et al. [61]. Note that for the simulations the normal angle of attack αn,CFD
must to be used rather than the streamwise angle of attack αsw,CFD. . . . . . . . . 112

C.5 TELFONA Pathfinder wing test case: List of the selected CFT configurations of the
experiments by Perraud et al. [44], augmented by eN data by [59] . . . . . . . . . 113

C.6 Swept cylinder test case: List of the selected CFT configurations of the experiments
by Poll [47]. The angle of attack is α = 0◦. . . . . . . . . . . . . . . . . . . . . . . 113

XII



Nomenclature
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A m2 surfaace area
Ac - convective flux Jacobian matrix
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B - boundary layer
C 1 critical-to-transition ratio
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(ω)
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1
s2 cross diffusion of specific turbulent dissipation rate

CFL 1 Courant-Friedrichs-Lewy number
CHe,max 1 model coefficient
D N drag force
Dart. diss. - artificial dissipation
D(γ) kg

s m3 intermittency destruction
E - boundary layer edge
F2 1 model function
Fonset 1 model function
Fonset,1 1 model function
Fonset,2 1 model function
Fonset,3 1 model function
Fθt 1 model function
Fθt2 1 model function
H12 1 boundary layer shape factor
HCF 1 non-dimensional crossflow strength
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Kgeneral 1 general cut-off value for preconditioning
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s2 specific turbulent dissipation rate production
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s m3 production of transported transition momentum thickness
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1 Introduction

1.1 Motivation
Transport aircrafts shall operate as cost-efficient as possible, what saves fuel and thus reduces
exhaust gas. In addition, the flight time should be reduced, in order to increase the transport
performance. These aims are influenced mainly by the drag of the airplane, which, for steady state
flight, splits into the pressure and the viscous drag. On the one hand, as aircrafts fly with high
speed (transonic Mach number), compressibility effects invoke the generation of shocks in the flow
around the wing surface. These shocks strongly increase the pressure drag, and therefore the shock
strength should be kept low. This is achieved mainly by sweeping the wing, i.e. rotating it around
the vertical axis. On the other hand, the thin boundary layer on the body surface is responsible for
the viscous drag. This force can be influenced by an appropriate surface shaping. The most obvious
way for that is to keep the boundary layer state laminar (in contrast to turbulent). By doing
so, the apparent increase of the local fluid viscosity, characteristic for turbulent flow, is avoided.
Indeed, starting from the leading edge of the wing the boundary layer is usually laminar. But along
the streamlines, it tends to transition to the turbulent state. There are different transition types.
This work focuses on a specific type of natural transition. Along the streamlines in the boundary
layer, flow instability waves/vortices grow under many circumstances. When grown enough, the
instability waves trigger the laminar-turbulent transition of the boundary layer. An important task
of the engineering of the wing is to move that transition as downstream as possible by reducing the
instabilities’ growth rates.
One of the main engineering tools for assessing wing design alternatives with regard to laminar-
turbulent transition is computer simulation. There are multiple ways for transition prediction in
simulations. The methods should require minimal computational power, give accurate results, and
be easy to use by engineers or researchers. Especially the last aspect motivates the use of local
correlation-based transition modeling (LCTM). In this context, a model is a mathematical description
of simplified physical phenomena, based on certain assumptions. LCTM is less physics-based than
other transition prediction methods, for example the eN -method, but simpler. Often, transition
tranport models (TTM) are used that are formulated locally and correlation-based. These TTM
rely strongly on the use of transition criteria. These are correlations between boundary layer
parameters. They are expressed by locally formulated mathematical equations that hold for points
on the transition line. The accuracy of the transition criteria has a strong impact on the accuracy
of the whole transition prediction.
The thesis focuses on crossflow instability dominated transition (CFT). Crossflow instabilities arise
due to the spanwise flow (crossflow) inside the boundary layer, which is caused by the wing sweep.
The stronger the crossflow and the higher the surface roughness is compared to the boundary layer
thickness, the more crossflow instabilities are amplified. So if CFT takes place, it takes place near
to the leading edge of the wing. Then the majority of the wing surface is covered by a turbulent
boundary layer with high skin friction. This is why CFT should be avoided with high importance.
The present work is using the γ-R̃eθt transition transport model with different extensions for CFT.
Contrary to the aim of high accuracy, it is known that for certain test case configurations this
model gives poor results. For example for some configurations of the TELFONA Pathfinder wing
the CFT is predicted too upstream with respect to the measurements. The reasons for that are
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violated model assumptions of the LCTM and inappropriate calibrations of parameters/functions
within the correlation-based transition model. This thesis focuses on the latter, in particular the
CFT criterion and a certain model parameter called critical-to-transition ratio C. This parameter
is multiplied to the transition Reynolds number coming from the transition criterion.

1.2 General Approach
There are multiple CFT criteria proposed in the literature. In this work, the C1 criterion [3],
the helicity criterion [19] and Langtry’s criterion [31] are assessed. This is done by means of
several wind tunnel experiments reported in the literature. The test cases are simulated with fixed
transition. The transition is set downstream of the measured transition location or transition
location predicted by the eN -method, if such data is available. From now on, the transition
location given by the experiment or the eN -method is called reference transition location. The
laminar boundary layer parameters are evaluated at the reference transition locations. It is tried to
correlate these parameters with each other. It is checked whether the correlations coindide with the
C1, the helicity, and Langtry’s criterion. It turns out that an improvement of the correlation is
possible for the C1 criterion. Therefore, the adapted C1 criterion is implemented into the used fluid
dynamics solver and used for the free transition prediction, in order to judge the improvements of
the transition location prediction in comparison to the one by the original C1 criterion.
The TAU code of the German Aerospace Center (DLR) is used for the computations. In it the local
C1 approach using the C1 criterion and the local helicity approach using the helicity criterion are
implemented. Langtry’s approach [31] is not implemented, but Langtry’s corresponding criterion
can be analyzed nevertheless by means of fixed transition simulations. It will be identified whether
the implementation of Langtry’s approach for the CFT extension of the γ-R̃eθt would be worth the
effort.
Even if a CFT criterion was very accurate, the use of it by the LCTM might result in inaccurately
computed transition lines with respect to measurements. This is because the variables correlated in
a transition criterion are defined on the surface Γ of the body. In order to make the model local, the
variables of the transition criterion are replaced by appropriate local approximations that are defined
locally in the whole flow domain Ω. Therefore a specific model parameter, the critical-to-transition
ratio C of the local C1 approach, is recalibrated. In the original local C1 approach, it is a constant
C = 0.75. It turns out in the fixed transition analysis that the C1 criterion yields a better correlation
than the helicity criterion. Therefore, the recalibration of the critical-to-transition ratio is only done
for the local C1 approach. The new C-correlation is implemented into the fluid dynamics solver
and used for free transition prediction to evaluate the improvements of the transition prediction
compared to the one with the constant critical-to-transition ratio C = 0.75.

1.3 Structure of the Thesis
The thesis is structured as follows: Firstly, the theoretical background is given that is needed for
understanding the present work. This part is divided into the fundamentals of general aerodynamics,
turbulence phenomena and their modeling, and the transition phenomena and their modeling.
Secondly, the numerical methods for the solution of the equations of the physical model are described
by the statement of the partial differential equation problem, the spatial discretization, the temporal
discretization, and considerations about the numerical accuracy relevant for transition modeling.
Thirdly, the test cases for the analysis are presented by the list of test cases and general rules for the
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selection of appropriate configurations within the test cases, the general proceeding in case of missing
wind tunnel reference conditions, as well as the principle way of determining the simulation domain
Ω. Then the individual test cases are described by the corresponding experimental and numerical
setups, the comparison of measured and computed pressure distributions, and the concrete choice of
CFT configurations that will be taken into account for the analysis. Forthly, the transition criteria
are assessed/recalibrated by a detailed description of the fixed transition analysis of the test cases,
a show and interpretation of the results for the individual test cases as well as for a synopsis of
the test cases, and a check of the improvements of the computed transition lines in comparison
to the experiments. Fifthly, the recalibration of the critical-to-transition ratio C for the local C1
approach is presented. The methodology, derivation of a new correlation, and check of the accuracy
of the transition prediction with the new C-correlation by applying it to free transition prediction
is given. The final chapter consists of a summary of this work and an outlook to future work.
The softwares used are the fluid dynamics solver DLR TAU code for the numerical solution of the
model, Tecplot 360 of Tecplot Inc. for some visualizations, and Python with the PyTecplot library
of Tecplot Inc. for postprocessing.
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2 Theoretical Fundamentals and State of the
Art

This chapter provides the theoretical foundation needed for understanding the present work. In
addition, many notions are introduced which are used in the later chapters. Fluid flow in general,
boundary layer theory and flows around swept wings are explained. Turbulence is described both
from a phenomenological perspective and by the Menter SST k-ω turbulence model. Afterwards,
theory for laminar-turbulent transition of boundary layers on swept wings along with modeling
approaches are given. The latter is focused on the γ-R̃eθt transition transport model with extensions
for crossflow instability dominated transition.

2.1 Mean Flow Aerodynamics

2.1.1 Mathematical Description and Non-Dimensional Parameters

The fluid flow is characterized in each point ~xΩ of the flow domain Ω ⊂ R3 and for each time
t ∈ [0, tmax] (tmax is the end time) by the thermodynamical state and fluid motion. In the following,
the time dependency is dropped for brevity.
Thermodynamic state (static) variables are for example the density ρ, pressure p, temperature T
or internal energy ein. The thermodynamic state is uniquely defined by any two thermodynamic
variables and the other can be derived from them by material models. In this work, the fluid is air
and it is assumed to be an ideal gas, what means

p

ρ
= R̃ T, (2.1)

where R̃ = 287.0 J
kgK is the specific ideal gas constant of air at a chosen reference state. In addition,

the gas is assumed to be calorically perfect, which means

ein = R̃

γ̃ − 1 T, (2.2)

where γ̃ = 1.4 is the isentropic exponent, c̃v = R
γ̃−1 the isochoric heat capacity and c̃p = γ̃ c̃v the

isobaric heat capacity.
For the equations of motion, further constitutive laws are needed. The dynamic viscosity is assumed
to follow the Sutherland law [20]

µ = µref

(
T

Tref

) 2
3 Tref + Su
T + Su (2.3)

with the Sutherland reference viscosity µref = 17.16µ Pa s, the Sutherland reference temperature
Tref = 273.0K, and the Sutherland constant Su = 110.0K. In the equations of motion, often the
fraction ν = µ

ρ appears, and the name kinematic viscosity is given to it. Another material property
is the speed of sound a. Based on the relations for an isentropic change of state, for example

p

ργ̃
= const., (2.4)
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2 Theoretical Fundamentals and State of the Art

and the ideal gas law (equation 2.1) it is

a =
√
γ̃R̃T . (2.5)

Fluids conduct heat in the presence of temperature gradients. The thermal conductivity λ is the
corresponding proportionality constant. It is needed for the Prandtl number Pr = µc̃p

λ , which is the
ratio of the speed of momentum diffusion to heat diffusion. It is assumend to be Pr = 0.72 [20].
The fluid motion is defined by the change in position of the particles with time, i.e. the velocity
vector ~u = d~x

dt . By combining it with thermodynamic state variables, the Mach number

Ma := u

a
(2.6)

can be derived, where u ≡ ‖~u‖. By using the isentropic relation 2.4, the total state can be
defined, which is denoted by the subscript (·)0. It is the thermodynamic state of the flow if it was
isentropically decellerated to ~u = ~0. By combining the isenthalpic relation for a calorically perfect
gas

c̃pT + u2

2 = const. (2.7)

with the isentropic relation 2.4, the isentropic relations of gas dynamics can be derived:

p0
p

=
(

1 + γ̃ − 1
2 Ma2

) γ̃
γ̃−1

. (2.8)

The flow is present in the flow domain Ω with the boundary ∂Ω which contains the solid surfaces
Γ ⊂ ∂Ω, for example a wing surface. In many engineering applications, the interesting effect of a
flow is the aerodynamic force ~R onto the surface Γ :

~R =
w
Γ
σ(~xΓ )
︸ ︷︷ ︸
−pI+τ

v

·~n(~xΓ ) d2~xΓ =
w
Γ
−p(~xΓ )~n(~xΓ ) d2~xΓ

︸ ︷︷ ︸
~Rp

+
w
Γ
τv(~xΓ ) · ~n(~xΓ ) d2~xΓ

︸ ︷︷ ︸
~Rv

(2.9)

Hereby, σ is the stress tensor acting on the surface, τv is its viscous part, and ~n denotes the unit
normal vector of the surface Γ , pointing into Ω. I denotes the second order unit tensor. As it is
known empirically [23], the force R := |~R| is determined by the freestream velocity ~u, density ρ,
dynamic viscosity µ, body size/shape, and fluid compressibility. The freestream is the undisturbed
flow in absence of a body, denoted by the index (·)∞. Combining the named influences and applying
the Buckingham-Π theorem leads to a relation of non-dimensional terms, what can be written as
[23]

cR = f(Ma∞,Re∞). (2.10)

f denotes some function, cR = R
Aq∞

is the force coefficient, A is a characteristic surface area of
the body, and q = ρu

2

2 is the (incompressible) dynamic pressure. The freestream Reynolds number
is Re∞ = u∞ c

ν∞
. c is a characteristic length of the body (often the chord length). Equation 2.10

expresses that the force coefficient cR is mainly influenced by the freestream Mach number Ma∞
and freestream Reynolds number Re∞. If for R in cR only the component in flight direction is
inserted (drag force D), the drag coefficient cD is obtained. Analogously, the component of the
force ~R perpendicular to the flight direction (pointing up, lift force L) leads to the lift coefficient
cL.
The force R onto the body surface Γ can be separated into an inviscid ~Rp and a viscid part ~Rv.
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2 Theoretical Fundamentals and State of the Art

The inviscid part ~Rp comes from the pressure p acting onto the surface Γ . The pressure difference
p−p∞ is commonly non-dimensionalized by the freestream dynamic pressure q∞, giving the pressure
coefficient

cp(~xΩ) := p(~xΩ)− p∞
q∞

∀~xΩ ∈ Ω. (2.11)

The viscid force onto the body Γ comes from the shear stress tensor τv. In the integral for the
viscid force ~Rv in equation 2.9 the wall normal part is usually small. This motivates the definition
of the wall shear stress

~τw(~xΓ ) = τv(~xΓ ) · ~n(~xΓ )− (~n · τv · ~n)(~xΓ )~n(~xΓ ) ∀~xΓ ∈ Γ, (2.12)

which is the wall tangential component of the vector τv ·~n. Also non-dimensionized by the freestream
dynamic pressure q∞, that yields the skin friction coeffient

cf(~xΓ ) := |~τw(~xΓ )|
q∞

∀~xΓ ∈ Γ. (2.13)

The convention that its sign is flipped if the shear stress at the wall ~τw is directed upstream, i.e.
~u∞ · ~τw < 0, is applied.
The Mach number Ma describes the compressibiliy of the flow, as it compares the flow velocity u to
the speed of sound a, which determines the propagation speed of disturbances in the fluid. Albeit
obeying the same equations of motion, the fluid behaves phenomenologically different for different
Mach number regimes. If Ma(~xΩ) < 1 ∀~xΩ ∈ Ω, the flow is globally subsonic. For Ma < 0.3 the
flow almost behaves like incompressible flow (∂ρ∂p ≈ 0) and the influence of the Mach number Ma
in equation 2.10 is weak. If Ma(~xΩ) > 1∀~xΩ ∈ Ω \ B everywhere except in the boundary layer B,
the flow is globally supersonic. If the Mach number Ma is somewhere in the domain Ω above and
somewhere else (excluding the boundary layer B) below 1, the flow is transonic. Both in transonic
and supersonic flow, shocks occur in the presence of a solid surface Γ . This means that sudden
spatial changes of the flow state with high dissipation of kinetic energy into internal energy exist.
The Reynolds number Re describes the ratio of inertia to viscous forces. By that, it determines the
influence of friction shear stresses τ onto the mean flow. It also is a measure of how likely the flow
becomes turbulent, as viscous stress τ dampens (inviscid) flow instabilities. Thus, the Reynolds
number Re is an important quantity for transition.

2.1.2 Boundary Layer Theory

First, a mathematical convention is introduced:

(·)B(~xΓ , yn) ≡ (·)(~xΓ + yn ~n(~xΓ )) ∀(~xΓ , yn) ∈ Γ × R+ (2.14)

Verbally expressed, when any variable, that is defined in whole Ω, gets the index B appended, the
spatial arguments are passed in a different way: The surface position ~xΓ ∈ Γ and the wall normal
coordinate yn are given instead of the volumetric position ~xΩ ∈ Ω.
In contrast to the freestream flow state, at solid walls Γ the flow velocity vector ~u must be zero
(no slip condition). Therefore, a so-called boundary layer B ⊂ Ω evolves, which is a thin shear-
dominated layer of flow next to the wall Γ in which the velocity ~u(~xΩ) increases rapidly from zero
at the wall Γ to the boundary layer edge value at E = ∂B \ Γ . The flow outside the boundary layer
B is called the external flow Ω \ B.
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According to Prandtl [48], for sufficiently high freestream Reynolds numbers Re∞, the external flow
can be seen as approximately inviscid. The external flow is what determines the flow behaviour
in general, as many fluid dynamic phenomena can be described by inviscid models. On eof the
main effects of the presence of a boundary layer is the non-zero wall shear stress τw > 0 due to the
finite velocity gradient ∂n~u at the wall, what imposes a drag force onto the body. In addition the
boundary layer has a displacement effect of the inviscid flow outside the boundary layer, which can
be considered as a offset of the wall in wall normal direction ~n, what lets the body appear thicker
to the inviscid flow.
In the boundary layer B certain terms are negligibly small, for example the wall normal derivative
of the pressure ∂np(~xΩ) ≈ 0∀~xΩ ∈ B. The boundary layer velocity profile ~u(~xΩ)∀~xΩ ∈ B is the
main characteristic of the boundary layer and is influenced by the whole flow field Ω. In case of
certain idealized flow cases with laminar boundary layer the velocity profile ~u(~xΩ)∀~xΩ ∈ B can be
calculated analytically by solving the boundary layer equations [56].
The approximated boundary layer edge velocity is

ũe(~xΓ ) =

√√√√u2∞ + 2γ̃
γ̃ − 1

[
1−

(
pe(~xΓ )
p∞

)1− 1
γ̃

]
p∞
ρ∞
∀~xΓ ∈ Γ, (2.15)

coming from the compressible Bernoulli equation. In this work, the boundary layer thickness is
defined as the minimum wall normal coordinate at which the local velocity u reaches the 99% of
the approximated boundary layer edge velocity ũe:

δ(~xΓ ) := arg
yn∈R+

(uB(~xΓ , yn) = 0.99 ũe(~xΓ )) ∀~xΓ ∈ Γ. (2.16)

The exact boundary layer edge velocity is

ue(~xΓ ) := uB(~xΓ , δ(~xΓ )). (2.17)

From now on, the index "e" is used as a shorthand for the evaluation of a field quantity in wall
normal direction at the boundary layer edge E , i.e. (·)e(~xΓ ) ≡ (·)B(~xΓ , δ(~xΓ )) ∀~xΓ ∈ Γ .
Many properties of the boundary layer can be described by integral boundary layer parameters. An
integral boundary layer parameter has the form

φr (~xΓ ) =
w
yn=0∈R+

f(φB(~xΓ , yn))dyn ∀~xΓ ∈ Γ. (2.18)

According to that definition, integral boundary layer parameters are defined on the surface Γ .
Integral boundary layer parameters are less affected by numerical errors than the boundary layer
velocity profile u(~xΩ)∀~xΩ ∈ Ω [27]. Boundary layer edge variables can be seen as a special type of
integral boundary layer parameter (the integrand f in equation 2.18 then contains a mathematical
delta distribution).
The streamwise displacement thickness is

δ1(~xΓ ) :=
w δ(~xΓ )

0

(
1− ρBusw,B(~xΓ , yn)

ρeue(~xΓ )

)
dyn ∀~xΓ ∈ Γ. (2.19)
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It describes the offset/displacement effect mentioned above. The streamwise velocity ~usw is the
velocity component into the streamwise direction

~esw,B(~xΓ , yn) := ~ue
ue

(~xΓ ) ∀(~xΓ , yn) ∈ Γ × R+. (2.20)

The crosswise displacement thickness is

δ2(~xΓ ) := −
w δ(~xΓ )

0

ucw,B(~xΓ , yn)
ue(~xΓ ) dyn ∀~xΓ ∈ Γ. (2.21)

The crosswise velocity ~usw is the velocity component into the crosswise direction

~ecw,B(~xΓ , yn) := ~esw,B(~xΓ , yn)× ~n(~xΓ ) ∀(~xΓ , yn) ∈ Γ × R+. (2.22)

A third thickness parameter is the streamwise momentum thickness

θ(~xΓ ) :=
w δ(~xΓ )

0

ρBusw,B(~xΓ , yn)
ρeue(~xΓ )

(
1− uB,sw(~xΓ , yn)

ue(~xΓ )

)
dyn, ∀~xΓ ∈ Γ. (2.23)

It characterizes the momentum loss due to viscous friction inside the boundary layer.
The ratio of the displacement thickness to the momentum thickness is the shape factor

H12(~xΓ ) := δ1
θ

(~xΓ ), ∀~xΓ ∈ Γ, (2.24)

which describes how "bellied" the boundary layer velocity profile ~u(~xΩ) ∀~xΩ ∈ B is, as can be
seen by the momentum integral theorem of boundary layer theory. Thus, it can be correlated
with the streamwise pressure gradient ∂swp(~xΩ) inside the boundary layer (or at the boundary
layer edge ~xΩ ∈ E). The higher the shape factor H12, the less bellied the boundary layer velocity
profile ~u(~xΩ) and the higher the streamwise pressure gradient ∂swp(~xΩ). Since a positive, so-called
adverse pressure gradient leads to a stronger flow decelleration inside the boundary layer B than
at the boundary layer edge E , the flow can even be reversed inside the boundary layer B (flow
separation). This is why the typical maximum shape factor before laminar flow separation occurs
is H12,max ≈ 2.7.
The streamwise pressure gradient at the boundary layer edge can also be expressed non-dimensional.
The pressure gradient parameter is

λ2(~xΓ ) := θ2

νe
(∂sw u)e(~xΓ ) ≈ − θ2

µeue
(∂sw p)e(~xΓ ). (2.25)

A positive pressure gradient parameter λ2 > 0 means that streamwise pressure gradient at the
boundary layer edge is negative (favorable pressure gradient) or equivalently by energy conservation
that the flow is accelerated.
There is a fundamental difference between the laminar Blam and the turbulent boundary layer Bturb.
In turbulent flow in general, the momentum and energy exchange perpendicular to the mean flow
streamlines is much stronger than in laminar flow, which lets flow shear regions grow quicker by
diffusion. As a result of that, for the turbulent boundary layer Bturb the boundary layer thickness
δ is higher and the shape factor H12 is smaller than for the laminar boundary layer. The more
bellied the velocity profile is, the larger the wall normal derivative of the wall tangential velocity
and hence the wall shear stress τw. Thus the turbulent part of the boundary layer should be kept
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small, in order to keep the integrand of the integral for the viscid force ~Rv (see equation 2.9) and
thus the drag D low.
It is noted that between the surface Γ and the turbulent part of the boundary layer Bturb a viscous
sublayer is existing. It is present for non-dimensional wall normal coordinates y+ < 5, where

y+
B (~xΓ , yn) :=

yn

√
τw(~xΓ )

ρB(~xΓ ,yn)

νB(~xΓ , yn) . (2.26)

2.1.3 Flow Around a Swept Wing Flow

Aircrafts often operate in the transonic flow regime in order to save time. In the transonic flow
regime, somewhere in the external flow Ω \ B around the surface Γ the local Mach number
Ma(~xΩ)∀~xΩ ∈ Ω \ B becomes larger than unity. Along the respective streamlines respective
supersonic flow region ends with a shock that reduces the local Mach number Ma to below one.
Thas is because over convex surfaces it is impossible for locally supersonic flow to decellerate.
Over the shock, the pressure p increases, what reduces the lift L and increases its drag D (called
wave drag) of the wing. As the height of the pressure jump across the shock is determined by
the component of the velocity ~u normal to the shock front, the shock strength can be reduced by
making it oblique to the flow by sweeping the wing. Sweeping the wing means rotating it around the
vertical axis by the sweep angle Λ. The higher the sweep angle Λ, the higher the critical freestream
Mach number Ma∞,crit, which is the lowest freestream Mach number Ma∞ at which the flow is
transonic.
For inviscid flow over infinitely long swept rectangular wings (constant chord c), the pressure
coefficient cp on the wing can be related to the pressure coefficient of the corresponding unswept
wing cp,Λ=0 by

cp = cp,Λ=0 cos2 Λ. (2.27)

The consequence is that the pressure coefficient cp,Λ=0 of the unswept wing gets reduced by the
wing sweep. Put differently, the stronger the wing is swept, the lower is the streamwise curvature
and the lower the pressure change, i.e. the lower the pressure coefficient cp. One could also think of
it as an effective reduction of the streamwise angle of attack αsw, as

αsw = arctan(tanαn cosΛ) ≈ αn cosΛ (2.28)

with the angle of attack αn in the plane normal to the leading edge.
The combination of the wing sweep and streamwise pressure gradient causes a spanwise pressure
gradient. This develops a three-dimensional boundary layer profile ~uB(·, yn), which may be regarded
as a two-dimensional boundary layer profile with a superimposed secondary flow ~ucw in crosswise
direction (crossflow). The crosswise component ~ucw is zero both at the wall Γ and the boundary
layer edge E (see figure 2.1). The crossflow ~ucw exists, whenever the boundary layer edge streamline
is curved in a plane parallel to the wall. This can be motivated by the incompressible boundary
layer equation in the radial, i.e. crosswise direction [56, 15]:

ucw ∂cwucw(~xΩ)︸ ︷︷ ︸
crossflow term

− u2
sw
r

(~xΩ)
︸ ︷︷ ︸

centrifugal force

= − 1
ρ
∂cwp(~xΩ)
︸ ︷︷ ︸
pressure force

+ ν ∂2
nucw(~xΩ)︸ ︷︷ ︸

viscous force

∀~xΩ ∈ B. (2.29)
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Figure 2.1: Velocity profile of a three-dimensional boundary layer

r denotes the curvature radius of the streamline. Note that in equation 2.29 the radial direction was
replaced by the "cw" and the azimuthal direction by "sw" for an easier understanding. The radial
direction is not necessarily the one of equation 2.22, but can be the opposite direction, depending
on the sign of the streamline curvature. Because the velocity components are zero at the surface Γ ,
equation 2.29 reduces to

0 = −1
ρ
∂cwp(~xΓ ) + ν∂2

n ucw(~xΓ ) ∀~xΓ ∈ Γ. (2.30)

Per definition the crosswise velocity ucw vanishes at the boundary layer edge E . And the boundary
layer edge E is characterized by vanishing second derivatives of the velocity components. The
equation reduces to

−u
2
sw
r

(~xΩ) = −1
ρ
∂cwp(~xΩ) ∀~xΩ ∈ E . (2.31)

As ∂np(~xΩ) ≈ 0 ∀~xΩ ∈ B, it is ∂cw∂np(~xΩ) = ∂n∂cwp(~xΩ) ≈ 0 ∀~xΩ ∈ B and equation 2.31 can be
inserted into equation 2.30. It follows

u2
e
r

(~xΓ ) = ν ∂2
nucw(~xΓ ) ∀~xΓ ∈ Γ. (2.32)

The only way to fulfill this is ucw(~xΩ) < 0 ∀~xΩ ∈ B \ ∂B. The sign can be inferred from equation
2.29. In other words, a radially inwards directed crossflow must take place. The pressure gradient
at the boundary layer edge E is the same inside the boundary layer B, but the streamwise velocity
usw is becoming smaller towards the wall. Therefore, the pressure gradient invokes crossflow. Note
that the pressure gradient ∂cwp may flip the direction along the streamlines. This is the case when
the boundary layer edge streamline has an inflection point. The radial direction flips the sign.
Therefore the crosswise acceleration inside the boundary layer B flips the direction. Due to the
convection of the crossflow from upstream of the inflection point, an "S"-shaped crosswise velocity
profile ucw develops as a transition towards a fully radially inwards directed crossflow ucw. This is
why the streamwise distribution of the crosswise displacement thickness δ2 may have a sign flip.
The size of the crossflow component is dependent on the magnitude of the pressure gradient ∂cwp,
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the extend of the favorable pressure gradient region, and the boundary layer thickness δ [11].
The notion of the flow around an infinite swept wing is introduced. For this type of flow in spanwise
direction (tangential to the leading edge) the spatial derivatives of all flow variables are zero. Hence,
the flow is two-dimensional in the sense that the local flow state only depends on the chordwise
and a vertical coordinate perpendicular to the chordwise and spanwise direction. However, the flow
is still three-dimensional in the sense that vectorial quantities have three components (otherwise no
crossflow ucw would exist).

2.2 Turbulence Phenomena
The flow is either laminar, turbulent, or in a transition between both states. In laminar flow the
streamlines are smooth and well-ordered. In contrast, in the turbulent case all flow variables can be
regarded approximately as a superposition, the so-called Reynolds decomposition, of the mean flow
(denoted by an overbar (·)) and the spatiotemporal turbulent fluctuations (denoted by a dash (·)′).
For compressible flow there is a difference between the simple and the density-weighted Reynolds
decomposition, but this is neglected in this section. Figure 2.2 shows such a time dependent
unordered oscillation for the velocity u. The fluctuations are multiple orders of magnitude smaller

Figure 2.2: Reynolds decomposition of a fluctuating variable

than the corresponding mean flow variable. They are unordered and chaotic. In many engineering
applications only the effect of the turbulent vortices onto the mean flow rather than the details of
the turbulent fluctuations themselves is important [23]. This is why most often the turbulence is
analyzed statistically.
In turbulent flows, on the one hand, kinetic energy u2

2 of the mean flow is transformed into turbulent
kinetic energy

k(~xΩ) := u′2(~xΩ)
2 ∀~xΩ ∈ Ω, (2.33)

which characterizes the size of the turbulent velocity fluctuations. This transformation process
is called turbulence production and it is known that it is high whereever the mean flow velocity
gradient ∇~̄u is large [70]. On the other hand, turbulent kinetic energy k get dissipated into internal
energy ein of the mean flow. This turbulence dissipation is large whereever the gradient of the
velocity fluctuations is large, which corresponds to small vertices. This fact can be quantified by
the specific turbulent dissipation rate

ω(~xΩ) :=
ν (∂iu′j)2

k
(~xΩ), ∀~xΩ ∈ Ω, (2.34)

which is the ratio of the dissipation rate ν (∂iu′j)2 to the turbulent kinetic energy k.
The turbulent fluctuations strongly increase the diffusion of momentum ρ~u (apparent increase of
the fluid viscosity µ, denoted as the eddy viscosity µturb) and internal energy ein (apparent increase
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of the fluid thermal conductivity λ, denoted as the eddy thermal conductivity λturb) as well as of
any other diffused quantity in turbulent flows compared to laminar flows. As already mentioned in
the section about boundary layers, this increases the viscous drag force of the flow onto the body
surface Γ . Therefore, in case of the flow around airplanes, it is mostly seeked for laminar boundary
layers.
In this work only isotropic turbulence is considered, which means that the Reynolds stress tensor
ρu′iu

′
j is isotropic. This is a simplification of the reality that allows less complex turbulence modeling.

The turbulence intensity

Tu(~xΩ) :=

√
2
3k

u
(~xΩ), ∀~xΩ ∈ Ω. (2.35)

measures the relative size of the turbulent velocity fluctuations u′ to the mean flow velocity u. As
aircrafts are moving through resting air, the freestream turbulence intensity can have a value of
Tu∞ � 0.1%.

2.3 Turbulence Modeling with the Menter Shear Stress Transport
k-ω Model

The flow is modeled with convection-diffusion equations

∂tφ(t, ~xΩ)︸ ︷︷ ︸
transient term

+ ∂j(ujφ)(t, ~xΩ)︸ ︷︷ ︸
convective term

= ∂jdφ,j(t, ~xΩ)︸ ︷︷ ︸
diffusion term

+ sφ(t, ~xΩ)︸ ︷︷ ︸
source term

∀(t, ~xΩ) ∈ [0, T ]×Ω (2.36)

along with case-dependent boundary and initial conditions. φ is a placeholder for the transported
quantity and dφ,j is the diffusive flux. For brevity of the equations, the time and space dependence
is dropped for most of the equations from now on. In equation 2.36 in the underbraces the meaning
of the terms is given.
Convection-diffusion equations proved useful for the modeling of fluid flow, for example in case of
the Navier-Stokes-equations [23]. If φ is the mass density ρ, the momentum ρui or the total energy
ρet, respectively, one can formulate these (in the absence of source terms) as

∂t




ρ

ρui

ρet


+ ∂j




ρuj

ρuiuj + pδij

(ρet + p)uj


 = ∂j




0
τv,ij

τv,ijui − qj


 (2.37)

with the viscous shear stress tensor
τv,ij := 2µS∗ij , (2.38)

the deviatoric shear rate
S∗ij := Sij −

1
3Skkδij , (2.39)

the shear rate
Sij := 1

2(∂iuj + ∂jui), (2.40)

and the heat flux
qj := λ∂jT. (2.41)

In principle, equation 2.37 can be solved numerically in order to accurately predict the flow. But
to achieve a discretization-independent solution (direct numerical simulation), the spatiotemporal
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resolution has to be very fine for turbulent flows. Since the very small turbulent fluctuations are
not important for most engineering applications, the Reynolds decomposition for the primitive
variables (ρ, p, T , ui) may be inserted. Then the temporal average of the Navier-Stokes equation
over a certain time interval, that separates the mean flow from the turbulent fluctuations, gives the
Reynolds averaged Navier Stokes (RANS) equations (first three line in equation 2.43).
In the RANS equations, the Reynoldsstress tensor ρu′iu′j comes up, which describes the effect of
the turbulent fluctuations on the mean flow. It has to be modeled by a turbulence model (closure
problem). This also applies for the turbulent heat flux and a term related to the turbulence kinetic
energy diffusion in the total energy et equation. The Menter SST k-ω turbulence model [39]
(abbreviated as "SST model") is used for it. It is robustly numerically solvable, has only a weak
dependency on the farfield boundary ΓFF conditions for the turbulence quantities, predicts adverse
pressure gradient flows (including separation) relatively well. In addition, it is a good compromise
for simulation of anisotropic turbulence phenomena, despite being a model for isotropic turbulence
[39]. It is a linear eddy viscosity model, meaning that it is based on the observation that for
certain flows, the turbulence acts isotropically like an increase in dynamic viscosity µ (Boussinesq
hypothesis). Thus, the turbulent diffusion is assumed to be directed into the same direction as
the momentum diffusion, i.e. the deviatoric shear rate S∗ij (gradient diffusion hypothesis). The
same holds true for the thermal conductivity λ with the temperature gradient ∂iT , which is made
dependend on the eddy viscosity µturb. Under these assumptions, the overall effect of the turbulence
on the mean flow may be quantified by the viscosity ratio

Rturb(~xΩ) := µturb

µ
(~xΩ) ∀~xΩ ∈ Ω. (2.42)

It has a similar meaning as the turbulence intensity Tu, but also considers the turbulence dissipating
effect of the fluid viscosity µ.
By transformation of the Navier-Stokes equations via the Reynolds decomposition and dot multipli-
cation with the velocity fluctuation ~u′, a convection-diffusion equation for the turbulent kinetic
energy k can be derived (forth line in equation 2.43). Similarly, a convection-diffusion equation for
the specific turbulent dissipation rate ω could be derived, but it is very complicated and hard to
interprete. This is why the equation for the specific turbulent dissipation rate ω is formulated by
replacing k in the turbulent kinetic energy equation by the specific turbulent dissipation rate ω
and adapting the model coefficients for correct dimensions (last line in equation 2.43). The model
coefficients are formulated in terms of empirical correlations/model functions. The RANS equation
system along with the k and ω equations of the SST model is, where the overbars (·) are dropped
for simplicity

∂t




ρ

ρui

ρet

ρk

ρω




+ ∂j




ρuj

ρuiuj + pδij

(ρet + p)uj
ρkuj

ρωuj




= ∂j




0
(µ+ µturb)S∗ij

(µ+ µturb)S∗ijui − (λ+ λturb)∂jT + ρD(k)

(µ+ σ(k)µturb) ∂jk
(µ+ σ(ω)µturb) ∂jω




+




0
0
0

ρP (k) − ρβ(k)kω

ρP (ω) + ρC
(ω)
D − β(ω)ρω2



.

(2.43)
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The eddy viscosity is
µturb(~xΩ) = ρa1k

max{a1ω, ‖~ω‖F2}
(~xΩ) ∀~xΩ ∈ Ω. (2.44)

Hereby, ~ω = rot ~u is the vorticity and F2(~xΩ) is a switch function that is one approximately in the
boundary layer B and zero in the external flow Ω \ B. The eddy thermal conductivity is

λturb(~xΩ) = µturb(~xΩ) c̃p
Prturb

∀~xΩ ∈ Ω (2.45)

with the turbulent Prandtl number set to Prturb = 0.9.
The source ρD(k) for the ρet equation due to turbulent kinetic energy dissipation, the k-production
term ρP (k), the ω-production term ρP (ω), the ω-cross-diffusion term ρC

(ω)
D , and the F2-function

are functions of the flow variables and its derivatives and can be found in the literature [39] together
with the model constants σ(k), σ(ω), β(k), and a1.
When solving the turbulence model numerically, the turbulent kinetic energy k and the specific
turbulent dissipation rate ω may become negative in the presence of large transient terms and in
stagnation points, what may let the numerical solution diverge [13]. Thus, a lower limit of these
values is set. It is derived by reasoning that the eigenvalues of the Reynoldsstress tensor ρu′iu′j
must be positive, which implies a condition on the specific turbulent dissipation rate ω. It is

k(~xΩ) ≥ 10−5k∞

ω(~xΩ) ≥
√

3
2S
∗
ijS
∗
ij(~xΩ) ∀~xΩ ∈ Ω.

(2.46)

The turbulence model is also valid in the external (approximately inviscid, i.e. laminar) flow, as
the deviatoric flow shear S∗ij and thus the production P (k) of turbulent kinetic energy k are small
there. This introduces the issue of the so-called freestream decay of turbulent kinetic energy k and
related turbulence quantities. Importantly, the freestream turbulence intensity Tu∞ and viscosity
ratio Rturb

∞ can only be precribed at inflow/farfield boundary ΓFF of the domain Ω. The variable
values decrease from there along the streamlines towards the body because the turbulent production
terms P (k) and p(ω) are inactive while the sinks ρβ(k)kω and Φ(ω) +C

(ω)
D are active. It is important

to have a physically reasonable turbulence intensity Tu(~xΩ)∀~xΩ ∈ B because there the modeled
transition takes place, which may depend strongly on the turbulence intensity Tu(~xΩ) ∀~xΩ ∈ B. A
possible solution to this is to set a higher value for the freestream turbulence intensity Tu∞ and
viscosity ratio Rturb

∞ at the farfield ΓFF to counteract the decay [65]. This is not useful, as it is
very grid-dependent due to the often very coarse spatial discretization in the vicinity of the farfield
boundary ΓFF what leads to additional numerical diffusion. In this work a sustaining turbulence
technique is used, instead. Production terms are added to the turbulence equations:

k-equation: + β(k)ρk∞ω∞

ω-equation: + β(ω)ρω2
∞

(2.47)

The additional source terms counteract the turbulence freestream decay. Note that equation 2.47 is
only used for fully turbulent flow.
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2.4 Transition Phenomena

2.4.1 General Description

As in this work the focus is on the laminar-turbulent transition of boundary layers, only this type
of laminar-turbulent transition is considered in the following.
For low enough Reynolds numbers the flow is laminar. If the laminar flow is slightly disturbed by
freestream fluctuations or sound, these disturbances excite waves, e.g. two-dimensional Tollmien-
Schlichting instability waves or three-dimensional crossflow instability waves over a large range
of frequencies/wavelenghts. These waves are called primary instabilities. If the laminar flow has
a sufficiently large freestream Reynolds number (larger than the so-called indifference Reynolds
number), it is linear unstable. In this case the waves are frequency-selectively amplified and, when
sufficiently grown, invoke secondary instabilities. The secondary instabilities interact with the
primary ones to form complex three-dimensional waves, whose vortices break down, form turbulence
spots, and finally lead to a fully turbulent flow state. This transition mechanism is called natural
transition, as it is driven by the growth of flow instability waves. Other types are bypass and
separation-induced transition. [58]
As described in the introduction, for the boundary layer on aircraft surfaces Γ a large area of
laminar boundary layer is preferred in order to reduce the skin friction part of the drag force D.
This can be achieved by enforcing a high indifference Reynolds number. A way for that is to avoid
inflection points in the boundary layer velocity profile. This is because (if the assumptions of the
Rayleigh equation of flow instability hold) an inflection point is at least a necessary condition for
inviscid instability waves [43].
The state of whether or not a flow is laminar or turbulent can be described by the space- and
timedependent intermittency γ(~xΩ) ∀~x ∈ Ω. For a fixed point, it is defined as the ratio of times of
the presence of turbulent flow to the total time in some moving time interval. So an intermittency
of γ ≈ 0 means the flow is fully laminar and an intermittency of γ ≈ 1 means the flow is fully
turbulent. The intermittency γ is distributed continuously in space and time, in other words, the
change from laminar to turbulent flow is continuous process that takes some time/space.
Some mathematical notations are introduced. The streamline through the point ~xΩ ∈ Ω is denoted
by S(~xΩ). The turbulent part of that streamline is

Sturb(~xΩ) = {~̃xΩ ∈ S(~xΩ) : γ(~̃xΩ) ≈ 1} ∀~xΩ ∈ Ω. (2.48)

The transition location of the streamline through ~xΩ ∈ Ω is

~xt(~xΩ) := argmin
~̃xΩ∈Sturb(~xΩ)

~̃xΩ ·
~u

u
(~̃xΩ). (2.49)

Expressed verbally, the transition location of a streamline is the first point along the streamline at
which the intermittency γ reaches approximately one or is at least significantly larger than zero.
In the context of boundary layers, commonly the whole boundary layer at once is called laminar/-
turbulent, even if the streamlines inside the boundary layer transition at different points ~xt. For
engineering purposes usually the higher wall shear stress τw is the most important difference of a
turbulent boundary layer to a laminar one. Therefore, the transition of the whole boundary layer is
determined by the transition of the streamlines in the close vicinity to the wall, as the increasing
turbulence there leads to an apparent increase the fluid viscosity and hence the wall shear stress τw.
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Therefore, the integral boundary layer intermittency is introduced as

γr (~xΓ ) := lim
yn>0,yn→0

γB(~xΓ , yn) ∀~xΓ ∈ Γ, (2.50)

which characterizes the laminar/turbulent state of the whole boundary layer at once. The boundary
layer edge streamline SE(~xΓ ) ⊂ E is introduced, which is the "streamline" calculated by the wall
tangential part of the boundary layer edge velocity ~ue(~xΓ ).1 For boundary layers, the notions
"upstream" and "downstream" are defined based on the boundary layer edge streamlines SE . Also
defined is the wall normal projection of the boundary layer edge streamline

SE→Γ (~xΓ ) = {~̃xΓ ∈ Γ : ~̃xΓ + δ(~̃xΓ )~n(~̃xΓ ) ∈ SE(~xΓ )} ∀~xΓ ∈ Γ. (2.51)

Similarly to equation 2.49, the transition location ~xt(~xΓ ) of the boundary layer is the most upstream
wall point on the wall normal projection of the boundary layer edge streamline SE→Γ (~xΓ ) at which
the integral boundary layer intermittency γr (~xt) ≈ 1. The set of all boundary layer transition
locations is the transition line T ⊂ Γ . In wind tunnel experiments the transition line is found by
visualization of the wall shear stress τw or heat transfer q, which are significantly higher in case of
a turbulent boundary layer. These visualitations show a relatively sharp distinction between the
laminar and the turbulent boundary layer. However, in simulations the skin friction coefficient cf is
used to define the computed transition line, as the main goal of transition prediction is to predict
the viscid part ~Rv of aerodynamic force ~R. In this work the transition line is defined by means of
the maximum curvature of the skin friction coefficient cf as

T (CFD) = {~xΓ ∈ Γ : argmax
~̃xΓ∈SE→Γ (~xΓ )

∂2
sw cf (~̃xΓ )}. (2.52)

Here, ∂sw means the streamwise derivative along the wall normal projected boundary layer edge
streamline SE→Γ (~xΓ ).

2.4.2 Transition Types in Swept Wing Flows

Tollmien-Schlichting Instabilities

For boundary layers on wings, the most common transition phenomenon is the one driven by
Tollmien-Schlichting instabilities (called TST in the following). They are the driving instability
waves for boundary layers without crossflow. They develop as two-dimensional, streamwise traveling
harmonic waves with a phase speed less than the boundary layer edge velocity. In figure 2.3
Tollmien-Schlichting-waves are depicted. If the waves become large, they get distorted and interact
with each other, forming three-dimensional waves and so-called lambda-vortices. These disaggregate
to form turbulent spots, which grow until the whole boundary layer flow is turbulent, see figure 2.4.
The transition line of TST is relatively smooth and straight, as the Tollmien-Schlichting-instability
mechanism is two-dimensional.
Tollmien-Schlichting instability amplification rates are very sensitive to the turbulence intensity Tu
in the boundary layer. If the environment has a large turbulence intensity Tu, Tollmien-Schlichting
instabilities may even be bypassed to directly trigger the so-called bypass-transition. Typically,

1Note that the boundary layer edge streamline is no real streamline, as the real streamline necessarily cross the
boundary layer edge E. This can intuitively be understood by the fact that the boundary layer thickness δ is zero at
the leading edge of the surface Γ . If no streamlines crossed the boundary layer edge E, the flow inside the boundary
layer would have to develop from nowhere [27].
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Figure 2.3: Tollmien-Schlichting waves (here created by a forced excitation of the boundary
layer) [43]

Figure 2.4: Tollmien-Schlichting instability dominated transition of a boundary layer [56]

this is the case in turbomachinery where the flow is highly disturbed due to the unsteady flow
around the moving blades, but not in the flow around airplanes, which is mostly steady state and
with a resting freestream. Another major influence on the amplification of the Tollmien-Schlichting
waves is the pressure gradient parameter λ2. The lower its value/the stronger the adverse pressure
gradient, the higher the amplification.

Crossflow Instabilities

As figure 2.1 already shows, the three-dimensional boundary layer has additional inflection points
in the crosswise velocity profile, which act destabilizing onto flow stability. Thus, the crossflow is
connected to a new instability mechanism, that may cause transition (called CFT in the following).
In contrast to Tollmien-Schlichting instability waves, crossflow instability waves come in two types:
stationary and traveling [55].
In environments of low turbulence intensities characteristic of flight, stationary waves dominate
and are responsible for the transition, if it is a CFT. These waves look like vortices and can be
seen in figure 2.5. The wavenumber vector of the stationary waves is almost perpendicular to
the boundary layer edge streamline. Thus, the convection of the crosswise velocity fluctuation
due to the instability waves leads to a large streamwise velocity fluctuation [55], which is also
stationary. This modification of the mean flow in streamwise direction leads to an alternating
pattern of acceleration and decelleration of the streamwise flow and strong wave amplification, that
rapidly leads to transition. The alternation pattern can be seen in visualizations of the transition
line T , that show a "saw-tooth" shape of the transition line. Contrary to the TST, the stationary
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Figure 2.5: Sketch of the stationary crossflow instability vortices on a swept wing [43]

CFT is relatively insensible to the turbulence intensity Tu. (Nevertheless, in the literature [3] the
so-called C2-criterion is formulated, which includes the influence of the turbulence intensity Tu,
but is based on very little information.)
On the other hand, traveling crossflow instability waves dominate the CFT if the turbulence intensity
is high enough (Tu > 0.15 %, except through sound, which does not have an influence [55]). The
transition line is more straight then.
Another major influence onto both stationary and traveling crossflow instability wave amplification
is the surface roughness (coming from the manufacturing process, for example). This was proven
by translating a wind tunnel model of a swept wing with the result that the stationary saw-tooth
transition line pattern of the stationary CFT stays fixed to the model [41]. This is especially
important as the roughness height is large relative to the small boundary layer thickness δ in the
vicinity of the leading edge of the wing. It is important to note that the surface profile along
some test distance must be considered with its complete spectrum of wavelengths. The different
wavelengths contributions interact differently with the crossflow transition vortices [55]. Hereby, it
is noted that convex surface curvatures increases and the non-parallelism of the inviscid streamlines
decreases the receptivity, i.e. the sensitivity, to surface roughness.
It is known that concave surface curvature stabilizes stationary crossflow instability vortices and
convex surface curvature destabilizes stationary crossflow instability vortices [66].
It is noted that the crossflow instability waves may interact with the Tollmien-Schlichting instabiliy
waves, if both are relatively large. In this case the transition takes place more upstream than when
only one of the two types of flow instability is present.

Other Transition Types in Swept Wing Flow

Separation-Induced Transition: If the laminar boundary layer detaches from the surface, i.e. an
adverse streamwise pressure gradient ∂swp > 0 forces a backwards directed flow inside the boundary
layer, the flow is strongly sheared at the boundary layer edge, what generates turbulent fluctuations.
These are traveling into the laminar separation region and force it to become turbulent. As
turbulent boundary layers are less sensitive to adverse pressure gradients (lower shape factor H12),
the separated flow may attach shortly downstream of the laminar separation. The small region
of backwards directed flow is called a laminar separation bubble. Laminar separation bubbles are
identified by a negative skin friction coefficient cf, as the flow is directed backwards inside the
boundary layer.
Shock-Induced Transition: In transonic or supersonic flow, shocks appear which are characterized by
a sudden change of the fluid state across it. These shocks touch the surface Γ somewhere and hence
are also present in (the supersonic part of) the laminar boundary layer. The strong adverse pressure

18



2 Theoretical Fundamentals and State of the Art

gradient due to the jump of the static pressure p across the shock causes a laminar separation
bubble and hence a separation induced transition.
Attachment Line Instability: The attachment line is the three-dimensional analogon to a stagnation
point in two dimensions. On the attachment line, a spanwise boundary layer develops, and the
three-dimensional flow features another type of instability, called attachment line instability wave.
These instabilities may be bypassed in case of the so-called leading edge contamination: The
turbulent boundary layer on the fuselage can interact with the laminar boundary layer at the wing’s
leading edge in the vicinity of the wing root. Then the laminar boundary layer directly becomes
turbulent there.
Görtler Instability: If the boundary layer edge velocity ue is high enough and the wing surface is
concave, periodically distributed counter-rotating vortices may appear, whose axes are directed
streamwise. These come together with a rotatory momentum gradient towards the wall, which acts
as a source of instability. [43]
Streamline-Curvature Instability: Near the stagnation point at the leading edge, streamlines are
strongly curved by large pressure gradients. A model example of this is the flow along a swept
cylinder flow [55]. The streamline-curvature instability is similar to the crossflow instability, but for
highly curved streamlines, it leads to a transition more upstream. The cause for it is a centrifugal
term in the equations of linear stability analysis [33].

2.5 Transition Modeling

2.5.1 Relationship to the Turbulence Model

The RANS equations together with a turbulence model (equation 2.43) are only useful for simulating
fully turbulent flow, in particular a fully turbulent boundary layer. To take into account that the
boundary layer may be laminar, the turbulence model must be "switched off", depending on the
local intermittency γ(~xΩ)∀~xΩ ∈ B. In case of the SST turbulence model with the γ-R̃eθt model
used for this thesis, the destruction D(k) of total energy et and the corresponding production P (k)

of turbulent kinetic energy k are modified [32]:

D̃(k)(~xΩ) = min{max{γeff(~xΩ), 0.1}, 1.0 }D(k)(~xΩ)

P̃ (k)(~xΩ) = γeff(~xΩ)P (k)(~xΩ) ∀~xΩ ∈ Ω.
(2.53)

The effective intermittency γeff combines the influences of different transition mechanisms. It is
similar to the intermittency γ (γ = 0 is laminar, γ = 1 is turbulent), but is only a model parameter
used to scale the destruction D(k) and production P (k). The reason for the min/max limiters can
be found in [32].
The SST turbulence model is calibrated to be fully active in the external flow. Therefore, the
effective intermittency is γeff(~xΩ) ≈ 1∀~xΩ ∈ Ω \ B, even if the external flow is laminar in reality.
A trivial way for determining the effective intermittency γeff is to set the transition manually (fixed
transition). To be precise, the integral intermittency γr ( ~xΓ ) is set. This has an effect between the
wall and a user-chosen maximum wall distance dref, which is set slightly larger than the maximum
expected boundary layer thickness max

~xΓ∈Γ
δ(~xΓ ). So for points in the external flow Ω \ B above the

laminar boundary layer that are closer to the wall than dref, the destruction D̃(k) and production
P̃ (k) terms are incorrectly disactivated. As the external flow is inviscid, the influence of this
disactivation is negligible.
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However, in most of the cases the transition location ~xt is unknown and must be calculated by
means of a prediction method (free transition), i.e. a transition model.
When a transition model is applied, the sustaining turbulence terms (equation 2.47) are modified:

k-equation: + δΩ\Bβ
(k)ρk∞ω∞

ω-equation: + δΩ\Bβ
(ω)ρω2

∞γeff

δΩ\B(~xΩ) =





0 if ~xΩ ∈ Ω
1 otherwise

(2.54)

In order to let the transition modeling be unaffected, equation 2.54 shall only be applied outside
the boundary layer B. That is approximately achieved by switching off the source terms for points
that are located closer to the surface Γ than dref.
Note that the equations given in this subsection already incorporate the use of a specific transition
model. Nevertheless, the general idea of switching the destruction D(k) and production P (k)

dependent on the laminar/turbulent state of the boundary layer is the same for all transition models
that can be coupled to the SST turbulence model.

2.5.2 The eN -Method

The eN -method is a transition prediction method. The sufficient condition for secondary instabilities
and thus natural transition to occur is that the primary instability waves (e.g. Tollmien-Schlichting
waves) have grown enough, which can be computed by the spatial linear stability analysis of the
boundary layer B. In the linear stability analysis, simplified forms of the Navier-Stokes disturbance
differential equation are solved with a modal ansatz, yielding a wave form and a complex-valued
wave number for a given wave frequency f . The negative imaginary part of the wave number is the
amplification rate α. The amplification factor N can then be computed by the path integral of the
amplification rate along the streamline:

N(f, ~xΩ) =
w ~x
~x0
α(f, ~̃x) d~̃x (2.55)

~x0 is the indifference point, i.e. the most upstream point where the amplification rate α is larger
than zero. For each position ~xΩ , the maximum amplification factor Nmax(~xΩ) over has frequencies
to be found. This can be achieved by computing only a finite number of frequencies and drawing
an envelope around the maxima of the amplification factors, see figure 2.6. The N -factor of the

Figure 2.6: Amplification factor N for different wave frequencies (here denoted by ωi, i = 1, ...)
[43]

envelope at the transition location ~xt is called critical N-factor Ncrit. It is assumed that the
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critical amplification factor Ncrit is independent of the flow in Ω and thus more or less universally
valid for different flows. The critical amplification factor Ncrit gets calibrated for each instability
type individually (Tollmien-Schlichting instability, stationary or travelling crossflow instability,
attachment line instability, and others) by means of measurements of the transition location. For
example for flat plate often NTS

crit ≈ 13.5 for Tollmien-Schlichting instabilities is found [43]. The
transition location of the streamline through ~xΩ is then computed as

~xt(~xΩ) = arg
~̃xΩ∈S(~xΩ)

(max
f∈R+

0

N(f, ~̃xΩ) = Ncrit) ∀~xΩ ∈ Ω, (2.56)

i.e. the location of the (first) intersection of the computed maximum amplification factor N over
all frequencies with the critical amplification factor Ncrit. The procedure is done for all instability
types with the individual critical amplification factors Ncrit. The most upstream transition location
of the natural transition types is taken as the actual transition location ~xt.
The advantage of the eN -method over the local correlation-based transition modeling is that it uses
linear stability analysis for the determination of the transition location ~xt. Therefore, if the critical
amplification factor Ncrit is well-calibrated, the transition location ~xt due to natural transition can
be predicted with high accuracy. But in some cases it is difficult to find good calibrations for the
critical amplification factors Ncrit [28]. A further disadvantage is that the eN -method only works
for natural transition. In addition, for the solution of the Navier-Stokes disturbance differential
equation simplifications are introduced, for example the assumption of two-dimensionality of the
external flow [43]. In case of the flow over complex three-dimensional bodies, the results of the
transition location prediction may be inaccurate [28]. Furthermore, to extract boundary layer edge
streamlines with the flow variables on it in order to compute the amplification factors N complicates
the algorithmic parallelization of the fluid dynamics solver [18].

2.5.3 Local Correlation-Based Transition Modeling with Transition Criteria

Instead of solving instability problems, correlations for variables meaningful to transition may be
used. A correlation is an equation that links certain variables and that must be calibrated by means
of measurements and/or simulations. The correlations for the transition model are defined locally
∀~xΩ ∈ Ω and depend on the flow state in the domain Ω. Correlation-based transition modeling
is less physics-based than the eN -method and therefore less universally valid [32]. On the other
hand, it is easier to implement into a fluid dynamics solver. In addition, it requires less expert
knowledge for the practical application of the transition model [27]. In the local correlation-based
transition modeling (LCTM) the used correlations, evaluated for a given point ~xΩ ∈ Ω, only depend
on the local flow state in ~xΩ. This implies that no integral parameters and no track of certain
variables along the streamlines are used in the correlation. This is an approximation of the reality, as
transition is a non-local phenomenon [43]. The LCTM has the advantage over non-local approaches
that the algorithmic parallelization of the fluid dynamics solver is easier [32].
The term transition transport modeling (TTM) refers to the use of transport equations (convection-
diffusion equations of the type of equation 2.36) for the transition model. The transient, convection
and diffusion terms in the transport equations depend on the local state only (by definition of a
partial differential equation). The non-local "part" of transition may be contained in the source
terms of the transport equations. The source terms are often formulated correlation-based. An
important part of that is the transition criterion. A transition criterion is a correlation between
certain surface variables that holds at the transition line T . Often the surface variables are integral
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boundary layer parameters. In the context of the LCTM, these are approximated locally. Then the
transition criterion is used to calculate the source term of the TTM. Note that transition criteria
are independent of the concrete type of LCTM/TTM, such that it can be used for different types
of LCTM/TTM. Therefore, the transition criterion is calibrated separately from the rest of the
correlations involved into the transition model.
The γ-R̃eθt model [32] is a common instance of TTM which belongs to the LCTM. The used
transition criterion is

Reθ(~xΓ ) = fcriterion,γ-R̃eθt
( Tue(~xΓ ), λ2(~xΓ ) ) ∀~xΓ ∈ T , (2.57)

which is a correlation of the momentum thickness Reynolds number

Reθ(~xΓ ) := ue θ

νe
(~xΓ ) (2.58)

to the boundary layer edge turbulence intensity Tue(~xΓ ) and the pressure gradient parameter
λ2(~xΓ ), that holds on the transition line T . The criterion function fcriterion,γ-R̃eθt

can be found in
[32].
The transition momentum thickness Reynolds number

Reθt(~xΓ ) := fcriterion,γ-R̃eθt
(Tue(~xΓ ), λ2(~xΓ )) ∀~xΓ ∈ Γ (2.59)

is defined, which is the criterion function fcriterion,γ-R̃eθt
evaluated with the local integral boundary

layer parameters. Furthermore, the assumption

Reθ(~xΓ ) < Reθt(~xΓ ) ∀~xΓ upstream of T (2.60)

is introduced.2 Then the integral intermittency of the boundary layer is determined by

γr (~xΓ ) :=





0 if Reθ
Reθt

(~xΓ ) < 1

1 otherwise
∀~xΓ ∈ Γ. (2.61)

Expressed verbally: For every point ~xΓ ∈ Γ the computed Reynolds number Reθ(~xΓ ) is compared
to the transition Reynolds number Reθt(~xΓ ), in order to determine the integral intermittency
γr (~xΓ ).

2.5.4 The γ-R̃eθt Transition Transport Model

In the LCTM, the intermittency γ(~xΩ) must be defined locally ∀~xΩ ∈ Ω. This is achieved by the
transport equation for the intermittency γ [32]:

∂t(ργ) + ∂j(ργuj) = ∂j

[(
µ+ µturb

σ(γ)

)
∂jγ

]
+ P (γ) −D(γ) (2.62)

The destruction D(γ) is needed to provide a relaminarization ability to the model in case of strongly
accelerated flow. The equation for it as well as the model parameter σ(γ) can be found in the

2Assumption 2.60 may be justified by the fact that the computed Reynolds number Reθ(~xΓ ) is zero at the
leading edge and usually monotonically increasing streamwise. In addition ∂swReθt(~xΓ ) < ∂swReθ(~xΓ ) ∀~xΓ ∈ Γ
is usually fulfilled. Then, there is only one intersection of the streamwise distribution of the computed Reynolds
number Reθ(~xΓ ) with the streamwise distribution of the transition Reynolds number Reθt(~xΓ ). The intersection
location is claimed to be equal to the transition location ~xt.
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literature [32].
Note that the modeled intermittency γ is not a model for the real intermittency γphysical but just a
model variable used to find the correct modification of the k-production and k-destruction (equation
2.53). It is [32]

γeff = max{γ, γsep} (2.63)

with γsep being the intermittency in case of separation-induced transition. Its definition can be
found in [32]. The modeled intermittency γ is one in the external flow, even if the external flow is
laminar. And the modeled intermittency γ may be significantly larger than zero in the (physically)
laminar boundary layer Blam in order to compute the correct transition location ~xt.
In order to compute the intermittency production P (γ), equation 2.61 must be approximated locally
in ~xΩ. From now on, locally approximated quantities are denoted by a superscript (·)∗. The
local approximated momentum thickness Reynolds number Re∗θ(~xΩ) and the local approximated
transition momentum thickness Reynolds number Re∗θt(~xΩ) are derived in appendix D.1. Re∗θ and
Re∗θt are then used to compute the intermittency production term

P (γ) = Flength
√
γFonsetca1ρS(1− γce1) (2.64)

with
Fonset = max{Fonset,2 − Fonset,3, 0.0}, (2.65)

Fonset,1 = Re∗θ
Rec(R̃eθt)

, (2.66)

Fonset,2 = min{max{Fonset,1, F 4
onset,1}, 2.0}, (2.67)

and

Fonset,3 = max
{

1−
(

2
5R

turb
)3

, 0.0
}
. (2.68)

The definitions of the function Flength and the parameters ca1 and ce1 can be found in [32]. The
Fonset function serves as a switch for the intermittency production P (γ). The switching is mainly
controlled by equation 2.66, which is similar to the Reynolds number ratio Re∗θ

Re∗
θt

with two differences:
Firstly, the critical Reynolds number Rec(R̃eθt) rather than the local approximated transition
Reynolds number Re∗θt is used. The critical Reynolds number Rec(R̃eθt) is a function of the
transported transition momentum thickness Reynolds number R̃eθt, given in [32]. For the explanation
in this paragraph it is presupposed that R̃eθt = Re∗θt. By definition of Rec it is Rec(Re∗θt) < Re∗θt.
Thus, according to equation 2.66, the intermittency production P (γ) is triggered at a lower local
approximated momentum thickness Reynolds number Re∗θ than without the critical-to-transition
ratio C. This is done because the intermittency production P (γ) must start upstream of the
transition location ~xt due to a step in the derivation of the local approximated momentum thickness
Reynolds number Re∗θ:

Reθ(~xΓ ) ≈ max
yn∈[0,δ(~xΓ )]

Re∗θ,B(~xΓ , yn)∀~xΓ ∈ Γ (2.69)

For all wall positions ~xΓ ∈ Γ , the local approximated transition momentum thickness Reynolds
number Re∗θ,B(~xΓ , yn) is approximately equal to the real momentum thickness Reynolds number
Reθ(~xΓ ) at a certain wall normal coordinate yn. The intermittency production P (γ) will therefore
start at a point between the wall Γ and the boundary layer edge E . The corresponding wall position

23



2 Theoretical Fundamentals and State of the Art

is called critical location ~xc, which is upstream of the transition location ~xt.3 The intermittency γ
increases at the location ~xc + ~n(~xc) argmax

yn∈[0,δ(~xc)]
Re∗θ,B(~xc, yn) and gets convected downstream as well

as diffused towards the wall.4 Where the intermittency in the direct vicinity to the wall increases,
the production of turbulent kinetic energy P (k), the eddy viscosity µturb, the wall shear stress τw,
and hence the skin friction coefficient cf increases. This defines the computed transition location
according to the skin friction coefficient ~xt,cf .
Secondly, the transported transition momentum thickness Reynolds number R̃eθt rather than the
local approximated transition Reynolds number Re∗θt is used. In the external flow this makes only
a very small difference for the solution of the equations, as by construction it is

R̃eθt(~xΩ) ≈ Re∗θt(~xΩ), ∀~xΩ ∈ Ω \ B. (2.70)

Inside the boundary layer B equation 2.70 is false because the pressure gradient parameter λ2 needed
for equation 2.57 cannot be approximated well by using the local streamwise velocity derivative
∂swu(~xΩ) ∀~xΩ ∈ Ω. Therefore, the value from the boundary layer edge R̃eθt(~xΩ)∀~xΩ ∈ E shall be
transported into the boundary layer B by convection and diffusion. This is achieved by introducing
a transport equation for the transported transition momentum thickness Reynolds number R̃eθt
[32]:

∂t(ρR̃eθt) + ∂j(ρR̃eθtuj) = ∂j

[
σ(θt)(µ+ µturb) ∂jR̃eθt

]
+ P (θt) (2.71)

The R̃eθt-production term is

P (θt)(~xΩ) = cθt
ρ

t̃
(Re∗θt − R̃eθt)(1− Fθt(~xΩ))(~xΩ), ∀~xΩ ∈ Ω. (2.72)

The model parameters σ(θt), cθ, t̃ and Fθt can be found in the literature [32]. Fθt is a blending func-
tion that is zero approximately outside the boundary layer B (P (θt) is active) and one approximately
inside it (P (θt) is inactive). The source term P (θt) acts similar to a volume penalization, as outside
the boundary layer B the transported transition momentum thickness Reynolds number R̃eθt is
forced to the value of the local approximated transition momentum thickness Reynolds number
Re∗θt. In the boundary layer B, the forcing is switched off due to the Fθt-function. Therefore, the
transported transition momentum thickness Reynolds number R̃eθt is convected and diffused from
the boundary layer edge E into the boundary layer B.

2.5.5 Extension of the γ-R̃eθt Model to Transition due to Crossflow Instabilities

In the original γ-R̃eθt model only the following transition mechanisms were taken into account,
which are two-dimensional in its nature:

• TST
• Bypass transition
• Separation-induced transition

3The critical location ~xc does not have any physical meaning but is only workaround for the γ-R̃eθt model to
overcome the transition delay between the start of intermittency production P (γ) and the transition location ~xt.
In particular, ~xc is not the location of where the indifference Reynolds number is reached first. Also, the critical
location ~xc has nothing to do with the length of the transition region that can be measured in experiments.

4Note that downstream of the critical location ~xc the intermittency production P (γ) is still active. In addition, it
will also be activated for other wall normal coordinates than argmax

yn∈[0,δ(~xΓ )]
Re∗θ,B(~xc, yn) there, as the local approximated

momentum thickness Reynolds number Re∗θ increases streamwise. This accelerates the increase of the intermittency
γ in the vicinity to the wall Γ .
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If CFT shall be included, a so-called crossflow extension of the γ-R̃eθt model is possible by adding
a term to the intermittency production P (γ) [19]

P (γ) =


 Flength

√
γFonset︸ ︷︷ ︸

two-dimensional transition

+Flength,cw
√
γFonset,cw︸ ︷︷ ︸

CFT


 ca1ρS(1− γce1). (2.73)

The function Flength,cw = 5.0 is responsible for scaling the intermittency production P (γ) relative
to the convection/diffusion intermittency transport.
Fonset,cw is formulated analogous to the corresponding term of the original model:

Fonset,cw = max{Fonset,cw,2 − Fonset,cw,3, 0.0}, (2.74)

Fonset,cw,1 =
Re∗φ

C Re∗φ,t
, (2.75)

Fonset,cw,2 = min{max{Fonset,cw,1, F 4
onset,cw,1}, 2.0}, (2.76)

and

Fonset,cw,3 = max
{

1−
(

2
3R

turb
)3

, 0.0
}
. (2.77)

The concrete definitions of the Reynolds number Re∗φ (placeholder φ) and the corresponding
transition Reynolds number Re∗φ,t depend on the used transition criterion. The critical-to-transition
ratio C < 1 leads to an activation of the intermittency production P (γ) upstream of the transition
location ~xt, in the same manner as in the original model the critical Reynolds number Rec < Re∗θt
did.

Local C1 Approach for the Crossflow Extension

The local C1 approach [19] is the approach of using the C1 criterion for CFT [3] in the γ-R̃eθt
model. According to the C1 criterion for CFT, the relevant Reynolds number is the crosswise
displacement thickness Reynolds number5

Reδ2(~xΓ ) = |δ2|ue
νe

(~xΓ ), ∀~xΓ ∈ Γ. (2.78)

For the local C1 approach the critical-to-transition is C = 0.75. The C1 criterion of Arnal et al. [3]
reads

Reδ2(~xΓ ) = fcriterion, C1(H12(~xΓ )) ∀~xΓ ∈ T (2.79)

with the criterion function

fcriterion, C1(H12(~xΓ )) =





150.0 if H12(~xΓ ) ≤ 2.3
300
π arctan 0.106

(H12(~xΓ )−2.3)2.052 otherwise
∀~xΓ ∈ Γ. (2.80)

The C1 criterion does not take into account the effect of surface roughness. The test cases considered
by Arnal et al. [3] were:

5Note that the crosswise displacement thickness Reynolds number Reδ2 is zero if the crosswise displacement
thickness δ2 is zero, even if a zero displacement thickness δ2 does not mean that no crossflow exists. CFT can occur
nevertheless [43, 27]. Thus, the crosswise displacement thickness Reynolds number Reδ2 may be ill-suited for the
prediction of CFT in case of an S-shape of the crosswise velocity profile ucw(~xΩ)∀~xΩ ∈ B.
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• a swept cylinder by Poll [47]
• ONERA D infinite swept wing by DERAT [4] and by Manie et al. [36]
• NACA 642A015 infinite swept wing by Boltz et al. [7]

The C1 criterion was found by evaluating the shape factor H12 as well as the crosswise displacement
thickness Reynolds number Reδ2 in numerical computations of the boundary layer equations [3].
The variables were evaluated at the measured transition location ~xt ∈ Γ and subsequently a
regression curve from the point cloud Reδ2,m(H12,m),m = 1, ... , Nm (number of points Nm) was
determined.
For the local C1 approach the Reynolds numbers and the shape factor H12 must be approximated
locally, which is derived in appendix D.2.

Local Helicity Approach for the Crossflow Extension

A disadvatage of the local C1 approach is that it makes use of the Falkner-Skan & Cooke (FCS)
[16, 10]equations which are good approximations of the boundary layer velocity profile u(~xΩ) ∀~xΩ ∈
B only on wing-like surfaces and swept cylinders. The local helicity approach [19] is applicable more
generally to three-dimensional flow. It can be derived from the local C1 approach by neglection of
certain terms [19]. The Reynolds number relevant for the CFT criterion is the helicity Reynolds
number

ReHe,B(~xΓ , yn) = y2
n

νB(~xΓ , yn)
|HeB|
uB

(~xΓ , yn) ∀(~xΓ , yn) ∈ Γ × [0, δ(~xΓ )] (2.81)

He = ~u · ~ω is the helicity. Note that in general a high vorticitiy ‖~ω‖ is an indicator for the boundary
layer B in contrast to the approximately inviscid external flow, which often can be well-described by
potential theory, which assumes irrotational flow (vorticitiy ~ω = ~0). In boundary layers B without
crossflow, the vorticity vector ~ω is directed perpendicular to the flow direction, i.e. the dot product
~ω(~xΩ) · ~u(~xΩ) = He(~xΩ) = 0 ∀~xΩ ∈ B. In contrast, the helicity He is large if and almost only if a
crossflow component exists inside the boundary layer B.
For the helicity approach the critical-to-transition ratio is C = 0.7.
The transition criterion reads [19]

max
yn∈[0,δ(~xΓ )]

ReHe,B(~xΓ , yn) = fcriterion,He(H12(~xΓ )) ∀~xΓ ∈ T (2.82)

with the criterion function

fcriterion,He(H12(~xΓ )) = max(−456.83H12(~xΓ ) + 1332.7, 150.0) ∀~xΓ ∈ Γ. (2.83)

It does not take into account the surface roughness. It was developed by taking into account
simulations of the following wind tunnel experiments:

• ONERA D infinite swept wing by DERAT [4] and by Manie et al. [36]
• NLF(2)-0415 infinite swept wing by Dagenhart and Saric [11]
• 6:1 prolate spheroid by Kreplin et al. [26]

Similarly to before, the equation for the criterion was formulated by evaluating computed laminar
boundary layer parameters at the transition line T of the experiments and then drawing a regression
curve through the data points ReHe,t,m = fcriterion,He(H12,m), m = 1, ... , Nm. Again, the integral
boundary layer parameters used in the transition criterion must be aproximated locally. This is
derived in appendix D.3. Note that the helicity Reynolds number ReHe is already defined locally.
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Therefore one approximation less has to be introduced, which is an advantage of the local helicity
approach over the local C1 approach.

Langtry’s Approach for the Crossflow Extension

Langtry et al. [31] model the CFT in a different manner than the local C1 or helicity approach.
Instead of modifying the intermittency production term P (γ) by adding the CFT term in equation
2.73, a second source term is added to the convection-diffusion equation of the transported transition
momentum thickness Reynolds number R̃eθt:

P
(θt)
CF = cθt

ρ

t
cCF min

{
Re∗θt,CF − R̃eθt, 0

}
Fθt2 (2.84)

The model constant is cCF = 0.6, Re∗θt,CF is the local approximated CFT momentum thickness
Reynolds number coming from the CFT criterion given in equation 2.87, and Fθt2 is a switch for
activating the source term inside the boundary layer B and deactivating it outside. So the switching
of P (θt)

CF is reverse to the one of P (θt): The new production term P
(θt)
CF forces the transported

transition momentum thickness Reynolds number R̃eθt to be equal to the local approximated
CFT momentum thickness Reynolds number Re∗θt,CF inside the boundary layer B. By doing so,
according to equations 2.64 and 2.66, the intermittency production term P (γ) is triggered at lower
local approximated momentum thickness Reynolds numbers Re∗θ than without the the modification.
hus the transition is moved upstream.
The CFT criterion is defined using the non-dimensional crossflow strength

HCF,B(~xΓ , yn) = yn |HeB(~xΓ , yn)|
u2
B(~xΓ , yn) , (2.85)

which is based on the helicity He. The non-dimensional crossflow strength HCF is similar to the
helicity Reynolds number ReHe, except the latter includes the kinematic viscosity ν and other
exponents for the velocity u and the wall normal coordinate yn in order to non-dimensionalize the
helicity He.
The Reynolds number used to characterize the CFT is the momentum thickness Reynolds number
Reθ (equation 2.58). It is the same as for the original γ-R̃eθt model. Thus, it is possible to formulate
the CF extension differently than in the local C1 and the local helicity approach.
Langtry’s criterion [31] is6

Reθt,CF(~xΓ ) = max
yn∈[0,δ(~xΓ )]

fcriterion,Langtry

(
HCF,B(~xΓ , yn), hrms

θ(~xΓ ) , R
turb
B (~xΓ , yn)

)
∀~xΓ ∈ T (2.86)

with the criterion function

fcriterion,Langtry

(
HCF,B(~xΓ , yn), hrms

θ(~xΓ ) , R
turb
B (~xΓ , yn)

)
= froughness

(
hrms
θ(~xΓ )

)
+ 319.51

+ f+(∆HCF,+(HCF,B(~xΓ , yn), Rturb
B (~xΓ , yn)))

− f−(∆HCF,−(HCF,B(~xΓ , yn), Rturb
B (~xΓ , yn)))

∀(~xΓ , yn) ∈ Γ × R+

(2.87)

6For Langtry’s approach [31] the local approximated CFT momentum thickness Reynolds number is Re∗Langtry
θ

:=
θ∗Langtry u

0.82
ν) (~xΩ) ∀~xΩ ∈ Ω with the local approximated momentum thickness for Langtry’s approach θ∗Langtry.

This is why the factor 0.82 appears in [31]. The division of the local velocity u by 0.82 approximates the boundary
layer edge velocity ue, which is used in the definition of the standard momentum thickness Reynolds number Reθ.
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and

froughness

(
hrms
θ

)
= −35.088 ln hrms

θ
,

f+(∆HCF,+(HCF, R
turb)) = 6200∆HCF,+(HCF, R

turb) + 50000∆H2
CF,+(HCF, R

turb),

f−(∆HCF,−(HCF, R
turb)) = 75 tanh ∆HCF,−(HCF, R

turb)
0.0125 ,

∆HCF,+(HCF, R
turb) = max(0.1066−∆HCF(HCF, R

turb), 0),

∆HCF,−(HCF, R
turb) = max(−(0.1066−∆HCF(HCF, R

turb)), 0),

∆HCF(HCF, R
turb) = HCF

[
1.0 + min

(
Rturb, 0.4

)]

(2.88)

Note that Langtry’s CFT criterion includes the effect of distributed surface roughness. The root-
mean-square (RMS) roughness height hrms gets non-dimensionalized by the momentum thickness
θ which represents the fact that the transition is the more upstream the higher the roughness is
compared to the boundary layer thickness δ ∼ θ.
The RMS roughness of the surface is defined as

hrms =
√

1
|Γ |

w

Γ

h(~x)2d2~x, (2.89)

where h is the deviation of the surface profile from the mean contour. In case the roughness is
given by different parameters, these are defined, too. The arithmetic mean roughness is

hma = 1
|Γ |

w

Γ

|h(~x)|d2~x. (2.90)

If a sine-like roughness profile is assumed, it is hrms ≈ 1.11hma.7 A third way is the peak-to-peak-
roughness hp2p, whose definition is dependent on the used standard. In [49] it was hrms ≈ 0.37hp2p
for the painted NLF(2)-0415 infinite swept wing. In contrast, in [46] it was hrms ≈ 0.15hp2p for the
painted TU Braunschweig Sickle Wing.
Unfortunately, the roughness is not known for many wind tunnel experiments. Langtry et al. [31]
only had one test case (the swept NLF(2)-0415 infinite swept wing [49]) with three different known
surface roughnesses hrms for the calibration of the roughness function froughness.8 If the surface
roughness of the wind tunnel model is unknown, Langtry et al. [31] assumed a painted surface with
the hrms = 3.3µm according to table 2.1.

Table 2.1: Root-mean-square roughnesses for different surface finishes for the NLF(2)-0415
infinite swept wing [49]

surface finish RMS roughness
hrms in µm

painted 3.30
polished 0.50

highly polished 0.25

In Langtry’s approach the influence of the roughness is a shift of the CFT momentum thickness
Reynolds number Reθt,cf. The shift is proportional to the logarithm of the RMS surface roughness

7That can be shown by insertiong of a sine function into the integrals of equations 2.89 and 2.90.
8Note that, in [49], the surface roughness hrms = 0.25µm for the highly polished surface finish is the measured

value near the attachment line. In the midchord region the surface roughness is given as hrms = 0.10µm, instead.
This was not considered in the calibration of [31].
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hrms. The higher the roughness, the lower the CFT momentum thickness Reynolds number Reθt,CF.
This is independent of the other influences, i.e. the cross derivatives are zero:

∂

∂HCF

∂

∂hrms
fcriterion,Langtry(HCF,

hrms
θ

,Rturb) = 0 (2.91)

and
∂

∂Rturb
∂

∂hrms
fcriterion,Langtry(HCF,

hrms
θ

,Rturb) = 0. (2.92)

This is contrary to the observations described in section 2.4.2 about the influences on CFT, but it
is probably the strongest but reasonable simplification in order to take into account the surface
roughness in the model in any way.
The calibration of equation 2.87 took into account the following test cases [31]:

• inclined 6:1 prolate spheroid Kreplin et al. [26]
• NLF(2)-0415 infinite swept wing by Dagenhart and Saric [11]/by Radeztsky et al. [49]
• Further NLF(2)-0415 infinite swept configurations, for which the transition location ~xt was

computed by the eN -method

Furthermore, the Langtry CFT criterion depends on the local viscosity ratio Rturb(~xΩ)∀~xΩ ∈ Ω.
This does not mean that the viscosity ratio Rturb of the laminar boundary layer would be relevant
to the transition, but is needed to prevent an additional transition delay due to the local evaluation
of transition criterion [31].
In a paper by Venkatachari et al. [71] equation 2.87 has been improved to represent the experiments
better. This was done because the Reynolds numbers in the paper by Radeztsky et al. [49] for
the wind tunnel experiments of Dagenhart and Saric [11] appear to be offsetted to the left by
∆Re = 0.2mio. compared to the original data of Dagenhart and Saric [11]. This is probably a
mistake by Radeztsky et al. [49], but the data was taken by Langtry et al. [31] for their calibration
nevertheless. The second variant of Venkatachari et al. [71] is for installed configurations (in wind
tunnel experiments)

fcriterion,Langtry

(
HCF,

hrms
θ

,Rturb
)

= froughness

(
hrms
θ

)
+ 294.87 + f+(∆HCF,+)− f−(∆HCF,−)

(2.93)

with
froughness

(
hrms
θ

)
= −31.176 ln hrms

θ
. (2.94)

The terms f+(∆HCF,+) and f−(∆HCF,−) are unchanged to the original formulation. The CFT
momentum thickness Reynolds number Reθt,CF is lower for the equations of the installed configura-
tion than for the ones for the first variant of the transition criterion which is given by Venkatachari
et al. [71] for the free-air configurations. The difference in the CFT momentum thickness Reynolds
number Reθt,CF is approximately 25, which is very small, as can be seen later in the discussion of
the results for the recalibration. The calibration for the installed case is more trustworthy, as it is
a fit for data coming from a test case that had a large chord length relative to the wind tunnel
test section size (test case of the NLF(2)-0415 airfoil). From now on, whenever it is referred to
Langtry’s criterion, the modified version of Venkatachari at al. [71] is addressed.
In appendix D.4 it is described how the CFT momentum thickness Reynolds number Reθt,CF is
approximated locally.
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3 Numerical Methods

In this chapter the numerical methods for the solution of the partial differential equations are given.
First the partial differential equation problem is given in a well-posed manner, i.e. together with
the boundary and initial conditions used. Then the spatial discretization is derived. Even if steady
state problem are solved, a pseudo-time integration is applied. Therefore there is also a section
about the (pseudo-) temporal discretization. In the end the influence of the numerical solution
procedure on the results of the models is summarized.

3.1 Statement of the Numerical Problem
The system of nine non-linear convection-diffusion partial differential equations has to be solved for
the unknowns, the conservative variables

ρ, ρui, ρet, i = {1, 2, 3}︸ ︷︷ ︸
mean flow equations (RANS)

, ρk, ρω︸ ︷︷ ︸
turbulence model equations (SST)

, ργ, ρR̃eθt︸ ︷︷ ︸
transition equations (γ-R̃eθt)

. (3.1)

The equations are 2.43, 2.62, and 2.71.1 They are convection-diffusion equations, in other words
they have the form of equation 2.36, which is repeated here:

∂tφ(t, ~x) + ∂j (ujφ) (t, ~x)︸ ︷︷ ︸
convective flux Fc

= ∂j dφ,j (t, ~x)︸ ︷︷ ︸
viscous flux Fv

+sφ(t, ~x). (3.2)

Again, φ is a general placeholder for some flow variables. In the following, its dependence on the
time and position (t, ~xΩ) is dropped for brevity.
The flux Jacobians together with their eigendecompositions is introduced, which is exemplarily for
the convective fluxes

Ac(φ) = ∂Fc
∂φ

(φ) = T diag(λc) T−1 (φ) (3.3)

with the matrix of the eigenvectors T and the vector of the eigenvalues λc.
Commonly, the initial condition is the freestream state

φ(t = 0, ~xΩ) = φ∞ ∀(t, ~xΩ) ∈ [0, T ]×Ω. (3.4)

Often, the solution of a previous simulation was used for the initializiation, instead. Note that in
this work only steady computations are done, so the initial condition does not have any influence
onto the solution of the equation system. But the numerical solution quality may be influenced by
the initial condition, as a numerical pseudo-time integration is applied.
In this work the following types of boundaries are needed:

1Note that in the fluid dynamics solver TAU the variables are nondimensionalized through division by some
reference quantites, for example the freestream values and/or a the chord length c. By doing so, it is achieved that
the values for the nondimensional variables have approximately the same order of magnitude, which increases the
accuracy of the computation as the numbers are processed only with a finite number of digits.
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Farfield boundaries for freestream boundaries ΓFF serve as the in-/outflow of the domain Ω:

∇(·)(~x) = 0, ∆rentering(~x) = 0,

(ρ, ~u, p, k, ω, γ, R̃eθt)(~x) = (ρ, ~u, p, k, ω, γ, R̃eθt)∞, ∀~x ∈ ΓFF
(3.5)

∆rentering is the vector of the charateristic variable pertubations of the characteristics of the
convective fluxes that are pointing into the domain Ω. The condition is achieved by computing
the eigendecomposition of the convective flux Jacobian at the boundary, setting the corresponding
entries of the vector of the eigenvalues λc in equation 3.3 to zero, and transforming back. The
freestream state of the primitive variables is




ρ∞
~u∞
p∞
k∞
ω∞
γ∞

R̃eθt,∞




=




ρ∞
~u∞
p∞

3
2 (Tu∞ u∞)2

ρ∞k∞
Rturb
∞ µ(T∞)

1.0,
fcriterion,γ-R̃eθt

(Tu∞, λ2 = 0)




(3.6)

with the freestream density ρ∞, velocity ~u∞, pressure p∞, temperature T∞, turbulence intensity
Tu∞, and viscosity ratio Rturb

∞ . These values are specified by the user.

Symmetry boundaries Γsym are present when only a part of a flow is calculated, that contains
symmetry planes:

∂n(·)(~x) = 0, un(~x) = 0 ∀~x ∈ Γsymm (3.7)

In addition, to conserve the momentum ρ~u and total energy et at the symmetry plane during the
time integration, the pressure at the wall is increased appropriately to compensate the momentum
and kinetic energy losses due to the substraction of the wall normal component of the velocity un
in each timestep [12].

Adiabatic no-slip walls Γ are used for body surfaces:



~u

k

ω


 (~x) =




~0
0

60.0µ(~x)
β(ω)ρ(~x) d1(~x)2


 , ∂n




T

γ

R̃eθt


 (~x) =




0
0
0


 ∀~x ∈ Γ (3.8)

The model constant β(ω) of the k-ω-Menter-SST-model is used for the boundary condition of the
specific turbulent dissipation rate ω, which has a value dependend on the distance of the first grid
point above the wall d1. This is needed because theoretically the value should be set to infinity [12].

Adiabatic free-slip walls Γinv are applied for wind tunnel walls:

same conditions as for adiabatic no-slip walls Γ (except for ~u),

~u · ~n(~x) = 0 ∀~x ∈ Γinv
(3.9)

Equation 3.9 is applied for wind tunnel walls because the boundary layer on it is irrelevant in
most experiments. In addition, the wind tunnel walls are often shaped diverging such that the

31



3 Numerical Methods

flow between the wind tunnel wall boundary layers can be taken as the flow domain Ω with a
streamwise constant cross-section:

3.2 Spatial Discretization
The spatial discretization of the equations 3.2 is done by the finite volume method. Its advantages
are that unstructured grids can be used, non-smooth and even discontinuous solutions are possible,
and the convective term is discretized without numerical dissipation.
First, the equations 3.2 are rewritten into the form

∂t
w
ωc
φd3~x+

w
∂ωc

(φuj)nc,j d2~x =
w
∂ωc

dφ,jnc,j d2~x+
w
ωc
sφ d3~x, c = 1, ... , Nc (3.10)

which is the more general Reynolds transport theorem. ωc ⊆ Ω is a control volume/grid cell/element
(index (·)c specifies the element) that has the outward pointing unit normal vector ~nc. The elements

are an admissible decomposition of Ω =
Nc⋃
c=1

ωc, i.e. a grid/mesh of the flow domain. In TAU, the

dual-mesh/vertex-centered approach is used, which means that from the user-given mesh a so-called
dual-mesh is computed, whose cells have their midpoints at the nodes of the original mesh.
The boundary of the control volume is written as the union of its Nc,f parts γc,f (index f stands
for the face). The faces are assumed to be planar. Then, an integral over the boundary ∂ωc of the
control volume can be written as

w
∂ωc

φd2~x =
Nc,f∑

f=1

w
γc,f

φ d2~x, ∀c ∈ {1, ... , Nc}. (3.11)

The midpoint rule of numerical integration is used, which is for example for the set ωc
w
ωc
φ(~x) d3~x ≈ φc |ωc|, ∀c ∈ {1, ... , Nc}. (3.12)

φc is the value at the centroid of the cell ωc. It follows

∂tφ(~xω̄c) = sφ,c −
1
|ωc|

Nc,f∑

f=1
(φuj − dφ,j)c,f nc,j |γc,f |, ∀c ∈ {1, ... , Nc}. (3.13)

In equation 3.13 the link between the element centroid φc and the element face midpoint values
φc,f , which is called solution reconstruction, is missing, which couples the Nc equations. For the
mean flow equations, the central scheme with the average of fluxes is used, which states (φ is a
placeholder for a flux)

φc,f ≈
1
2 [φL + φR] +Dart. diss.

L,R , (3.14)

where the indices L and R indicate the midpoint values of the two (left and right) elements that
share the face γc,f = ∂ωL ∩ ∂ωR. The central scheme has a consictency order of two on an optimal
mesh (connection line between the cell midpoints of two adjacent cells is perpendicular to the
shared cell face) [6]. An artificial dissipation term

Dart. diss.
L,R = cart. diss.L,R [ε2[φR − φL]− ε4[L(φR)− L(φL)]] (3.15)
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is added, which introduces a small dissipation based on approximations of the second and forth order
gradients of φc,f . This is needed to make the numerical scheme stable, as otherwise a generation
of two independend numerical solutions may occur by odd-even-decoupling [6]. The operator L(·)
is similar to a numerical Laplace-operator. ε2 and ε4 are the second and forth order dissipation
coefficients. They are dependend on two user-defined coefficients, which are set to k1 = 1

2 and
k2 = 1

64 in this work [6]. The artificial dissipation coefficient cart. diss.L,R is roughly equal to the
maximum eigenvalue maxλc of the convective flux Jacobian Ac(φ) (scalar dissipation), such that
in the equations of all the conservative variables the same artificial dissipation coefficient is active.
Alternatively, it is different for each characteristic variable (matrix dissipation). Then the second
and forth order gradient approximations, when tranformed into the charateristic variables, are
scaled for each of them individually by the magnitude of the corresponding entry of the vector
of eigenvalues λc of the convective flux Jacobian Ac(φ). The matrix dissipation introduces less
dissipation than the scalar dissipation and is therefore more accurate [6] and used in this work
whereever possible. Nevertheless, the numerical solution of some simulations diverges, if initialized
with freestream conditions and using the matrix dissipation. In these cases it helps to use the scalar
dissipation for a few thousand iterations, after which it is switched back to the matrix dissipation.
The central scheme is used only for the mean flow equations, as the artificial dissipation was
developed for these. For the turbulence and transition equations, the second-order upwind-scheme
of Roe [50] is used, which states

φc,f ≈
1
2
[
φ̃R,f + φ̃L,f −ARoe

c (φ̃R,f , φ̃L,f ) (φ̃R,f − φ̃L,f )
]
, c = 1, ... , Nc, (3.16)

where φ̃R,f and φ̃L,f are approximations of the state at the face as computed from the element
midpoint value and gradient of the left or right element, respectively:

φ̃c,f = φc + ψc∇φc · (~xc,f − ~xc), ∀f ∈ {1, ... , Nc,f} ∀c ∈ {1, ... , Nc} (3.17)

The limiter ψc ensures stability of the solution at shocks, because the solution reconstruction 3.17
may lead to overshoots at very steep gradients of flow variables. The limiter is formulated in a way
that the face value φ̃c,f does not exceed both the average of the cell value φc and the maximum
value of the cell midpoints of all neightbor cells of ωc (the same holds with the minimum, that must
not be subceeded).
The Roe-matrix ARoe

c (φ̃R,f , φ̃L,f ) = Ac(φRoe(φ̃R,f , φ̃L,f )) is the convective flux Jacobian Ac

evaluated with the so-called Roe-averaged variables φRoe(φ̃R,f , φ̃L,f ) instead of the unknown primitive
ones φc,f , for example

ρRoe(ρl, ρr) = √ρlρr. (3.18)

In equations 3.13 for the diffusive flux dφ,j and for the upwind solution reconstruction 3.17 gradients
are needed in the cell midpoints. They are computed by the Green-Gauss theorem and the midpoint
rule approximation as [6]

∇φc = 1
|ωc|

Nc,f∑

f=1
φc,f ~nc,f |γc,f |, c = 1, ... , Nc. (3.19)

Dirichlet boundary conditions can be set directly in the central-scheme 3.14 or upwind-scheme 3.16
by overwriting the left/right state. Neumann boundary conditions can be set directly by overwriting
the gradients in equation 3.19. For the farfield boundary, the convective fluxes are computed by
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the Roe-upwind scheme with the Roe-averaged variables coming from the boundary-adjacent cell
and the farfield-state (·)∞ while setting the appropriate entries of the vector of eigenvalues to zero
according to equation 3.5. [12]
Now the system 3.13, which is a system of ordinary differential equations in time t, can be solved
numerically by any ordinary differential equation solver. It is written in a shorter form as

d
dtφ(t) = −RΩ(φ(t)) (3.20)

with the the vector of the conservative variables φ and the residual of the spatial discretization
RΩ .

3.3 Temporal Discretization
In this work only steady state problems (∂t(·) = 0) are solved and therefore no temporal discretization
is needed. But in order to speed up the computation of the steady solution by certain acceleration
techniques, the steady state problem is transformed into an unsteady one by introduction of the
pseudo-time t∗:

d
dt∗φ(t∗) = −RΩ(φ(t∗)) != 0 (3.21)

This ordinary differential equation is solved approximately by the second-order backward Euler
method, whose iteration rule reads

φn+1 − 4φn + φn−1

2∆t∗ + Rn+1
Ω := Rn+1

t∗
!= 0, (3.22)

where the superscript n+ 1 stands for the next pseudo-timestep number and ∆t∗ is the pseudo-
timestep size. φn and φn−1 are known from the current and the previous pseudo-timestep. The
implicit formulation allows unconditionally large pseudo-timesteps ∆t∗ at the price of higher
computational effort. The needed change δφn such that φn+1 = φn + δφn and Rn+1

t∗ = 0 is found
by solving the system of linear equations (Newton-method)

∂Rn
t∗

∂φn
δφn = −Rn

t∗ (3.23)

by the iterative lower-upper symmetric Gauss-Seidel method (LUSGS). Herefore, the multigrid
technique is used, which helps to reduce large wavelength contributions to the residual (defect) Rn

t∗ :
After some iterations n of the LUSGS solver the defect is restricted to a coarser grid Rn

t∗coarser. On
it, the defect equation

∂Rn
t∗

∂φncoarser
δδφncoarser = −Rn

t∗coarser (3.24)

is solved iteratively for some iterations before passing on the defect of the defect equation the
next coarser grid and so on until the coarsest grid, on which the solution δδφncoarsest is computed
until convergence. It is then prolongated back to the finest grid by interpolation and added to
the intermediate solution of the current pseudo-timestep. In this work, for the turbulence and
transition equations no multigrid is used, which is known to increase the stability of the scheme [13].
In addition, in the first 100 to 256 pseudo-timesteps no multigrid at all is used, which increases
the stability due to the large temporal derivatives in the beginning of the simulation. After these
startup singlegrid iterations, the "4w"-multigrid scheme was used.
The pseudo-timestep size ∆t∗ is chosen for each cell (index c) individually (local time-stepping) by
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the CFL-criterion as
∆t∗c = CFL min

{
1

λ̃c,max(~xωc)
,
Kv |ωc|
λ̃v(~xωc)

}
(3.25)

with the scaled approximated maximum eigenvalue λ̃c,max of the convective flux Jacobian. It is
similar to the surface integral of the sum of the velocity and the speed of sound over the boundary
of the control volume ωc. The scale factor is Kv = 0.25 and λ̃v is the approximated maximum
eigenvalue of the viscous flux Jacobian (which is similar to the "propagation speed" of the diffusion
of the conserved quantities). The CFL number is user-chosen.
To additionally accellarate convergence, residual smoothing is used: The change in the vector of
unknowns δφn is spatially smoothed before addition to the old field φn.
Many simulations in this work have a low Mach number Ma∞ < 0.3 (essentially incompressible
flow). The interesting physical phenomena happen significantly slower than the speed of sound a, or,
in other words, the difference between the maximum and the minimum eigenvalue of the convective
flux Jacobian Ac becomes large, which reduces the accuracy of the pseudo-time-integration (equation
3.21). Therefore, a preconditioning of equation 3.21 is used for the mean flow equations, in which
a preconditioner matrix P(φ) is multiplied only to the right-hand-side of equation 3.21. This is
allowed because the pseudo-transient term on the left-hand-side has no physical meaning and will
be zero for the converged steady-state solution anyway. The task of the preconditioner matrix P(φ)
is to scale the eigenvalues of the convective flux Jacobian to be of the same order of magnitude and
much smaller than the largest unpreconditioned eigenvalue before, which increases the convective
timestep size according to equation 3.25. Hereby, the artificial dissipation Dart. diss.

L,R of the central
scheme (equation 3.14) is scaled by the inverse of the preconditioning matrix P(φ) in order to let it
be unaffected by the preconditioning, as the scheme shall be as less dissipative as possible. The
preconditioner used in this work is

P(φ) =




1 + ζ1 ζ2u1 ζ2u2 ζ2u3 −ζ2
ζ1u1 1 + ζ2u

2
1 ζ2u1u2 ζ2u1u3 −ζ2u1

ζ1u2 ζ2u1u2 1 + ζ2u
2
2 ζ2u2u3 −ζ2u2

ζ1u2 ζ2u1u2 ζ2u2u3 1 + ζ2u
2
3 −ζ2u3

a2ζ0ζ1
γ̃−1 ζ0ζ3u1 ζ0ζ3u2 ζ0ζ3u3 1− ζ0ζ3




(3.26)

with the abbreviations ζ0, to ζ3, which are terms involving the local velocity u, the local Mach
number Ma, and the user-chosen spatial cutoff-value Kspatial = 1.0, which is the recommended value
for a Mach number-independent numerical pseudo-time-integration [12]. The matrix of equation
3.23 (the Jacobian of the residual with respect to the unknowns) is also preconditioned. The amount
of predcondition in that equation is controlled by the user-chosen general cutoff-value, which is
chosen as Kgeneral = 1.0, ... , 2.0 depending on the test case. In constrast to the spatial cutoff-value
Kspatial, the general cutoff-value Kgeneral does not influence the accuracy of the numerical solution
of ordinary differential equation 3.21 but only the convergence of the iterative solution of the linear
system 3.23 solved for the implicit timestepping.

3.4 Requirements for an Accurate Numerical Solution
For simulations based on transition criteria it is important that the variables appearing in the
equations of the transition criteria (pressure gradient parameter λ2, turbulence intensity Tu,
momentum thickness Reynolds number Reθ, shape factor H12, crosswise displacement thickness
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Reynolds number Reδ2, helicity Reynolds number ReHe) are computed accurately. This breaks
down to the accurate computation of the boundary layer velocity profiles u(~xΩ)∀~xΩ ∈ B.
An accurate spatial discretization needs an appropriate grid/mesh resolution. The creation of the
grids was not part of this work, but they were reused from old works where it was proven that the
grids are good enough by grid convergence studies. A grid is good enough, if the relevant result
parameters (for example the integral boundary layer properties or the transition location) do not
change notably with an uniform refinement of the grid. Such grids usually yield a fine resolution of
the boundary layer B in wall normal direction (at least approximately 80 points) and the entire
boundary layer B is covered in structured grid in case of a hybrid mesh. The first node above the
surface Γ should be at a non-dimensional wall normal coordinate of y∗ < 1, such that at least three
nodes are located in the viscous sublayer of the boundary layer B. These rules for a good mesh are
only valid if a second order spatial discretization is used (as in this work with the central scheme
and the second-order Roe scheme), which is common for the finite volume method on unstructed
grids.
In addition, it is required to get a good convergence of the iterative numerical solution of equation
3.21. As different available grids are tried out for the present work it can be stated that the solver
converges best with a structured O-grid for the boundary layer. A simulation is seen as converged if
on the one hand the computed lift coefficients cL and drag coefficients cD change relatively by less
than 10−5 in the last few thousand pseudo timesteps. Especially the drag coefficient cD must have
converged, as this implies that the transition location converged. On the other hand the residuals
R(φ) of the equations shall have dropped enough. The latter is determined by the number of orders
of magnitude the spatial RMS (RMS) of the residuals R(φ(t∗)) dropped relative to the initial value
of R(φ(t∗ = 0)). The residual of the ρk-equation is always the one dropping the least. In the first
few hundred iterations it increases strongly. This is due to the increase of the turbulent kinetic
energy k in the boundary layer B which did not exist in the initial condition equation 3.4. To take
the computation as converged, the RMS ρk-residual must have dropped from its maximum by more
than three orders of magnitude. For two-dimensional simulations usually a drop by more than five
orders of magnitude is possible.
In general, the results of numerical computations must be verified and validated before they are
trustworthy [22]. In the verification it is checked that the solver yields the results that are expected
from the implemented model, independent of the accuracy of this model. The TAU solver was
already extensively verified [30]. When new correlations are implemented for this thesis, it is
assumed that no additional verification is necessary. In the validation it is checked whether the
solver yields results that match corresponding measurements. The major way to validate the
simulations in this work is the comparison of the computed pressure coefficient cCFDp distributions
with the measured ones cexpp , which are commonly given in the papers of the measurements. If no
pressure coefficient cexpp distribution was measured in the experiments, the measured lift coefficient
cexpL may be given in order to check the correct lift L computation.
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In this chapter the test cases are presented that serve as a basis of the assessment and calibration
work. It prepares for chapter 5 about the assessment of the CFT criteria.
The rules for the selection of configurations within the test cases that probably feature CFT are
explained. The proceeding is described for the case that in the literature about the experiments no
full information about the reference conditions of the wind tunnel is given. General rules for the
determination of the simulation domain Ω are given. Afterwards, for each test case the experimental
and the numerical setups are described. For most of the test cases the measured and simulated
pressure coefficient cp distributions are compared in order to verify that the angle of attack α is set
appropriately and in order to validate the mean flow results.

4.1 Identification of Appropriate Test Cases

4.1.1 Selection of Test Cases

The following test cases are taken into account as reference for the recalibration work:
Two-dimensional:

• ONERA D infinite swept wing by Manie et al. [36]
• NLF(2)-0415 infinite swept wing by Dagenhart and Saric [11]/Radeztsky et al. [49]
• NACA 642A015 infinite swept wing by Boltz et al. [7]
• HQ26N/14.82 infinite swept wing by Seitz [61]
• infinite swep cylinder by Poll [47]

Three-dimensional:

• TELFONA Pathfinder wing by Streit et al. [67]
• Inclined 6:1 prolate spheroid by Kreplin et al. [26]
• TU Braunschweig Sickle wing by Petzold and Radespiel [46]

It is good to have as many test cases with reliably measured transition locations as possible, in
order to make the most general transition criterion formulation possible. In addition, the scatter
of correlations of the boundary layer parameters over different test cases can be evaluated. This
scatter is present because of uncertainties of the measurements, the differences in the setups of the
measurements and the simulation (for example slightly different reference conditions or test-section
and wing geometry), and the assumptions made in order to allow a formulation of the CFT criterion
(see section 2.5.5).
For each test case the sets of reference conditions, sweep angles Λ and angles of attack α were
selected that have a high probability of featuring CFT. The following positive indications are
applied to identify a CFT case:

• The authors of the measurements explictely identify the case as featuring CFT.
• The transition visualization images show a zig-zag-shaped transition front. This likely

correspond to stationary crossflow vortices.
• Computations with the eN method done by researchers show a dominating crossflow instability

amplification factor NCF at the transition line in comparison to the Tollmien-Schlichting
instability amplification factor NTS.
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• The measured transition location ~xt changes strongly with the sweep angle Λ (if a variation
of the sweep angle Λ was carried out).

The following negative indications are applied to identify cases that shall not be taken into account
for the recalibration work:

• The pressure gradient at the transition location is adverse, what makes TST likely.
• After performing a simulation, the skin friction coefficient cf is negative at the transition

location, which is a sign for separation-induced transition.
• When trying to simulate the case as a steady state problem, no convergence could be achieved

due to a laminar separation bubble or a turbulent flow separation somewhere on the wall Γ .

4.1.2 Identification of the Wind Tunnel Test Conditions

The freestream state must be set for the farfield boundary condition. For the mean flow this needs
exactly three parameters, from which at least one contains information about the velocity u. Often,
the freestream Reynolds number Re∞, Mach number Ma∞ and static temperature T∞ are set
together with the freestream direction. For many test cases, the problem arises that only less than
three reference state variables are given in the papers. Then the freestream static temperature is
assumed to be T∞,assumption = 300K. By that, it is assumed to have a closed-loop wind tunnel
without cooling or an open wind tunnel with relatively warm environment air. According to
equation 2.10, only the Reynolds number Re∞ and the Mach number Ma∞ are important for the
aerodynamic problem, which justifies the assumption of a value for the freestream temperature T∞.
If the freestream turbulence intensity is not given, Tu∞,assumption = 0.1% is assumed, which is a
medium-low value. This is justified by the fact that at such low turbulence intensity Tu∞ the
stationary crossflow instabilities should be dominant over the travelling. As reasoned in section 2.4
about transition theory, for aircraft flows the stationary crossflow instability is relevant due to the
extremely low freestream turbulence intensity Tu∞. Beyond the decision between stationary and
travelling crossflow instabilities the turbulence intensity Tu∞ is assumed to be irrelevant for the
CFT location. This is why a value for Tu∞ is assumed rather than letting the corresponding cases
out completely.
The freestream viscosity ratio Rturb

∞ is usually not measured. Therefore, the recommended value
of Rturb

∞,assumption = 1.2 is set [13]. According to the recommandation of [65] this corresponds to a
freestream Reynolds number of Re∞ = 6 · 106.
If no surface roughness data for the wind tunnel model is available, a painted surface is assumed,
which corresponds to a RMS surface roughness height of hrms = 3.3µm [31].

4.1.3 Specification of the Simulation Domain

The flow domain Ω is chosen as small as possible to save computational effort, but as large/complex
as necessary to correctly model the aerodynamics.
The test cases were simulated with two-dimensional setups whereever possible. This means that
perpendicular to the grid the spatial derivatives of all variables are assumed as zero. The grid
then contains only the airfoil which is a cross section of the imaginary infinite rectangular wing
normal to the leading edge, and the upper and lower wind tunnel walls. In the experiments, the
wing has a finite aspect ratio and there are wind tunnel walls that interact with the flow (if not
shaped according to the streamlines by end-liners). Therefore, it must be proven that at least in the
midsection of the real wing the spanwise derivatives of the flow variables are negligible small. The
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longer the wing, i.e. the higher the aspect ratio, the better the assumption in the inner sections.
Even further simplification is possible in certain cases by omitting the upper and lower wind tunnel
walls (called free-air condition). This approach has the advantage that for different angles of attack
in the experiment no separate grids are needed with airfoils rotated relative to the upper and lower
wind tunnel walls. Of course, it must be ensured that the pressure coefficient cp distribution is still
valid with respect to the experiments. For that, the angle of attack α has to be corrected. In wind
tunnels wings at a given angle of attack α perform generally worse than in free air, because the
streamwise-straight upper and lower wind tunnel walls force the streamlines far away from the wing
to be directed closer to the freestream-direction (potential effect). In order to get a similar pressure
coefficient cp distribution in a wind tunnel as in free air, the angle of attack α in the wind tunnel
has to be larger than in free air. The angle of attack α correction for the free-air configurations is
found by trial and error.
Furthermore, because the surface roughness is not taken into account in the computations of the
RANS equations with the SST model, it is assumed that the surface under the turbulent boundary
layer B is entirely hydraulically smooth. As the focus of this work is on the laminar boundary layer,
the influence of that is expected to be low. In contrast, in the laminar boundary layer the surface
roughness has an important effect on the CFT (see section 2.4). But this is effect is modeled by
adapting the CFT criteria rather than modifying the corresponding boundary of the simulation
domain.

4.2 Description of the Test Cases

4.2.1 ONERA D Infinite Swept Wing

Experimental Setup

The airfoil normal to the leading edge is the ONERA D [36]. It is a symmetric low-speed airfoil
with a relatively large leading edge radius and a "peaky" nature towards the trailing edge [36].
The wing of the experiments [36] was a rectangular variable sweep wing of normal chord length
cn = 0.3m and unswept aspect ratio of 2.7. It had a tip extension appended to it, in order to
reduce the invoking of three-dimensional flow.
The wind tunnels of the experiments were called "S1Ca" (pressure-measurement) and "S2Ch"
(transition location measurement). Both were of type "Eiffel", which means they were unpressurized,
open and the blower it located downstream of the test section. This has the consequence that the
test section freestream flow had the ambient pressure form outside the wind tunnel (resting air) as
total pressure p0,∞ = 1atm. The test section was circular with a diameter of DWT = 10cn.
The pressure measurements were done for the sweep angles Λ/◦ ∈ {0, 15, 35, 45, 55} and normal
freestream velocity un,∞ = 20 m

s . Other reference conditions are not given in [36]. It is assumed
that the missing freestream conditions are the same as for the transition measurements with the
freestream normal velocity un,∞ = 20 m

s . For the transition measurements the freestream normal
velocity un,∞/ms ∈ {20, 30, 40, 50, 70} and Reynolds number based on the normal chord length and
the normal velocity Recn,un∞ /106 ∈ {0.4, 0.6, 0.8, 1.0, 1.5} are given. That the latter is based on the
normal velocity un,∞ is not reported explicitely in [36], but assumed here based on the fact that
the ratio Recn,un∞

un,∞
stayed constant for the varied sweep angle Λ/◦ ∈ {0, 30, 40, 50, 60} (see figure 5 of

[36]).
The freestream turbulence intensity is given as Tu∞ = 0.3%, which is relatively high in the context
of aircraft flow [55]. Therefore, travelling crossflow instabilities may be the cause of the CFT rather
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than stationary ones.
The transition was detected on the lower wing side by visualization of the sublimation of a thin
layer of paradichlorobenzene crystals.

Numerical Setup

The computations are performed for the same freestream conditions as the experiments, except
the freestream static pressure which is set to p∞ = 1atm instead of setting the total pressure to
p0,∞ = 1atm. This is a fault, that cannot be fixed due to limited time, but its influence is assumed
to be low because of the low Mach number Ma∞. Missing conditions for the freestream temperature
T∞ and viscosity ratio Rturb are supplemented according to section 4.1.2.
As for some of the cases the Mach number Ma < 0.3, for all test cases low-Mach preconditioning is
applied.
The simulation is performed two-dimensional. No wind tunnel walls are included. The farfield is a
circle of radius 50 cn. The grid is hybrid with a structured O-grid around the airfoil embedded in
an unstructured mesh of triangles (see figure 4.1). The mesh properties are listed in table 4.1. For

Figure 4.1: ONERA D test case: View of the grid around the airfoil

Table 4.1: ONERA D test case: Mesh properties
Mesh property Value
Total number of nodes Nc 160518
Number of surface nodes chordwise (upper or lower surface) 256
Number of wall normal structured layers 128
Minimum number of nodes in laminar boundary layer at ~xt,exp ≈ 84
Maximum first node non-dimensional wall normal distance y+

1 ≈ 0.32

the farfield boundary ΓFF the farfield boundary condition and for the wing surface Γ the no-slip
wall boundary condition is used according to section 3.1.
For the majority of the configurations a laminar separation bubble occurs on the upper wing
side, what lets the numerical solution diverge in case of free transition simulations. In order to
improve the convergence, a "hack" is applied in the TAU code: The effective intermittency above
the upper surface of the wing is manually set to γeff = 1 inside box that is slightly larger than the
maximum boundary layer thickness max

~xΓ∈Γ
δ(~xΓ ). Thus the boundary layer B on the upper wing side

is turbulent and no separation bubble occurs.
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Correction of the Angle of Attack α and Validation of the Mean Flow Results

The normal angle of attack αn,exp = 6◦ is constant in the experiments. The normal angle of attack
in all simulations is set to αn,CFD = 5.2◦ in order to get the best pressure coefficient cp distribution
according to the measured one. In figure 4.2 an exemplary pressure coefficient cp distribution (sweep
angle Λ = 55◦, Reynolds number Recn,un∞ = 0.8 · 106) is shown in form of the pressure coefficient of
the corresponding unswept wing cp,Λ=0 (equation 2.27), which allows the comparison of the curves
of multiple sweep angles Λ. The agreement on the lower surface is very good and on the upper
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Figure 4.2: ONERA D test case: Comparison of the measured and computed pressure
coefficient cp distributions, given as the pressure coefficient of the corresponding
unswept wing cp,Λ=0

surface good. A close agreement on the lower side is more important as the transition is detected
there.

Identification of Configurations with Crossflow Instability Dominated Transition

In [36] 14 transition location measurements are presented. Eight of these were identified by the
authors of [36] as featuring separation-induced transition. This was confirmed in the present work
by means of simulations. Additionally to the experimental transition locations xt,exp, transition
locations predicted by the eN -method xt,eN with a critical crossflow instability amplification factor
of NCF

crit = 4.0 are given via personal communication by Dr.-Ing. Normann Krimmelbein. These
agree well with the the measured transition locations xt,exp, but provide more data points. From
this data, for each normal velocity un four to six configurations with equidistantly changing sweep
angle Λ were selected. The selected CFT test cases from both the experiments and the personal
communicated data are summarized in appendix C, table C.1.
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4.2.2 NLF(2)-0415 Infinite Swept Wing

Experimental Setup

The NASA NLF(2)-0415 airfoil of the experiments [11, 49] is a natural laminar flow airfoil [64, 63].
That means that its shape was designed to delay the TST, i.e. reduce the amplification factor
NTS of Tollmien-Schlichting instabilities. Thus, the pressure gradient ∂swp < 0 is favorable up to
about 71% chord for the design freestream conditions with an angle of attack α ∈ [−4◦, 0◦] on the
upper surface. In addition, attachment line instability is avoided by a small leading edge radius.
Görtler instabilities are not present, as no concave regions of the upper surface exist. At negative
angles of attack α, the negative pressure gradient ∂swp region and the boundary layer thickness δ
on the upper surface are large, what favors crossflow. Therefore the transition experiments were
performed for an angle of attack of α = −4◦. At that condition the swept wing is a very good
crossflow generator and thus CFT is probable. The experimental transition lines Texp show a
saw-tooth-pattern [11], what indicates stationary CFT.
The experiments [11, 49] were performed in the Arizona State University Unsteady Wind Tunnel,
a closed-loop wind tunnel with a square test section of side length 1.37m. End-liners for the
wind tunnel side walls were inserted because of the relatively large freestreamwise chord length of
csw = 1.83m of the wing model. The upper and lower wind tunnel walls are kept planar in order to
allow visual inspections.
The reference conditions are given in terms of the freestream Reynolds number based on the
streamwise velocity and the streamwise chord Recsw,usw

∞ . It is not stated explicitely in [11, 49] that
the streamwise velocity is used for it, but can be assumed based on a description in [54] about
the wind tunnel in general. The freestream turbulence intensity is Tu∞,sw ∈ [0.069%, 0.095%] in
streamwise and Tu∞,traverse ∈ [0.018%, 0.040%] in traverse direction [54].
The experimental transition line Texp was detected on the upper wing side by means of Naphthalene-
trichlorotrifluoroethane spray, which sublimes faster in regions of high shear and thus visualizes the
transition. The transition location ~xt detected by that method is not a single value per case but
rather an interval due to the spanwise variation of the transition line. The authors provide also an
representative value for that interval, which is more or less the average. Furthermore, hot-film and
hot-wire measurements of the velocity fluctuations were used to measure the intermittency γ(~xΩ)
inside the boundary layer ~xΩ ∈ B. The streamwise location xsw at which the turbulent fluctuations
suddenly increase is taken as the transition location xt.

Numerical Setup

The computations are performed for the same freestream conditions as the experiments. The
freestream static temperature T∞ = 303.15K and freestream static pressure p∞ = 1atm =
101325Pa are assumption. In appendix C of the paper [11] (an analysis of the measurement error)
representative values for the freestream static temperature T∞ and freestream static pressure p∞
are given, which do not differ much from the assumed values. As in the present work isotropic
turbulent fluctuations are presupposed, the streamwise and traverse turbulence intensities are
combined as

Tu∞(u∞) =
√
u′2sw + u′2traverse(u∞)

u∞
, (4.1)

based on the assumption that the flcutation components are in-phase. If the freestream velocity
u∞ differ from the values given in table 1 of [54], linear interpolation is applied.
Due to the low freestream Mach number Ma∞ < 0.3, preconditioning is used.
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The computation is performed two-dimensional, as the experimental setup is designed to image an
inifinite swept wing flow. As the normal chord is large relative to the distance between the upper
and lower wind tunnel walls (see figure 4.3), they are taken into account as free-slip walls. The

Figure 4.3: NLF(2)-0415 test case: View of the airfoil together with the upper and lower
wind tunnel walls

walls are prolongated both up- and dowstream by 50 normal chord lengths cn. The mesh is hybrid
and the structured part around the airfoil is again an O-grid (see. figure 4.4). The mesh properties

Figure 4.4: NLF(2)-0415 test case: View of the grid around the airfoil

are listed in table 4.2.

Table 4.2: NLF(2)-0415 test case: Mesh properties
Mesh property Value
Total number of nodes Nc 424913
Number of surface nodes chordwise (upper surface) 256
Number of wall normal structured layers 256
Minimum number of nodes in laminar boundary layer at ~xt,exp ≈ 76
Maximum first node non-dimensional wall normal distance y+

1 ≈ 0.50

Validation of the Mean Flow Results

The pressure coefficient cp was measured near both wind tunnel side walls, i.e. at the upstream end
(inboard station) and downstream end (outboard station) of the wing. The two distributions differ
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slightly, which indicates the presence of a three-dimensional flow in the test section, challenging
the infinite swept wing flow assumption. The measurements were only done for the upper side
of the wing, as the transition location is determined there. The comparison of the measured and
simulated pressure coefficient cp distributions is presented exemplarily for the freestream Reynolds
number Recsw,usw

∞ = 3.725 · 106 in figure 4.5. The agreement is very good, if upstream of x/c ≈ 0.3
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Figure 4.5: NLF(2)-0415 test case: Comparison of measured and computed pressure coefficient
cp distributions for the Reynolds number Recsw,usw

∞ = 3.725 · 106

the outboard and downstream the inboard station pressure coefficient cp distribution is taken as
reference.

Identification of Configurations with Crossflow Instability Dominated Transition

In [11] six detected transition locations xt by the Naphthalene and two by hot-wire measurements
are given. All of them are considered for the analysis of this thesis. Furthermore, from the eight
hot-film measurements given in [11] one representative point is deduced by averaging. From the
measurements of [49] all configurations are considered.
Additionally to the experimental transition locations xt,exp, transition locations predicted by the
eN -method with a critical amplification factor for crossflow instabilities of NCF

crit = 2.3 − ln hrms
δ1

are given via personal communication by Dr.-Ing. Normann Krimmelbein. These locations agree
very well with the experimental transition locations xt,exp and allow an interpolation between the
relatively few data points of the measurements of [11, 49].
The list of CFT configurations used as reference for the present analysis is given in table C.2 in
appendix C.
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4.2.3 NACA 642A015 Infinite Swept Wing

Experimental Setup

The airfoil normal to the leading edge is a NACA 642A015. It is symmetric and has a maximum
relative thickness of 15% at x

c = 0.35.
The wing model is rectangular with a chord length normal to the leading edge of cn = 4 ft. The
unswept aspect ratio is 2.5. If swept with an adjustable angle, extensions are attached to the
wing tip, as it is seeked to simulate infinite swept wing conditions. The surface roughness hrms

of the wing was not measured, but can be inferred. The wing was sprayed with several layers
of flat black lacquer and hand rubbed with 600-grid sandpaper afterwards [7]. According to [60]
about a completely different experiment, such a treatment results into a RMS surface roughness of
hrms ≈ 0.73µm (without high-pass filter for the roughness profile). However, it is well-known that
the resulting surface roughness hrms is strongly affected by the applied pressure and feed velocity,
so the value assumption is highly uncertain.
The measurements [7] were done in the closed-loop Ames 12-Foot Low-Turbulence Pressure Tunnel.
The cross section of the test section is circular with a diameter of DWT = 3cn. In the streamwise
direction the walls of the test section are straight. Based on the assumption of planar sound waves,
Boltz et al. [8] provide a formula for computing the freestream turbulence intensity Tu∞ based on
the sound pressure level Lp. The latter was measured for different freestream Mach numbers Ma∞
and total pressures p0,∞ [8].
The pressure coefficient cp was measured for sweep angles Λ/◦ ∈ {0, 10, 20, 30, 40, 50}, streamwise
angles of attack αsw/◦ ∈ [−3.0, 3.0] in steps of 0.5◦, freestream Mach number Ma∞ = 0.27, and
freestream static pressure p∞ = 1atm.
Very many transition measurements were carried out by means of microphones located in the
model on both sides of the wing. The configurations feature the same sweep angles Λ and angles
of attack αsw as the pressure measurements. In addition, a few transition measurements were
performed for the streamwise angles of attack αsw ∈ {3.5, 4.0}. For the transition measurements the
freestream Reynolds number Recsw,usw

∞ /106 ∈ [2.12, 39.9] based on the streamwise chord length csw
and streamwise velocity u∞ is given. Furthermore the total pressure p0,∞/psia ∈ [43, 46] ∪ [70, 75]
is reported. The transition locations are provided for the upper wing side.

Numerical Setup

The computations are performed for the same freestream conditions as the experiments. The
freestream static temperature is assumed as T∞ = 303.15K. Note that for the transition mea-
surements, to calculate the freestream Mach number Ma∞ from the freestream Reynolds number
Recsw,usw
∞ , temperature T∞, and total pressure p0,∞ analytically is impossible, so it is solved nu-

merically. The freestream turbulence intensity Tu∞ given in [8] can be well correlated with the
freestream Mach number Ma∞ by [27]

Tu∞ = exp(4.58 Ma∞ − 9.14). (4.2)

As for the majority of the cases the Mach number Ma is low, for all test cases low-Mach precondi-
tioning is applied. The simulation is performed two-dimensional without wind tunnel walls. The
farfield is a circle of radius 50 cn. The grid is hybrid, that is, an O-grid around the airfoil embedded
in an unstructured mesh of triangles (see figure 4.6). The mesh properties are listed in table 4.3.
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Figure 4.6: NACA 642A015 test case: View of the grid around the airfoil

Table 4.3: NACA 642A015 test case: Mesh properties
Mesh property Value
Total number of nodes Nc 147716
Number of surface nodes chordwise (upper or lower surface) 256
Number of wall normal structured layers 128
Minimum number of nodes in laminar boundary layer at ~xt,exp ≈ 69
Maximum first node non-dimensional wall normal distance y+

1 ≈ 0.88

Correction of the Angle of Attack αsw and Validation of the Mean Flow Results

The correction of the normal angle of attack αn in the simulations has to be dependent on the
angle of attack αsw. This can intuitively be understood because at zero angle of attack αsw the
correction has to be zero, as the airfoil is symmetric. In addition it turns out that the correction
has to be dependent on the sweep angle Λ. By trial and error a correlation for the needed angle of
attack α can be found, for which all pressure coefficient cp distributions are reached the best. The
correlation was already found by Krimmelbein [27]:

αCFDn ≈ (0.0091Λ
◦ + 0.69)αsw,exp (4.3)

Hereby, αsw,exp is the streamwise angle of attack of the experiment.
Boltz et al. [7] measured the pressure coefficient cp distribution in sections normal to the leading
edge at 45% and 80% span of the wing. As the measured distributions differ, there is apparently
a three-dimensional flow present. In figure 4.7 an exemplary plot of the pressure coefficient cp
distributions is given. The agreement between the measurements and the simulation is very good.

Identification of Configurations with Crossflow Instability Dominated Transition

The authors [7] present the transition measurements partly in terms of the Reynolds number

Ret = u∞ xt
ν∞

. (4.4)

The data is provided in different plotting styles. Not every plot contains all tested configurations,
and many but not all configurations are presented multiple times in different plots. In order to
collect all configurations and check their consistency, the plots of the papers are recreated, but
without letting certain points out like the Boltz et al. [7] did (see figure 4.8 for examples). As
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Figure 4.7: NACA 642015 test case: Comparison of the measured and computed pressure
coefficient cp distributions. Sweep angle Λ = 50◦, streamwise angle of attack
α = −2.5◦, Reynolds number Recsw,usw

∞ = 4.01 · 106, Mach number Ma = 0.0320

there are many points, it is no problem to choose only relatively few of them, for which it is almost
certain that they feature CFT. This is done in the following manner:

• If for identical flow cases multiple transition Reynolds numbers Ret are existing, they are
averaged. For certain points, like (Λ,α) = (50◦, 1.5◦) in figure 4.8a, the Reynolds numbers
Ret given by the different plots differ significantly, by more than 3 · 106. This is probably a
plotting fault by Boltz et al. [7].

• In figure 4.8b it can be seen that the data points are scattered partly strongly ("zig-zag"-
curves). Therefore, for each sweep angle Λ and angle of attack αsw individually the points
Ret(Recsw,usw

∞ ) were smoothened by a zig-zag-remover in the double-logarithmic domain.
Herefore, the midpoints of the linear pieces between the given points are connected by a
surrogate curve and afterwards the given points are projected onto the surrogate curve
perpendicularly.

• The transition location xt is ambiguous for certain flow cases (see figure 4.8b): If the curves
become (almost) vertical, there are different transition locations xt for the same sweep angle Λ,
angle of attack αsw and (almost) same freestream Reynolds number Recsw,usw

∞ . This violates
the basic assumption that there are no unknown influences on the CFT. Thus, those data
points are rejected completely.

• If, for a given transition location xt, the freestream Reynolds number Recsw,usw
∞ does not change

significantly with the angle of attack αsw, as in figure 4.8a for Λ = 50◦, the corresponding
points are also rejected. It is assumed that the measurements are distorted. This is because
for most of the curves in the plots of the type of 4.8a, there is no such plateau visible.

• In figure 4.8a it can be seen that for large sweep angles Λ, the curves have maxima. It is
stated in [7] that the points to the left of the maxima are considered as featuring CFT. Thus,
in this work, the points are taken into account if the slope in the plots of the type of figure
4.8a is (positively) large enough.
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(a) Recreation of figure no. 7 of Boltz et al. [7]
for transition location xt/c = 0.4
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(b) Recreation of figure no. 9 of Boltz et al. [7] for
streamwise angle of attack αsw,exp = −2.0◦

Figure 4.8: NACA 642015 test case: Recreation of the plots of Boltz et al. [7]

• If in the Ret(Recsw,usw
∞ )-plot 4.8b too few points of a curve are left after applying the rules

from above, they are also let out.

The data points chosen according to these rules are plotted in figure 4.9 (exemplarily). The whole
list of the 110 selected configurations is given in table C.3 in appendix C. In the selection, the angle
of attack is αsw/◦ ∈ {−3.0,−2.5,−2.0,−1.5,−1.0,−0.5, 0.0}, the sweep angle is Λ/◦ ∈ {30, 40, 50},
and the freestream Reynolds number ranges in Recsw,usw

∞ /106 ∈ [3.34, 11.3].

4.2.4 HQ26N/14.82 Infinite Swept Wing

Experimental Setup

The HQ26N/14.82 airfoil of the experiments [61] was developed for a tailless sailplane with low
pitching moments [66]. The shape is very characteristic: The upper surface is curved with a
approximately constant curvature radius between the leading edge and the middle. Downstream of
that, it is mostly concave. In contrast, the lower surface is almost flat. It is known that certain
curvature terms must be included if the eN -method is used for transition prediction, as otherwise
the on the upper side the transition is predicted too upstream by the eN -method [66]. This makes
the airfoil interesting for the calibration of transition models.
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(a) Selected configurations for transition loca-
tion xt/c = 0.4
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Figure 4.9: NACA 642015 test case: Recreation of the plots of Boltz et al. [7] (points
considered for this thesis are marked)

The wing chord length normal to the leading edge is cn = 0.65m. The wing has an unswept
aspect ratio of 3.0. When swept, root and tip extensions are applied to the ends of the wing,
such that the wing covers the whole test section. The wind tunnel of the experiments [61] is the
Niedergeschwindigkeitskanal Braunschweig (NWB). The test section has a diameter of DWT = 4.3cn.
For each configuration, the pressure and transition were measured simultaneously. The config-
urations are given by the freestream Reynolds number Recsw,usw

∞ /106 ∈ [1.82, 4.48] based on the
streamwise chord c and streamwise velocity u∞. The freestream Mach number is in the range
Ma ∈ [0.11, 0.24]. The streamwise angle of attack varies in the range αsw/◦ ∈ [−2.01, 8.59]. The
sweep angle is Λ/◦ ∈ {30, 45}.
The pressure coefficient cp was measured approximately in the middle of the wing on both sides.
An infrared camera was used to detect the transition line T by means of the temperature
T (~xΓ )∀~xΓ ∈ Γ difference between the laminar and the turbulent boundary layer B due to the
different heat exchange coefficient with the model surface. Per measured configuration, Seitz [61]
gives the minimum, maximum and a representative value (the integral average) due to the spanwise
variation of the transition location ~xt. He notes that the more flat the pressure distribution and the
smaller the freestream Reynolds number Recsw,usw

∞ is, the larger is the range between the minimum
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and maximum transition coordinate. Transition locations xt are given either for the upper or the
lower wing side.

Numerical Setup

The computations are performed for the same freestream conditions as the experiments, except for
the freestream static temperature T∞ and turbulence intensity Tu∞, which are assumed according
to subsection 4.1.2.
Due to the low Mach number Ma∞ < 0.3, preconditioning is used.
The computations are done two-dimensional, as the wind tunnel test simulates infinite swept wing
flow. In addition, the upper and lower wind tunnel walls are neglected, as the test section is large
relatively to the normal chord cn of the wing. A circular farfield of radius 50cn around the airfoil is
used. The grid is presented in figure 4.10. The mesh properties are listed in table 4.4.

Figure 4.10: HQ26N/14.82 test case: View of the grid around the airfoil

Table 4.4: HQ26N/14.82 test case: Mesh properties
Mesh property Value
Total number of nodes Nc 146632
Number of surface nodes chordwise (upper or lower surface) 256
Number of wall normal structured layers 128
Minimum number of nodes in laminar boundary layer at ~xt,exp ≈ 76
Maximum first node non-dimensional wall normal distance y+

1 ≈ 0.38

Correction of the Angle of Attack α and Validation of the Mean Flow Results

The correction of the angle of attack α is different for all configurations, but almost linear with the
experimental angle of attack αexp. The values for the streamwise angle of attack used are given in
table C.4 in appendix C. The comparison of the pressure coefficient cp distributions is depicted in
figure 4.11 for two configurations for the upper and the lower wing side. The agreement is very
good on both sides of the wing.

Identification of Configurations with Crossflow Instability Dominated Transition

In the report of Seitz [61] 20 configurations with CFT are given together with the corresponding
transition coordinates xt. Four of them for the upper side and one for the lower side are removed
as the corresponding simulations do not converge due to laminar separation bubbles. The list of
the selected configurations is given in appendix C, table C.4.
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(a) upper side, sweep angle Λ = 45◦, angle of attack
α = −2.01◦, Reynods number Recsw,usw
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of attack α = 5.56◦, Reynods number
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∞ = 3.60 · 106, Mach number Ma =

0.24

Figure 4.11: HQ26N/14.82 test case: Comparison of the measured and computed pressure
coefficient cp distributions

4.2.5 Infinite Swept Cylinder

Experimental Setup

The model of the experiments [47] is a cylinder with an afterbody to avoid turbulent separation at
the leeward side. The chord length of the whole body normal to the leading edge is cn = 0.457m.
The unswept aspect ratio of the body is 5.34.
The experiments were done in the College of Aeronautics 2.4m times 1.8m closed-loop low-speed
wind tunnel [47].
The pressure p measurements were carried out for the Reynolds number Recn,usw

∞ = 1.6 · 106 based
on the normal chord length cn and the streamwise freestream velocity u∞. The sweep angle was
Λ/◦ ∈ {55, 63, 71}. The angle of attack was α = 0◦. The transition measurements were done for
the Reynolds numbers Recn,usw

∞ /106 ∈ [0.89, 1.68] and sweep angles Λ/◦ ∈ [53.0, 70.7]. The angle
of attack was again α = 0◦. The freestream temperature is given as T∞ ∈ [15◦C, 35◦C]. The
freestream turbulence intensity is Tu∞ ≈ 0.16%. [47]
The transition was detected by means of a modified Pitot tube that allows to measure the dynamic
pressure q(~xΩ) ∀~xΩ ∈ Ω inside the boundary layer B. For a given point ~xΩ , the freestream Reynolds
number Recn,usw

∞ is adapted until the measured dynamic pressure q(~xΩ) changes in a characteristic
manner, which indicates transition at the chosen point [47]. The conditions for both the onset and
completion of the transition were detected.

Numerical Setup

The computations are performed for the same configurations as described above for the experiments,
except the turbulence intensity, which is set to Tu∞ = 0.10%. This is a fault, coming from the
fact that the correct paper was not available from the beginning of the work on the thesis. The
influence is expected to be low, as no TST is analyzed. The freestream temperature is averaged to
T∞ = 30◦C. The ambient static pressure is assumed as p∞ = 1atm.
As the freestream Mach number is Ma < 0.3, low-Mach preconditioning is applied.
The simulation is performed two-dimensional. No wind tunnel walls are included. No correction of
the angle of attack is applied, as the model operates at zero angle of attack α = 0◦. The farfield is a
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circle of radius 50 cn. The grid is hybrid, an O-grid around the airfoil embedded in an unstructured
mesh of triangles (see. figure 4.12). It can be seen that the complete cross section is simulated. It

Figure 4.12: Swept cylinder test case: View of the grid around the cross section

would have been possible to only compute half of the model, as the flow has a symmetry plane.
However, this would have needed a new grid, and no grids should be created for this thesis.
The mesh properties are listed in table 4.5.

Table 4.5: Swept cylinder test case: Mesh properties
Mesh property Value
Total number of nodes Nc 60624
Number of surface nodes chordwise (upper or lower surface) 200
Number of wall normal structured layers 84
Minimum number of nodes in laminar boundary layer at ~xt,exp ≈ 39
Maximum first node non-dimensional wall normal distance y+

1 ≈ 0.09

Validation of the Mean Flow Results

The configurations of the pressure measurements are computed with a fully turbulent boundary
layer, as no transition locations are delivered. Attention has to be payed to different definitions
of the chordwise coordinate: Poll [47] deliver all data in "streamwise coordinates"

(
x
c

)
Poll. The

relationship to the standard definition
(
x
c

)
thesis of this thesis is (personal communication by Dr.-Ing.

Normann Krimmelbein) (x
c

)
thesis

= 1
4 −

1
4 cosrad

[
4
(x
c

)
Poll

]
. (4.5)

A comparison of the pressure coefficient cp distributions is given in figure 4.13 for a chosen
configuration. The agreement is very good, much better than in the paper of Stock and Seitz [66].
Note that in the paper of Stock and Seitz [66] the label of the horizontal axis of figure 16 is wrong
(at least for the points of the experimental data): it should be

(
x
c

)
Poll and is the same as in figure 6
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Figure 4.13: Swept cylinder test case: Comparison of the measured and computed pressure
coefficient cp distributions (sweep angle Λ = 55◦, Reynolds number Recn,usw

∞ =
1.6 · 106, Mach number Ma = 0.147)

of the original paper by Poll [47]. This could be the mistake source of [66]. However, the pressure
distributions differ for the upper and lower surface of the cylinder, even though the angle of attack
is α = 0◦. This is caused by the asymmetrical mesh (see figure 4.12).

Identification of Configurations with Crossflow Instability Dominated Transition

Poll [47] gives both the "onset" and "completion" of transition for a large range of Reynolds numbers
and Recn,usw

∞ sweep angles. As in [66], the onset locations are used for the analysis here. In [47] it
is indicated that the measured transition locations ~xt are for pure CFT. This is supported by the
fact that all transition locations are upstream of the maximum thickness of the cross-section of
the model (25%cn), as there a favorable pressure gradient is present, which makes TST unlikely.
In addition, in the experiments it is ensured that there is no attachment line instability induced
transition.
Only the configurations that are given in [66] are considered, as at the beginning of the present
work the original paper [47] about the experiments was not available. From the 98 configurations,
only 14 could successfully be simulated, as turbulent separations appeared often. The list of the
selected test case configurations is given in table C.6 (appendix C).

4.2.6 TELFONA Pathfinder Wing

Experimental Setup

The TELFONA Pathfinder wing-body configuration model of the experiments [44, 45, 68, 67]
consists of a simple fuselage with an attached wing. It was developed as part of the European
Research Project Testing for Laminar Flow On New Aircraft (TELFONA). The wing has an aspect
ratio of 7.05, a taper ratio of 0.778, a full span of b = 1.7m and an aerodynamic mean chord length
of c̄ = 0.24125m. The leading edge sweep angle is ΛLE = 18◦. The airfoil is the DLR LV5, see

53



4 Definition of Calibration Test Cases

figure 4.14. It was derived from an ATTAS laminar glove section [44]. The design driver for the

Figure 4.14: TELFONA Pathfinder wing test case: View of the airfoil normal to the leading
edge

airfoil was the delay of natural transition at high freestream Reynolds numbers Re∞ and transonic
freestream Mach numbers Ma∞. In addition, spanwise edge parallel isobars are reached by an
appropriate shape of the wing [45]. Thus, the TELFONA Pathfinder wing-body configuration is
well-suited for the calibration of transition models parameters by means of measurements [44].
The model surfaces are polished, and the RMS surface roughness is given as hrms = 0.1µm.
The tests were conducted in the European Transonic Wind Tunnel (ETW) [44, 45, 68, 67]. The wind
tunnel allows the use of high freestream Reynolds numbers Re∞ at low freestream temperatures
T∞ and high freestream pressure p∞. This is achieved by a closed-loop design and a continuous
injection of liquid nitrogen.
The test cases are given in form of the freestream Reynolds number Rec̄,usw

∞ based on the aerody-
namic mean chord length c̄ and streamwise velocity u∞, together with the freestream Mach number
Ma∞ and total temperature T0,∞ (which sometimes is misleadingly called "temperature", e.g. in
[68] for the total temperature T0,∞ = 175K the corresponding static temperature is T∞ ≈ 156K).
The angle of attack α is not given, but the lift coefficient cL. A value for the freestream turbulence
intensity Tu∞ = 0.20% is given in [45]. Nevertheless, based on discussions with the authors of [44],
it was found that Tu∞ = 0.1% is more accurate (personal communication of Dr. Daniela François).
The transition line Texp was detected by means of a cryogenic temperature-sensitive paint. This
re-emits light, if excited with light of specific wavelengths. It serves as a measure of the surface
temperature T (~xΓ ) ∀~xΓ ∈ Γ , which is lower for the turbulent boundary layer due to the higher heat
exchange with the surface Γ . To further increase the difference between the laminar and turbulent
boundary layer surface temperature T , a thermal inequilibrium is invoked by quickly changing the
freestream temperature T∞ by approximately 10K in multiple steps. After each step images are
taken with CCD cameras. The transition was measured on the upper and lower side, approximately
in the middle of the wing at spanwise coordinate 0.33b.
Note that the authors of the experiments defined the transition location ~xt,exp as the most down-
stream point of the detected transition line Texp.

Numerical Setup

The computations are performed for the same freestream conditions as the experiments. The angle
of attack α is adapted automatically to match the measured lift coefficient cL. To do so, the fixed
transition line TCFD is set according to the experiments TCFD = Texp.
The simulation is done three-dimensional, as the geometry is three-dimensional, but without any
wind tunnel walls. The farfield is spherical and has a radius of about 70c̄.
The grid is hybrid, with the boundary layer B completely covered by the structured grid. An image
of the grid is provided in figure 4.15. The mesh properties are listed in table 4.6. According to the
best practice rules for mesh properties given in section 3.4, the wall normal resolution is too low.
For many simulations a shock-induced separation of the turbulent boundary layer on the upper
side of the wing leads to a bad convergence of the numerical solution. But nevertheless, as the
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Figure 4.15: TELFONA Pathfinder wing test case: View of the grid around the wing-body
configuration

Table 4.6: TELFONA Pathfinder wing test case: Mesh properties
Mesh property Value
Total number of nodes Nc 4253789
Number of surface nodes chordwise (upper surface) ≈ 110
Number of surface nodes spanwise (upper surface) ≈ 165
Number of wall normal structured layers 42
Minimum number of nodes in laminar boundary layer at ~xt,exp ≈ 29
Maximum first node non-dimensional wall normal distance y+

1 ≈ 1.41 (at ~xt: 0.97)

high residuals are located solely inside the separation, the laminar boundary layer is taken as
well-converged. To improve the overall convergence, scalar instead of matrix artificial dissipation is
used.

Validation of the Mean Flow Results

In figure 4.16 an exemplarily comparison of the pressure coefficient cp distributions of the mea-
surements and the simulation is shown for Reynolds number Rec̄,usw

∞ = 20 · 106, lift coefficient
cL = 0.401, lower wing side. The agreement between the measurements and the simulation is very
good.

Identification of Configurations with Crossflow Instability Dominated Transition

The CFT configurations are collected from the papers [44, 45, 68, 67]. In addition, in [59]
transition locations predicted by the eN -method are given. In all sources, the authors identify CFT
configurations as such.
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Figure 4.16: TELFONA Pathfinder wing test case: Comparison of the measured and com-
puted pressure coefficient cp distributions for Reynolds number Rec̄,usw

∞ = 20·106,
lift coefficient cL = 0.401, lower wing side

The list of the selected configurations (together with the found angles of attack αCFD) is given in
table C.5 (appendix C).

4.2.7 Inclined 6:1 Prolate Spheroid

Experimental Setup

The spheroid of the experiments [26] is an ellipse rotated around its larger half axis (ellipsoid). It
can be seen as a strongly simplified aircraft fuselage or a generic missile. When exposed to oblique
flow, crossflow develops inside the boundary layer B. In contrast to flows over long or infinite swept
wings, the flow around the spheroid is three-dimensional, in the sense that the boundary layer edge
streamlines are strongly curved in stream- and crosswise direction and are non-parallel. Both TST
and CFT are observed. The length of the spheroid is c = 2.4m and it has a diameter of c6 .
The surface roughness of the model is unknown. But, as it was made of glass-fiber reinforced
resin and looks glossy on a photographs of the model [26], it is assumed to be painted. The hot
films of the transition measurements, which have a heigth of 5 µm [26], disturb the flow, but the
experimentators indicate that "Extreme care was taken to mount the hot films on the model surface
in order to avoid a boundary layer transition due to artificial roughness" [38]. In addition, the
hot films were distributed on the spheroid surface in a manner that disturbances by the upstream
probes should not influence the measurements. In order to be consistent with previous research on
transition modeling [31], a surface roughness of hrms = 3.3µm is assumed.
The flow was measured in the DFVLR (DLR) low-speed wind tunnel Göttingen [26]. The test
section is a large open room (cross sectional area 3.5m times 4.5m).
The free transition experiments were carried out for a varying angle of attack α/◦ ∈
{5, 10, 15, 20, 24, 30}, a varying freestream velocity u∞ ∈ {10, 20, 30, 45, 60} and a varying freestream
Reynolds number Recsw,usw

∞ /106 ∈ {1.5, 3.0, 4.5, 6.4, 6.5, 10.0} based on the spheroid length c and
the streamwise freestream velocity u∞. The temperature is known to be constant [1], but no value
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is given. The freestream turbulence intensity Tu∞ ∈ [0.1%, 0.3%] is given by [26]. It is said that
the freestream Reynolds number Recsw,usw

∞ is influencing the turbulence intensity [26].
The transition was detected by measuring the wall shear stress τw(~xΓ ), ~xΓ ∈ Γ with twelve flush
mounted surface hot film probes [26]. The probing of the surface was relatively coarse, and the skin
friction coefficient cf has much uncertainty [28]. For the analysis of this thesis, the experimental
transition lines Texp are taken at certain isolines of the skin friction coefficient cf according to [28].

Numerical Setup

The computations are performed for the same freestream Reynolds numbers Recsw,usw
∞ as the

experiments, except for the turbulence intensity Tu∞, which is set to the average Tu∞ = 0.15% of
the experiments. A better approach would be to correlate the turbulence intensity linearly with
the freestream Reynolds number Recsw,usw

∞ , but this is not done due to limited time left for the
present work. In addition, the freestream Mach number is set according to [28] as Ma∞ = 0.13.
The freestream static temperature is assumed as T∞ = 300K.
Due to the low freestream Mach number Ma∞ < 0.3, preconditioning is used. The computation
is performed without wind tunnel walls, as the test section is large. No correction of the angle of
attack α is needed, because the spheroid does not generate much lift L, so the potential interaction
with the wind tunnel walls is low. The farfield ΓFF is a sphere of radius 100c. Only a half of the
flow is modeled, as it is symmetrical. The grid around the spheroid is shown in figure 4.17. The

Figure 4.17: Prolate spheroid test case: View of the grid around the spheroid

mesh properties are listed in table 4.7. For some configurations the free transition simulations lead

Table 4.7: Prolate spheroid test case: Mesh properties
Mesh property Value
Total number of nodes Nc 2846519
Number of surface nodes 20026
Number of wall normal structured layers 128
Minimum number of nodes in laminar boundary layer at ~xt,exp ≈ 60
Maximum first node non-dimensional wall normal distance y+

1 ≈ 0.44

to a completely laminar boundary layer on the lower part of the surface of the prolate spheroid.
That invokes laminar separations, letting the numerical solution diverge. In order to stabilize the
computation, the "hack" as for the ONERA D numerical setup is applied: For x

c > 0.9351 the
effective intermittency is set to γeff = 1 in order to set the boundary layer to turbulent.

1That is the location of the most downstream hot-film probe applied in the experiments [26].
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4 Definition of Calibration Test Cases

Identification of Configurations and Locations with Crossflow Instability Dominated Transition

Only the configurations of [28] are taken for time reasons. Surface points on the experimental
transition line Texp are selected for the anaylsis for which CFT is probable. The points cannot be
on the symmetry plane ϕ ∈ {0◦, 180◦} of the spheroid, as the velocity normal to the symmetry
plane is zero (no crossflow ucw). The locations are chosen such that they are equally distributed
over the transition line Texp for azimuth angles ϕ smaller than the azimuth angle ϕ of the most
upstream transition location ~xt.
In addition, the transition lines TeN as computed by the eN -method are considered. These are
given in [28], together with the amplification factor distributions for both Tollmien-Schlichting NTS

and crossflow instabilities NCF in the laminar boundary Blam. The locations for the analysis are
chosen as points on the computed transition line TeN at which the Tollmien-Schlichting instability
amplification is NTS < 1.0. Thus, mixed mode transition locations are sidelined.
The points ~xt ∈ Texp taken into account are defined by the chordwise non-dimensional coordinate x

c

and the azimuth angle ϕ. They are given in figure 4.18. It can be seen that the eN -transition lines
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Figure 4.18: Prolate spheroid test case: Evaluation points for CFT

TeN are generally more upstream than the experimental ones Texp. That deviation is described in
[28], but could not be resolved. However, in order to assess the differences of the laminar boundary
layer at the two transition lines, both the experimental Texp and the eN -transition line TeN are
used in the analysis.

4.2.8 TU Braunschweig Sickle Wing

Experimental Setup

The KR01 airfoil was used for the wing of the experiments [46]. It is designed such that on its
upper side crossflow vortices are strongly amplified, while Tollmien-Schlichting waves are dampened,
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and on the lower side a mix of both crossflow and Tollmien-Schlichting vortices/waves is present.
The wing has a distinct shape of a three times abruptly changing sweep angles Λ ∈ {30◦, 45◦, 55◦},
whereby the streamwise chord length c = 0.8m is constant along the span. The corresponding
three sections/swept segments have a span of 0.3m each. By the spanwise varying sweep angle Λ,
different CFT conditions are present per configuration. The wing was not connected to a fuselage,
but mounted to the lower wind tunnel wall directly. The model surface roughness is given as
hrms = 1.47µm.
The wind tunnel of the analysed experiments is the closed-loop Modell-Unterschallkanal Braun-
schweig (MUB). The test section has a cross section of 1.3 m × 1.3 m.
The measurements were performed for varying angles of attack α/◦ ∈ {−2.6, 1.2} and Reynolds
numbers Rec,usw

∞ /106 ∈ {1.75, 2.25, 2.75} based on the streamwise chord length c and the freestream
velocity u∞. The freestream turbulence intensity was Tu∞ ≈ 0.17%, which is relatively high.
It is noted that the configuration angle of attack α = −2.6◦ and freestream Reynolds number
Rec,usw
∞ = 2.75 · 106 was also used in a similar experiment in another wind tunnel [29]. There, addi-

tional information about the configuration is given. It is assumed that this additional information
for the corresponding configuration can be taken over for the experiments of [46]. The freestream
Mach number was Ma = 0.156 and freestream static temperature was T∞ = 22.62C◦.
The pressure and transition measurements were done simultaneously and are reported only for
the configurations with the freestream Reynolds number Rec,usw

∞ = 2.75 · 106 and angle of attack
α ∈ {−2.6, 1.2}. The transition was detected by measuring the surface temperature of the wing
with an infrared camera. In addition, the surface was heated from the inner by a carbon fiber
heating layer. This increases the visible difference between the laminar and turbulent boundary
layer due to the different wall heat exchange.

Numerical Setup

Only the configuration with angle of attack α = −2.6◦ and freestream Reynolds number Rec,usw
∞ =

2.75 · 106 is computed, as for it both transition measurements and a grid for the simulation were
available.
The simulation is performed with wind tunnel walls, as the wing is relatively large compared to
the test section size. For the simulation domain Ω, the length of the test section is 10 m. The
structured grid around the wing is a C-grid, which is embedded in an unstructed grid of the wind
tunnel test section.
An overall view of the mesh is given in figure 4.19. The airfoil and the grid around it are shown in
figure 4.20. The mesh properties are listed in table 4.8. Due to the low freestream Mach number

Table 4.8: TU Braunschweig Sickle Wing test case: Mesh properties
Mesh property Value
Total number of nodes Nc 14809654
Number of surface nodes chordwise (upper surface) ≈ 200
Number of surface nodes spanwise (upper surface) ≈ 180
Number of wall normal structured layers ≈ 120
Minimum number of nodes in laminar boundary layer at ~xt,exp ≈ 90
Maximum first node non-dimensional wall normal distance y+

1 ≈ 0.88

Ma∞ < 0.3, the simulation is done with low-Mach preconditioning (with a general cut-off value
of Kgeneral = 1.5). In order to get a converging numerical solution, for the first few thousand
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Figure 4.19: TU Braunschweig Sickle Wing test case: Overall view of the grid

pseudo timesteps scalar artificial dissipation must be used. This is due to the large pseudo temporal
derivatives at the beginning of the simulation. Afterwards, it is switched to matrix dissipation for
higher numerical accuracy.

Validation of the Mean Flow Results

In figure 4.21 the pressure coefficient cp distributions of the measurements and the simulation are
compared. The agreement is very good. The small variations of the pressure coefficient cp for the
upper curves is due to small laminar separation bubbles at the upper surface right before the fixed
transition.

Identification of Locations with Crossflow Instability Dominated Transition

Points ~xt on the measured transition line Texp were selected for which it is very probable that in the
experiments CFT happened at them. For that, newer results for the transition line T measurements
by Kruse et al. from another wind tunnel with same reference conditions, except a lower freestream
turbulence intensity Tu∞, were considered [29]. As the turbulence intensity Tu∞ is lower, the
Tollmien-Schlichting transition is more delayed. As a result of that, the part of the transition line
T of the MUB experiment, that is clearly crossflow instability dominated, can be identified better.
The points are chosen in the region of stationary crossflow, which is at the spanwise coordinates
where the transition line T (of the more recent experiment) is saw-tooth-shaped. Only the upper
surface of the wing can be considered, as the lower side features TST. The chosen points ~xt are
depicted in figure 4.22.
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Figure 4.20: TU Braunschweig Sickle Wing test case: View of the grid around the airfoil

0.0 0.2 0.4 0.6 0.8 1.0
non-dimensional coordinate x/c

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

pr
es

su
re

co
effi

ci
en

t
c p

Λ = 30◦

Λ = 45◦

Λ = 55◦

measurements

Figure 4.21: TU Braunschweig Sickle Wing test case: Comparison of the measured and
computed pressure coefficient cp distributions
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Figure 4.22: TU Braunschweig Sickle Wing test case: Depiction of the analyzed transition
locations ~xt on the upper surface
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5 Assessment of Transition Criteria by
Simulations with fixed Transition

In this chapter the assessment of transition criteria for crossflow instability dominated transition
is presented. The C1 [3], helicity [19] and Langtry’s criterion [31] are analyzed. The approach
for the assessment and recalibration is given in detail. The fixed transition analyses for each test
case indivually are described. Afterwards, the results for all test cases simultaneously are used to
judge the criteria regarding their universality. For both the C1 and Langtry’s criteria improved
formulations are proposed. The one of the C1 criterion is applied to the relevant test cases and
results for the free transition prediction are presented and interpreted.

5.1 Approach
In order to verify or reformulate the CFT criteria, a set of Nm data points (data point index
m = 1, ... , Nm) is collected by assessing the laminar boundary layer properties at points ~xΓ ∈ Texp
on the reference transition line T (from experiments or the eN -method). Then,

Reδ2,m(~xΓ )︸ ︷︷ ︸
ueδ2
νe

(~xΓ )

= fcriterion, C1(H12,m(~xΓ )) (5.1)

for the C1 criterion,

max
yn∈[0,δ(~xΓ )]

ReHe,m(~xΓ )︸ ︷︷ ︸
y2
n

νB(~xΓ ,yn)
HeB(~xΓ ,yn)
uB(~xΓ ,yn)

= fcriterion,He(H12,m(~xΓ )) (5.2)

for the helicity criterion, and

Reθ,m(~xΓ )︸ ︷︷ ︸
θ ue
νe(~xΓ )

= max
yn∈[0,δ(~xΓ )]

fcriterion,Langtry

(
HCF,m,B(~xΓ , yn), hrms

θm(~xΓ ) , R
turb
m,B(~xΓ , yn)

)

≈ fcriterion,Langtry
(

max
yn∈[0,δ(~xΓ )]

HCF,m,B(~xΓ , yn), hrms
θm(~xΓ ) , R

turb
m,B(~xΓ , argmax

yn∈[0,δ(~xΓ )]
HCF,B(~xΓ , yn))

)

(5.3)

for Langtry’s criterion. In the underbraces it is denoted how exactly the parameters are computed
from the local variables in the boundary layer B and the integral boundary layer parameters.
In the vicinity of the transition from the laminar to the turbulent boundary layer state the boundary
layer parameters change quickly. As the transition criteria are relevant inside the laminar boundary
layer, only the variables from the laminar boundary layer upstream of the transition location can
be assessed for the recalibration of the transition criteria. This streamwise offset is overcome
by performing fixed transition simulations with a transition set approximately 10%c (chord c)
downstream ~xt,ref + 0.1c~esw of the reference (experimental of by eN -method) transition location
~xt,ref. Then, at the reference transition location ~xt,ref the laminar boundary layer parameters can be
well-evaluated and are assumed to be inaffected by the upstream effects of the transition happening

63



5 Assessment of Transition Criteria by Simulations with fixed Transition

a little downstream. The approach is accompanied by the assumption that in the simulation
the laminar boundary layer properties at the reference transition line Tref do not change with a
downstream shift of the fixed transition line Tfixed. If no reference transition location is known, for
example for the opposite wing side, the boundary layer is set to completely turbulent. In addition, no
sustaining turbulence is applied according to equation 2.47 because the implementation in the TAU
solver does not work for fixed transition simulations. As the turbulence intensity Tu(~xΩ)∀~xΩ ∈ Ω
is not directly important for the laminar boundary layer velocity profile u(~xΩ) ∀~xΩ ∈ Blam, it is
assumed that freestream turbulence decay does not influence the results of the assessment of the
CFT criteria.
The data points of equations 5.1, 5.2 and 5.3 will be plotted in so-called transition criterion plots.
The plots will be discussed in the following ways:

• If such are available, the results of other authors for the same test cases are compared to the
new results of the present work.

• The scatter of the points is quantified by means of the determination coefficient

R2(φ) =

Nm∑
m=1

(φ̂m − φ̄)2

Nm∑
m=1

(φm − φ̄)2
, (5.4)

which, for a given set of points {φm}m=1,... ,Nm , its mean φ̄, and the regression value φ̂m,
calculates how well the points are represented by a regression curve. It is 0 ≤ R2 ≤ 1 and the
larger the determination coefficient R2, the less scatter of the data is present. Only in this
context of quantifying the data scatter of a single test case, the regression curve is assumed
to be a least-squared-error-fitted parabola. The corresponding determination coefficient R2 is
called parabolic determination coefficient. Note that a high determination coefficient R2 does
not mean that the transition criterion is "good". Instead, it means that the configurations
behave similarly with respect to the flow features. In addition, the determination coefficient R2

only considers the scatter in terms of the Reynolds number ("vertical scatter"), not the scatter
in terms of the shorted distance of a point to the regression curve. Thus, a low determination
coefficient R2 can only be seen as an indication for a highly scattered correlation.

• The curve of the reference formulations of the CFT criteria is plotted, i.e. equation 2.79 for the
C1 criterion, equation 2.82 for the helicity criterion and equation 2.93 for Langtry’s criterion
(the improved version by Venkatachari [71]). For the latter a constant non-dimensionalized
surface roughness hrms

θ = 0.004 is chosen arbitrarily, which corresonds to a polished surface
for certain test cases [31]. If the non-dimensionalized surface roughnesses of the individual
configurations are different (which is always the case, as the momentum thickness θ differ),
the CFT momentum thickness Reynolds number Reθ is calculated back to the one of a
non-dimensional surface roughness of hrms

θ = 0.004 as

Reθ,0.004 = Reθ,hrms − froughness
(
hrms
θ

)
+ froughness (0.004) . (5.5)

This allows a direct comparison of the data points to the reference curve. If no surface
roughness is known for the experiment, a painted surface (RMS roughness hrms = 3.3µm)
is assumed according to [31]. Note that the reference curve is plotted for a viscosity ratio
Rturb = 0, as the boundary layer is laminar.

• The sensitivitiy of the transition prediction is judged by means of "errorbars". These do not

64



5 Assessment of Transition Criteria by Simulations with fixed Transition

stand for any error, but are used to assess the change of the boundary layer parameters, when
moving upstream by 5%c (chord length c) from the experimental transition line Texp. The
shift is done only upstream, as downstream the nearby happening transition due to the fixed
transition simulation may distort the laminar boundary layer velocity profile u(~xΩ) ∀~xΩ ∈ Ω.
It is assumed that the general behaviour 5%c downstream is the same as 5%c upstream, so
additional errorbars for the downstreamwise shift would not yield new information, anyway.
One can think of fictitious errorbars which are appended to the points for the downstream
shift. The length of the horizontal errorbars is proportional to the change of the argument of
the transition criterion. The length of the vertical errorbars is proportional to the change of
the difference ∆Reφ = Reφt−Reφ between the transition Reynolds number Reφt (placeholder
φ) coming from the evaluation of the transition criterion and the local computed Reynolds
number Reφ.1 To be precise:

vertical errorbar length = ∆Reφ(~xΓ − 5%c~esw)−∆Reφ(~xΓ ) ∀~xΓ ∈ T (5.6)

The Reynolds numbers may change, if the model itself and/or the numerical solution of the
model are inaccurate. If the errorbars are long, the criterion-predicted transition location

~xt,criterion(~xΓ ) = arg
~̃xΓ∈SE→Γ (~xΓ )

(
∆Reφ(~̃xΓ ) = 0

)
∀~xΓ ∈ Γ. (5.7)

is insensitive to a change in Reθt(~xt,criterion) or Reθ(~xt,criterion), which is good.2 If data points
deviate strongly from the theoretical curve given by the criterion, possible reasons for that
are discussed. A point is considered as deviating strongly from the reference curve if the
reference curve is not intersecting the vertical errorbar of the respective point.

Since many simulations are analyzed in this work (≈ 1000), Python classes are written for this thesis
that allow an efficient postprocessing: The TAU results class describes a general TAU simulation.
It has attributes and methods that can be used to automatically detect the convergence of the
computation. In addition, routines for reading out the boundary layer variables along chosen
surface curves/cross sections from the TAU solution files and saving them as NumPy arrays are
implemented. Note that due to a bug in the PyTecplot library of Tecplot Inc., the variables in the
boundary layer B are read out only by means of a nearest neighbor (NN) algorithm, rather than a
linear interpolation between the grid points of the actual grid. The probe points are distributed
on an equidistant grid of points between the wall Γ and the boundary layer edge E . As the grid
from the CFD simulations is very fine in wall normal direction, the influence is expected to be low.
However, a grid convergence study for the probe points is performed for the NLF(2)-0415 test case.
It is found that the number of points in wall normal direction should be at least 16.
A subclass of TAU results, called crossflow test case, adds attributes to it that uniquely describes a
test case, i.e. reference conditions, chord length c and so on. In addition, methods are added for
the computation of the variables needed for the analysis, for example Reynolds numbers defined on
the surface Γ or in the whole boundary layer B. Plotting methods are added, that allow the easy
plot of chordwise distributions, for example of the pressure coefficient cp.
Another class, called parameter variation, holds a list of test case objects as an attribute. It can

1See appendix E.
2It is highlighted that the length of the vertical errorbar is not the streamwise change of the computed Reynolds

number Reφ. It was decided to use equation 5.6 for the vertical errorbars because the sensitivity of the criterion-
predicted transition location ~xt,criterion on a change of the Reynolds numbers can be seen more easily.
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be used to automatically create several types of plots, for example transition criterion plots, or
automatically create tables of the sets of reference conditions for clear CFT cases, that are taken
into account for the analysis.

5.2 Results for Individual Test Cases
The results are sorted by the analyzed wings/bodies. For each of them, the transition criterion
plots are presented and discussed for the C1, the helicity and Langtry’s criterion for CFT.

5.2.1 ONERA D Infinite Swept Wing

C1 Criterion

The CFT criterion plot for the C1 criterion is given in figure 5.1. As can be seen, the new data
points are in general higher and closer to the curve of the transition criterion. In the paper of
Arnal et al. [3] there is also a point with a very high shape factor H12 > 2.6. Unfortunately, the
corresponding case configuration is unknown, so it is impossible to find out why this point cannot
be reproduced. Probably the corresponding configuration is one that did not converge due to a
laminar separation bubble.
For each point, the criterion curve of the CFT criterion roughly intersects the vertical error bars.
This means that the error in the transition criterion regression in term of the transition location is
less than/about 5%c and therefore, the deviation from the criterion curve can be indentified as
being relatively small.
The determination coefficient for a parabola fit is R2

ONERA D, C1 = 0.857.

Helicity Criterion

The CFT criterion plot for the helicity criterion is given in figure 5.2. The comparison with the
points of the original calibration [19] shows that the new points have higher shape factors H12 and
lower helicity Reynolds numbers ReHe. This could be due to the improved numerical setup.
The points are not so close to the criterion curve as the original points. Under consideration of the
error bars the error in the transition location is less than 5%c for about half of the configurations.
The parabolic determination coefficient for the helicity criterion data is R2

ONERA D, helicity = 0.546,
which is the lowest of the three criteria assessed. This is due to the two outliers for (Λ,Recn,un∞ ) =
(50◦, 106) and (55◦, 0.8·106) (eN -transition locations). These points are also notable in the transition
criterion plot of the C1 criterion, but with less deviation from the other points. This indicates that
the individual configurations for this test case do not behave similary with respect to the helicity
criterion, but rather with respect to the C1 criterion.

Langtry’s Criterion

The CFT criterion plot for Langtry’s criterion is given in figure 5.3. This time, the error bars show
that the points are farther distant to the criterion curve than for the other criteria. This means
that for most of the configurations the predicted transition location would by wrong by more than
5%c. But the data is the least scattered from the three criteria, as the parabolic determination
coefficient is R2

ONERA D, Langtry = 0.944.
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5.2.2 NLF(2)-0415 Infinite Swept Wing

C1 Criterion

The CFT criterion plot for the C1 criterion is given in figure 5.4. As can be seen, the lower
the roughness hrms, the higher the crosswise displacement thickness Reynolds number Reδ2 for a
given shape factor H12, which corresponds to a downstream shift of the transition location ~xt. If
for each of the different roughnesses hrms separately regression curves were drawn, the parabolic
determination coefficient R2 > 0.96 would be very high. In addition, the regression curves would
intersect the vertical errorbars. Thus, the scattering is very little and the points can be correlated
strongly.
Apparently for low shape factors H12 the curve of the C1 criterion gives too low values. When
coming from the right-hand side (from positive shape factors H12), the abolute value of the slope
of the curve should increase rather than decrease in order to follow the data points.
Attention is called on the fact that the horizontal errobars are pointing to the right. This means
that the shape factor H12 is decreasing at the transition location ~xt.

Helicity Criterion

The CFT criterion plot for the helicity criterion is given in figure 5.5. The comparison of the
respective points for the highest roughness to the ones of the original calibration by Grabe et al.
[19] shows a very good agreement. As the new data points are more, it is more obvious that the
slope of a regression curve have to be slightly steeper.
The determination coefficients for the roughnesses hrms = (0.25, 0.50, 3.30)µm are R2 =
(0.82, 0.97, 0.94), which is very high, except for the lowest roughness hrms. The errorbars support
the observation that the helicity criterion is well suited to predict the transition for the NLF(2)-0415
configurations with the highest roughness.

Langtry’s Criterion

The CFT criterion plot for Langtry’s criterion is given in figure 5.6. The points for the different
surface roughnesses hrms have almost the same momentum thickness Reynolds number Reθ. This
shows that the idea of the Langtry’s criterion to take into account the different roughnesses hrms

(and of plotting them for h
θ = 0.004) works well. In addition, the points have approximately the

same non-dimensional crossflow strength HCF. Thus they collapse to almost a single point at
(HCF,Reθ) ≈ (0.10, 645). This is why the parabolic determination coefficient R2 = 0.62 (for all
roughnesses hrms together) is not close to 1. On the one hand, the collapsing point reveals itself
as being significant, which indicates that the regression curve should cover it. On the other hand,
this yield less information about how the transition criterion curve should be shaped for other
non-dimensional crossflow strengths than HCF ≈ 0.10.
The points are far distanced to the curve of the criterion, in absolute values by ∆Reθ ≈ 145, and
also relative to the lengths of errorbars. The errorbars in general are very short compared to
the other test cases (see for example figure 5.3 for the ONERA D airfoil). This is because the
streamwise slopes of the transition momentum thickness Reynolds number ∂swReθt and computed
momentum thickness Reynolds number ∂swReθ are very similar at the measured transition location
~xt,exp. This is a second reason for the necessity that the curve of the transition criterion should
cover the point cluster (HCF,Reθ) ≈ (0.10, 645).
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5.2.3 NACA 642A015 Infinite Swept Wing

C1 Criterion

The CFT criterion plot for the C1 criterion is given in figure 5.7.
It can be seen that the more positive the angle of attack α, the larger the shape factor H12 at
the measured transition location ~xt. In addition, the higher the sweep angle Λ, the higher the
crosswise displacement thickness Reynolds number Reδ2 at the transition location. This is expected,
as the crosswise displacement thickness Reynolds number Reδ2 contains the crosswise displacement
thickness δ2, which is increasing with the sweep angle Λ, because the crossflow becomes larger.
The new points and the points from the original calibration of Arnal et al. [3] are located similarly,
albeit the new points are concentrated in a region where only a few points from Arnal et al. [3]
exist.
Many points are close to the curve of the transition criterion, measured by the errorbar lengths, but
many others are not, especially for high shape factors H12. This is why the parabolic determination
coefficient is only R2 = 0.46.

Helicity Criterion

The CFT criterion plot for the helicity criterion is given in figure 5.8. The qualitative results are
the same as for the C1 criterion. The parabolic determination coefficient is R2 = 0.33, which is
rather low.

Langtry’s Criterion

The CFT criterion plot for Langtry’s criterion is given in figure 5.9. The points cover a wide range
of non-dimensional crossflow strengths HCF. It can be seen that the higher the angle of attack α,
the higher the momentum thickness Reynolds number Reθ at the experimental transition location
~xt,exp. With increasing sweep angle Λ the non-dimensional crossflow strength Hcf gets larger, which
is expected. In addition, the momentum thickness Reynolds number Reθ at the transition location
~xt gets smaller.
The scatter of the data is little, as the curve of the transition criterion intersects the vertical errorbars,
when the errorbars are "copied" and appended to the points for a fictitious downstreamwise shift.
The points can be very well correlated by a parabola, as the corresponding determination coefficient
is R2 = 0.97. So the formulation of the Langtry’s criterion seems to take into account parameters
meaningful to CFT.

5.2.4 HQ26N/14.82 Infinite Swept Wing

C1 Criterion

The CFT criterion plot for the C1 criterion is given in figure 5.10. It is visible that the points for the
curved upper wing side yield higher displacement thickness Reynolds numbers Reδ2 than the points
for the flat lower wing side. This matches the observation for the eN -method without curvature
terms, as the transition would be predicted too upstream on the upper side, if the same criterion as
for the lower wing side was applied. Furthermore, the points on the upper wing side feature similar
crosswise displacement thickness Reynolds numbers Reδ2 ≈ 140 at the experimental transition
location ~xt,exp. At the transition locations ~xt,exp on the lower wing side the points also have almost
the same displacement thickness Reynolds number Reδ2 ≈ 115. In general, the point deviates
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strongly from the curve of the transition criterion (measured by the errorbar lengths). Only for the
angles of attack α = −2.01◦ and α = 6.59◦ the criterion curve intersects the vertical errorbars. The
parabolic determination coefficient R2 = 0.043 for the points on both sides of the wing together is
very low. If only the points on the lower wing side are considered, the determination coefficient
R2 = 0.08 is not much higher. The values are vey low due to the large variation of the shape factor
H12 of the data points.
Concludingly, for the HQ26N/14.82 test case the correlation Reδ2(H12) seems to be not meaningful
for the CFT.

Helicity Criterion

The CFT criterion plot for the helicity criterion is given in figure 5.11. The same result as for the
C1 criterion is true. The parabolic determination coefficient R2 < 0.03 is very low (for the points
of both sides together and also if only the data for the lower surface is considered).

Langtry’s Criterion

The CFT criterion plot for Langtry’s criterion is given in figure 5.12. The results are suprisingly
good, when compared to the C1 criterion and the helicity criterion. It seems that Langtry’s criterion
uses variables for the transition criterion that are more meaningful. There is no big difference
between the points of the upper and the lower wing side. In addition, the parabolic determination
coefficient R2 = 0.92 is very high. So the scatter for the formulation of a transition criterion is
low with respect to the value of the momentum thickness Reynolds number Reθ. But, when the
relatively small lengths of the errorbars are taken into account, it can be seen that, for the majority
of the points, the scatter is large with respect to the transition location sensitivity. This means
that the original transition criterion will predict wrong transition locations by more than 5%c.

5.2.5 Infinite Swept Cylinder

C1 Criterion

The CFT criterion plot for the C1 criterion is given in figure 5.13. First, the data is compared to
the points for the swept cylinder in the paper of Arnal et al. [3]. The agreement is good, albeit less
points for high shape factors H12 > 2.4 are present in the new set of points.
The scatter of the new data is very low (parabolic determination coefficient R2 = 0.94).
The errorbars are long compared to other ones of the other test cases analyzed, which is good, as
the predicted transition location ~xcriterion is insensitive to a change of the Reynolds number. But in
the this thesis the sensitivity is measured in terms of

(
x
c

)
thesis, where x is the chordwise coordinate.

As the non-dimensional transition locations x
c ≈ 0.1 are very small, it is no longer approximatedly

physically meaningful to look only onto the chordwise coordinate. It would be better (but is not
done here) to look onto the streamwise coordinate s

c =
(
x
c

)
Poll (as Poll did [47], see equation 4.5).

Interestingly, the swept cylinder flow does not follow the trend at low shape factors H12 as observed
for the NLF(2)-0415 infinite swept wing and TELFONA Pathfinder wing. The swept cylinder
has the transition more upstream (at lower crosswise displacement thickness Reynolds numbers
Reδ2), similar to the 6:1 prolate spheroid (section 4.2.7). This could be explained by the streamline
curvature instability, which causes an early transition. In the overview paper of Saric et al. [55] it
is said "These flows are referred to as swept cylinder flows to distinguish them from both swept

3At these low values the determination coefficient is generally not meaningful anymore.
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wing and attachment line flows." (emphasized by the author of the thesis). This indeed indicates
that the swept cylinder test case features another type of natural transition than CFT.

Helicity Criterion

The CFT criterion plot for the helicity criterion is given in figure 5.14. The qualitative results and
interpretation are the same as for the C1 criterion. The criterion curve does not represent the
points very well, but is still good with regard to the long errorbars of the points. The parabolic
determination coefficient R2 = 0.94 is again very high.

Langtry’s Criterion

The CFT criterion plot for Langtry’s criterion is given in figure 5.15. The points do more or less
collapse around (HCF,Reθ) ≈ (0.188, 355.0), which means that this point is very characteristic for
the swept cylinder flow and should be covered by the Langtry’s criterion. On the other side, it does
not provide much information needed for a formulation of a criterion regression curve for a larger
range of non-dimensional crossflow strengths HCF.
For Langtry’s criterion the swept cylinder points behave different than the data points for the
NLF(2)-0415 swept wing and TELFONA Pathfinder wing (the argument of the CFT criterion
is different). This is a contrast to the other two CFT criteria assessed. A possible conclusion
from that: the Langtry’s criterion is capable of capturing streamline-curvature-instability-triggered
transition.
The parabolic determination coefficient is R2 = 0.20, which is a low value. This is because the
range of non-dimensional crossflow strengths HCF of the points is low.

5.2.6 TELFONA Pathfinder Wing

C1 Criterion

The CFT criterion plot for the C1 criterion is given in figure 5.16. The point distributions are
showing different trends for the upper and lower wing side as well as with and without the use of
the transition location by the eN -method or the experiment. There is no tendency of the point
locations with the lift coefficient cL. It can be seen that the points for the lower wing side behave
similarly than the ones for the NLF(2)-0415 infinite swept wing: the points tend to show larger
crosswise displacement thickness Reynolds numbers Reδ2 than the criterion curve for low shape
factors H12. The eN -point for the lower wing side can be correlated more or less well with the
experimental points for the lower wing surface.
The upper wing side points also feature higher crosswise displacement thickness Reynolds numbers
Reδ2 at the transition location than the curve of the criterion. The errorbars are short compared to
the deviation from the reference curve.
Attention is called on the fact that the horizontal errobars are pointing to the right. This means
that the shape factor is decreasing at the transition location ~xt.
The parabolic determination coefficient for the points on the lower wing side is R2 = 0.82, which is
high and indicates a strong relation between the points.

Helicity Criterion

The CFT criterion plot for the helicity criterion is given in figure 5.17. The qualitative results are
the same as for the C1 approach. The parabolic determination coefficient for the lower wing side
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points is R2 = 0.65. If all points are taken into account, the parabolic determination coefficient is
R2 = 0.53.

Langtry’s Criterion

The CFT criterion plot for Langtry’s criterion is given in figure 5.18. For this criterion, the points
for the upper and lower wing side visually correspond to each other. Nevertheless, the parabolic
determination coefficient for the points of both wing sides together is only R2 = 0.66, which is
because the quality of the regression is only evaluated in terms of the crosswise displacement
thickness Reynolds number Reδ2 (vertical direction).
The points deviate from the reference curve, as (most of) the points are distanced far from the
curve relative to the errorbar lengths. So a recalibration of the curve is helpful.

5.2.7 Inclined 6:1 Prolate Spheroid

Note that for this test geometry the properties are evaluated along the wall-projected boundary
layer edge streamlines SE→Γ (~xt) through the selected points ~xt ∈ Texp on the transition line Texp.
For the highest angle of attack, these virtual streamlines are depicted in figure 5.19 (flow coming
from the lower left-hand side). As can be seen, on the upper side a flow detachment is happening.

C1 Criterion

The CFT criterion plot for the C1 criterion is given in figure 5.20. It is notable that no errorbars
were plotted. This is because of their high lengths, in particular with increasing angle of attack α,
which makes the plot less clear. The long errorbars are explained by the fact that the properties
of the boundary layer B are evaluated along the wall-projected boundary layer edge streamlines
SE→Γ . The upstream shift by "5%c" is large compared to the SE→Γ -wise distance between the
attachment line on the lower symmetry line and the flow detachment near the upper symmetry
line, what decreases with increasing angle of attack α.
It is remarkable that the points for the measured transition line Texp (parabolic determination
coefficient R2 = 0.90) are more or less following the criterion curve. But not so the points for the
eN -transition line TeN (parabolic determination coefficient only R2 = 0.37), which exhibit a slightly
decreasing crosswise displacement thickness Reynolds number Redelta2 for decreasing shape factor
H12. This is because the eN -transition lines TeN is generally more upstream, where the crosswise
displacement thickness δ2 is smaller (as the boundary layer is thinner).
So, judging based on the C1 criterion, the experimental transition line Texp is the "correct" one. On
the other hand, the local C1 approach, i.e. the local approximation of the crosswise displacement
thickness Reynolds number Reδ2 and the shape factor H12, is based on the FSC boundary layer
solutions (see appendix D.2). This is why the local C1 approach will fail to predict the transition
line T for the spheroid, regardless of how "good" the transition criterion is.
In addition, it is interesting that the trend of the points is in agreement with the criterion curve, even
if the shape factors H12 for these cases are low. This is contrary to the results for the NLF(2)-0415
airfoil and the TELFONA Pathfinder wing. These two cases are long/infinite swept wing flows.
The curvature of the surface is significantly lower than for the spheroid, which is more similar to
the swept cylinder. This may explain the generally different behaviour for low shape factors H12:
For strongly curved surfaces (as for the spheroid and the swept cylinder), the streamline curvature
instability may cause early transition. This is not the same effect as for the upper side of the
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HQ26N/14.82 wing: Here it is found that the inclusion of curvature terms into the linear stability
analysis/eN -method shifts the transition downstream, as the concave curvature acts stabilizing [66].

Helicity Criterion

The CFT criterion plot for the helicity criterion is given in figure 5.21. Reference points are available
from the paper of Grabe et al. [19]. The new points for the experimental transition line Texp behave
similarly (high parabolic determination coefficient R2 = 0.81), except that they are offsetted to
lower helicity Renolds-numbers ReHe by about ∆ReHe ≈ 25. This may be due to an improved
numerical setup.
Albeit the offset, the criterion curve follows the new points well, in contrast to the points for the
predicted transition line TeN . This implies again that the "true" transition line is the experimental
one Texp rather then the one predicted by the eN -method TeN (for which the parabolic determination
coefficient R2 = 0.50 is rather low, anyway).
Beside this information, the same observations and interpretations as for the C1 criterion hold.

Langtry’s Criterion

The CFT criterion plot for Langtry’s criterion is given in figure 5.22. It can be seen that the points
are relatively close to each other. The points for the experimental transition line Texp yield only
slightly higher momentum thickness Reynolds numbers Reθ than for the line TeN from the linear
stability analysis.
In addition, the trend of the points is predicted well by the criterion curve, which even covers the
"kink" of the point distribution (which is only evident if the points from both the experimental Texp
and the computed transition line TeN are taken into account).
The parabolic determination coefficient is only R2 = 0.54, which is medium good. Thus, scatter of
the data is present.

5.2.8 Sickle Wing

C1 Criterion

The CFT criterion plot for the C1 criterion is given in figure 5.23. It can be seen the the points
for section C (outmost swept section) has very good agreement with the curve, which intersects
the vertical errorbars. Thus, the error of the predicted transition location ~xt,criterion due to the
regression is smaller than 5%c. In contrast, the points for section B (middle swept segment) are far
distanced to the curve. That is because the absolute value of the crosswise displacement thickness
δ2 is actually larger in section B than in section C.
The definition of parabolic determination coefficients R2 for the two sections individually does not
make sense because there are only three points to which a parabola can be fitted exactly.

Helicity Criterion

The CFT criterion plot for the helicity criterion is given in figure 5.24. The qualitative results are
the same as for the C1 criterion.

Langtry’s Criterion

The CFT criterion plot for Langtry’s criterion is given in figure 5.25. The points for section B seem
to collapse. This is not the case for the points of section C. Nevertheless, a correlation that takes
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into account the points from both section B and C is better possible than for the C1 or the helicity
criterion. The parabolic determination coefficient for all points together is R2 = 0.56.
In general the errorbars are very short. This is bad because this means that Langtry’s approach is
incapable of predicting the correct transition location ~xt for this test case.

5.3 Synopsis of the Test Cases
In this section the criteria are assessed by means of comparisons among the several test campaigns.
Abnormalities among the individual configurations of a given test case with regard to the transition
criterion plots were explained in section 5.2. This is why, in the following plots, the different
configurations of the individual data points of a test case are not distinguished by different
colors/markers anymore.

5.3.1 C1 Criterion

The C1 criterion plot is given in figure 5.26. The CFT is mostly important on wing-like objects,
which is why the transition criterion is reformulated for low shape factors H12 < 2.43 in order
to follow better the points for the TELFONA Pathfinder wing and the NLF(2)-0415 swept wing,
rather than the points of the swept cylinder and the spheroid. For higher shape factors H12 ≥ 2.43
the original formulation is kept, as no significant improvements can be proposed. The improved
criterion function reads

fcriterion, C1(H12(~xΓ ))

=





(4.107H12 − 4.550H2
12 + 1.660H3

12 − 0.1987H4
12) · 105 if H12(~xΓ ) ≤ 2.43

300
π arctan 0.106

(H12(~xΓ )−2.3)2.052 otherwise
∀~xΓ ∈ Γ.

(5.8)

The equation is found by computing a polynomial of appropriate degree by means of chosen values
and derivatives (similar to a hermite interpolation). From the NLF(2)-0415 data the points of
the highest surface roughness are used, in order to be consistent with the default assumption of a
painted surface with a RMS roughness of hrms = 3.3µm.
The function is continuously differentiable (smooth) at H12 = 2.43. It is assumed, that the physics
behind the model behave continuously differentiable in all variables. But in the solver the derivative
∂Reδ2t
∂H12

is not needed, anyway.
In addition, the function is limited from above by Reδ2t,max = 200, as no extensive extrapolation
shall be done and no data points for lower shape factorsH12 are available. No extensive extrapolation
shall be done because this could lead to unphysical laminar separations in simulations with low
shape factors H12, likely causing the numerical solution to diverge.
The following test cases are not covered by the improved C1 criterion:

• Inclined 6:1 prolate spheroid test case for the experimental transition line Texp and infinite
swept cylinder test case for low shape factorsH12: This is maybe another instability mechanism
(streamline curvature instability)

• Inclined 6:1 prolate spheroid test case for the eN -transition line TeN : the transition lines TeN
based on the eN -method are assumed to be wrong

• TELFONA Pathfinder wing test case, upper wing side: The crosswise displacement thickness
Reynolds number Reδ is very high for moderately high shape factors H12. This can be
explained by a too coarse mesh (see table 4.6)
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• Sickle Wing test case, middle swept segment: The crossflow is stronger than in the outer
segment, but the shape factors H12 are larger, too

• HQ26N/14.82 test case, lower wing side: The lower wing side is very flat, which influences
the CFT in a unknown manner

It must be note that the local C1 approach is known to be rather inaccurate for low shape factors
H12 (figure 2 of [19]).

5.3.2 Helicity Criterion

The plot of the helicity criterion is shown in figure 5.27. No improved criterion curve is drawn into it.
There is too much difference among the several test cases. For example, the NACA 642A015 points
are higher than expected based on the points of the ONERA D infinite swept wing, NLF(2)-0415
infinite swept wing, and TELFONA Pathfinder wing. In contrast, the prolate spheroid points
(for the experimental transition line Texp) are lower than expected. The local helicity approach is
derived from the local C1 approach [19]. The derivation contains certain neglections. Maybe these
approximations let the helicity criterion perform worse than the C1 criterion.

5.3.3 Langtry’s Criterion

Langtry’s criterion plot is presented in figure 5.28. When judging based on the differences between
the different test campaigns, the parameters chosen by Langtry et al. [31] to formulate the CFT
criterion work surprisingly well, compared to the C1 and the helicity criterion. In particular the
TELFONA Pathfinder wing (except for the upper surface), NACA 642A015 infinite swept wing,
HQ26N/14.82 infinite swept wing, ONERA D infinite swept wing and prolate spheroid (experimental
transition line Texp) test cases behave consistently with respect to the parameters of Langtry’s
criterion.
However, some points for the Sickle Wing test case (both sections B and C) are too high with
respect to the criterion curve. With similar values of the non-dimensional crossflow strength
HCF and momentum thickness Reynolds number Reθ, that is also true for the clustering point
(HCF,Reθ) ≈ (0.10, 645) of the NLF(2)-0415 test case. That clustering point is highly significant,
as many configurations with very short errorbars are contained in it.4

It can be seen in figure 5.28 that the points of the prolate spheroid and the infinite swept cylinder,
as well as the NLF(2)-0415 infinite swept wing and TELFONA Pathfinder wing test cases are
covered by a single correlation. This in contrast to the C1 and the helicity criterion. The following
competing explanations for that are offered:

• The hypothesis that the prolate spheroid and the infinite swept cylinder test cases feature
another type of transition than CFT is wrong. In this case the reason for the deviation of the
prolate spheroid and the infinite swept cylinder points from the C1 criterion curve must be
explained differently than with streamline curvature instability dominated transition.

• The transition on the prolate spheroid and the infinite swept cylinder is indeed streamline
curvature instability dominated. In terms of the variables relevant for the Langtry criterion
the streamline curvature instability and the crossflow instability dominated transition are
smoothly merging into each other at high non-dimensional crossflow strength HCF > 0.125.
This is where the curve of the criterion becomes approximately horizontal, whereby it has a
parabolic shape for lower non-dimensional crossflow strength HCF ≤ 0.125.

4In addition some points for prolate spheroid are also in the region (HCF,Reθ) ≈ (0.10, 600), but the points
correspond to the transition line computed by the eN method, so they are disregarded.
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• That a single correlation works for the prolate spheroid, the infinite swept cylinder, the
NLF(2)-0415 infinite swept wing and TELFONA Pathfinder wing test cases has not directly
anything to do with CFT, but must be explained by other properties the test cases have in
common. This hypothesis is supported by the fact that the vertical errorbars were generally
rather short for Langtry’s criterion, which means that the correlation is approximately fulfilled
for large parts of the wing surface Γ .5

An improved formulation for Langtry’s criterion is proposed, for which in particular some points of
the ONERA D test case are disregarded:

fcriterion,Langtry

(
HCF,

hrms
θ

= 0.004, Rturb = 0
)

= −276.1 ln(HCF − 0.03312)− 179.1. (5.9)

The curve for the new correlation equation 5.10 is also plotted in figure 5.28. In order to use
equation 5.10 for other non-dimensional roughnesses hrms

θ 6= 0.004, equation 5.5 must be applied
backwards. In addition, in order to include the viscosity ratio Rturb > 0 in a similar manner as in
[31], HCF may be replaced by ∆HCF(HCF, R

turb) (equation 2.88). The resulting formulation is

fcriterion,Langtry

(
HCF,

hrms
θ

,Rturb
)

= −276.1 ln(∆HCF(HCF, R
turb)− 0.03312)− 179.1

− froughness (0.004) + froughness

(
hrms
θ

)
.

(5.10)

5.4 Application of the Adapted C1 Criterion for Free Transition
Prediction

In the TAU solver the original C1 criterion is replaced by equation 5.8. In order to check the
improvements of the free transition prediction, the γ-R̃eθt model with crossflow extension based
on the local C1 approach is applied to the test cases that feature shape factors H12 < 2.43 at the
reference transition location ~xt.6 It is expected that the computed transition location ~xt,cf moves
downstream, as the the transition Reynolds number Reδ2t is increased.

5.4.1 NLF(2)-0415 Infinite Swept Wing

The skin friction transition location resulting from the simulation with the adapted C1 criterion is
almost equal to the one computed with the original C1 criterion. This is because the transition
criterion is triggered at the critical location ~xc rather than at the actual transition location ~xt.
For the NLF(2)-0415 test case the shape factor H12 is decreasing over the majority of the wing.
Therefore, equation 5.8 gets evaluated for shape factors H12 > 2.43. For such high shape factors
H12 the C1 criterion is unmodified. This is also presented in figure 5.29. The plot is similar to
figure 5.26. But the integral boundary layer parameters are evaluated at the location of onset of

5An extreme example for short vertical errorbars could be seen in a transition criterion plot for a correlation
of the crosswise displacement thickness Reynolds number Reδ2(~xt) to the helicity Reynolds number ReHe(~xt)
at the transition location ~xt (figure F.5 in appendix F). This correlation would have very little scatter. But
as Reδ2(~xΓ )/ max

yn∈[0,δ(~xΓ )]
ReHe,B(~xΓ , yn) ≈ const. on the whole surface Γ [19] that correlation would be fulfilled

everywhere on the surface Γ and therefore not be useful to predict CFT. Note that the fact that the correlation on
the transition line T "works well" for all test cases simultaneously has nothing to do with CFT.

6Recomputations of the remaining test cases did not show any difference, as the shape factor is H12 > 2.43 at
the intermittency production onset location ~xP (γ) .
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the intermittency production

~xP (γ)(~xΓ ) = argmin
~̃x

{
~̃xΓ ∈ SE→Γ (~xΓ ),∃yn ∈ [0, δ(~̃xΓ )], γB(~̃xΓ , yn) > 0.1 : ~ue

ue
(~̃xΓ ) · ~̃xΓ

}
∈ Γ.

(5.11)
It is the most upstream wall point along the wall-projected boundary layer edge streamline
SE→Γ (~xΓ ), where the intermittency γB(~xΓ , yn) somewhere along the wall normal yn ∈ [0, δ(~̃xΓ )]
increases above 0.1. ~xP (γ) is computed from the results generated by simulations using the adapted
C1 criterion. It is visible that the points of the NLF(2)-0415 test case moved to the right in
comparison to figure 5.4. Note that the equivalent effect is taken into account with regard to the
transition Reynolds number Reδ2t: It gets multiplied by the critical-to-transition ratio C in order
to account for the streamwise change.
For future work it is proposed to introduce another critical-to-transition ratio Carg, that gets
multiplied to the argument H12 of the C1 criterion:

Fonset,cw,1 = Re∗δ2
C fcriterion,C1(CargH∗12(~xΩ)) (5.12)

By doing so, the streamwise change of the argument of the transition criterion between the
intermittency production onset location ~xP (γ) and the transition location according to the skin
friction coefficient ~xt,cf can be taken into account for the evaluation of the transition criterion. The
critical-to-transition ratio Carg would have to be calibrated, similar to the critical-to-transition
ratio C for the Reynolds number. The general idea holds true not only for the C1 criterion, but for
all transition transport models that use transition criteria in conjunction with convection/diffusion
transport of intermittency γ.

5.4.2 TELFONA Pathfinder Wing

For test configurations for the upper wing surface the computed transition location ~xt,cf moves
somewhat downstream for the adapted C1 criterion compared to the original C1 criterion. But
the computed transition location ~xt,cf is still far upstream of the experimental transition location
~xt,exp. That there is no significant change of the computed transition location ~xt,cf is explained by
the fact that in the transition criterion plot figure 5.26 the curves for both the original and the
adapted C1 criterion deviate strongly from the data points for the upper wing surface.
In contrast, the configurations for the lower surface do not show a visible change of computed
transition location ~xt,cf with the switch from the original to the adapted C1 criterion. The reason
for that is the same as for the NLF(2)-0415 test case: At the location of intermittency production
onset ~xP (γ) the argument of the C1 criterion is H12 > 2.43 (see figure 5.30).
Another aspect is that the growing intermittency γ has a distorting effect on the laminar boundary
layer velocity profile u(~xΩ)∀~xΩ ∈ Ω. This effect is stronger for regions close to the transition
line TCFD. It is remarkable that for the TELFONA Pathfinder wing test case the length of the
intermittency development region

lγ(~xΓ ) = [~xt,cf(~xΓ )− ~xP (γ)(~xΓ )] · ~esw(~xΓ ) (5.13)

is very small. Therefore evaluating the transition criterion at the intermittency production onset
location ~xP (γ) is even more erroneous. This could also be solved by introducing a critical-to-
transition ratio Carg for the argument of the transition criterion.
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The test case shows another issue of the model: The streamwise slopes of the local crosswise
displacement thickness Reynolds number Reδ2 and the transition crosswise displacement thickness
Reynolds number Reδ2t are very similar for the adapted C1 criterion in the vicinity of the criterion-
predicted transition location ~xt,criterion. If the data points in the transition criterion plot 5.16 were
plotted with the errorbars corresponding to the adapted C1 criterion, they would be very short.
This indicates a very high sensitivity to changes of the Reynolds numbers.

5.4.3 Inclined 6:1 Prolate Spheroid

In figure 5.31 the distribution of the skin friction coefficient cf is plotted examplarily for the angle
of attack α = 30◦ for the simulation with the adapted C1 criterion. The transition line is not
visibly changed by switching the C1 criterion from the original to the adapted one (not shown).
This is because in the vicinity of the predicted transition line TCFD the shape factor is H12 > 2.43
for all angles of attack α, what contradicts the finding from the fixed transition analysis (section
5.2.7). This indicates that the C1 criterion does not get used correctly in the local approximation
framework of the LCTM. Indeed, it is well-known that the transition prediction based on the local
C1 approach fails to correctly predict the transition line for the spheroid [19]. This is because the
FSC equations yield only for wing-like geometries a good approximation of the boundary layer
velocity profile uB(~xΓ , ·) ∀~xΓ ∈ Γ [18]. Therefore, a comparison of the measured and the predicted
transition lines is not presented.

5.4.4 Infinite Swept Cylinder

For all configurations a separation-induced transition is detected by both the original and the
adapted C1 criterion. This is again because the intermittency production is beginning at ~xP (γ) ,
upstream of the skin friction transition location ~xt,cf, and the diffusion towards the wall is happening
relatively slowly. Thus, the crossflow transition does not take place before the separation-induced
transition takes place. The latter occurs due to the adverse pressure gradient downstream of the
maximum thickness location of the cross section. In this case, the streamwise transition criterion
(equation 2.57) of the original γ-R̃eθt model lets the intermittency production P (γ) increase very
quickly through equation 2.66.
The reason for the long intermittency development region lγ due to the CFT term in equation
2.73 is a destruction of the intermittency γ in the boundary layer. This can be seen in figure
5.32. At the location of onset of the intermittency production ~xP (γ) the intermittency increases
above γ ≈ 0.6. Then it decreases to almost the minimum value of the distribution due to the
destruction of intermittency D(γ). The intermittency destruction D(γ) was calibrated for the γ-R̃eθt
model without CFT extension. For the swept cylinder test case the intermittency destruction D(γ)

seems to incorrectly counteract the intermittency production P (γ). Thus, a recalibration of the
intermittency destruction D(γ) by appropriate CFT test cases is proposed for future work.
However, figure 5.32 shows a difference for the intermittency production onset location ~xP (γ) between
the original (subfigure 5.32a) and the adapted C1 criterion (subfigure 5.32b). For the adapted C1
criterion, the intermittency production P (γ) starts more downstream, which corresponds to the
increased transition Reynolds number Reδ2t for low shape factors H12 < 2.43. This verifies the
implementation of the adapted C1 criterion.
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Figure 5.1: ONERA D test case: CFT criterion plot for the C1 criterion
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Figure 5.2: ONERA D test case: CFT criterion plot for the helicity criterion

78



5 Assessment of Transition Criteria by Simulations with fixed Transition

0.05 0.10 0.15 0.20
non-dimensional crossflow strenth HCF

400

600

800

1000

1200

1400

R
ey

no
ld

s
nu

m
be

r
R

e θ
,h

rm
s/
θ
=

0.
00

4

Re∞ = 0.40 · 106

Re∞ = 0.60 · 106

Re∞ = 0.80 · 106

Re∞ = 1.00 · 106

Re∞ = 1.50 · 106

Λ = 50.0◦

Λ = 60.0◦

Λ = 65.0◦

Λ = 70.0◦

Λ = 55.0◦

Λ = 45.0◦

trans. location by eN method
criterion curve

20

30

40

50

60

70

80

90

100

%
Figure 5.3: ONERA D test case: CFT criterion plot for the Langtry’s criterion
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Figure 5.4: NLF(2)-0415 test case: CFT criterion plot for the C1 criterion
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Figure 5.5: NLF(2)-0415 test case: CFT criterion plot for the helicity criterion
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Figure 5.6: NLF(2)-0415 test case: CFT criterion plot for Langtry’s criterion
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Figure 5.7: NACA 642A015 test case: CFT criterion plot for the C1 criterion
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Figure 5.8: NACA 642A015 test case: CFT criterion plot for the helicity criterion
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Figure 5.9: NACA 642A015 test case: CFT criterion plot for Langtry’s criterion
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Figure 5.10: HQ26N/14.82 Test case: CFT criterion plot for the C1 criterion
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Figure 5.11: HQ26N/14.82 Test case: CFT criterion plot for the helicity criterion
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Figure 5.12: HQ26N/14.82 Test case: CFT criterion plot Langtry’s criterion
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Figure 5.13: Swept cylinder test case: CFT criterion plot for the C1 criterion
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Figure 5.14: Swept cylinder test case: CFT criterion plot for the helicity criterion
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Figure 5.15: Swept cylinder test case: CFT criterion plot for Langtry’s criterion
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Figure 5.16: TELFONA Pathfinder test case: CFT criterion plot for the C1 criterion
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Figure 5.17: TELFONA Pathfinder test case: CFT criterion plot for the helicity criterion
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Figure 5.18: TELFONA Pathfinder test case: CFT criterion plot for Langtry’s criterion
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Figure 5.19: Prolate spheroid test case: Some wall-projected boundary layer edge streamlines
SE→Γ at the angle of attack α = 30◦
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Figure 5.20: Prolate spheroid test case: CFT criterion plot for the C1 criterion
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Figure 5.21: Prolate spheroid test case: CFT criterion plot for the helicity criterion
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Figure 5.22: Prolate spheroid test case: CFT criterion plot for Langtry’s criterion
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Figure 5.23: Sickle Wing test case: CFT criterion plot for the C1 criterion

2.35 2.40 2.45 2.50 2.55 2.60
shape factor H12

125

150

175

200

225

250

275

300

R
ey

no
ld

s
nu

m
be

r
R

e H
e

section B
section C

criterion curve

50

60

70

80

90

100

%

Figure 5.24: Sickle Wing test case: CFT criterion plot for the helicity criterion
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Figure 5.25: Sickle Wing test case: CFT criterion plot for Langtry’s criterion
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Figure 5.26: C1 criterion plot for all test cases combined
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Figure 5.27: Helicity criterion plot for all test cases combined
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Figure 5.28: Langtry’s criterion plot for all test cases combined
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Figure 5.29: NLF(2)-0415 test case: Integral boundary layer parameters at the location of
intermittency production onset ~xP (γ)
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Figure 5.30: TELFONA Pathfinder wing test case: Integral boundary layer parameters at
the location of intermittency production onset ~xP (γ)

Figure 5.31: Prolate spheroid test case: Simulated skin friction coefficient cf distribution at
angle of attack α = 30◦, simulated with the adapted C1 criterion
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(a) Original C1 criterion
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(b) Adapted C1 criterion

Figure 5.32: Swept cylinder test case: Computed streamwise distribution of the skin friction
coefficient cf and the intermittency γ at the wall normal position of the maximum
crosswise displacement thickness Reynolds number Redelta2.
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6 Recalibration of the Critical-to-Transition
Ratio for the local C1 Approach

In this chapter the recalibration of the critical-to-transition ratio C is described. First the approach
for the derivation of an optimal critical-to-transition ratio C by means of fixed and free transition
simulations is described. Then it is shown how the optimal critical-to-transition ratio C can be
correlated to a Reynolds number characterizing the test configurations. A new C-correlation is
derived. It applied for the NLF(2)-0415 test case in order to assess the differences in the computed
transition location and in order to see how well the computed transition location coindice with the
theoretical transition locations given by the evaluation of the criterion with the parameters from
the fixed transition simulations.

6.1 Recalibration Approach
The optimal critical-to-transition ratio is computed as

Copt = Reδ2
Reδ2t

(~xΓ = ~xt,criterion − lγ~esw). (6.1)

It is the ratio of the crosswise displacement thickness Reynolds number Reδ2 to the transition
crosswise displacement thickness Reynolds number Reδ2t, evaluated at a specific point. That point
is the optimal location of intermittency production onset ~xP (γ),opt. If the intermittency production
P (γ) is triggered at this location, the transition location according to the skin friction distribution
~xt,cf will be approximately at the transition location predicted by the criterion ~xt,criterion. ~xP (γ),opt

is computed by subtracting the length of the intermittency development region lγ from the criterion-
predicted transition location ~xt,criterion. The length of the intermittency development region lγ is
found by free transition simulations as the streamwise distance between the actual intermittency
production onset location ~xP (γ) and the computed transition location ~xt,cf . The criterion-predicted
transition location ~xt,criterion if found by fixed transition simulations as the location (~xΓ ) in the
laminar boundary layer Blam at which the Reynolds number ratio is Reδ2

Reδ2t
(~xΓ ) = 1.1 Equation 6.1

implies the assumption that a change of the critical-to-transition ratio C leads to a streamwise
shift of the intermittency development region without changing the length lγ of the intermittency
development region. However, as the computed transition location ~xt,cf changes due to the different
critical-to-transition ratio C, it moves to regions of different boundary layer parameters, and the
length of the intermittency development region lγ may change. Therefore, the recalibration must
be repeated iteratively, in order to get a convergence of the optimal critical-to-transition ratio C.
The process is depicted in figure 6.1. Due to limited time for the present work, only one iteration
of the process is carried out. The optimal critical-to-transition ratio C will be calculated for all test
cases. Afterwards a correlation of these values is formulated in terms of a locally available Reynolds
number. This Reynolds number is called argument of the C-correlation. Multiple arguments of the
C-correlation are tried out until a sufficiently simple regression curve for the points C(argument)
with sufficiently low scatter can be found. The regression curve is taken as sufficiently simple, if it

1Note that no experimental transition location ~xt,exp is involved into the recalibration of the critical-to-transition
ratio C.
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fixed transition simulation:
Reδ2(xΓ ), Reδ2t(xΓ ), Rec,e(xΓ )

xt,criterion = arg
xΓ∈Γ

(Reδ2(xΓ ) = Reδ2t(xΓ ))

free transition simulation:
xP (γ) , xt,cf

lγ = xt,cf − xP (γ)

start C = 0.75

Copt = Reδ2
Reδ2t

(xΓ = xt,criterion − lγ)

regression C(Rec,e) = Copt (Rec,e (xP (γ))) iterate

Figure 6.1: Flow chart of the recalibration approach for the critical-to-transition ratio C

has no inflection points. The scatter is taken as sufficiently low, if the determination coefficient is
R2 > 0.5. In addition it is demanded that the argument of the C correlation is available locally.
Thus, the correlation is adaptive to different flows.
The new C-correlation will then replace the constant C = 0.75 of the original local C1 approach
[19]. The new C-correlation is implemented into the TAU code. The test cases are recomputed
with the adapted C1 criterion and the C-correlation. The effect of the new calibration is judged
by comparison of the computed transition locations ~xt,,cf to the experimental transition locations
~xt,exp. Due to limited time for the work, only preliminary results can be shown.

6.2 Derivation of a New Correlation
The resulting values for the optimal critical-to-transition ratio are in the range of C ∈ [0.48, 0.98].
Note that some test configurations are excluded from the analysis, for example the ones for the
swept cylinder and some for the HQ26N/14.82. This is done because the C1 approach fails to
predict CFT. In section 5.4.4 this is described exemplarily for the swept cylinder test case.
A correlation of the optimal critical-to-transition ratio C with the momentum thickness Reynolds
number Reθ at the location of the optimal γ-production onset ~xP (γ) can be found.2 It is presented
in figure 6.2. The correlation (regression curve in figure 6.2) shoud not be used for the LCTM due to
a problem arising from the fact that the assumption of equation 2.60 is violated, i.e. the streamwise
distribution of the computed crosswise displacement thickness Reynolds number Reδ2(~xΓ ) has
multiple intersections with the critical crosswise displacement thickness Reynolds number

C(Reθ(~xΓ )) Reδ2t(~xΓ ) (6.2)

on the laminar surface Γlam. This can be seen in figure 6.3a. It shows both the streamwise
distributions of the Reynolds number Reδ2(~xΓ ) and Reδ2t(~xΓ ) for a NLF(2)-0415 infinite swept
wing configuration, computed by a fixed transition simulation. In addition, the curve of the critical
Reynolds number C Reδ2t is drawn into the plot in with the new C-correlation C(~xΓ ) = C(Reθ(~xΓ )).
Furthermore, coming from a free transition simulation with C = 0.75 of the same configuration, the

2The momentum thickness Reynolds number Reθ can be approximated locally as Re∗θ in the same manner as in
equation D.5.
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Figure 6.2: Optimal critical-to-transition ratio C for the local C1 approach for all test cases
combined with the momentum thickness Reynolds number Reθ is the argument

location of the onset of intermittency production ~xP (γ) and the transition location ~xc,cf , computed by
a free transition simulation, are drawn as vertical lines.3 Starting from the leading edge the critical
Reynolds number C(Reθ) Reδ2t is very low, which would trigger the production of intermittency γ
far too upstream. It is a necessary that the transition crosswise displacement thickness Reynolds
number Reδ2t is larger in the region where the boundary layer is expected to be laminar. Thus, the
momentum thickness Renolds number Reθ is not well-suited for the new C-correlation
An alternative correlation can be formulated in terms of the Reynolds number based on the streamwise
chord and the boundary layer edge state

Rec,e(~xΓ ) = ue(~xΓ ) csw
νe(~xΓ ) ∀~xΓ ∈ Γ. (6.3)

The correlation is plotted in figure 6.4. It can be seen that the points of the prolate spheroid test
case are disregarded for the calibration. This is done because it is known that the local C1 approach
will fail the correct transition prediction due the use of the FSC equations [19].

3The fact that the intersection of the vertical line for the computed transition location ~xt,cf is intersecting the
point of intersection of the computed crosswise displacement thickness Reynolds number Reδ2 with the transition
crosswise displacement thickness Reynolds number Reδ2t is a coincidence. Put differently, it is ~xt,cf = ~xt,criterion,
which is desired. It shows that the constant value C = 0.75 was well suited for this particular configuration.
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Figure 6.3: Plot of the chordwise distributions of crosswise displacement thickness Reynolds
numbers Reδ2 for the adapted C1 criterion, together with characteristic locations
marked by vertical lines (Test case configuratoin: NLF(2)-0415 infinite swept
wing with Recsw,usw

∞ = 2.486 · 106)

The equation for the regression curve reads

C( Rec,e(~xΩ) ) =





3.559 · 10−1 + 1.831 · 10−7Rec,e
− 2.028 · 10−14Re2

c,e + 7.359 · 10−22Re3
c,e

if Rec,e ≤ 8 · 106,

0.9 otherwise
. (6.4)

The function is limited from below by 0.5 in order to prevent that CFT is detected too upstream.
In addition, not much data is available for such low values of the optimal critical-to-transition ratio
C.
For a local approximation of Rec,e as Re∗c,e, the boundary layer edge velocity ue(~xΓ )∀~xΓ ∈ Γ is
computed by equation 2.15 with the assumption of wall normal constant pressure p:

u∗e,B(~xΓ , yn) ≈

√√√√u2∞ + 2γ̃
γ̃ − 1

[
1−

(
pB(~xΓ , yn)

p∞

)1− 1
γ̃

]
p∞
ρ∞
∀(~xΓ , yn) ∈ Γ × [0, δ(~xΓ )]. (6.5)

This is justified by the fact that also for the local C1 approach this approximation is used (see
appendix D.2). In addition the boundary layer edge kinematic viscosity νe(~xΓ ) ∀~xΓ ∈ Γ is replaced
by the local kinematic viscosity ν(~xΩ)∀~xΩ ∈ Ω. This is justified by the fact that

∂nν(~xΩ) = ρ ∂nµ− µ∂nρ
ρ2 (~xΩ) ≈ 0 ∀~xΩ ∈ B (6.6)

because
∂nµ(~xΩ) = ∂Tµ(T ) ∂nT (~xΩ) ≈ 0 ∀~xΩ ∈ B (6.7)
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Figure 6.4: Optimal critical-to-transition ratio C for the local C1 approach, with the Reynolds
number Rec,e based on the streamwise chord and the boundary layer edge state
as argument

and
∂nρ(~xΩ) = 1

R

T∂np− p ∂nT
T 2 (~xΩ) ≈ 0 ∀~xΩ ∈ B, (6.8)

since ∂nT (~xΓ ) = 0 ∀~xΓ ∈ Γ (adiabatic boundary condition, see equation 3.8). Therefore, it is
∂nT (~xΩ) ≈ 0∀~xΩ ∈ B. In addition, it is ∂np(~xΩ) ≈ 0 ∀~xΩ ∈ B (see section 2.1.2 about boundary
layer theory).
The Reynolds number Rec,e changes much less along the surface in comparison to the momentum
thickness Reynolds number Reθ. The problem of a too low critical Reynolds number C Reδ2t in the
laminar boundary layer B is solved, as can be seen in subfigure 6.3b.

6.3 Application of the New Correlation for Free Transition
Prediction

If the value C(Rec,e) is higher than the original value of 0.75, the intermittency production onset
location ~xP (γ) is expected to move downstream and reversed. This is presented exemplarily for the
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6 Recalibration of the Critical-to-Transition Ratio for the local C1 Approach

NLF(2)-0415 test case in figure 6.5 (preliminary results).4 It shows the computed transition locations
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Figure 6.5: NLF(2)-0415 test case: Computed transition locations ~xt,cf in comparison to
the transition locations given by the adapted C1 criterion ~xt,criterion for different
C-correlation calibrations. Note that the C1 criterion does not take into account
the surface roughness, which is why the points for the different roughnesses
collapse to a single curve.

~xt,cf for the simulations with both the original and the recalibrated critical-to-transition ratio C,
as well as the criterion-predicted transition locations ~xt,criterion, coming from the fixed transition
analysis. It is expected that ~xt,cf = ~xt,criterion. For freestream Reynolds numbers Recsw,usw

∞ < 3 · 106

the computed transition location ~xt,cf is shifted upstream due to the new C-correlation. This is
expected, because the corresponding optimal critical-to-transition ratios C yield values below 0.75.
The reversed fact is true for higher freestream Reynolds numbers Recsw,usw

∞ > 3 · 106. Obviously,
the agreement between the computed transition locations ~xt,cf and the ones given by the transition
criterion ~xt,criterion is worsened by the new C-correlation. This is because the assumption that
the length of the intermittency development region lγ stays constant when changing the critical-
to-transition ratio C, is wrong. One has to perform multiple iterations of the procedure, thus
repeatedly derive the C-correlation by means of the results for the C-correlation of the previous
iteration until convergence of it. In figure 6.6 the dependency of the optimal critical-to-transition
ratio C on the momentum thickness Reynolds number Reθ after the first loop iteration is shown for
several test cases. It can be seen that points for the NLF(2)-0415 test case all have approximately
the same optimal critical-to-transition ratio. This corresponds to very good agreement between the
computed transition locations ~xt,cf and the criterion-predicted transition locations ~xt,criterion when
using the original C = 0.75 (see subfigure 6.5a).
For future work it is proposed to test the C-correlation equation 6.4 for further test cases. In
addition, multiple iterations of determining the optimal critical-to-transition ratio must be performed
according to figure 6.1.

4No other test cases are tried out due to time reasons.
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Figure 6.6: Optimal critical-to-transition ratio C after one iteration of recalibration. The
drawn regression curve is given by equation 6.4.
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7 Conclusion

7.1 Summary
In this thesis, different transition criteria for crossflow instability dominated transition (CFT) in
swept wing flows were assessed by using the results of wind tunnel experiments reported in literature.
In addition, it was tried to made sure that the transition criterion is applied appropriately within
the frame of the transition transport model with crossflow extension. This was done by recalibration
of a specific model constant in a locally Reynolds number-dependent manner.
For that, in the first part of this thesis the fundamentals of aerodynamics, turbulence and laminar-
turbulent transition, alongside with the used modeling approaches for it, were explained. In
particular, the γ-R̃eθt transition transport model was given together with three different ways of
extending it to CFT modeling. These three ways are associated to the different CFT criteria, which
were analyzed in this work: the C1 criterion of Arnal et al. [3], the helicity criterion of Grabe et al.
[19] and Langtry’s criterion of Langtry et al. [31].
After that, the methods used for the numerical solution of the partial differential equations of
the model were given. Possible impacts of the numerical solution approaches on the results were
identified, for example the consistency order of the spatial and temporal discretization, numerical
dissipation and diffusion and convergence of the pseudo-time integration.
Afterwards, the test cases to be used for the analysis were described. The general rules for the
selection of CFT configurations within the test cases were based on positive and negative indications
for whether a configuration is featuring CFT. If reference conditions were missing in the literature
sources about the experiments, assumptions were made, usually for the freestream static temperature
T∞ or/and turbulence intensity Tu∞. Then all test cases used in this work were presented in form
of both the experimental setups from the literature sources and the numerical setups of the present
work. The computed pressure coefficient cp distributions were compared to the measured ones, in
the majority of the cases with very good agreement. The concretely selected CFT configurations
were given, with the lists in appendix C.
It followed the assessment/recalibration of the CFT criteria. It was described in detail how the
analysis is done. The transition criterion plots for the individual test campaigns were discussed.
Afterwards, the transition criterion plots for the three CFT criteria filled in with the data points of
all test campaigns simultaneously was presented and interpreted:
The C1 criterion showed a "branching" for low shape factors H12: The flow over the NLF(2)-0415
infinite swept wing and the TELFONA Pathfinder wing feature higher crosswise displacement
thickness Reynolds numbers Reδ2 at the transition locations than the flow over the prolate spheroid
and the infinite swept cylinder. Maybe another transition mechanism, the streamline curvature
instability, has an effect for the latter two. As the application of the transition transport model will
be mostly on the simulation of the flow around wing-like geometries, a recalibration is proposed,
given in equation 5.8.
The helicity criterion performs worse than the C1 criterion, which is ascertained by the fact that
the scatter in the transition criterion plot among the different CFT test campaigns is larger. It was
not possible to find a better correlation for the helicity criterion.
The Langtry’s criterion showed significantly less scatter in the transition criterion plot, which means
that the different test campaigns behave very similarly with respect to the variables relevant for
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the Langtry’s criterion. Therefore, an implementation of the Langtry’s approach for CFT modeling
into the TAU solver is recommended, especially as it includes the effect of surface roughness. But it
must be kept in mind that the Langtry-approach may have a larger sensitivity of the predicted
transition location ~xt with errors in the computations of the momentum thickness Reynolds number
Reθ of the boundary layer, as was shown for some test campaigns.
The adapted C1 criterion was implemented into the TAU code. When the improved C1 criterion
was applied in simulations of test cases for which it was expected to see a difference in the predicted
transition line, almost no improved results could be achieved in comparison to the transition
prediction with the original C1 criterion. The following explanations for that were proposed:

• Generally, the intermittency production P (γ) must be activated upstream of the transition
location in order to let the intermittency γ be transported downstream and towards the
wall. Where the intermittency γ at the wall is large, the skin friction coefficient cf increases,
depicting the computed transition location ~xt,cf . But at the intermittency production onset
location ~xP (γ) the argument H12(~xP (γ)) of the transition criterion is different than at the
transition location ~xt,cf , thus giving a different transition crosswise displacement thickness
Reynolds number Reδ2t(~xP (γ)) than Reδ2t(~xt,cf). This "levers out" the performed calibration
of the transition criterion, which used the argument H12(~xt,exp) at the experimental transition
location ~xt,exp.

• In order to have a laminar boundary layer B unaffected by the transition happening down-
stream, the transition criteria were calibrated by means of evaluating laminar boundary
layer parameters with a fixed transition 10%c (chord length c) downstream of the refer-
ence transition location. But in free transition simulations the transition may happen less
downstream of the intermittency production onset location ~xP (γ) than 10%c. In addition,
in free transition simulation the intermittency γ distribution has a wedge-like form, what
lets the transition occur more distributed in chordwise direction than in the fixed transition
simulation. Thus, the boundary layer velocity profile ~u(~xΩ)∀~xΩ ∈ B gets distorted by the
nearby happening transition and the transition criterion is triggered differently than assumed
during the calibration.

• For low shape factors H12, the transition prediction by the adapted C1 criterion is very
sensitive to a change in the crosswise displacement thickness Reynolds number Reδ2. Thus
a slight change in the Reynolds number, for example due the facts described in the other
bullet points of this list, results in a large change of the transition location ~xt,cf . Therefore
the transition prediction gives wrong locations.

• The destruction term D(γ) of the γ-R̃eθt model might undesirably reduce the CFT-invoked
growth of the intermittency γ in the boundary layer B. Thus, no free CFT can be computed
for all of the selected configurations of the infinite swept cylinder test case with both the
original and the adapted C1 criterion, but only separation-induced transition. The destruction
term D(γ) was calibrated in the original formulation [32] for streamwise transition mechanisms
only and might therefore be unsuitable for crossflow instability dominated configurations.

Finally, a recalibration of the critical-to-transition ratio C for the local C1 approach was carried out.
This was done by finding the optimal critical-to-transition ratio C for all test case configurations
by combining the results of fixed and free transition simulations with the γ-R̃eθt model with CFT
extension by the local C1 approach. It was observed that the optimal critical-to-transition ratio is
C > 0.75 for the majority of the configurations, what is higher than the original constant value
of C = 0.75 [19]. In the next step a correlation of it with the Reynolds number Rec,e based on
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the streamwise chord length csw and the boundary layer edge state is found (equation 6.4). It was
described how this Reynolds number can be approximated locally. The regression curve of the new
C-correlation was implemented into the TAU code and preliminary results of it were shown for the
NLF(2)-0415 infinite swept wing test case. The transition prediction was worsened with respect to
the transition locations ~xt,criterion given by the criterion for most of the configurations. A possible
explanation for that is the regression error, i.e. the original value of C = 0.75 was very well suited
for this test case, but a correlation valid for mutliple test cases must be found, which necessarily
deviates from some of the data points coming from the configurations.

7.2 Outlook
The negative influence of the numerical solution process onto the model results should be quantified
and reduced. For example the mesh independency of the spatial discretization could be determined
by redoing the simulations and postprocessing procedures with finer meshes. There are indication
signs that the mesh is not good enough for some of the test cases, for example with regard to the
number of points in wall normal direction inside the boundary layer. In addition, this can improve
the convergence of the iterative numerical solution of the model equations for the flow variables. In
particular for the TELFONA Pathfinder wing test case, the matrix artificial dissipation scheme
could be used instead of the scalar one, in order to increase the accuracy of the numerical solution.
Analogously, the temporal discretization (numerical pseudo-time integration) can be improved. A
study of the dependency of the flow solution on the CFL number should be carried out. In this
work the CFL numbers for the simulations of the individual test campaigns are chosen more or less
arbitrarily, such that a sufficiently good convergence could be achieved. For example, it was found
out that the CFL number should not be smaller than 3, in order to get an accurate solution of the
crosswise velocity profile of the boundary layer (personal communication by Dr.-Ing. Normann
Krimmelbein). This is violated in most of the test cases of this thesis.
In addition, the postprocessing strategy with the use of Python can be improved: The read of
the flow variables inside the boundary layer B out of the TAU solution files was done based on
the nearest neighbor algorithm instead of linear interpolation on a equally spaced grid of points
distributed between the wall Γ and boundary layer edge E . This inaccuracy introduced into the
analysis should be avoided, by solving a bug of the read-out routines of the PyTecplot Python
module. The influence of the nearest neighbor algorithm onto the analysis was tested only for the
NLF(2)-0415 infinite swept wing test case, for which it was low. If the mesh for other test cases, for
example the TELFONA Pathfinder wing, has less points inside the boundary layer in wall normal
direction, the introduced error due to the nearest neighbor algorithm might be larger.
Another error source was that for some of the test cases the reference conditions could have been
wrong (for example for the freestream temperature T∞ or the freestream turbulence intensity Tu∞).
In addition, for the NLF(2)-0415 swept wing flow contradictory information on the freestream
Reynolds number is given in different papers about the experiments [11, 49]. It remains unclear,
which values are true.
More validation of the mean flow results could be carried out by comparing measured and computed
boundary layer velocity profiles u(~xΩ)∀~xΩ ∈ B.
The general accuracy of the usage of the CFT criterion in the transition transport model can be
improved by adressing the aspects listed in section 7.1 as result of the application of the adapted
C1 criterion:
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• To counteract the streamwise change of the argument of the transition criterion, another
critical-to-transition ratio Carg for the argument of the transition criterion could be introduced
according to equation 5.12. Carg would have to be calibrated in a similar manner as C for
the transition Reynolds number.

• The fixed transition location for the calibration of the transition criteria should be adapted in
order to make the the destruction D(k) of total energy et and the corresponding production
P (k) of turbulent kinetic energy k in the fixed transition simulation more comparable to the
free transition simulation. Instead of being relatively far downstream of the experimental
transition location ~xt,exp, the fixed transition should happen nearer to the measured transition
location. In addition, it should occur at the different streamwise coordinates for the streamlines
inside the boundary layer B. By that the convection/diffusion transport of intermittency from
approximately the middle of the boundary layer towards the wall and the boundary layer
edge E , happening in free transition computations, is simulated. Then the laminar boundary
layer parameters at the approximate location of intermittency production onset ~xP (γ) could
be assessed and used to recalibrate a transition criterion.

• An idea that could be examined is to invert the transition criterion, for example write it as
H12(Reδ2) instead of Reδ2(H12). A mixture of both is possible, for example H12(Reδ2) is
used as transition criterion in regions of low shape factors H12 and Reδ2(H12) otherwise. For
the inverted transition criterion, high sensitivities of the transition prediction to Reynolds
number changes might become low sensitivities to shape factor changes. Of course, the usage
of the transition criterion in the transition model would have to be adapted (mainly the
Fonset,cw,1-function, see equation 2.75).

• It must be prevented that the destruction term D(γ) becomes active, if the intermittency
production P (γ) is driven by the CFT term (right hand side underbrace term in equation
2.73). This could be achieved for example by scaling the destruction term D(γ) by the ratio
of the streamwise and crosswise Fonset,1-funtions, i.e.

D̃(γ) = D(γ) Fonset,1
Fonset,cw,1

. (7.1)

Apart from that, investigation on the following topics could be performed:
The C1 criterion and the helicity criterion could be extended to include the roughness influence
in a similar manner as Lantry’s criterion. Unfortunately, the only experiment that can be used
well for a corresponding calibration is the NLF(2)-0415 infinite swept wing test case [49], what is a
small data base. There are a few test campaigns reported in literature that include information on
the surface roughness, but no other experiments explicitely systematically analyze the influence of
distributed roughness onto CFT. As the roughness influence onto CFT is industrially relevant, to
design and carry out an appropriate new wind tunnel experiment would be helpful.
Apart from the test cases analyzed in this thesis, the flows of further test campaigns could be
analyzed (see appendix B). This would enlarge the data base for the calibration.
Furthermore, other CFT criteria could be analyzed by following similar approaches as in this thesis,
for example the Kohama criterion [25] (with improvements by Watanabe et al. [73]) or the Modyfied
Crossflow Reynolds number criterion by Medida and Baeder [37]. Furhtermore, there is a criterion
derived from the original C1 criterion [3], called Menter Tc1 criterion [40] (recalibrated by Rubino
[51]).
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A Deutsche Zusammenfassung

Die Hauptaufgabe der laminar-turbulenten Transitionsmodellierung für Grenzschichten ist die
Vorhersage der Transitionslinie auf festen Oberflächen, um die Oberflächenreibung möglichst genau
vorherzusagen. Eine korrekte Vorhersage der Oberflächenreibung ist wichtig für die Gestaltung
der Oberflächengeometrie neuer Flugzeuge, vor allem für den Flügel. Eine Methode der Tran-
sitionsvorhersage ist die lokale korrelations-basierte Transitionsmodellierung, die stark auf der
Nutzung von Transitionskriterien beruht. Es gibt unterschiedliche Transitionskriterien für unter-
schiedliche Transitionsmechanismen. In dieser Arbeit werden drei Transitionskriterien für Transition
durch Querströmungsinstabilitäten (CFT) untersucht: Das C1-Kriterium von Arnal et al. (1984),
das Helizitätskriterium von Grabe et al. (2018) und das Kriterium von Langtry et al. (2015). Sie
werden bewertet in Bezug auf ihre Genauigkeit, beurteilt anhand von Simulationen verschiedener
Windkanal-Experimente aus der Literatur. In den Simulationen wird die Transition entweder
manuell gesetzt (festgehaltene Transition) oder mit den γ-R̃eθt-Transitionstransportmodell mit
CFT-Erweiterung unter Nutzung des C1-Kriteriums (freie Transition).
Die Analyse ist durch folgende Fakten motivier: Für bestimmte Testfälle liefert die Transitionsvorher-
sage auf Basis des C1- und des Helizitätskriteriums ungenauere Ergebnisse als für andere Testfälle.
Außerdem ist die Transitionsvorhersage, die Langtry’s Kriterium nutzt, noch nicht im genutzten
Fluiddynamiklöser TAU implementiert. Jedoch kann die Genauigkeit von Langtry’s Kriterium in
Bezug auf Transitionsvorhersage mithilfe von Simulationen mit festgehaltener Transition trotzdem
evaluiert werden. Die Analyse zeigt, ob die Implentierung des Ansatzes von Langtry et al. (2015)
den Aufwand wert wäre.
Dies sind die Ergebnisse für das C1-Kriterium: Für FormfaktorenH12 > 2.43 kann die Reynolds-Zahl
Reδ2 basierend auf der quergerichteten Verdrängungsdicke an der experimentellen Transitionlage
für viele Testfälle gut mit dem Formfaktor korreliert werden. Für kleinere Formfaktoren ist die
ursprüngliche Korrelationsgleichung gut geeignet für die Umströmung eines gestreckten Ellipsoids
und eines unendlichen gepfeilten Zylinders gut geeignet, nicht jedoch für die Umströmung von
flügelartigen Geometrien. Daher wird für kleine Formfaktoren eine Neuformulierung des C1 Kriteri-
ums vorgeschlagen, die in den Fluiddynamiklöser implementiert wird. Es wird präsentiert, dass
Berechnungen mit dem γ-R̃eθt-Transitionsmodell mit CFT-Erweiterung basierend auf dem geän-
derten C1-Kriterium im Vergleich zu den Berechnungen auf Basis des ursprünglichen C1-Kriteriums
fast keine Verbesserungen der Transitionslinien ergeben. Erklärungen für diese Tatsache werden
vorgeschlagen, die allgemeine Defizite des Transitionsvorhersagemodells aufzeigen.
Die für das Helizitäts-Kriterium relevante Helizitäts-Reynolds-Zahl ReHe kann über mehrere Test-
fälle hinweg nicht gut mit dem Formfaktor H12 an der experimentellen Transitionlage korreliert
werden. Es geschlussfolgert, dass die Parameter für das Helizitäts-Kriterium weniger geeignet für
die CFT-Vorhersage sind als die des C1- und Langtrys Kriterium.
Die Reynolds-Zahl Reθ basierend auf der Impulsverlustdicke für Langtry’s Kriterium kann sehr gut
mit der dimensionslosen Querströmungsintensität Hcf an der gemessenen Transitionslage korreliert
werden. Da die ursprüngliche Gleichung für Langtrys Kriterium die Testfälle nicht optimal trifft,
wird eine verbesserte Formulierung vorgeschlagen. Die Implementierung von Langtrys Ansatz
im Fluiddynamiklöser TAU wird empfohlen. Jedoch ist die Empfindlichkeit der Vorhersage der
Transitionslinie gegen ungenau berechnete Verdrängungsdicken-Reynolds-Zahlen hoch, da die
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Transitions-Verdrängungsdicken-Reynolds-Zahlen Reθt einen ähnliche Steigung entlang der Strom-
linie haben wie die berechnete Verdrängungsdicken-Reynolds-Zahlen Reθ.
Generell werden im Rahmen des γ-R̃eθt-Transitionsmodells mit CFT-Erweiterung die Parameter
der CFT-Kriterien lokal approximiert. Für den lokalen C1-Ansatz wird die Genauigkeit dieser
Approximation durch die Rekalibrierung eines bestimmten Modellparameters, genannt kritisch-
zu-transitionelles Verhältnis C. In der Formulierung von Grabe et al. (2018) is es eine Konstante,
aber in der vorliegenden Arbeit wird eine Abhängigkeit des optimalen Werts von der Reynolds-Zahl
basierend auf der Sehnenlänge der Oberflächengeometrie und dem Grenzschichtrandzustand gefun-
den. Die neue C-Korrelation wird im Fluiddynamiklöser implementiert. Vorläufige Ergebenisse für
einen Testfall werden gezeigt und diskutiert. Es werden nächste Schritte zur Weiterführung der
Arbeit vorgeschlagen.
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B List of Test Cases for Crossflow Instability
Dominated Transition

This chapter contains lists of test cases for crossflow instability dominated transition.

Test cases analyzed in this work (in parantheses: sources for additional measurement data/configu-
rations, which were not taken into account in this thesis):

• ONERA D airfoil by Manie et al. [36] (Arnal et al. [4, 5])
• NLF(2)-0415 airfoil by Dagenhart and Saric [11]/Radetzki et al. [49] (Agarwal et al. [2])
• NACA 642A015 airfoil by Boltz et al. [7]
• HQ26N/14.82 airfoil by Seitz [61]
• Swept cylinder by Poll [47] (Kohama et al. [24])
• TELFONA Pathfinder wing by Perraud et al. [44, 45]/Streit et al. [68, 67]
• 6:1 prolate spheroid by Kreplin et al. [26]
• TU Braunschweig Sickle Wing by Petzold and Radespiel [46] (Muñoz et al. [42])

Other test cases (incomplete list):

• DLR F4 wing body configuration by Fey et al. [17]
• NASA Common Reasearch Model with Natural Laminar Flow by Lynde et al. [35]
• DTP-A swept wing by Arnal et al. [5]
• DTP-B swept wing by Vermeersch et al. [72]
• Generic swept wing by Lemarechal et al. [34]
• NACA0012 swept wing by Tokugawa et al. [69]
• ONERA M6 wing by Schmitt et al. [57]
• ASU(67)-0315 infinite swept wing by Downs et al. [14]
• Airbus AERAST wing by Saeed et al. [52]
• AVF generic high-lift model by Seraudie et al. [62]
• Swept flat plate with pressure bodies by Saric et al. [53]/Mueller et al. [41]
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C Lists of the Selected Test Case
Configurations

This chapter contains lists of the selected configurations for the test cases analyzed in this thesis.

Table C.1: ONERA D test case: List of the selected CFT configurations of the experiments
by Manie et al. [36], augmented by eN -method results by Dr.-Ing. Normann
Krimmelbein. The normal angle of attack of the experiments is αn = 6◦. The
transition is detected at the lower wing side.

type Reynolds number
Recn,un∞ /106

sweep angle
Λ in ◦

Mach number
Ma∞

reference transition
location xt,ref

c

eN 0.6 65.0 0.2034 0.38
eN 0.6 70.0 0.2513 0.29
eN 0.8 55.0 0.1998 0.47
eN 0.8 60.0 0.2292 0.35
eN 0.8 65.0 0.2712 0.26
eN 1.0 50.0 0.2229 0.45
eN 1.0 55.0 0.2498 0.34
eN 1.0 60.0 0.2865 0.26
eN 1.5 45.0 0.2836 0.37
eN 1.5 50.0 0.3120 0.28
eN 1.5 55.0 0.3497 0.21
eN 1.5 60.0 0.4011 0.15
exp. 1.0 50.0 0.2229 0.45
exp. 1.0 60.0 0.2865 0.27
exp. 1.5 50.0 0.3120 0.26

Table C.3: NACA 642A015 test case: List of the selected CFT cases of the experiments by
Boltz et. al. [7]. The transition measurements are for the upper wing side.

sweep angle
Λ in ◦

Angle of attack
α in ◦

Reynolds-number
Recsw,usw
∞ /106

Mach-number
Ma∞

reference transition
location xt,ref

c

30.0 -3.0 5.954 0.06415 0.30
30.0 -3.0 6.636 0.07155 0.24
30.0 -3.0 7.234 0.07805 0.21
30.0 -2.5 6.719 0.07246 0.35
30.0 -2.5 7.055 0.07610 0.30
30.0 -2.5 7.478 0.08071 0.24
30.0 -2.5 7.587 0.08190 0.21
30.0 -2.0 7.712 0.05095 0.35
30.0 -2.0 7.864 0.05196 0.30
30.0 -2.0 8.286 0.05476 0.24
30.0 -2.0 8.523 0.05633 0.21
30.0 -1.5 8.856 0.05854 0.35

Continued on next page
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C Lists of the Selected Test Case Configurations

Table C.3: NACA 642A015 test case: List of the selected CFT cases of the experiments by
Boltz et. al. [7]. The transition measurements are for the upper wing side.

sweep angle
Λ in ◦

Angle of attack
α in ◦

Reynolds-number
Recsw,usw
∞ /106

Mach-number
Ma∞

reference transition
location xt,ref

c

30.0 -1.5 9.178 0.06068 0.30
30.0 -1.5 9.587 0.06340 0.24
30.0 -1.5 9.781 0.06469 0.21
30.0 -1.0 10.350 0.06849 0.35
30.0 -1.0 10.560 0.06987 0.30
30.0 -1.0 10.950 0.07246 0.24
30.0 -1.0 11.270 0.07463 0.21
40.0 -3.0 4.000 0.03805 0.40
40.0 -3.0 4.246 0.04039 0.35
40.0 -3.0 4.564 0.04343 0.30
40.0 -3.0 5.212 0.04962 0.24
40.0 -3.0 5.765 0.05490 0.21
40.0 -2.5 4.849 0.04615 0.35
40.0 -2.5 4.997 0.04757 0.30
40.0 -2.5 5.385 0.05128 0.24
40.0 -2.5 5.750 0.05476 0.21
40.0 -2.0 5.332 0.05076 0.35
40.0 -2.0 5.782 0.05506 0.30
40.0 -2.0 6.243 0.05948 0.24
40.0 -2.0 6.413 0.06110 0.21
40.0 -1.5 5.862 0.03422 0.35
40.0 -1.5 6.218 0.03631 0.30
40.0 -1.5 6.830 0.03988 0.24
40.0 -1.5 7.138 0.04169 0.21
40.0 -1.0 6.902 0.04031 0.35
40.0 -1.0 7.110 0.04152 0.30
40.0 -1.0 7.666 0.04478 0.24
40.0 -1.0 8.568 0.05007 0.21
40.0 -0.5 8.719 0.05095 0.35
40.0 -0.5 8.973 0.05244 0.30
40.0 -0.5 9.407 0.05499 0.24
40.0 0.0 10.930 0.06396 0.35
40.0 0.0 11.170 0.06538 0.30
50.0 -3.0 4.268 0.03406 0.30
50.0 -3.0 4.598 0.03670 0.24
50.0 -3.0 4.794 0.03827 0.21
50.0 -2.5 4.240 0.03384 0.35
50.0 -2.5 4.933 0.03938 0.24
50.0 -2.5 5.325 0.04251 0.21

Continued on next page
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C Lists of the Selected Test Case Configurations

Table C.3: NACA 642A015 test case: List of the selected CFT cases of the experiments by
Boltz et. al. [7]. The transition measurements are for the upper wing side.

sweep angle
Λ in ◦

Angle of attack
α in ◦

Reynolds-number
Recsw,usw
∞ /106

Mach-number
Ma∞

reference transition
location xt,ref

c

50.0 -2.0 4.644 0.03707 0.35
50.0 -2.0 5.310 0.04240 0.24
50.0 -2.0 5.588 0.04462 0.21
50.0 -1.5 5.189 0.04143 0.35
50.0 -1.5 5.326 0.04253 0.30
50.0 -1.5 5.671 0.04529 0.24
50.0 -1.0 6.026 0.04813 0.35
50.0 -1.0 7.181 0.05740 0.24
50.0 -1.0 7.673 0.06135 0.21
50.0 -0.5 7.103 0.05677 0.35
50.0 -0.5 7.570 0.06052 0.30
50.0 -0.5 8.337 0.06669 0.24
50.0 -0.5 8.789 0.07033 0.21
50.0 0.0 9.098 0.04459 0.35
50.0 0.0 9.321 0.04569 0.30
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C Lists of the Selected Test Case Configurations

Table C.2: NLF(2)-0415 test case: List of the selected CFT configurations of the experiments
by Dagenhart and Saric [11]/Radeztsky et al. [49], augmented by eN -method
results by Dr.-Ing. Normann Krimmelbein. The sweep angle is Λ = 45◦. The
angle of attack is α = −4◦. The transition is detected at the upper wing side.
RMS

roughness hrms in µm
Reynolds number

Recsw,usw
∞ /106

Mach number
Ma∞

reference transition
location xt,ref

c

0.25 2.781 0.06961 0.65
0.25 2.983 0.07467 0.58
0.25 3.283 0.08216 0.53
0.25 3.589 0.08982 0.46
0.50 2.486 0.06221 0.68
0.50 2.581 0.06460 0.65
0.50 3.187 0.07977 0.45
0.50 3.692 0.09241 0.37
3.30 2.200 0.05506 0.65
3.30 2.369 0.05929 0.58
3.30 2.400 0.06007 0.59
3.30 2.620 0.06557 0.56
3.30 2.700 0.06757 0.50
3.30 2.731 0.06835 0.45
3.30 2.951 0.07386 0.40
3.30 3.039 0.07607 0.40
3.30 3.268 0.08178 0.33
3.30 3.300 0.08259 0.37
3.30 3.700 0.09260 0.31
3.30 3.725 0.09324 0.30

Table C.4: HQ26N/14.82 test case: List of the selected CFT configurations of the experiments
by Seitz et al. [61]. Note that for the simulations the normal angle of attack
αn,CFD must to be used rather than the streamwise angle of attack αsw,CFD.

side sw. ang.
Λ in ◦

exp. ang. of att.
αsw,exp in ◦

CFD ang. of att.
αsw,CFD in ◦

Reynolds
Recsw,usw
∞ /106

Mach
Ma∞

trans.
xt,ref
c

lower 30 5.56 5.12 3.60 0.24 0.45
lower 30 5.56 5.30 2.96 0.19 0.65
lower 30 6.57 6.40 2.96 0.19 0.43
lower 30 6.57 6.48 2.43 0.16 0.55
lower 30 8.59 8.50 2.97 0.19 0.32
lower 30 8.59 8.50 3.60 0.23 0.24
lower 30 8.59 9.56 1.82 0.11 0.57
lower 45 3.55 3.20 4.47 0.23 0.50
lower 45 4.06 3.92 2.29 0.15 0.65
lower 45 4.06 3.92 4.47 0.23 0.36
lower 45 6.59 6.66 2.99 0.15 0.28
lower 45 6.59 6.66 4.45 0.23 0.19
upper 45 -2.01 -2.18 4.46 0.23 0.17
upper 45 0.52 0.32 4.48 0.23 0.27
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C Lists of the Selected Test Case Configurations

Table C.5: TELFONA Pathfinder wing test case: List of the selected CFT configurations of
the experiments by Perraud et al. [44], augmented by eN data by [59]

type wing side lift coefficient
cL (exp.)

Reynolds number
Rec̄,usw
∞ /106

angle of attack
α (CFD) in ◦

reference transition
location xt,ref

c

eN upper 0.099 20.00 0.30 0.15
exp. lower 0.401 20.00 3.08 0.30
exp. lower 0.450 15.30 3.62 0.40
exp. lower 0.450 16.00 3.61 0.40
exp. lower 0.450 16.90 3.58 0.30
exp. lower 0.450 17.40 3.56 0.25
exp. lower 0.450 19.75 3.54 0.21
exp. lower 0.450 23.00 3.50 0.10
exp. upper 0.095 18.10 0.24 0.28
exp. upper 0.100 20.00 0.30 0.25
exp. upper 0.105 18.00 0.31 0.30

Table C.6: Swept cylinder test case: List of the selected CFT configurations of the experiments
by Poll [47]. The angle of attack is α = 0◦.

sweep angle
Λ in ◦

Reynolds-number
Recn,usw
∞ /106

Mach-number
Ma∞

reference transition
location xt,ref

c

63.5 3.43 0.141 0.107
63.5 3.76 0.154 0.090
64.7 3.56 0.140 0.107
64.7 3.73 0.147 0.090
65.4 3.66 0.140 0.107
65.4 3.94 0.151 0.090
66.4 3.78 0.140 0.107
66.4 4.01 0.148 0.090
68.0 3.81 0.131 0.107
68.0 4.07 0.140 0.090
68.9 3.87 0.128 0.107
68.9 4.18 0.138 0.090
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D Local Approximations of integral Boundary
Layer Parameters

D.1 The Local Approach of Langtry and Menter
In order to implement the transition criterion of Langtry and Menter [32] in the γ-R̃eθt transition
transport model, the momentum thickness Reynolds number Reθ and the transition momentum
thickness Reynolds number Reθt need to be computed locally. This is done according to [32].
First, define the local approximated momentum thickness θ∗t by

θ∗t (~xΩ) = arg
θ∗t ∈R+

(
u θ∗t
ν

(~xΩ) = fcriterion,γ-R̃eθt

(
Tu(~xΩ), θ

∗2
t
ν
∂sw u(~xΩ)

))
, ∀~x ∈ Ω, (D.1)

which is the transition criterion equation 2.57 with local evaluation (locally in ~xΩ) of the variables,
except of the momentum thickness θt, for which the equation is solved numerically. The Reynolds
number based on that momentum thickness is the local approximated transition momentum thickness
Reynolds number

Re∗θt(~xΩ) = u θ∗t
ν

(~xΩ), ∀~x ∈ Ω. (D.2)

The next step is to introduce the vorticity Reynolds number

Rev,B(~xΓ , yn) = y2
nSB(~xΓ , yn)
νB(~xΓ , yn) ∀(~xΓ , yn) ∈ Γ × R+, (D.3)

which is not based on the vorticity ~ω, but on the strain rate S = ‖S‖. By the analytical solutions of
Pohlhausen [21] and Schlichting [56] for two-dimensional laminar boundary layers without pressure
gradients it holds

max
yn∈[0,δ(~xΓ )]

Rev,B(~xΓ , yn) ≈ 2.192 Reθ(~xΓ ) ∀~xΓ ∈ Γ (D.4)

or, equivalently,

Reθ(~xΓ ) ≥ Re∗θ,B(~xΓ , yn) := Rev,B(~xΓ , yn)
2.192 ∀(~xΓ , yn) ∈ Γ × [0, δ(~xΓ )]. (D.5)

The transition momentum thickness Reynolds number is

Reθt(~xΓ ) = fcriterion,γ-R̃eθt
(Tue(~xΓ ), λ2(~xΓ )). (D.6)

The ratio of the momentum thickness Reynolds number Reθ to the transition momentum thickness
Reynolds number Reθt inside the laminar boundary layer is written as

Reθ
Reθt

(~xΓ ) < 1, ∀~xΓ ∈ Γlam. (D.7)

By insertion of equation D.5 into equation D.7 one gets

Re∗θ,B(~xΓ , yn)
Reθt(~xΓ ) ≤ 1, ∀(~xΓ , yn) ∈ Γlam × [0, δ(~xΓ )]. (D.8)
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D Local Approximations of integral Boundary Layer Parameters

Now extend equation D.8 from the surface Γ to whole domain Ω by local evaluation of the variables:

Re∗θ
Re∗θt

(~xΩ) ≤ 1, ∀~xΩ ∈ Blam. (D.9)

The justification for the validity extension from the surface Γ to whole domain Ω by local evaluation
is that the transition will not be triggered anyway at the locations where the equations were not
valid before the extension.

D.2 Local C1 Approach
According to [19], the local approximated transition displacement thickness Reynolds number Re∗δ2t
is found as follows:
Equation D.4 is rearranged by cancelling the kinematic viscosity ν 1

θ(~xΓ ) =
max

yn∈[0,δ(~xΓ )]

(
y2
nSB(~xΓ , yn)

)

2.192ue(~xΓ ) ∀~xΓ ∈ T . (D.10)

In it, the boundary layer edge velocity is replaced by means of the compressible Bernoulli equation
under assumption of a wall normal-constant pressure p (equation 6.5).
Then, equation D.10 can be extended to whole Ω by local evaluation of the variables and drop
of the max-operator. The result is called the local approximated momentum thickness for the C1
criterion θ∗C1.
Plugging the local approximated momentum thickness for the C1 criterion θ∗C1 into the formula
of the pressure gradient parameter gives the local approximated pressure parameter for the C1
criterion λ∗C1

2 . As stated in section 2.1.2 about the boundary layer theory, there is a relation
of the pressure gradient parameter λ2 to the shape factor H12. The concrete equation for that
depends on the boundary layer velocity profile ~u(~x) ∀~x ∈ B. There is an analytical solution for
the three-dimensional laminar boundary layer of Falkner-Skan [16] and Cooke [10], abbreviated as
the FSC boundary layer. It can be used as an approximate description of the boundary layer on
infinite swept wings and yawed cylinders [19]. By the FSC equations the link between the pressure
gradient parameter λ2 and the shape factor HFSC

12 (λ2) for the three-dimensional boundary layer is
found [19]. Hence, the local approximated transition displacement thickness Reynolds number can
be calculated as

Re∗δ2t(~xΩ) = fcriterion, C1
(
HFSC

12
(
λ∗C12 (~xΩ)

))
∀~xΩ ∈ Ω. (D.11)

Next, the crosswise displacement thickness Reynolds number must be determined locally as Re∗δ2:
Writing down a trivial identity for the displacement thickness Reynolds number as

Reδ2(~xΓ ) =
sinϑ max

yn∈[0,δ(~xΓ )]
Rev,B(~xΓ , yn)

sinϑ max
yn∈[0,δ(~xΓ )]

Rev,B(~xΓ ,yn)

Reδ2(~xΓ )

∀~xΓ ∈ Γ. (D.12)

The variable ϑ is the local sweep angle of the wing [19].
By computing the FSC equations for various sweep angles ϑ and Hartree parameters (a dimensionless
parameter for the pressure chordwise gradient [18]), Grabe et al. [19] found a correlation fcorr,C1

1It is assumed that νB(~xΓ , yn) ≈ νe(~xΓ )∀(~xΓ , yn) ∈ Γ × [0, δ(~xΓ )].
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(given in [19]) that fulfills

sinϑ max
yn∈[0,δ(~xΓ )]

Rev,B(~xΓ , yn)

Reδ2(~xΓ ) = fcorr,C1(H12(~xΓ ), ϑ) ∀~xΓ ∈ Γ. (D.13)

The sweep angle ϑ of the wing is the angle between the chord-direction and the boundary layer
edge velocity ~ue. If the chord direction is approximated as the unit vector of the pressure gradient
projection onto the wall (thus assuming a zero span-wise pressure gradient) and if the boundary
layer edge velocity ~ue is replaced by the local velocity (same reasoning for that as before), the local
approximated sweep angle ϑ∗ is known. Then the denominator in equation D.12 can be expressed
by equation D.13 with locally approximated quantities. In addition, the max-operator is dropped,
with the same reasoning as before, to extend the equation to whole Ω by local evaluation of the
variables. The result is the local approximated crosswise-displacement thickness Reynolds number

Re∗δ2 = sinϑ∗Rev
fcorr,C1(H∗C1

12 , ϑ∗)
(~xΩ) ∀~xΩ ∈ Ω. (D.14)

D.3 Local Helicity Approach
This is how the local approximation of the transition helicity Reynolds number ReHe,t is found:
Compute a local approximated pressure gradient parameter

λ∗He2 (~xΩ) = l2

ν
(~xΩ) ∂swue(~xΩ) (D.15)

by using a locally available length scale l that was calibrated by simulations over swept
wings such that at the wall normal coordinate of the maximum helicity Reynolds number
yn = argmax

yn∈[0,δ(~xΓ )]
ReHe,B(~xΓ , yn) it is equal to the momentum thickness θ(~xΓ ) at the corresponding

surface location ~xΓ [19]:

lB(~xΓ , yn) = 1
CHe,max

2
15yn ∀(~xΓ , yn) ∈ Γ × [0, δ(~xΓ )] (D.16)

with CHe,max = 0.6944 [19]. The boundary layer edge velocity in equation D.15 is again computed
by equation 6.5.
Pluging in the local approximated pressure gradient parameter λ∗He2 into the the correlation of
Cliquet [9]:

HCliquet
12 (λ2) = 4.02923−

√
−8838.4λ4

2 + 1105.1λ3
2 − 67.962λ2

2 + 17.574λ2 + 2.0593 (D.17)

Then the local approximated transition helicity Reynolds number can be computed as

Re∗He,t(~xΩ) = fcriterion,He

(
HCliquet

12
(
λ∗He2 (~xΩ)

))
∀~xΩ ∈ Ω. (D.18)

D.4 Langtry’s Approach
The CFT momentum thickness Reynolds number Reθt is found in a similar manner as for the local
approach of Langtry and Menter [31].

116



D Local Approximations of integral Boundary Layer Parameters

In each point ~x ∈ Ω solve

θ∗Langtry(~xΩ)u(~xΩ)
0.82

ν(~xΩ) = fcriterion,Langtry

(
HCF(~xΩ), hrms

θ∗Langtry(~xΩ) , R
turb(~xΩ)

)
~xΩ ∈ Ω (D.19)

numerically for the local approximated transition momentum thickness for the Langtry-approach
θ∗Langtry, thus extending the transition criterion equation 2.86 from the surface Γ to the whole
domain Ω. The 0.82 in the denominator is for taking approximately into account the difference in
the velocity u at the boundary layer edge E and the wall normal coordinate where the vorticity
Reynolds number is maximum.
Plugging the local approximated transition momentum thickness for the Langtry-approach θ∗Langtry

into the formula for the momentum thickness Reynolds number gives the local approximated CFT
momentum thickness Reynolds number

Re∗θt,cf(~xΩ) = u θ∗Langtry

ν
(~xΩ) ∀~x ∈ Ω. (D.20)

The local approximated momentum thickness Reynolds number is again given by equation D.5.
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E Sensitivity of the Transition Prediction to
Inaccurate Reynolds Numbers

This section explains in more detail what is meant by the sensitivity of the criterion-predicted
transition location to a change of the Reynolds numbers. In addition it is linked to the length of the
vertical errorbars that are used in chapter 5 in the transition criterion plots.
For a briefer explanation the location on the surface along a wall projected boundary layer edge
streamline SE→Γ is denoted by a scalar x in this section. In addition, the computed Reynolds
number Reφ is one computed by the integral and local boundary layer parameters. The transition
Reynolds number Reφt is the criterion function fcriterion evaluated with the integral and local
boundary layer parameters. The criterion-predicted transition location is

xt,criterion = arg
x

((Reφt − Reφ)︸ ︷︷ ︸
∆Re

(x) = 0), (E.1)

i.e. the location where the Reynolds number difference ∆Re is zero. The Reynolds number difference
∆Re(xt,criterion) can be approximated by an abridged Taylor expansion around some point x0:

∆Re(xt,criterion) ≈ ∆Re(x0) + (∂x∆Re(x0))(xt,criterion − x0) != 0

⇐⇒ xt,criterion = x0 −
∆Re
∂x∆Re(x0)

(E.2)

The Reynolds number difference ∆Re is written as the true value ∆Retrue plus an approximation
error ε, which comes from violated model assumptions or numerical errors:

∆Re(x) = ∆Retrue(x) + ε (E.3)

The sensitivity of the transition prediction is defined as the absolute value of the derivative of the
criterion-predicted transition location xt,criterion with respect to the approximation error ε:1

∣∣∣∣
∂xt,criterion

∂ε

∣∣∣∣ (x0) = 1
|∂x∆Re(x0)| (E.4)

Concludingly, a large slope of the Reynolds number difference ∂x∆Re is connected to a low sensitivity
of the transition prediction.
If the points x0, xt,criterion and the experimental transition location xt,exp are close to each other, it
is ∣∣∣∣

∂xt,criterion
∂ε

∣∣∣∣ (x0) ≈
∣∣∣∣
∂xt,criterion

∂ε

∣∣∣∣ (xt,criterion) ≈
∣∣∣∣
∂xt,criterion

∂ε

∣∣∣∣ (xt,exp). (E.5)

From that it follows

vertical errorbar length = ∆Re(xt,exp − 5%c)−∆Re(xt,exp)

≈ ∂x∆Re(xt,exp) · 5%c =
∣∣∣∣
∂xt,criterion

∂ε

∣∣∣∣
−1

(xt,criterion) · 5%c.
(E.6)

1Note that ∂x∆Re(x) = ∂x∆Retrue(x)
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Hence, the longer the vertical errorbars, the less sensitive the transition prediction or modeling or
numerical errors (inverse proportionality).

119



F Alternative Correlations for Crossflow
Instability Dominated Transition

In the C1, helicity and Langtry’s criteria different integral boundary layer parameters or wall
normal maxima of local variables at the transition line T are correlated against each other. In this
chapter, the transition criterion plots for all remaining combinations of the parameters are given
(figures F.1 to F.7).
Note that the relatively good correlation of the wall normal maximum helicity Reynolds number

max
yn∈[0,δ(~xt)]

ReHe,B(~xt, yn) with the crosswise displacement thickness Reynolds number Reδ2(~xt) is

due to the derivation of Reδ2 from ReHe [19].
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Figure F.1: Wall normal maximum Non-dimensional crossflow strenght
max

yn∈[0,δ(~xt)]
HCF,B(~xt, yn) vs. shape factor H12(~xt)
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Figure F.2: Momentum thickness Reynolds number Reθ(~xt) vs. shape factor H12(~xt)
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Figure F.3: Crosswise displacement thickness Reynolds number Reδ2(~xt) vs. wall normal
maximum Non-dimensional crossflow strenght max

yn∈[0,δ(~xt)]
HCF,B(~xt, yn)
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Figure F.4: Wall normal maximum helicity Reynolds number max
yn∈[0,δ(~xt)]

ReHe,B(~xt, yn)
vs. wall normal maximum Non-dimensional crossflow strenght

max
yn∈[0,δ(~xt)]

HCF,B(~xt, yn)
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Figure F.5: Wall normal maximum helicity Reynolds number max
yn∈[0,δ(~xt)]

ReHe,B(~xt, yn) vs.

crosswise displacement thickness Reynolds number Reδ2(~xt)
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Figure F.6: Momentum thickness Reynolds number Reθ(~xt) vs. crosswise displacement
thickness Reynolds number Reδ2(~xt)
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Figure F.7: Momentum thickness Reynolds number Reθ(~xt) vs. wall normal maximum
helicity Reynolds number max

yn∈[0,δ(~xt)]
ReHe,B(~xt, yn)
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G Mathematical Conventions for this Thesis

When reading, one may be surprised by the quantity of mathematical expressions. It is helpful to
have mathematical notations of otherwise verbally expressed statements. If the equations/terms
are hard to read, a verbal explanation is always added in the text. In addition it is seeked for a
clear expression. Therefore, certain mathematical conventions are used, that are explained here.
In general, symbols are written in italic font (for example temperature T , velocity u). This is
not the case for symbols that consist of multiple letters (for example turbulence intensity Tu).
If an index is appended to a variable, that is itself a variable, the index is written in italic font,
otherwise in normal font (for example Rec is the local chord-Reynolds number based on the chord
c, but Rec is the critical Reynolds number). Sometimes indices are not appended as subscript, but
as superscripts (for readability only). To distinguish them from exponents, they are enclosed in
parentheses (for example intermittency-production P (γ)).
The existential quantificators are ∀ ("for all") and ∃ ("it exists at least one"). These are often
combined with ∈ ("in"). For example u = 0 ∀~xΓ ∈ Γ means that the variable u is zero for all points
on the surface Γ .
A set of points is denoted either by greek letters (for example Ω for the domain) or latin letters in
calligraphic font (for example T for the transition line). In the thesis, to the vector ~x usually a Γ
or an Ω is appended as an index. This does not have any meaning but is only done for readability,
to distinguish surface points ~xΓ ∈ Γ defined on the surface Γ from volume points ~xΩ ∈ Ω defined
in the domain Ω.
The boundary of a set is denoted by the operator ∂ (for example ∂Ω is the boundary of the domain
Ω). Subsets of the boundary are usually denoted by a capital or small Γ .
Partial derivatives are notated by the ∂ operator, that always has an index. If the index is a number,
it is the number of the basis vector of the euclidean space (for example ∂1u is the partial derivative
of u with respect to the first basis vector of the space). If the index is another variable, it is the
derivative with respect to that variable (for example ∂tu is the derivative of u with respect to the
time t). Higher order derivatives are written by appending an exponent to the ∂-sign (for example
∂2
t u is the second derivative of u with respect to time t).

The argument for which an equation or inequality holds, can be gotten by the arg-operator.
Underneath the operator the "search space" is given (for example arg

~xΩ∈Ω
u(~xΩ) < 0 is the set of

points of the domain Ω, at which the variable u is smaller than zero). This can also be combined
with the max or min operator, which yield the maximum/minimum value of a set (for example
argmax
~xΩ∈Ω

u(~xΩ) < 0 is the point in the subset of the set Ω, at which the variable u is smaller than

zero, at which it is maximum).
There is no difference between the use of parantheses ( ) or brackets [ ]. In contrast, curly braces { }
are reserved for the definition of sets (for example: {1, 2, 3} is the set of the numbers 1, 2, and 3).
Sometimes, the Einstein summation convention is used: Whenever an index is appearing twice in a
product, the term is an abbreviation for the sum over it with the twice appearing index going form 1
to 3 (for example ∂iui is the divergence of the vector ~u with the components ui with i ∈ {1, 2, 3}).

124



Bibliography

[1] AGARD: Special Course on Progress in Transition Modelling. In: AGARD Advisory Report
793 (1994)

[2] Agarwal, Naval K. ; Maddalon, Dal V. ; Mangalam, Siva M. ; Collier, Fayette S.:
Crossflow vortex and transition measurements by use of multielement hot films. In: AIAA
Journal 30 (1992), Nr. 9, S. 2212–2218. http://dx.doi.org/10.2514/3.11207. – DOI
10.2514/3.11207. – ISSN 0001–1452

[3] Arnal, D. ; Coustols, E. ; Juillen, J.: Etude expérimentale et théorique de la transition
sur une aile en flèche infinie. In: La Recherche Aérospatiale 1984-4 (1984)

[4] Arnal, D. ; Habillah, M. ; Delcourt, V.: Synthèse sur les méthodes de calcul de la
transition développées au DERAT. In: ONERA Technical Report (1980)

[5] Arnal, D. ; Piot, E. ; Archambaud, Jean-Pierre ; Casalis, G. ; Content, C. ; Dandois,
J. ; Colamartino, S.: TRACMIR : TRAnsition Control by Micron-sized Roughness elements.
In: RF 2/12136 DMAE (2007)

[6] Blazek, Jiri: Computational Fluid Dynamics: Principles and Applications. Ox-
ford : Elsevier, 2007. http://dx.doi.org/10.1016/B978-0-08-099995-1.09988-7.
http://dx.doi.org/10.1016/B978-0-08-099995-1.09988-7. – ISBN 978–0–08–099995–1

[7] Boltz, Frederick W. ; Allen, Clyde Q. ; Kenyon, George C.: The Boundary-layer Transition
Characteristics of Two Bodies of Revolution, a Flat Plate, and an Unswept Wing in a Low-
turbulence Wind Tunnel. (1960)

[8] Boltz, Frederick W. ; Kenyon, Geroge C. ; Allen, Clyde Q.: Effects of sweep angle on
the boundary-layer stability characteristics of an untapered wing at low speeds. In: NASA
technical note (1960)

[9] Cliquet, J. ; Houdeville, R. ; Arnal, D.: Application of Laminar-Turbulent Transition
Criteria in Navier-Stokes Computations. In: AIAA Journal 46 (2008), Nr. 5, S. 1182–1190.
http://dx.doi.org/10.2514/1.30215. – DOI 10.2514/1.30215. – ISSN 0001–1452

[10] Cooke, J. C.: The boundary layer of a class of infinite yawed cylinders. In: Mathe-
matical Proceedings of the Cambridge Philosophical Society 46 (1950), Nr. 4, S. 645–648.
http://dx.doi.org/10.1017/S0305004100026220. – DOI 10.1017/S0305004100026220. –
ISSN 0305–0041

[11] Dagenhart, J. ; Saric., W.: Crossflow Stability and Transition Experiments in Swept-Wing
Flow. In: NASA/TP (1999), Nr. 209344

[12] DLR: Technical Documentation of the DLR TAU-code Release 2018.1.0: DLR-Institute
ofAerodynamic and Flow Technology at Goettingen and Braunschweig. (2018)

[13] DLR: TAU-Code User Guide Release 2019.1.0: DLR-Institute ofAerodynamic and Flow
Technology at Goettingen and Braunschweig. (2019)

125



Bibliography

[14] Downs, Robert S. ; White, Edward B.: Free-stream turbulence and the develop-
ment of cross-flow disturbances. In: Journal of Fluid Mechanics 735 (2013), S. 347–380.
http://dx.doi.org/10.1017/jfm.2013.484. – DOI 10.1017/jfm.2013.484. – ISSN 0022–
1120

[15] Eisfeld, Bernhard: Elemente der statistischen Turbulenzmodellierung. (2020)

[16] Falkner, V. M. ; Skan, S. W.: Some approximate solutions of the boundary-layer equations.
In: Rep. Memor. aero. Res. coun. Lond. (1930), Nr. 30

[17] Fey, Uwe ; Egami, Yasuhiro ; Engler, Rolf: High Reynolds Number Transition Detection
by Means of Temperature Sensitive Paint. In: 44th AIAA Aerospace Sciences Meeting and
Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2006. – ISBN
978–1–62410–039–0

[18] Grabe, Cornelia: Correlation-based Transition Transport Modeling in the DLR TAU-Code.
(2013)

[19] Grabe, Cornelia ; Shengyang, Nie ; Krumbein, Andreas: Transport Modeling for the
Prediction of Crossflow Transition. In: AIAA Journal 56 (2018), Nr. 8, S. 3167–3178.
http://dx.doi.org/10.2514/1.J056200. – DOI 10.2514/1.J056200. – ISSN 0001–1452

[20] Hirschfelder, J. O. ; Curtiss, C. F. ; Bird, R. B.: Molecular Theory Of Gases And Liquids.
New York, London, Sydney : John Wiley & Sons, Inc., 1954

[21] Holstein, H. ; Bohlen, T.: Ein einfaches Verfahren zur Berechnung laminare Grenzschichten,
die dem Näherungsansatz nach K. Pohlhausen genügen. In: Bericht S 10 der Lilienthal-
Gesellschaft für Luftfahrtforschung (1940), S. 5

[22] IEEE: IEEE Standard for System and Software Verification and Validation

[23] Kaushik, Mrinal: Theoretical and Experimental Aerodynamics. Singapore
: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1678-4.
http://dx.doi.org/10.1007/978-981-13-1678-4. – ISBN 978–981–13–1677–7

[24] Kohama, Y. ; Ukaku, M. ; Ohta, F.: Boundary-layer transition on a swept cylin-
der. Version: 1988. http://dx.doi.org/10.1016/B978-0-08-036232-8.50031-1. In: Shen
Yuan (Hrsg.): Frontiers of Fluid Mechanics. Pergamon, 1988. – DOI 10.1016/B978–0–08–
036232–8.50031–1. – ISBN 978–0–08–036232–8, 151–156

[25] Kohama, Yasuaki ; Davis, Sanford S.: A new parameter for predicting crossflow instability.
In: JSME International Journal 36 (1993), Nr. 1

[26] Kreplin, H-P. ; Vollmers, H. ; Meier, H. U.: Wall shear stress measurements on an inclined
prolate spheroid in the DFVLR 3M x 3M low speed wing tunnel, Göttingen: Internal Data
Report. In: DFVLR-IB 222-84 A 33 (1985)

[27] Krimmelbein, Normann: Transition prediction method for three-dimensional flows using
linear stability theory. 2020

[28] Krimmelbein, Normann ; Krumbein, Andreas: Validation of transition modeling techniques
for a simplified fuselage configuration. In: Aerospace Science and Technology 118 (2021), S.
107043. http://dx.doi.org/10.1016/j.ast.2021.107043. – DOI 10.1016/j.ast.2021.107043

126



Bibliography

[29] Kruse, Martin ; Munoz, Federico ; Radespiel, Rolf ; Grabe, Cornelia: Transition Prediction
Results for Sickle Wing and NLF(1)-0416 Test Cases. In: 2018 AIAA Aerospace Sciences
Meeting. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2018. – ISBN
978–1–62410–524–1

[30] Langer, Stefan ; Schwöppe, Axel ; Kroll, Norbert: The DLR Flow Solver TAU - Status
and Recent Algorithmic Developments. In: 52nd Aerospace Sciences Meeting, 13.-17. Jan.
2014, National Harbor, Maryland, USA (2014)

[31] Langtry, Robin ; Sengupta, Kaustav ; Yeh, David T. ; Dorgan, Andrew J.: Extending
the Gamma-Rethetat Correlation based Transition Model for Crossflow Effects. In: 45th
AIAA Fluid Dynamics Conference. Reston, Virginia : American Institute of Aeronautics and
Astronautics, 2015. – ISBN 978–1–62410–362–9

[32] Langtry, Robin B. ; Menter, Florian R.: Correlation-Based Transition Modeling for
Unstructured Parallelized Computational Fluid Dynamics Codes. In: AIAA Journal 47 (2009),
Nr. 12, S. 2894–2906. http://dx.doi.org/10.2514/1.42362. – DOI 10.2514/1.42362. – ISSN
0001–1452

[33] Le Duc, Anne ; Sesterhenn, Jörn ; Friedrich, Rainer: Instabilities in compress-
ible attachment–line boundary layers. In: Physics of Fluids 18 (2006), Nr. 4, S. 044102.
http://dx.doi.org/10.1063/1.2187450. – DOI 10.1063/1.2187450. – ISSN 1070–6631

[34] Lemarechal, Jonathan ; Costantini, Marco ; Klein, Christian ; Kloker, Markus J.
; Würz, Werner ; Kurz, Holger B. ; Streit, Thomas ; Schaber, Sven: In-
vestigation of stationary-crossflow-instability induced transition with the temperature-
sensitive paint method. In: Experimental Thermal and Fluid Science 109 (2019),
S. 109848. http://dx.doi.org/10.1016/j.expthermflusci.2019.109848. – DOI
10.1016/j.expthermflusci.2019.109848. – ISSN 08941777

[35] Lynde, Michelle N. ; Campbell, Richard L. ; Viken, Sally A.: Additional Findings from the
Common Research Model Natural Laminar Flow Wind Tunnel Test. In: AIAA Aviation 2019
Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2019. – ISBN
978–1–62410–589–0

[36] Manie, F. ; Rehbach, C. ; Schmitt, V.: Study of variable sweep wing in sub or transonic
flow. In: NASA technical translation (1987)

[37] Medida, Shivaji ; Baeder, James: A New Crossflow Transition Onset Criterion for RANS
Turbulence Models. Version: 2013. http://dx.doi.org/10.2514/6.2013-3081. In: 21st
AIAA Computational Fluid Dynamics Conference. 2013. – DOI 10.2514/6.2013–3081

[38] Meier, H. U. ; Kreplin, H-P.: Experimental Investigations of the Boundary Layer Transition
and Separation on a Body of Revolution. In: Z. Flugwiss. Weltraumforsch. (1980), Nr. 4

[39] Menter, F. R.: Two-equation eddy-viscosity turbulence models for engineering applications.
In: AIAA Journal 32 (1994), Nr. 8, S. 1598–1605. http://dx.doi.org/10.2514/3.12149. –
DOI 10.2514/3.12149. – ISSN 0001–1452

[40] Menter, F. R. ; Smirnov, P.: Development of a RANS-based model for predicting crossflow
transition. In: Proceedings of the Contributions to the 19th STAB/DGLR Symposium (2014)

127



Bibliography

[41] Mueller, B. ; Bippes, H.: Experimental study of instability modes in a three-dimensional
boundary layer. In: Fluid Dyn. Three-Dimens. Shear Flows Transit. (1989), Nr. AGARD CP
438, S. 13.1–15

[42] Munoz, Federico: Experimental Data and Description of Test Cases for the Sickle Wing
Transition Experiment. (2017)

[43] Oertel, Herbert ; Delfs, Jan: Strömungsmechanische Instabilitäten. Karl-
sruhe : Universitätsverlag, 2005. http://dx.doi.org/10.5445/KSP/1000003552.
http://dx.doi.org/10.5445/KSP/1000003552. – ISBN 3937300805

[44] Perraud, Jean ; Archambaud, Jean-Pierre ; Schrauf, Géza ; Donelli, Raffaele ; Hanifi,
Ardeshir ; Quest, Jurgen ; Streit, Thomas. ; Hein, Stefan ; Fey, Uwe ; Egami, Yasuhiro:
Transonic High Reynolds Number Transition Experiments in the ETW Cryogenic Wind Tunnel.
In: American Institute of Aeronautics and Astronautics (2010)

[45] Perraud, Jean ; El Din, Ithma S. ; Schrauf, Géza ; Hanifi, Ardeshir ; Donelli, Raffaele
; Hein, Stefan ; Fey, Uwe ; Egami, Yasuhiro ; Streit, Thomas.: High Reynolds number
transition experiments in the ETW test facility with the pathfinder model. In: V European
Conference on Computational Fluid Dynamics. ECCOMAS CFD 2010 Lisbon, Portugal, 14–17
June 2010 (2010)

[46] Petzold, R. ; Radespiel, R.: Transition on a Wing with Spanwise Varying Cross-
flow and Linear Stability Analysis. In: AIAA Journal 53 (2015), Nr. 2, S. 321–335.
http://dx.doi.org/10.2514/1.J053127. – DOI 10.2514/1.J053127. – ISSN 0001–1452

[47] Poll, D. I. A.: Some observations of the transition process on the windward face of a long
yawed cylinder. In: J. Fluid Mech. 1985 (1984), Nr. 150, S. 329–356

[48] Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In: Krazer, A. (Hrsg.):
Verhandlungen des dritten internationalen Mathematiker-Kongresses, 1904, S. 484–491

[49] Radeztsky, Ronald H. ; Reibert, Mark S. ; Saric, William S.: Effect of Isolated Micron-
Sized Roughness on Transition in Swept-Wing Flows. In: AIAA Journal 37 (1999), Nr. 11, S.
1370–1377. http://dx.doi.org/10.2514/2.635. – DOI 10.2514/2.635. – ISSN 0001–1452

[50] Roe, P.L: Approximate Riemann solvers, parameter vectors, and difference
schemes. In: Journal of Computational Physics 43 (1981), Nr. 2, S. 357–372.
http://dx.doi.org/10.1016/0021-9991(81)90128-5. – DOI 10.1016/0021–9991(81)90128–
5. – ISSN 00219991

[51] Rubino, Ginevra: Laminar-to-Turbulence Transition Modeling of Incompressible Flows
in a RANS Framework for 2D and 3D Configurations, Unpublished, Diss., 2022.
http://dx.doi.org/10.13140/RG.2.2.13761.68969. – DOI 10.13140/RG.2.2.13761.68969

[52] Saeed, T. I. ; Morrison, J. F. ; Mughal, M. S.: Roughness effects on swept-wing crossflow
transition in moderate free-stream turbulence. In: 29th Congress of International Council of
the Aeronautical Sciences, St. Petersburg, Sept. 2014 (2014)

[53] Saric, W. S. ; Yeates, L. G.: Generation of crossflow vortices in a three-dimensional flat-plate
flow. In: Laminar-Turbulent Transition. Springer, 1985, S. 429–437

128



Bibliography

[54] SARIC, WILLIAM: The ASU Transition Research Facility. In: 28th Joint Propulsion
Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics,
1992

[55] Saric, William S. ; Reed, Helen L. ; White, Edward B.: Stability and Transition of
Three-Dimensional Boundary Layers. In: Annual Review of Fluid Mechanics 35 (2003), Nr.
1, S. 413–440. http://dx.doi.org/10.1146/annurev.fluid.35.101101.161045. – DOI
10.1146/annurev.fluid.35.101101.161045. – ISSN 0066–4189

[56] Schlichting, H. ; Gersten, K.: Grenzschicht-Theorie. (2006)

[57] Schmitt, V. ; Monneris, B. ; Dorey, G. ; Capelier, C.: Étude de la couche limite
tridimensionnelle sur une aile en flèche. In: ONERA, Rapport Technique (1975), Nr. 14/1713

[58] Schobeiri, Meinhard T.: Advanced Fluid Mechanics and Heat
Transfer for Engineers and Scientists. Cham : Springer Interna-
tional Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-72925-7.
http://dx.doi.org/10.1007/978-3-030-72925-7. – ISBN 978–3–030–72924–0

[59] Schrauf, Géza ; Schmidt, K.: Prediction of the Transition Behaviour of the TELFONA
Pathfinder Wing: Deliverable 1.1-5. In: AIRBUS Technical Report (2006)

[60] Schultz, Michael: The Relationship Between Frictional Resistance and Roughness for Surfaces
Smoothed by Sanding. In: J. Fluids Eng. (2002), Nr. Jun 2002, S. 492–499

[61] Seitz, Arne: Ermittlung des Querstromungs ¨ N Faktors zur Umschlagvorhersage im
Niedergeschwindigkeitswindkanal Braunschweig (NWB). (1989), Nr. IB/129-89/26

[62] Seraudie, A. ; Perraud, J. ; Moens, F.: Transition measurement and analysis on a swept
wing in a high lift configuration. In: ICAS 2002 Congress (2002)

[63] Somers, D. M.: Subsonic Natural-Laminar-Flow Airfoils. In: Barnwell, R. W. (Hrsg.) ;
Hussaini, M. Y. (Hrsg.): Natural Laminar Flow and Laminar Flow Control. Springer, 1992, S.
143–176

[64] Somers, D. M. ; Horstmann, Karl H.: Design of a Medium-Speed, Natural-Laminar-Flow
Airfoil for Commuter Aircraft Application. In: DFVLR data report (1985), Nr. IB 129-85/26

[65] Spalart, P. ; Rumsey, C. L.: Effective Inflow Conditions for Turbulence Models in Aerody-
namic Calculations. In: AIAA Journal (2007), Nr. 45, S. 2544–2553. – ISSN 0001–1452

[66] Stock, Hand W. ; Seitz, Arne: Crossflow-Induced Transition Prediction Using Coupled
Navier–Stokes and eN Method Computations. In: AIAA Journal (2004), Nr. 42, S. 1746–1754.
– ISSN 0001–1452

[67] Streit, Thomas. ; Horstmann, Karl H. ; Schrauf, Géza ; Hein, Stefan ; Fey, Uwe ;
Egami, Yasuhiro ; Perraud, Jean ; El Din, Ithma S. ; Cella, Ubaldo ; Querst, Jürgen:
Complementary Numerical and Experimental Data Analysis of the ETW Telfona Pathfinder
Wing Transition Tests. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons
Forum and Aerospace Exposition 881 (2011)

129



Bibliography

[68] Streit, Thomas. ; Schrauf, Géza ; El Din, Ithma S. ; Cella, Ubaldo ; Fey, Uwe ; Egami,
Yasuhiro: The Telfona Pathfinder model, a second look. In: V European Conference on
Computational Fluid Dynamics. ECCOMAS CFD 2010 Lisbon, Portugal, 14–17 June 2010
(2010)

[69] Tokugawa, N. ; Takagi, S. ; Ueda, Y. ; Ido, A.: Influence of the External Disturbances on
Natural Boundary-Layer Transition in Rectangular Wing Flows. In: Journal of Japan Society
of Fluid Mechanics 24 (2005), Nr. 6, S. 629–639

[70] Tsinober, Arkady: The Essence of Turbulence as a Physical Phenomenon. Cham :
Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99531-1.
http://dx.doi.org/10.1007/978-3-319-99531-1. – ISBN 978–3–319–99530–4

[71] Venkatachari, Balaji S. ; Paredes, Pedro ; Derlaga, Joseph M. ; Buning, Pieter G. ;
Choudhari, Meelan M. ; Li, Fei ; Chang, Chau-Lyan: Assessment of Transition Modeling
Capability in OVERFLOW with Emphasis on Swept-Wing Configurations. In: AIAA Scitech
2020 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2020. –
ISBN 978–1–62410–595–1

[72] Vermeersch, Olivier ; Arnal, Daniel ; El Din, Itham S.: Transition control by micron-
sized roughness elements: stability analyses and wind tunnel experiments. In: Interna-
tional Journal of Engineering Systems Modelling and Simulation 5 (2013), Nr. 1-3, S. 84–98.
http://dx.doi.org/10.1504/IJESMS.2013.052381. – DOI 10.1504/IJESMS.2013.052381

[73] Watanabe, Yuto ; Misaka, Takashi ; Obayashi, Shigeru ; Arima, Toshiyuki ; Yamagichi,
Yoshihiro: Application of Crossflow Transition Criteria to Local Correlation-Based Transition
Model. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and
Aerospace Exposition. Reston, Virigina : American Institute of Aeronautics and Astronautics,
2009. – ISBN 978–1–60086–973–0

130


