Comparison of the O₃ chemistry in the Po Valley with that in the Benelux region as simulated with MECO(n)

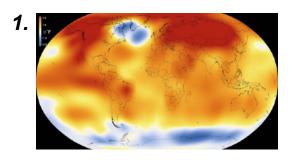
Markus Kilian¹, Volker Grewe^{1,3}, Patrick Jöckel¹, Astrid Kerkweg², and Mariano Mertens¹

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

²Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich, Germany

³Delft University of Technology, Faculty of Aerospace Engineering, Section Aircraft Noise and Climate Effects, Delft, The Netherlands

13th International Conference on Air Quality 2022, Thessaloniki

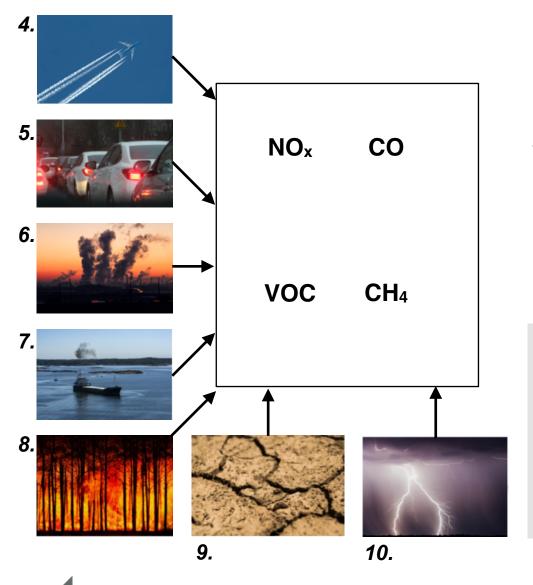

Knowledge for Tomorrow

Why tropospheric Ozone?

Tropospheric O₃ affects air quality and contributes to global warming.

 O₃ is harmful to human health especially for the respiratory system.

 Tropospheric O₃ damages plants and affects agricultural production.



Sources:

- 1. NASA
- 2. Environmental Agency of Zambia
- 3. University of Florida

Tropospheric Ozone formation

*OH + CO
$$\rightarrow$$
 HOCO
HOCO + O₂ \rightarrow HO₂ + CO₂

*oxidation of CO by OH radical

**
$$HO_2 + NO \rightarrow OH + NO_2$$

 $NO_2 + hv \rightarrow NO + O(^3P), \lambda < 400 \text{ nm}$
 $O(^3P) + O_2 \rightarrow O_3$

**note that these three reactions are what forms the ozone molecule, and will occur the same way in the oxidation of CO or VOCs case.

- Anthropogenic non-traffic (i.e. households, industry, etc.) and land transport emissions are important precursors of tropospheric O₃.
- Hot spot regions of NO_x emissions are Central Europe, parts of China, Southern part of Africa and North America.

Sources: 4.-10. Open Source Stock Pictures

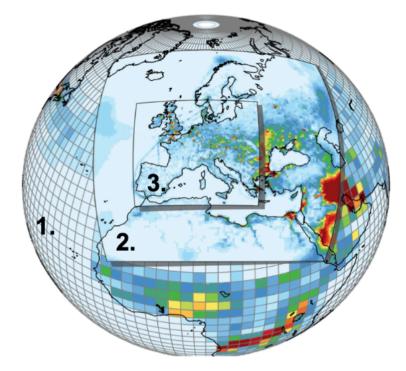
Scientific Questions

- How do the various emission sectors contribute to NO_y and O₃ in the Po Valley, and how does this differ in comparison with the Benelux region?
- How large are the contributions from European emissions compared to the contributions from long-range transported emissions to ground-level O₃?

MECO(n) model system and Setup

- MECO(n): "MESSy-fied ECHAM and COSMO nested n-times"
- online coupling of the global EMAC model with regional model COSMO/ MESSy
- Allows zooming in specific regions with fine resolution
- Applied source attribution to diagnose O₃ contributions of different emission sectors and different source regions, because formation of tropospheric O₃ by precursor emissions is highly non-linear.

Simulation period for MECO(2):

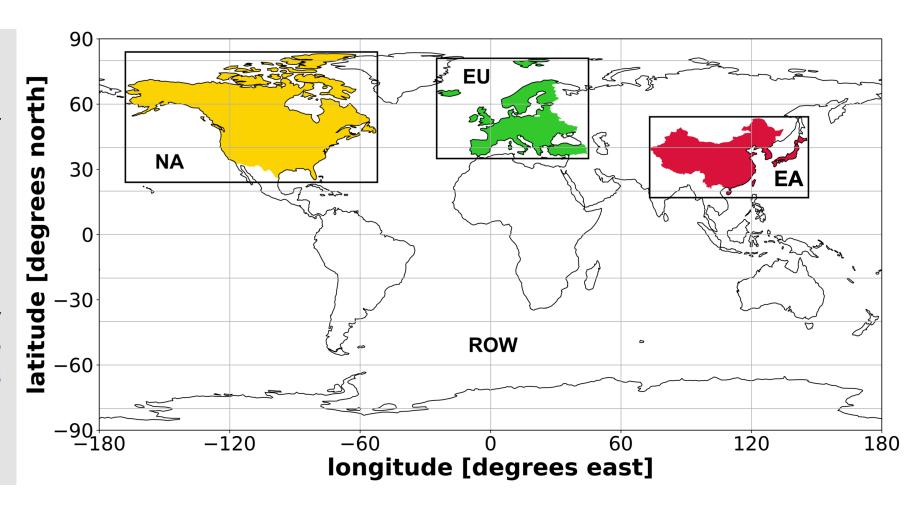

• 01.12.2016 - 31.01.2019 (1st month spin-up)

Emission inventories:

- EDGAR 5.0 (2015)
- GFAS 1.2 (Bioburn)
- CCMI (GHG)

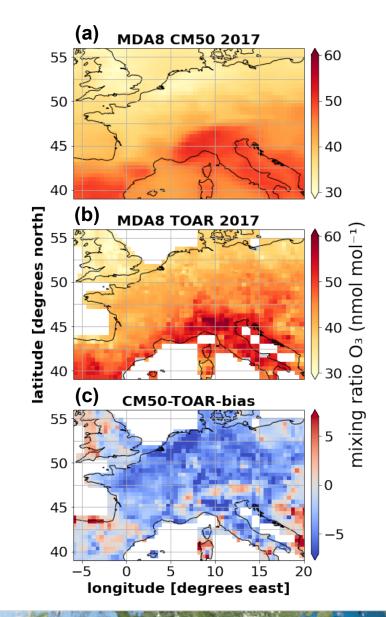
Study Areas:

 Focus on the Benelux region, the Po Valley and Ireland


Colour coded: NOx emissions

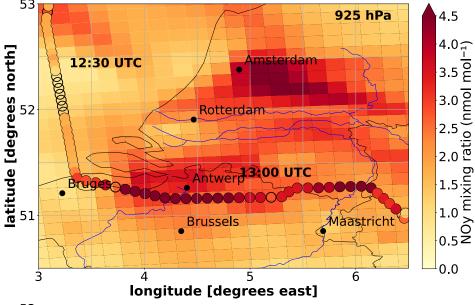
- **1.** EMAC T42L90MA
- **2.** CM50 EU 0.44° x 0.44° (50km)
- **3.** CM12 EU 0.11° x 0.11° (12km)

Source attribution by tagging regions

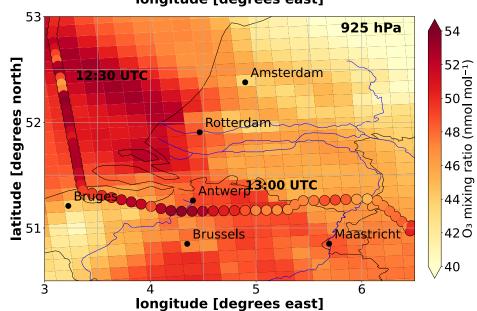

- We define three tagging regions: Europe (EU), North America (NA) and East Asia (EA)
- rest of the world (ROW) combines all remaining regions including the ocean
- Enables the attribution by regional sources (i.e. same continent) and by sources from long-range transport.

Evaluation with TOAR/model dataset (D21)

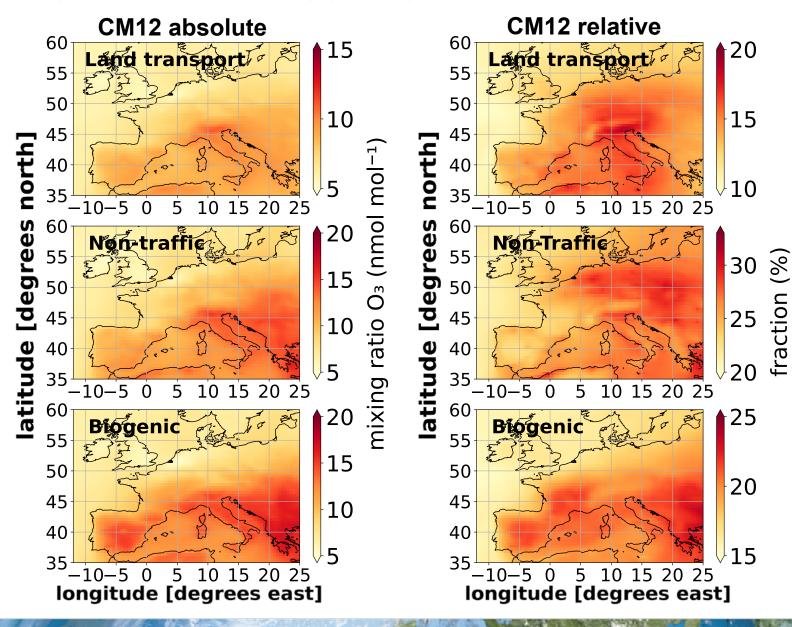
- D21 dataset based on TOAR and model data DeLang et al. (2021)
- (a) shows the de-biased (by area mean bias of 15 nmol mol⁻¹) ground-level O₃ seasonal daily maximum 8 h mixing ratio (OSDMA8) in nmol mol⁻¹ as simulated by CM50
- **(b)** shows the OSDMA8 of the DeLang et al. (2019) dataset
- (c) difference of D21-CM50-bias
- geographical distribution of ozone over Europe is well represented in MECO(n)
- O₃ systematically overestimated in rural regions and underestimated in urban areas


Evaluation with in situ data (EMeRGe)

Benelux region: 26.07.2017

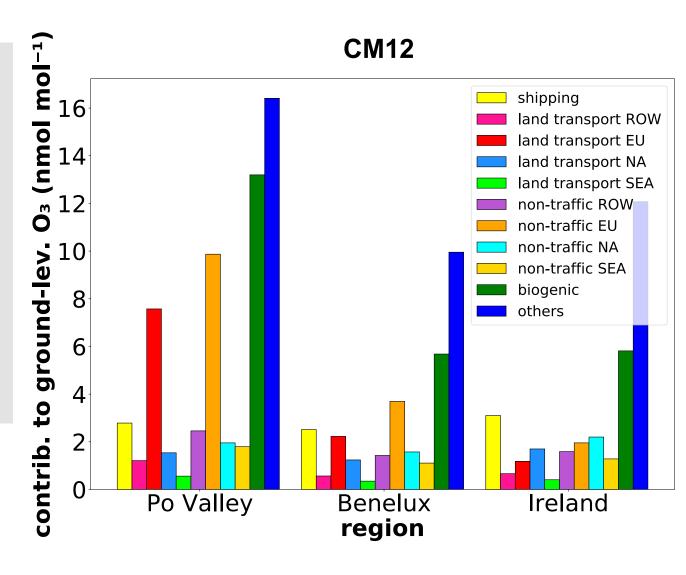

Comparison between model results of CM12 (background color) and in situ measurements for the Benelux region (filled circles) at 925 hPa:

- underestimation of NO_y mixing ratios in CM12 within city plumes (e.g. Antwerp).
- NO_y is well represented outside polluted areas (e.g. English Channel)
- O₃ is mostly well represented outside city plumes, but underestimated within city plumes (e.g. between Bruges and Antwerp).


CM12 O₃

Ozone Contributions JJA 2017

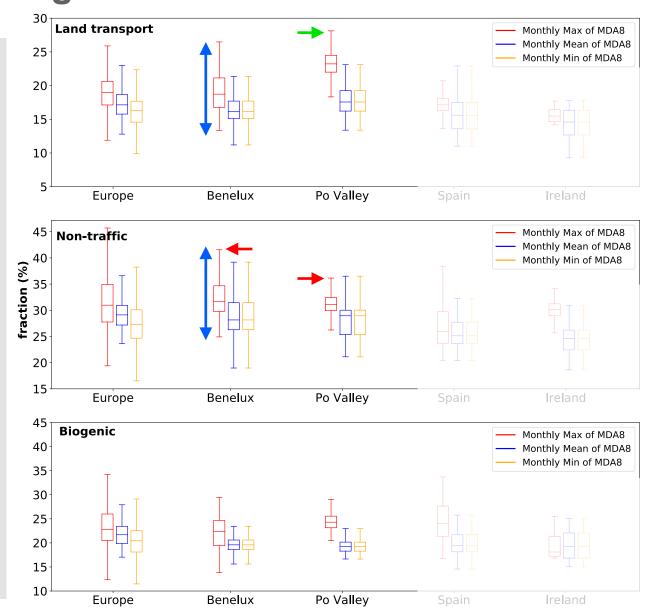
- positive gradient of absolute O₃ contributions (left) in North-South direction
- Anth. non-traffic sector is largest contributor to ground-level O₃ in Europe with up to 35 % during summer 2017.
- Biogenic sector is also important contributor to ground-level O_3 with up to 25 % especially in South Europe.



Ozone Contributions

Shown are absolute O₃ contributions (nmol mol-1) as monthly mean for July 2017:

- In the Po Valley absolute O₃ contributions from European land transport and anth. non-traffic emissions are twice as large as in the Benelux region.
- Anthropogenic O₃ contributions from longrange transported precursors have the same order of magnitude in all three regions.



Ozone contributions during extreme ozone events

Shown are monthly maximum MDA8 O3 contributions for land transport, anthropogenic, and biogenic emissions to ground-level ozone as simulated by CM12 for July 2017:

- Benelux region has the largest geographical spread of the O₃ contributions from anth. emissions
- The largest O₃ contributions (during max. MDA8) from anth. non-traffic emissions are up to 36 % in the Po Valley and 42 % in the Benelux region.
- The largest O₃ contributions from land transport emissions arises in the Po Valley to maximum of MDA8 ozone.

Summary: Po Valley vs. Benelux region

How do the various emission sectors contribute to NO_y and O₃ in the Po Valley, and how does this differ in comparison with the Benelux region?

- Po Valley: O₃ contributions from European anthropogenic emissions twice as large as in Benelux region
- Biogenic emissions: contribute twice as much as in the Benelux region
- extreme ozone events are dominated by anthropogenic emissions and are largest in the Po Valley

Tagging Sector	Benelux region	Po Valley
Land transport	4 nmol nmol ⁻¹ (14 %)	11 nmol nmol ⁻¹ (18 %)
Anth. Non-traffic	9 nmol nmol ⁻¹ (25 %)	17 nmol nmol ⁻¹ (26 %)
Biogenic	6 nmol nmol ⁻¹ (17 %)	13 nmol nmol ⁻¹ (22 %)

Summary: European vs. long-range transported

How large are the contributions from European emissions compared to the contributions from long-range transported emissions to ground-level O₃?

- Po Valley: O₃ chemistry is dominated by European anthropogenic emissions and less by long-range transported sources.
- Benelux: In-situ production and long-range transport are both important

Tagging Sector	Benelux region	Po Valley
Land transport EU	2 nmol nmol ⁻¹ (8 %)	8 nmol nmol ⁻¹ (13 %)
Land transport LRT	2 nmol nmol ⁻¹ (6 %)	3 nmol nmol ⁻¹ (5 %)
Anth. Non-traffic EU	4 nmol nmol ⁻¹ (15 %)	10 nmol nmol ⁻¹ (17 %)
Anth. Non-traffic LRT	4 nmol nmol ⁻¹ (10 %)	6 nmol nmol ⁻¹ (9 %)

References

Bieser, Johannes & Aulinger, A. & Matthias, Volker & Quante, M. & Builtjes, P.J.H.. (2010). SMOKE for Europe – adaptation, modification and evaluation of a comprehensive emission model for Europe. Geoscientific Model Development Discussions. 3. 10.5194/gmdd-3-949-2010.

Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, doi:10.5194/acp-6-4321-2006, 2006.

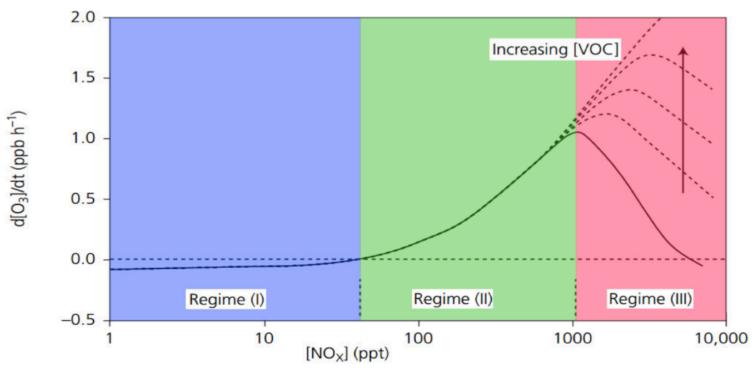
Grewe, V., Tsati, E., and Hoor, P.: On the attribution of contributions of atmospheric trace gases to emissions in atmospheric model applications, Geosci. Model Dev., 3, 487–499, https://doi.org/10.5194/gmd-3-487-2010, 2010.

Grewe, V. & Dahlmann, Katrin & Matthes, Sigrun & Steinbrecht, Wolfgang. (2012). Attributing ozone to NOx emissions: Implications for climate mitigation measures. Atmospheric Environment. 59. 102–107. 10.1016/j.atmosenv.2012.05.002.

Grewe, V., Tsati, E., Mertens, M., Frömming, C., and Jöckel, P., Contribution of emissions to concentrations: The TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52), Geosci. Model Dev. 10, 2615-2633, doi:10.5194/gmd-2016-298, 2017.

Kerkweg, Astrid und Jöckel, Patrick (2012) *The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy.* Geoscientific Model Development, 5, Seiten 87-110. Copernicus Publications. DOI: 10.5194/gmd-5-87-2012.

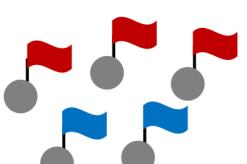
Reed, Andra J.. "A Comparison of Satellite and Ground-based Retrievals of Total Column Ozone and Nitrogen Dioxide, During DISCOVER-AQ." (2012).

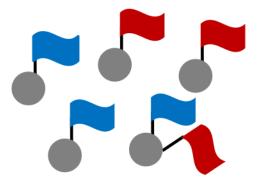

Tsati, Eleni-Eugenia (2014): Investigation of the impacts of emissions on the trace gas budgets in the troposphere by using global climate chemistry model simulations. Dissertation, LMU München: Fakultät für Physik

Vinken, Geert & Boersma, Klaas & D. Maasakkers, J & Adon, Marcellin & Martin, Randall. (2014). Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations. Atmospheric Chemistry and Physics Discussions. 14. 14683-14724. 10.5194/acpd-14-14683-2014.

Nonlinearity of tropospheric O₃ formation

- Formation of tropospheric O₃ by precursor emissions is highly nonlinear.
- Increasing NO_x emissions increase O₃ formation to certain threshold (NO_x limited regime; green area).
- Above threshold only VOC emissions can further increase the O₃ formation (VOC limited regime; red area).
- Source attribution methods to diagnose O₃ contributions are required (Grewe et al., 2010).




Non-linearity of the ozone formation (edited by Royal Society, 2008)

Tagging Method

Α

emission sectors:

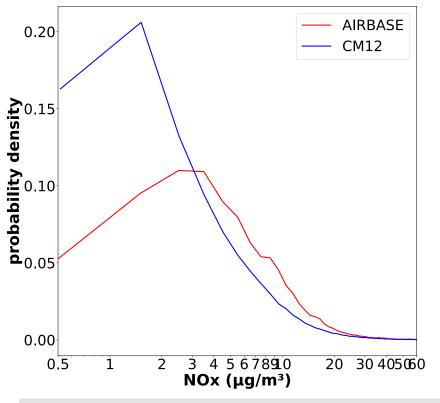
landtransport industry

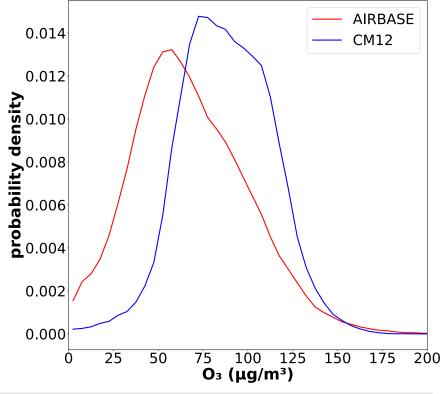
В

2. A + B
$$\rightarrow \frac{1}{2}$$
 C + $\frac{1}{2}$ C $P(C^{tra}) = \frac{1}{2}k A B\left(\frac{A^{tra}}{A} + \frac{B^{tra}}{B}\right)$

3.
$$A + B \rightarrow \frac{1}{2}C + \frac{1}{2}C$$

Production

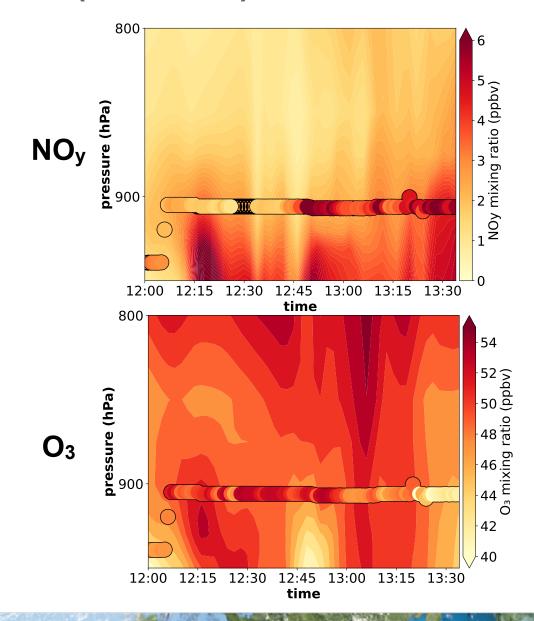

$$P(C^{tra}) = \frac{1}{2}k A B\left(\frac{A^{tra}}{A} + \frac{B^{tra}}{B}\right)$$


Tsati, 2014; Grewe et al., 2010, 2017 personal communication, Mertens and Rieger

Evaluation with AIRBASE stations

- Comparison of the PDFs of ground-level NO_x and O₃ concentrations from CM12 with air quality stations.
- 419 rural stations throughout Europe were selected

- CM12 overestimates NO_x for small concentrations below 4 μg m⁻³
- Underestimation for large NO_x concentrations


- CM12 overestimates O₃ throughout Europe
- Confirms O₃ bias of 20-25 µg m⁻³ (see slide 12)

Evaluation with in situ data (EMeRGe)

Benelux region: 26.07.2017

- Comparison between model results sampled along flight path of CM12 (background color) and in situ measurements for the Benelux-region (filled circles).
- NO_y mixing ratios in CM12 are underestimated within city plumes.
- Outside of major polluted areas NO_y is well represented.
- O₃ is well represented within city plumes but overestimated in more rural regions.

Outlook

- Comparison of O₃ contribution between Europe and Southeast Asia is planned.
- Source regions for tagging could be defined with a finer resolution, e.g. country-by-country.
- Analyses of uncertainties due to natural emissions are ongoing.
- Publication is ready for submission to Atmospheric Chemistry and Physics (ACP).

