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Kurzfassung

Bei der Beschreibung von Strömungen wird klassischerweise zwischen inkompressiblen
und kompressiblen Bereichen unterschieden. Während inkompressible Strömungen durch
ein divergenzfreies Geschwindigkeitsfeld charakterisiert werden, sind kompressible Strö-
mungsfelder durch Expansionsfächer, Kontaktunstetigkeiten und Stoßwellen gekennzeich-
net. Die beiden Bereiche werden damit durch stark unterschiedliche Systeme partieller
Differentialgleichungen beschrieben.
Diese Unterscheidung zeigt sich auch in der numerischen Strömungsmechanik durch die
Entwicklung separater Ansätze für die beiden Bereiche. Dichtebasierte Verfahren eignen
sich dabei zur Simulation von kompressiblen Strömungen höherer Mach-Zahlen, während
druckbasierte Verfahren für inkompressible Strömungen bei kleinen Mach-Zahlen geeignet
sind. Beide Verfahren sind ohne Anpassungen nicht für den jeweils anderen Bereich
verwendbar.
In vielen praktischen Anwendungen treten jedoch Strömungen mit einer großen Varia-
tion der lokalen Mach-Zahl auf, weshalb seit einigen Jahrzehnten intensiv an numerischen
Verfahren für die Strömungssimulation in allen Mach-Zahlbereichen gearbeitet wird. Für
dichtebasierte Verfahren wird meist die sogenannte Präkonditionierung angewendet. Die
durchgeführten Arbeiten beschränken sich allerdings meist auf Strömungen idealer Gase,
womit Realgaseffekte nicht berücksichtigt werden, die jedoch für viele praktische Anwen-
dungen wichtig sind.
Die vorliegende Arbeit beschäftigt sich in diesem Zusammenhang mit der Analyse nu-
merischer Verfahren zur Simulation von Strömungen im Grenzfall einer verschwinden-
den Mach-Zahl für reale Gase. Als Modell eines realen Gases wird die Van der Waals-
Zustandsgleichung verwendet.
Zunächst werden die relevanten Grundgleichungen diskutiert, wobei besonders auf die
Herleitung der kalorischen Zustandsgleichung für ein Van der Waals-Gas eingegangen
wird. Dabei wird gezeigt, dass die spezifische Wärmekapazität für ein Van der Waals-
Gas nur mit der Temperatur variiert. Darauf aufbauend wird eine asymptotische Ein-
skalenanalyse der Euler-Gleichungen durchgeführt. Die Vorgehensweise folgt den aus der
Literatur bekannten Arbeiten, allerdings führt der Übergang zu einem Van der Waals-
Gas zu einer deutlich komplexeren Analyse. Im Rahmen der Untersuchung wird gezeigt,
dass die zeitliche Änderung des thermodynamischen Hintergrunddruckes für ein Van der
Waals-Gas nicht nur von den Flüssen über den Rand des betrachteten Gebiets, sondern
auch von der Dichteverteilung erster Ordnung abhängt.
Die gewonnenen Erkenntnisse zum Verhalten der Strömungsgrößen im Grenzfall einer
verschwindenden Mach-Zahl werden weiter zur Analyse des DLR-TAU-Codes verwen-
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det. Die MAPS+-Flussfunktion wird mittels einer diskreten asymptotischen Analyse
im Grenzfall einer verschwindenden Mach-Zahl analysiert. Diese Untersuchung führt
zu dem Ergebnis, dass sich die beiden verschiedenen Versionen von MAPS+ in der
Größenordnung der Druckfluktuationen unterscheiden. Nur für die modifizierte Version
von MAPS+ stimmen diese Druckfluktuationen mit den Ergebnissen der kontinuierlichen
Analyse überein. Zusätzlich werden Simulationen der Umströmung eines NACA0012-
Profils präsentiert, die die analytischen Resultate bestätigen.
Abschließend wird mit einer numerischen Eigenwertberechnung gezeigt, dass ein Idealgas-
Präkonditionierer im Limit einer verschwindenden Mach-Zahl für ein Van der Waals-
Gas nicht zu einer Reduzierung der Konditionszahl führt und diese sogar verschlechtern
kann, während ein angepasster Präkonditionierer für das Van der Waals-Gas zu einer Ver-
ringerung der Konditionszahl führt, die vergleichbar mit dem Idealgas-Fall ist. Zusätzlich
werden Simulationen mit zwei in den DLR-TAU-Code implementierten Präkonditionier-
ern für ein Van der Waals-Gas präsentiert, die eindrucksvoll zeigen, dass mit Hilfe der
Präkonditionierer Strömungen bis zu einer Einströmmachzahl von M = 10−4 berechnet
werden können. Dabei werden Profilumströmungen verschiedener Van der Waals-Gase
im flüssigen, gasförmigen sowie superkritischen Zustand simuliert und es werden glatte
Lösungen der Dichte-, Druck- und Geschwindigkeitsverteilung erzielt.
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Abstract

Typically, flow fields are distinguished into incompressible and compressible flows. While
incompressible flows are characterized by a divergence-free velocity field, compressible
flow fields contain expansion fans, contact discontinuities and shock waves. The two
fields are thus described by strongly different systems of partial differential equations.
This distinction is also reflected in computational fluid dynamics by the development
of separate approaches for the two different types of flows. Density-based methods are
suitable for simulating compressible flows at higher Mach numbers, while pressure-based
methods are typically used for incompressible flows at low Mach numbers. Both methods
cannot be used for the other type of flow without adaptations.
In many practical applications, however, flows with a large variation of the local Mach
number occur. Therefore, in the last few decades, intensive research has been done on
numerical methods that are applicable to the whole Mach number range. For density-
based methods, the so-called preconditioning is usually applied. However, the published
work on this topic is mostly limited to flows of ideal gases, not considering real gas effects
which are important for many practical applications.
In this context, the present thesis deals with the analysis of numerical methods for the
simulation of flows in the limiting case of a vanishing Mach number for real gases. The
Van der Waals equation of state is used to model a real gas.
First, the relevant governing equations are discussed, with special emphasis on the deriva-
tion of the caloric equation of state for a Van der Waals gas. It is shown that the specific
heat capacity for a Van der Waals gas varies only with temperature. Based on this,
an asymptotic analysis of the Euler equations is presented. The procedure follows the
approach known from the literature, but the transition to a Van der Waals gas leads to
a much more complex analysis. As a result, it is shown that the time variation of the
thermodynamic background pressure for a Van der Waals gas depends not only on the
fluxes over the boundary of the considered domain, but also on the first-order density
distribution.
The insights gained concerning the behavior of the flow variables in the limit of a van-
ishing Mach number are further used to investigate the DLR TAU-code. The MAPS+
flux function is analyzed by means of a discrete asymptotic analysis in the limit of a
vanishing Mach number. This analysis leads to the result that the two different versions
of MAPS+ differ in the magnitude of the pressure fluctuations. Only for the modified
version of MAPS+ do these pressure fluctuations agree with the results of the continuous
analysis. In addition, simulations of the flow around a NACA0012 profile are presented,
which confirm the analytical results.
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Finally, a numerical eigenvalue calculation is used to show that in the limit of a van-
ishing Mach number, an ideal gas preconditioning scheme does not lead to a reduction
of the condition number for a Van der Waals gas and may even worsen it, while an
adapted preconditioner leads to a reduction of the condition number for the Van der
Waals gas comparable to the ideal gas case. In addition, simulations with two precon-
ditioning schemes for a Van der Waals gas that are implemented in the DLR TAU-code
are presented, which impressively show that flows down to an inflow Mach number of
M = 10−4 can be calculated using a preconditioning scheme. Flows of different Van der
Waals gases in liquid, gaseous and supercritical states are simulated and smooth solutions
of the density, pressure and velocity distribution are obtained.
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1. Introduction

Computational fluid dynamics (CFD) is a well-established approach to analyze and solve
fluid flow problems using numerical analysis. Modern CFD methods are applied within
a wide range of industrial and research problems. Over the last decades, these schemes
were thoroughly enhanced and today’s sophisticated CFD methods can be used to model
problems in different fields including aerodynamics and aerospace, environmental and
biological engineering or weather simulations. The possible applications range from low
subsonic to hypersonic flows, including both inviscid and viscous calculations as well as
turbulence and a variety of thermodynamic effects. In addition, numerous boundary
conditions are available. But computational fluid dynamics still remain a field of active
research since there are many problems left to be solved.
The early CFD methods were only applicable to fluids that can be described by a simple
thermodynamic relation. For gases, the ideal gas law was used. Therefore, the methods
were limited by the assumption that the molecules within the gas move randomly, interact
only by elastic collisions and are of equal mass and negligible volume. These ideal gas
assumptions are only true when the density is very low, which is for example for air the
case at ambient temperature and pressure.
The earliest description of real gas thermodynamics dates back as early as 1873 where Van
der Waals proposed his famous equation of state. About one century later, other more
detailed equations of state were developed and introduced into CFD methods. Within
the last decades an increasing amount of research was put into the accurate description
of real gas thermodynamic behavior.
At the present, real gas effects are important to many practical applications. Examples
are the modeling of combustion processes, flows through cooling channels or at high
temperatures or pressures. They all have in common that they require the ability to
accurately model the behavior of a real fluid.
Both ideal and real gas flows can be classified by the Mach number. It is defined as
the ratio of flow velocity to speed of sound and it is one of the dimensionless quantities
describing the flow. Depending on the Mach number, a flow can have very different
properties.
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In the region of low Mach numbers, flows can be characterized by an almost constant
background pressure with low frequency acoustic pressure waves of a small magnitude.
In many cases flows in this region can be regarded as incompressible since the effect of
pressure changes on the density is in general negligible. Both the acoustic pressure waves
and high frequency pressure fluctuations with a very low amplitude have an essential
impact on the velocity field. Due to this importance of changes in pressure, flow solvers
developed for the low Mach number, incompressible region are typically pressure based.
In the region of medium to high Mach numbers, the compressible flow field shows effects
like expansion fans and shock waves. The conservative nature of a numerical scheme
becomes important. Hence, flow solvers for compressible flows at higher Mach numbers
are typically density based.
In general, flow solvers can only be used within the region of the Mach number for which
they are developed. While pressure based flow solvers designed for an incompressible
flow cannot simulate compressible effects, density based flow solvers designed for a com-
pressible flow tend to decrease considerably in both accuracy and efficiency when used
at small Mach numbers. Hence, the simulation of a flow reaching from high to very
low Mach numbers cannot be performed by either type of flow solver without further
adaptions.
Many modern applications, however, require a CFD method that is applicable to both
compressible and incompressible flows. In the simulation of an aircraft moving at trans-
sonic or hypersonic velocities, there are regions close to the stagnation point or the surface
of the vehicle, where the local Mach number approaches zero while it is close to or even
higher than one in the major part of the flow domain. In the simulation of combustion
processes at the transition between deflagration and detonation, the local Mach number
can change from 10−3 to values between 5 and 10 within a small spatial distance. And
even for the simulation of flows within the low subsonic region, the consideration of
compressible effects can be important since they can also be introduced by large changes
in pressure or temperature. All these examples require a flow solver that is capable of
simulating both flows at low Mach numbers and compressible effects, typically at high
Mach numbers.
In order to attain a flow solver suitable for all Mach numbers, two different approaches
are possible. The first option is to expand a density based compressible solver towards
the incompressible limit. The second option is to introduce compressibility effects to a
pressure based incompressible solver and thereby expand it into the compressible region.
For the applications motivating this work the first approach is the more attractive one.
The considered applications can be summarized in two categories, the first one being flows
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with only locally low Mach numbers which require a full compressible flow description
in all other parts of the domain. The second category contains flows with low Mach
numbers in parts or the whole domain with distinct real gas effects such as supercritical
fluids, liquids or fluids in the two-phase region. These flows require the implementation
of a thermodynamic model that covers the whole range of thermodynamic states from
liquid to supercritical. Such models are widely available in compressible solvers. Hence,
for all applications considered in the frame of this work, expanding a compressible flow
solver towards the incompressible limit is the better choice.
A common approach for the expansion of a density based compressible flow solver towards
the incompressible limit is the use of a preconditioning scheme. Different versions of a
preconditioner for an ideal gas have been proposed by many authors (see for example
the work by Turkel [68], Briley et al. [9], Choi and Merkle [12] and Weiss and Smith
[77]) and many studies are concerned with their effects. A preconditioning scheme scales
the acoustic velocities in order to reduce the stiffness of the equations. This enables a
compressible flow solver to simulate flows in the region of low Mach numbers without
the inherent loss of accuracy and efficiency.
However, these preconditioning schemes are only developed for ideal gases and fail for
flow solvers that include the modeling of real gas effects. The mathematical properties
of real gas equations of state differ from the ideal gas one. Hence a system of equations
describing a real fluid has properties that differ from the ideal gas case. So, for simulations
that are not limited to ideal gas assumptions the preconditioning schemes available in
the literature cannot be used.
As a result, many relevant applications cannot be solved in an efficient way with the
flow solvers currently available. For example, the flow of a refrigerant through cooling
channels requires the modeling of real gas thermodynamics at very low Mach numbers.
In addition, compressible effects become important if the refrigerant undergoes phase
change. The same applies to the investigation of cryogenic fluids, which need to be
modeled by real gas thermodynamics, in the tank of a rocket in orbit. The corresponding
flows occur at very low Mach numbers while compressible effects are important due to
the massive changes in pressure and the possibility of a phase change. Another example
is the combustion of liquid fuel. In all cases, the availability of a compressible scheme for
real gases that is applicable to low Mach numbers is crucial for the successful simulation.
Therefore, the objective of this thesis is to develop a low Mach preconditioning scheme
applicable to real gases. For the analytical analysis of the equations a Van der Waals gas
is chosen as the simplest representative of a real gas.
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To transfer the concept of a preconditioning scheme to a real gas, the two objectives of
a preconditioner – increase of accuracy and of efficiency as the Mach number decreases
– are approached separately. The first step is to maintain a high accuracy of the flow
solver as the Mach number approaches zero. This is accomplished by choosing a flux
function that has a numerical error independent of the Mach number in this regime for
both ideal and real gases. In the second step a preconditioning scheme suitable for a Van
der Waals gas is constructed that increases the efficiency of the flow solver at low Mach
numbers.
To investigate the behavior of the flux function in the limit of a vanishing Mach num-
ber, an asymptotic analysis is chosen. In the next chapters this method is explained,
the mathematical formulation of the problem is given and the flow solver meeting the
objectives is described.
In the first chapter, the governing equations of fluid dynamics are given. After a short
description of the conservation equations for mass, momentum and energy, more emphasis
is put on the definition and derivation of the thermal and caloric equations of state.
Another focus of the chapter lies on the nondimensionalization of the physical quantities
which is an important step for the asymptotic analysis.
This method is described in detail in the second chapter where an overall introduction
to asymptotic analyses is given. An asymptotic sequence is defined and its fundamental
properties are stated. Then the analysis of the governing equations is conducted and the
results are discussed.
In the third chapter, a numerical scheme meeting the objectives stated above is described.
After a brief overview of the DLR TAU-code which is the baseline code, the numerical
flux function and the preconditioning scheme are discussed in more detail. The chosen
flux function, MAPS+, is described and the favorable behavior for small Mach num-
bers is shown by the use of a discrete asymptotic analysis. In addition, some numerical
results are presented that confirm the outcome of the analysis. In the next section, a
preconditioning scheme applicable to a Van der Waals gas is presented. First a summary
of the existing preconditioners for ideal gases as well as some approaches for real gases
are given. Second the different requirements on a preconditioning scheme in a real gas
environment are explained and a preconditioning scheme applicable to a Van der Waals
gas is constructed. Finally, two different preconditioners are applied using the thermo-
dynamics implemented in the TAU-code. A comparison of the results of these schemes
is shown and their capability is demonstrated.
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2. Governing Equations

A mathematical formulation of the physical phenomena under consideration is a require-
ment for the numerical simulation. There are many such physical phenomena that are
relevant for practical applications and hence are described by some kind of mathematical
equation. In many cases, conservation equations are used, since this type of formula-
tion is favorable for the numerical implementation. In this study, we investigate the low
Mach number asymptotic limit of the set of partial differential equations that represent
a mathematical formulation of a flow field in the continuous regime.
The Navier Stokes equations of gas dynamics govern the time-dependent viscous flow.
They are a hyperbolic-parabolic system of partial differential equations and result from
natural laws expressed by the conservation of mass, momentum and energy; closed by
an equation of state. If viscous effects are neglected, the Navier Stokes equations can be
simplified to the Euler equations which govern an inviscid flow. For simplicity, we only
consider the Euler equations.
In this chapter, we introduce the governing equations relevant for the subsequent chap-
ters. First, we define conservation equations and describe the fundamental conservation
laws on an open domain G ⊂ Rd. We also discuss the assumptions made as well as
different ways to express the Euler equations.
Since a special emphasis is put on the description of thermodynamics, the next section is
dedicated to the Van der Waals equation of state. We discuss the assumptions made for
the usage of the ideal gas law and which assumptions can be lifted due to the extension
to the Van der Waals equation of state. Then we describe the thermal equation of state,
followed by the derivation of a caloric state equation. In the end, we briefly discuss the
changes in the caloric equation of state that need to be made if the assumptions about
the considered fluid are changed.
In the last section, we introduce the nondimensionalization of physical quantities which
plays an important role in an asymptotic analysis. By inserting these nondimensional
variables into the governing equations, we present the nondimensional forms of both
the conservation and the state equations. We also introduce the Mach number as a
nondimensional characteristic quantity.
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2.1. Euler Equations

Physical processes are often described by conservation equations. The Euler equations,
which are a system of partial differential equations, are part of this class. We define
conservation equations in the following.

Definition 2.1.1.
Assume G ⊂ Rd is an open domain and f j ∈ C1(G;Rd+2), j = 1, ..., d is given, then

∂tu +

d∑
j=1

∂xjf j(u) = 0 in G × R+
0

is a system of conservation equations in d spatial dimensions for the function vector of
the conservative variables

G × R+
0 3 (x, t)

u7−→ u(x, t) ∈ Z.

The set Z is called a state space and the mapping f j with j = 1, ..., d a flux function.
Time is represented by t and xj with j = 1, . . . , d stands for the Cartesian coordinate in
j-direction.

In the next paragraphs we present a short description of the Euler equations. A detailed
derivation can be found in standard textbooks such as Anderson [1]. We write the
Euler equations in dimensional form where the superscript ˆ indicates the dimensional
quantities. The equations are written in a general d-dimensional form where d = 1, 2, 3

are the spatial dimensions.
For the Euler equations, the effects of the viscosity of the fluid are neglected. Hence, the
viscous terms that are present in the full Navier Stokes equations are not considered in
the following description. Here, we only focus on the inviscid terms.
The conservation of mass is represented by the continuity equation

∂t̂ρ̂+

d∑
j=1

∂x̂j (ρ̂v̂j) = 0̂,

where ρ̂ is the density and v̂j are the Cartesian velocity components.
The conservation of momentum describes the second Newtonian law and can be written
as

∂t̂ (ρ̂v̂i) +

d∑
j=1

∂x̂j (ρ̂v̂iv̂j) =

d∑
j=1

∂x̂j (−p̂δij) for i = 1, . . . , d,
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where p̂ is pressure and δij the Kronecker delta.
The first law of thermodynamics is expressed by the energy equation which we write as

∂t̂

(
ρ̂Ê
)

+

d∑
j=1

∂x̂j

(
ρ̂Êv̂j

)
= 0̂.

Here Ê represents the mass-specific total energy which consists of the mass-specific in-
ternal energy ê and the mass-specific kinetic energy. So Ê is given by

Ê = ê+
1

2

d∑
j=1

v̂2
j .

In d spatial dimensions, this set of conservation equations contains d+ 2 equations with
d+ 3 different variables. Hence, we need another equation to close the system. This ad-
ditional equation is typically provided by the law governing the thermodynamic behavior
of the fluid, in other words by the equation of state. In the next section, we describe the
state equation used in this work in detail.

Remark.
In the presented description of the governing equations, we neglect viscous terms which
leads to the Euler equations. In addition, continuum assumptions are applied. This
means that the length scales considered in this work are several orders of magnitude
higher than the mean free path. This assumption is valid for most practical applica-
tions excluding only flows like entry problems of spacecrafts, where the mean free path
in high altitudes increases greatly, and flows with very small length scales e.g. the in-
ternal structure of shock waves or micro channel flows. Further, external forces are not
considered.

If we write the conservative variables in form of the vector

û =



ρ̂

ρ̂v̂1

...
ρ̂v̂d

ρ̂Ê


,
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we can express the Euler equations as the system of conservation equations

∂t̂û +

d∑
j=1

∂x̂j f̂ j(û) = 0̂. (2.1)

Here the vector f̂ j(û) represents the convective flux functions and is defined by

f̂ j(û) =



ρ̂v̂j

ρ̂v̂1v̂j + δ1j p̂
...

ρ̂v̂dv̂j + δdj p̂

ρ̂Ĥv̂j


for j = 1, . . . , d, (2.2)

where Ĥ stands for the specific total enthalpy of the fluid which is defined by

Ĥ = Ê +
p̂

ρ̂
.

The system of equations (2.1) can be replaced by the notation

∂t̂û +
d∑
j=1

Â
(j)
û ∂x̂j û = 0̂ (2.3)

with the flux Jacobi matrix

Â
(j)
û =

∂f̂ j(û)

∂û
. (2.4)

The eigenvalues of this matrix represent the propagation of information in the flow.
They are the convective and acoustic velocities. If the convective velocities become
very small compared to the acoustic velocities, the difference between these eigenvalues
becomes important for the ability of the numerical algorithm to solve the system of
equations simultaneously. We discuss this in more detail in section 4.3 about low Mach
preconditioning.

2.2. Van der Waals Equation of State

The simplest form of an equation of state can be formulated for an ideal gas. If a fluid
is considered to be an ideal gas, four assumptions are made: First, the volume of the
gas particles can be neglected. Second, all gas particles have equal mass and there is
no interaction force between the particles. This means attraction or repulsion is not

8



considered. In addition, the gas particles are assumed to move randomly. And last,
collisions between particles are assumed as being perfect elastic collisions without energy
loss.
Given these assumptions, the thermal ideal gas equation is

p̂ = ρ̂R̂T̂ ,

with the specific gas constant R̂ and the temperature T̂ . The caloric equation of state
for an ideal gas is given as

p̂ = (γ − 1) ρ̂

(
Ê − 1

2
v̂2

)
, (2.5)

where γ is the isentropic exponent. A caloric state equation represents the relationship
between pressure and energy.
However, the state space within which the ideal gas law is a good approximation is limited
by the stated assumptions. Air at ambient temperature and pressure is a good example
for an application where the ideal gas assumptions are fulfilled in a sufficient manner for
the usage of the ideal gas law. For low temperatures or high pressures, this is no longer
the case and the ideal gas law does not model the behavior of the fluid in an adequate
way. In addition, many fluids cannot be modeled by the ideal gas law even at ambient
conditions, for example if the fluid is in a liquid state. Hence, many interesting problems
cannot be modeled solely by the ideal gas equation of state and it is necessary to extend
it.
To increase the state space, we need to take effects into account that contradict the ideal
gas assumptions. An example for a real gas effect that is comparably simple to model is
the effect of the forces between molecules. In addition, the volume of the molecules in
the fluid can be considered with a simple extension of the equation of state. With these
changes, the resulting state law leads to a better approximation of the physical behavior
of fluids at low temperature and high pressure compared to the ideal gas law.
With these changes, we can apply the resulting state law to lower temperatures and
higher pressures than it would be possible using the ideal gas law.
To reproduce real gas effects there are two main classes of simple equations of state
available: cubic and virial equations. The representation of a fluid by virial equations of
state usually does not have a high enough accuracy over a sufficient range of states to be
used in engineering applications, see for example Pfenning [55]. Hence, we only consider
cubic equations of state. Their name stems from the fact that these equations are cubic
in terms of the molecular volume.
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The Van der Waals equation of state is the simplest representative of a cubic state
equation. It is an extension of the ideal gas law and was proposed by Van der Waals [75]
in 1873. Historically, it was the first equation of state that could be used to predict
real gas effects. Compared to the ideal gas equation of state, it reduces the assumptions
necessary for the application by correcting for both the excluded volume of gas particles
and the attractive forces between molecules in the gas.
At moderately high pressures, the Van der Waals equation is a reasonable approximation
for real gases. In addition, it qualitatively exhibits key characteristics of the fluid, such
as liquid vapor coexistence and it correctly describes the critical point. For fluids at
temperatures above the critical value it is an improvement to the ideal gas law. However,
in this region the values predicted by the Van der Waals equation differ from experimental
values. Hence, at temperatures above the critical point, it is more of qualitative then
of quantitative use. A thorough discussion of the state space within which the Van der
Waals equation of state can be applied is given in Hill [28].
At thermodynamic states that greatly deviate from an ideal gas or if a more precise
description of real gas effects is required, more sophisticated cubic equation of state can
be used. Examples are the relations presented by Peng and Robinson [54], Redlich and
Kwong [56] or Soave [65]. These equations can be considered to be modifications and
extensions of the Van der Waals equation of state. They add properties such as additional
dependencies on temperature. To accomplish this, functions of temperature that vary in
complexity depending on the specific equation of state are used instead of the constants
in the Van der Waals equation of state. However, the basic structure of the equation is
kept, which is the one of a cubic state equation. Therefore, insight from the analysis of
the Van der Waals equation is also useful for the application of other cubic equations of
state.

2.2.1. Thermal Equation of State

The dimensional thermal Van der Waals equation of state is given as

p̂ =
R̂T̂

V̂m − b̂
− â

V̂ 2
m

, (2.6)

where V̂m is the molar volume defined as

V̂m =
M̂w

ρ̂
(2.7)
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with the molecular weight M̂w. The constant R̂ represents the universal gas constant
which has a value of R̂ = 8.314 J

mol·K . The universal gas constant and the molecular
weight have the following relationship with the specific gas constant, which is used in the
ideal gas equation of state (2.2):

R̂ = M̂wR̂ (2.8)

The two constants â and b̂ represent the extension of the ideal gas law made by Van der
Waals. The constant â introduces an attractive potential between the particles in the
gas, where a higher value of â stands for a higher compression of the gas due to greater
attraction. This effect is subtracted from the acting pressure. The volume occupied by
gas particles is represented by the constant b̂. The available volume is reduced by this
molecular volume. Both â and b̂ depend on the specific fluid and can be calculated if the
critical values are known. For many common fluids these values are listed in standard
textbooks such as Weigand [76]. If both values approach zero, the Van der Waals equation
of state turns into the ideal gas law (see also equations (2.7) and (2.8)).
Since the Euler equations are in terms of density, it is helpful for the analysis to rewrite
the state equation. By substituting the molecular volume (2.7) into equation (2.6) we
get

p̂ =
ρ̂R̂T̂

M̂w − b̂ρ̂
− âρ̂2

M̂w
2 . (2.9)

2.2.2. Derivation of Caloric Equation of State

Unlike for an ideal gas, for a Van der Waals gas the caloric equation of state is not
given by a simple, generally valid relation. However, it can be derived using simple
thermodynamic principles. We derive the caloric equation of state in the following.
The total differential of the molar internal energy is defined as

dêm =

(
∂êm

∂T̂

)
V̂m

dT̂ +

(
∂êm

∂V̂m

)
T̂

dV̂m.

Note that we consider the molar internal energy êm and the molar volume V̂m for this
derivation. The relationship between êm and the specific internal energy ê is

êm = êM̂w.

After inserting the specific heat at constant volume ĉv̂,m =
(
∂êm
∂T̂

)
V̂m

and applying an
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integral, we arrive at

êm =

∫ T̂

T̂0

ĉv̂,mdT̂ +

∫ V̂m

V̂m,0

(
∂êm

∂V̂m

)
T̂

dV̂m + êm(V̂m,0, T̂0). (2.10)

A combination of the first and second law of thermodynamics can be used to derive the
partial derivative of the internal energy. It is given by

dêm = T̂ dŝm − p̂dV̂m

with the molar entropy ŝm. We rewrite this equation to get the necessary derivative as(
∂êm

∂V̂m

)
T̂

= T̂

(
∂ŝm

∂V̂m

)
T̂

− p̂.

In the next step we insert the Maxwell relation(
∂ŝm

∂V̂m

)
T̂

=

(
∂p̂

∂T̂

)
V̂m

which leads to (
∂êm

∂V̂m

)
T̂

= T̂

(
∂p̂

∂T̂

)
V̂m

− p̂. (2.11)

Now we evaluate this expression using the thermal Van der Waals equation of state (2.6).
This results in (

∂êm

∂V̂m

)
T̂

= T̂

(
R̂

V̂m − b̂

)
−

(
R̂T̂

V̂m − b̂
− â

V̂ 2
m

)
=

â

V̂ 2
m

. (2.12)

Now, to solve the integral in equation (2.10), a representation of the specific heat at
constant volume ĉv̂,m is necessary. Since ĉv̂,m =

(
∂êm
∂T̂

)
V̂m

, in general, ĉv̂,m is a function
of both temperature and molar volume. However, in the following Lemma we show that
ĉv̂,m is independent of the molar volume for a Van der Waals gas.

Lemma 1.
For a Van der Waals gas, the specific heat at constant volume only depends on tempera-
ture.

Proof.
With ĉv̂,m =

(
∂êm
∂T̂

)
V̂m

we get the following expression for the change of ĉv̂,m with molar
volume: (

∂ĉv̂,m

∂V̂m

)
T̂

=
∂

∂V̂m

(
∂êm

∂T̂

)
T̂

=
∂

∂T̂

(
∂êm

∂V̂m

)
T̂
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Next, we combine this relation with the derivative in equation (2.11) which leads to

(
∂ĉv̂,m

∂V̂m

)
T̂

=
∂

∂T̂

(
T̂

(
∂p̂

∂T̂

)
V̂m

− p̂

)
T̂

= T̂

(
∂2p̂

∂T̂ 2

)
V̂m

. (2.13)

We use the thermal Van der Waals equation (2.9) to evaluate the derivative. In a first
step we get (

∂p̂

∂T̂

)
V̂m

=

(
ρ̂R̂

M̂w − b̂ρ̂

)
.

If we insert this result into the derivative in equation (2.13), we arrive at

T̂

(
∂2p̂

∂T̂ 2

)
V̂m

= T̂
∂

∂T̂

(
ρ̂R̂

M̂w − b̂ρ̂

)
= 0

which is equal to (
∂ĉv̂,m

∂V̂m

)
T̂

= 0.

So, for a Van der Waals gas, the specific heat at constant volume is independent of the
molar volume and hence only dependent on temperature.

Inserting the results from equation (2.12) and Lemma 1 into equation (2.10), we can
write the integral of the molar internal energy as

êm =

∫ T̂

T̂0

ĉv̂,m(T̂ )dT̂ +

∫ V̂m

V̂m,0

â

V̂ 2
m

dV̂m + êm(V̂m,0, T̂0).

To arrive at an expression for ĉv̂,m(T̂ ), we need to make some assumptions about the fluid
under consideration. Here we assume that the fluid is a monoatomic gas at a temperature
where electronic excitation has no influence on the value of the specific heats. Under these
conditions, we can assume ĉv̂,m to be a constant with the value of ĉv̂,m = 3

2R̂. This is
also true for a non-monoatomic gas at a temperature where it has no change in the
excitation of internal degrees of freedom. A detailed description of the behavior of ĉv̂,m
with temperature can be found in textbooks such as Vincenti and Kruger [73] and is
beyond the scope of this work.
Now we integrate from T̂0 = 0̂, V̂m,0 = 0̂ to T̂ = T̂ , V̂m = V̂m to arrive at a form of the
caloric equation of state. This leads to

êm =
3

2
R̂T̂ − â

V̂m
.
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Next, we replace the molar internal energy êm by the expression

Ê =
1

2
|v̂|2 +

êm

M̂w

and insert the thermal equation of state (2.6) for the product R̂T̂ . After rearranging the
expression, we arrive at the final form

p̂ =
M̂wÊ − 1

2M̂w|v̂|2 + â
V̂m

3
2

(
V̂m − b̂

) − â

V̂ 2
m

(2.14)

of the caloric equation of state for a Van der Waals gas with constant specific heat.
Again, we reformulated the equation in terms of density to get the final result

p̂ =
M̂wρ̂Ê − 1

2 ρ̂M̂w|v̂|2 + âρ̂2

M̂w

3
2

(
M̂w − b̂ρ̂

) − âρ̂2

M̂2
w

. (2.15)

Remark.
We show in Lemma 1 that the specific heat at constant volume only depends on temper-
ature. The assumptions we make about the fluid limit the validity of the caloric equation
of state to a specific temperature range. To apply the state equation to gases outside
these assumptions, we can insert other expressions for ĉv̂,m. For example, a diatomic gas
at moderate temperatures has a specific heat at constant volume of ĉv̂,m = 5

2R̂. Hence, in
the final caloric equation of state (2.15), only some factors need to be adjusted while the
structure of the equation remains identical to the one analyzed in the following chapters.

2.3. Nondimensionalization

Every physical quantity is the product of a value and the corresponding unit. In this
work, we use the SI-system as the set of fundamental units. This means that every unit is
based on one of the SI units or a combination of them. For the quantities considered here,
the basic units of length ([m]), time ([s]), mass ([kg]), temperature ([K]) and amount
of substance ([mol]) are necessary. In Table 2.1 all physical quantities appearing within
this work are listed. We can see that all units can be expressed as a combination of these
five base units.
We can match all physical quantities with a dimensional reference value within a defined
region in space and time. These reference values are indicated by the subscript ref. The
reference values are taken from the underlying flow. For the velocity, the reference value
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Table 2.1.: Names, units and reference values of physical quantities

Physical Quantity Unit Reference Value

Cartesian coordinate x̂ [m] l̂ref

time t̂ [s] t̂ref = l̂ref
v̂ref

velocity vector v̂ [m/s] v̂ref

density ρ̂ [kg/m3] ρ̂ref

temperature T̂ [K] T̂ref

pressure p̂ [Pa] = [kg/(m · s2)] p̂ref

specific internal energy ê [J/kg] = [m2/s2] p̂ref
ρ̂ref

specific total energy Ê [J/kg] = [m2/s2] p̂ref
ρ̂ref

specific total enthalpy Ĥ [J/kg] = [m2/s2] p̂ref
ρ̂ref

speed of sound ĉ [m/s] ĉref =
√

p̂ref
ρ̂ref

molecular weight M̂w [kg/mol] M̂w,ref

specific heat at constant volume ĉv̂ [(kg · m2)/(K · mol · s2)] p̂refM̂w,ref

ρ̂refT̂ref

universal gas constant R̂ [(kg · m2)/(K · mol · s2)] p̂refM̂w,ref

ρ̂refT̂ref

intermolecular forces-constant â [(kg · m5)/(mol2 · s2)] p̂refM̂
2
w,ref

ρ̂2ref

co-volume b̂ [m3/mol] M̂w,ref
ρ̂ref

v̂ref is the absolute value of the velocity vector. Each dimensional physical quantity Φ̂

can be expressed by the product

Φ̂ = Φ · Φ̂ref, (2.16)

where Φ is nondimensional. If the reference value and the variable show the same be-
havior for a vanishing Mach number, the resulting nondimensional variable is of O(1) as
M → 0. To ensure this similarity in orders of magnitude, we choose the values of the
surrounding flow field as references. The process of turning a variable nondimensional is
called nondimensionalization.
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By replacing the dimensional variables in the governing equations by products of the
form (2.16), we can write the equations in a nondimensional form. The advantage of
such equations is that one solution is valid for multiple sets of conditions, as long as they
have the same nondimensional form. A possible application is the transfer of experimen-
tal results from measurements on a smaller model to the size of the actual configuration
by scaling the nondimensional values in an appropriate way. The results of the nondi-
mensional equations do not depend on the chosen system of units, they can be transferred
to any given system and hence be compared to measurements of actual physical values.
On the basis of the reference values listed in Table 2.1, we transform the Euler equations
given in equation (2.1) on page 8 with the fluxes given by equation (2.2) into

∂tu +

d∑
j=1

∂xjf j(u) = 0 (2.17)

with

f j(u) =



ρvj

ρv1vj + δ1j
p
M2

...
ρvdvj + δdj

p
M2

ρHvj


for j = 1, . . . , d.

In this nondimensional form of the equations, the Mach number M appears as a nondi-
mensional characteristic number. It is defined as

M =
v̂ref
ĉref

, (2.18)

where ĉref is the reference value for the speed of sound. This allows us to investigate the
behavior of the physical quantities in the Euler equations as the Mach number approaches
zero by means of a formal asymptotic analysis.
The set of reference values contains separate references for pressure, density and the
velocity vector, see Table 2.1. Another common approach is to use only two of these ref-
erence values. This can be realized by either replacing the pressure reference by ρ̂refv̂2

ref or

using
√

p̂ref
ρ̂ref

as a velocity reference. Both alternative approaches lead to nondimensional
equations that have a similar form as the dimensional system formulated in equation
(2.1) with the fluxes in equation (2.2), i.e. the Mach number does not appear in the
nondimensional equations. This form of nondimensionalization is typically used in nu-
merical codes and we come back to it in chapter 4 where we describe and analyze a
numerical scheme.
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However, these choices of reference values are not favorable for an asymptotic analysis as
M → 0. The nondimensional values for pressure and velocity, which result from these two
choices of reference values, are not of O(1) as the local velocity approaches zero. Hence,
we choose the presented set of references values. It is advantageous due to both the
Mach number appearing in the nondimensional Euler equations and the nondimensional
quantities being of O(1) as M → 0.

Remark.
Note that ĉref =

√
p̂ref
ρ̂ref

differs from the local speed of sound of the gas, especially when
a Van der Waals gas is considered. Hence, the Mach number M that appears in the
momentum equations is not equal to the local Mach numberMa. However, both ĉref and
the local speed of sound have the same asymptotic behavior for a vanishing Mach number.
Due to the definition of the Mach number (2.18), the same is true for M and Ma. Using
the order symbols we define in chapter 3 on page 24, we can say that M = OS(Ma) as
M → 0.
Hence, in the context of the asymptotic analysis within this work, the usage of M and
Ma can be considered to be equivalent.

The thermal equation of state (2.9) on page 11 can be nondimensionalized in a similar
way to the Euler equations, leading to

p =
ρRT

Mw − bρ
− aρ2

M2
w

.

The nondimensionalization of the caloric equation of state (2.15) gives us

p =
2MwρE −M2Mwρ|v|2 + 2 aρ

2

Mw

3Mw − 3bρ
− aρ2

M2
w

. (2.19)

Remark.
We choose reference values depending on the underlying physical flow field for the nondi-
mensionalization of the thermodynamic quantities instead of the critical values as it is
done in many other works. Here, the goal are nondimensional quantities of a similar or-
der of magnitude for a better understanding of their behavior by means of an asymptotic
analysis. By choosing the critical values as a reference, the constants a and b can be
eliminated from the nondimensional equations, resulting in one single thermal equation
of state for all fluids, in terms of their critical values. This concept is known as the
corresponding states principle (see for example Emanuel [21]). However, in this case the
order of magnitude of the thermodynamic quantities can differ greatly, since they are
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in terms of their critical values. Therefore, this form of nondimensionalization is not
suitable for the purpose of this work.

2.4. Initial and boundary conditions

The boundary conditions influence the fluxes over the boundary of the flow domain. Here
we consider two different boundary conditions that require the specification of distinct
boundary values. Hence, we separate the boundary of the triangular grid Th into two
separate parts

∂Th = ∂Th,w ∪ ∂Th,ff,

where ∂Th,w describes a solid wall and ∂Th,ff stands for the farfield boundary condition
which covers the remaining boundaries. The reference frame is chosen such that the body
is at rest and there are no moving walls. Hence, the flow is moving through the farfield
boundary. The condition at the farfield is defined in the farfield state uff.

2.4.1. Solid Wall

The surface of the body is modeled as a solid wall through which the fluid cannot flow.
So, the velocity perpendicular to the wall has to follow

vn = 0, (2.20)

where the subscript n indicates the component normal to a face, in this case normal to
the wall.
With this boundary condition, an exact calculation of the integral at the boundary is
possible. Hence, for a solid wall, the calculation of a numerical flux function is not
necessary.
For an inviscid flow, nonzero velocity components tangential to the wall are permitted.
In the viscous case, however, the no-slip condition is applied. So the tangential velocity
is set to zero as well. Hence, at the wall,

v = 0

has to be true. In the viscous case, an additional boundary condition for the energy
equation is required at a solid wall, e.g. an isothermal wall.
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2.4.2. Farfield Boundary

The outer boundary of the flow domain is modeled using a farfield boundary condition
based on the theory of Whitfield [78]. A Riemann problem is defined with the left state
located on the boundary face, representing the flow condition within the computational
domain and the right state being external to the computational domain. The treatment
of the boundary face depends on the sign and magnitude of the Mach number in the
direction of n

Man =
vn
c
.

The magnitude ofMan at the left state is used to decide whether the boundary is super-
or subsonic. The direction of the flow decides over the usage of an inflow or outflow
boundary condition.

Supersonic Inflow/Outflow
If the absolute value of Man at the left state is greater than or equal to one, the face is
assumed to be a supersonic boundary. If (Man)L is positive, the boundary is recognized
as a supersonic outflow. Hence, the outer state is set equal to the left hand state. In
case of a negative sign of the left state Mach number Man, the flow conditions at the
outer state, which represents the approaching flow, are set to the farfield state to gain a
supersonic inflow.

Subsonic Outflow
If the left state Mach number Man is positive and smaller than one, the face lies on a
subsonic outflow boundary. In this case, the MAPS+ flux function, that is described
in section 4.2.2, is used to calculate the flow over the boundary face. Here, the left
states are given by the flow state within the computational domain and represent the
flow approaching the boundary. The pressure on the boundary pbdry equals the pressure
of the leaving flow which is the farfield pressure. Hence, it is

pbdry = pR = pff

For the right state, which represents the flow leaving the boundary, the remaining quan-
tities are calculated using the pressure difference over the boundary. The density of the
right state results in

ρR = ρL +
pbdry − pL

c2
L

,

where cL is the speed of sound calculated for the left state. The subscript L and R
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indicate the left and right state, respectively.
The velocity components are calculated as

(vi)R = (vi)L + ni
pbdry − pL
ρLcL

, for i ∈ {1, . . . , d}

where ni, i ∈ {1, . . . d} are the components of the outer unit normal vector of the bound-
ary face in the Cartesian directions. The remaining quantities of the right state are
calculated with the thermodynamic modules implemented in the TAU-code using the
values for density and pressure estimated above.

Subsonic Inflow
If the left state Mach number Man lies between negative one and zero, the face lies on
a subsonic inflow boundary. As for the subsonic outflow, the MAPS+ flux function is
used to calculate the flow over the boundary face. Again, the left states are the states
within the computational domain but in this case they represent the flow leaving the
boundary. The right states represent the flow approaching the boundary. In a general
d-dimensional system, the pressure on the boundary face pbdry can be calculated with

pbdry =
1

2

pL + pR + ρLcL


n1

...
nd

 ·



v1

...
vd


L

−


v1

...
vd


R


 .

Again, the right states are calculated using the pressure difference over the boundary.
The density of the right state results in

ρR = ρff +
pbdry − pff

c2
L

,

where the subscript ff indicates the farfield value of the given quantity.
The velocity components are calculated as

(vi)R = (vi)ff + ni
pff − pbdry
ρLcL

, for i ∈ {1, . . . , d}.

Again, the remaining quantities of the right state are calculated using the thermodynamic
modules.
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2.4.3. Initial Conditions

The initial conditions for the numerical simulation are given by the reference values

(ρref, v1,ref, . . . , vd,ref, pref)
T .

All other quantities can be calculated from this set using the implemented thermodynamic
relations.
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3. Asymptotic Analysis

Asymptotic analyses are used to investigate central properties of the solution without
solving the entire problem. They can be applied to analyze both ordinary and partial
differential equations or explicitly stated functions. There are many applications for
asymptotic analyses in science and industry, see for example Schneider [63] or Kevorkian
and Cole [30].
The right choice of the asymptotic sequence is important for the success of the analysis
since it defines the function space within which the solution has to exist. This means
that the choice of the asymptotic sequence can decide whether the analysis is successful.
However, the asymptotic analysis does not guarantee the existence of a solution within
the chosen function space, regardless of the chosen sequence.
In addition, the success of the analysis depends on the choice of suitable spatial and
time scales. The results only contain phenomena that happen on the chosen scales. If
a given problem encloses several scales, for example due to a convective and an acoustic
component, the result of the asymptotic analysis can give an incomplete picture of the
actual solution even if a suitable asymptotic sequence is chosen. So, in order to gain the
best results, both the choice of the asymptotic sequence and the investigated scales are
important.
In this chapter, we introduce asymptotic functions and conduct an asymptotic analysis
of the Euler equations. We begin with a brief overview of the work this thesis builds
on. We summarize the published work on asymptotic analyses of the Navier Stokes and
Euler equations as well as asymptotic analyses of numerical schemes.
Next, we introduce some properties of asymptotic functions that are important for the
following analysis. We define order functions and an asymptotic sequence. In addition,
we state a property which helps us solve the asymptotic equations.
In the third section, we introduce single scale asymptotic expansions. We explain the
difference between a single scale and a multiple scale expansion and give the definition
of the former. Finally, we describe the typical procedure of an asymptotic analysis of a
homogeneous differential equation.
We conclude this chapter by conducting an asymptotic analysis of the Euler equations
for a Van der Waals gas. We repeat some conclusions of other authors concerning the
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behavior of the pressure distribution that result from the momentum equations. Finally,
we present the first asymptotic analysis of the Van der Waals equation of state. This
also leads to constraints on the behavior of pressure. At the end, we compare the results
to the ones of an ideal gas and discuss the differences.

3.1. State of the Art

In 1981, Klainerman and Majda [33], [34] used a single scale asymptotic analysis to inves-
tigate the inviscid flow of an ideal gas as the Mach number approaches zero. Choosing
the proper initial conditions, they show the convergence of the compressible solution
of the Euler equations towards the incompressible one where density is independent of
pressure. Klainerman and Majda investigate both open domains and domains bounded
by periodic boundary conditions. Ebin [18] arrives at similar results using more general
boundary conditions.
These investigations were repeated and extended by Ukai [70] and Asano [2]. They
broaden the validness of the results by the usage of more general initial conditions that
no longer require the leading order velocity distribution to be divergence free. However,
all these analyses were limited by the considerations of only one spatial scale and more
detailed insight about the behavior of the flow at low Mach numbers could not be gained.
A decade later, Klein [35] analyzed the compressible Euler equations in the limit of small
Mach numbers using a multiple scale asymptotic analysis. By considering two different
spatial scales, they investigate both convective and acoustic effects. Klein uses the results
of this analysis to propose an extension of a compressible numerical scheme towards
the incompressible limit that is based on physics. Meister [46] gives a mathematical
justification for the approach by Klein and presents a single scale asymptotic analysis
of a bounded domain and a multiple scale analysis of an open domain. In addition,
they further develop the numerical method proposed by Klein to cover simulations in
two spatial dimensions. A detailed summary of the improvement of numerical schemes
for the Navier-Stokes and Euler equations and the extension towards the incompressible
limit is given in the review article of Klein et al. [36]. There the application of single
and multiple scale asymptotic analyses is described precisely.
The asymptotic analysis of a numerical scheme is described by Meister [48] for an ideal
gas inviscid flow solver. A similar investigation is published by Guillard and Nkonga [27].
In both publications it is shown that the solution of the discrete scheme contains pressure
fluctuations on a different scale than the continuous pressure. This explains the failure of
a compressible numerical scheme as the Mach number approaches zero. In addition, it is
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shown that a correct scaling of the discrete pressure can be gained by preconditioning the
numerical dissipation tensor. This investigation is extended by Meister [49] to viscous
simulations.
In this work, we apply the analysis presented by Meister to a flow with a more general
thermodynamic description. We extend the continuous single scale analysis described in
Meister [46] to the Euler equations for a Van der Waals gas. In addition, we apply the
discrete analysis of a numerical scheme described in Meister [48] to a flux function that
can also be used to simulate real gases.

3.2. Properties of Asymptotic Functions

Order functions play an important role in asymptotic analyses. Since they were first
used by Landau, they are commonly referred to as Landau symbols. They describe the
relationship between the behavior of two functions as an additional parameter approaches
a limit. We define order functions in the following as shorthand notations for these
relative properties of the respective functions, following the description by Kimmerle
and Stroppel [32] and Malham [45].

Definition 3.2.1.
Suppose f(x; ε) and g(x; ε) are functions of the real variable x and an additional variable
ε. If ε0 ∈ I, we write for f, g : G × I\{ε0} → R:

(a) Asymptotically bounded:

f(x; ε) = O(g(x; ε)) for ε→ ε0,

if there exists a function h : G → R, such that

lim
ε→ε0

f(x; ε)

g(x; ε)
= h(x)

holds for each x ∈ G.
This means that f(x; ε) is asymptotically bounded in magnitude by g(x; ε) as ε → ε0.
We say f(x; ε) is of "order big O" of g(x; ε).

(b) Asymptotically smaller:

f(x; ε) = o(g(x; ε)) for ε→ ε0,
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if
lim
ε→ε0

f(x; ε)

g(x; ε)
= 0

holds for each x ∈ G. This means that f(x; ε) is asymptotically smaller than g(x; ε). We
say f(x; ε) is of "order little o" of g(x; ε).

(c) Asymptotically equal:

f(x; ε) = OS(g(x; ε)) for ε→ ε0,

if f(x; ε) = O(g(x; ε)) and g(x; ε) = O(f(x; ε)) for ε→ ε0.

An asymptotic sequence is the base of asymptotic expansions. We specify such sequences
with the help of the o-order relation in the following Definition.

Definition 3.2.2.
A sequence of functions {φn}n∈N0 with φn : I\{ε0} → R is said to form an asymptotic
sequence with regard to ε0 ∈ I if, for all n,

φn+1(ε) = o(φn(ε)),

as ε→ ε0.

As an extension to this property of an asymptotic sequence, the following Lemma allows
us to identify terms multiplied by the same function φn.

Lemma 2.
If {φn}n∈N0 is an asymptotic sequence and Ln for n = 0, . . . , N are arbitrary terms
independent of ε, then the two statements

N∑
n=0

φn(ε)Ln = o(φN (ε)) for ε→ ε0

and
Ln = 0 for n = 0, ..., N

are equivalent.

The proof of this Lemma is given by Meister [46].
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3.3. Single Scale Asymptotic Expansions

Single scale asymptotic expansions are the simplest form of asymptotic expansions. They
are a subset of multiple scale asymptotic expansions which are out of the scope of this
work but are explained in detail by Meister [46]. If a single scale asymptotic expansion
is used to analyze a function, only phenomena on the chosen spatial or time scale are
represented in the solution.
For problems with characteristics on several scales this often leads to a limited area of
validity. In these cases, another single scale asymptotic expansion can be conducted
using a different scale which corresponds to a scaling of the initial problem. The two
locally valid solutions can then be combined within a common area of validity to gain a
single solution, see Kevorkian and Cole [30] and Schneider [63].
However, since the final expansion includes different scales it belongs to the multiple scale
asymptotic expansions. Hence, for some problems, it can be useful to start the analysis
with a multiple scale asymptotic expansion. For the analysis we present here, a single
scale expansion is sufficient.

Definition 3.3.1.
If {φn}n∈N0 is an asymptotic sequence of functions f : G ×I\{ε0} → R, (x; ε)

f7−→ f(x; ε),
where {fn}n∈N0 is a function sequence with fn : G → R, we say that

N∑
n=0

φn(ε)fn(x)

is an asymptotic (N + 1)-term single scale expansion of f , if for each N

f(x; ε)−
N∑
n=0

φn(ε)fn(x) = o(φN (ε)),

as ε → ε0. This means the error is asymptotically smaller than the last term of the
expansion.

The typical procedure of an asymptotic analysis of a homogeneous differential equation
is as follows. First, we choose an asymptotic sequence {φn}n∈N0 , giving an ansatz of the
form

f(x; ε) =
N∑
n=0

φn(ε)fn(x) + o(φN (ε)) for ε→ ε0

for the solution f of the differential equation. Then we insert this ansatz into the differ-
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ential equation, which is then written in the form

M∑
k=0

ψk(ε)Lk(f0, ..., fN ) = o(ψM (ε)) for ε→ ε0

with M ∈ N0 and the asymptotic sequence {ψk} for k = 0, ...,M . The terms Lk are
independent of ε for k = 0, ...,M . Hence, due to Lemma 2, we can find the functions fn
for n = 0, ..., N by solving the differential equations

Lk(f0, ..., fN ) = 0 for k = 0, ...,M.

3.4. Asymptotic Analysis of the Governing Equations

In this section, we present a single scale asymptotic analysis of the nondimensional Euler
equations in the limit of a vanishing Mach number. The Mach number itself acts as an
additional variable, next to the spatial coordinates and time. We indicate this by writing
u(x, t;M) for the vector of the solution.
The success of an asymptotic analysis greatly depends on the definition of a proper
asymptotic sequence and the choice of suitable spatial and time scales. Both parts need
to match the properties of the considered equations. For the definition of the asymptotic
sequence, we follow the proposal of Meister [48] and choose the sequence

φn(M) = Mn for n ∈ N0

for the asymptotic analyses presented here.
We consider the Euler equations in G ×R+

0 with the bounded region G. The set of state
vectors u : G × R+

0 × (0,M)→ Rd that fulfill the Euler equations (2.17) is called Us. In
this set every physical quantity ψ can be expressed through an asymptotic single scale
expansion

ψ(x, t;M) =

j∑
i=0

φi(M)ψ(i)(x, t) + o(M j) for j = 0, 1, 2 and M → 0

valid on G × R+
0 with the asymptotic functions φ(i) : G × R+

0 → R.
To conduct an asymptotic analysis, we insert the asymptotic expansion of the physical
quantities into the conservation equations. For the continuity equation, this leads to
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2∑
i=0

M i
[
∂tρ

(i) +∇x · (ρv)(i)
]

= o(M2) for M → 0 in G × R+
0 . (3.1)

In a similar way we can write the momentum equations as

2∑
i=0

M i

[
∂t (ρv)(i) +∇x · [(ρv)⊗ v](i) +

1

M2
∇xp

(i)

]
= o(M2)

for M → 0 in G × R+
0

(3.2)

and the energy equation becomes

2∑
i=0

M i
[
∂t (ρE)(i) +∇x · (ρvH)(i)

]
= o(M2) for M → 0 in G × R+

0 . (3.3)

Considering Lemma 2, we get the following equation that is identical to the O(1)-
formulation of the continuity equation (3.1):

∂tρ
(0) +∇x · (ρv)(0) = 0 (3.4)

in G×R+
0 . The terms associated with the O(M) and O(M2)-formulations can be written

as
∂tρ

(1) +∇x · (ρv)(1) = 0

and
∂tρ

(2) +∇x · (ρv)(2) = 0

in G × R+
0 , respectively. In the same way, the momentum equation (3.2) leads to

∇xp
(0) = 0, (3.5)

∇xp
(1) = 0 (3.6)

and
∂t (ρv)(0) +∇x · [(ρv)⊗ v](0) +∇xp

(2) = 0 (3.7)

in G × R+
0 . Finally, the energy equation (3.3) leads to

∂t (ρE)(i) +∇x · (ρvH)(i) = 0 for i = 0, 1, 2 in G × R+
0 .
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From these asymptotic equations, several conclusions can be drawn concerning the be-
havior of the different physical quantities. A direct conclusion from equations (3.5) and
(3.6) is the following Theorem.

Theorem 3.
For u ∈ Us,

p(0) = p(0)(t)

and
p(1) = p(1)(t).

The proof for this Theorem is given by Meister [46].
One implication of Theorem 3 is that the pressure fluctuations in u ∈ Us can at most
have an influence of o(M) on the pressure distribution. In addition, changes of the order
of O(1) or O(M) can only appear simultaneous in the whole flow domain, changing only
with time. In the limit of a vanishing Mach number, there is a spatially constant pressure
distribution.
It should be noted, however, that the second order pressure fluctuations with a small
amplitude have an influence of O(1) on the leading order momentum distribution. We
can see this from the last term on the left-hand side of equation (3.7). Hence, these
fluctuations have a great importance for the whole flow field. For more detail see the
work published by Meister [46].

Theorem 4.
For u ∈ Us,

1

|G|

∫
G

−3M2
wbρ

(0) + 3M3
w

6ab[ρ(0)]
3 −Mwa[ρ(0)]

2
+ 5M3

wp
(0)
dx
dp(0)

dt
= − 1

|G|

∫
∂G

v(0) · nds, (3.8)

where |G| is the volume of the spatial domain G, ∂G is its boundary and n represents the
outer unit normal vector on ∂G.

Proof.
Inserting the asymptotic sequence into the caloric equation of state (2.19) on page 17
gives us the relation between the leading orders of pressure and total energy density as

p(0) =
2Mw (ρE)(0) + 2a

Mw
[ρ(0)]

2

3Mw − 3bρ(0)
− a[ρ(0)]

2

M2
w

.

This relation is the O(1) part of the expression we get by inserting the asymptotic
sequence. To separate this part, we need to expand the expression into a Taylor series
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which we describe in section A.4. The above equation is the result presented in equation
A.15.
We can reformulate this equation to get the leading order of total energy density:

(ρE)(0) =
3M3

wp
(0) − 3M2

wb (ρp)(0) +Mwa[ρ(0)]
2 − 3ab[ρ(0)]

3

2M3
w

Hence, the leading order of the total enthalpy density can be written as

(ρH)(0) = (ρE)(0) + p(0) =
3M3

wp
(0) − 3M2

wb (ρp)(0) +Mwa[ρ(0)]
2 − 3ab[ρ(0)]

3

2M3
w

+ p(0)

=
5M3

wp
(0) − 3M2

wb (ρp)(0) +Mwa[ρ(0)]
2 − 3ab[ρ(0)]

3

2M3
w

.

Now we insert these two relations into the leading order energy conservation equation

∂t (ρE)(0) +∇x · (ρHv)(0) = 0.

This leads to

∂t

(
3M3

wp
(0) − 3M2

wb (ρp)(0) +Mwa[ρ(0)]
2 − 3ab[ρ(0)]

3

2M3
w

)

+∇x ·

([
5M3

wp
(0) − 3M2

wb (ρp)(0) +Mwa[ρ(0)]
2 − 3ab[ρ(0)]

3

2M3
w

]
v(0)

)
= 0.

After some transformation we get(
3

2
− 3bρ(0)

2Mw

)
∂tp

(0) +

(
−3bp(0)

2Mw
+
aρ(0)

M2
w

− 9ab[ρ(0)]
2

2M3
w

)
∂tρ

(0)

+ v(0)

(
−3bp(0)

2Mw
+
aρ(0)

M2
w

− 9ab[ρ(0)]
2

2M3
w

)
∇xρ(0)

+ v(0)

(
5

2
− 3bρ(0)

2Mw

)
∇xp(0)

+

(
5p(0)

2
− 3b (ρp)(0)

2Mw
+
a[ρ(0)]

2

2M2
w

− 3ab[ρ(0)]
3

2M3
w

)
∇x · v(0) = 0.

With the relation ∇xp(0) = 0 that results from Theorem 3 we can simplify this equation
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to (
3

2
− 3bρ(0)

2Mw

)
∂tp

(0) +

(
−3bp(0)

2Mw
+
aρ(0)

M2
w

− 9ab[ρ(0)]
2

2M3
w

)
∂tρ

(0)

+ v(0)

(
−3bp(0)

2Mw
+
aρ(0)

M2
w

− 9ab[ρ(0)]
2

2M3
w

)
∇xρ(0)

+

(
5p(0)

2
− 3b (ρp)(0)

2Mw
+
a[ρ(0)]

2

2M2
w

− 3ab[ρ(0)]
3

2M3
w

)
∇x · v(0) = 0.

Now we rearrange the expression to get(
3

2
− 3bρ(0)

2Mw

)
∂tp

(0) +

(
−3bp(0)

2Mw
+
aρ(0)

M2
w

− 9ab[ρ(0)]
2

2M3
w

)
∂tρ

(0)

+ v(0)

(
−3bp(0)

2Mw
+
aρ(0)

M2
w

− 9ab[ρ(0)]
2

2M3
w

)
∇xρ(0)

+ ρ(0)

(
−3bp(0)

2Mw
+
aρ(0)

M2
w

− 9ab[ρ(0)]
2

2M3
w

)
∇x · v(0)

+

(
5p(0)

2
− a[ρ(0)]

2

2M2
w

+
6ab[ρ(0)]

3

2M3
w

)
∇x · v(0) = 0,

which we can also write as(
3

2
− 3bρ(0)

2Mw

)
∂tp

(0) +

(
−3bp(0)

2Mw
+
aρ(0)

M2
w

− 9ab[ρ(0)]
2

2M3
w

)
∂tρ

(0)

+

(
−3bp(0)

2Mw
+
aρ(0)

M2
w

− 9ab[ρ(0)]
2

2M3
w

)
∇x · (ρv)(0)

+

(
5p(0)

2
− a[ρ(0)]

2

2M2
w

+
6ab[ρ(0)]

3

2M3
w

)
∇x · v(0) = 0.

(3.9)

From the leading order of the continuity equation (3.4), we get the relation

∂tρ
(0) = −∇x · (ρv)(0) .

When we insert this into equation (3.9), we can simplify it to(
−3bρ(0)

Mw
+ 3

)
∂tp

(0) +

(
6ab[ρ(0)]

3

M3
w

− a[ρ(0)]
2

M2
w

+ 5p(0)

)
∇x · v(0) = 0.
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After integrating this equation over G, we finally arrive at

1

|G|

∫
G

−3M2
wbρ

(0) + 3M3
w

6ab[ρ(0)]
3 −Mwa[ρ(0)]

2
+ 5M3

wp
(0)
dx
dp(0)

dt
= − 1

|G|

∫
∂G

v(0) · nds.

Next, we consider this equation in the limit of an ideal gas. To transform the Van der
Waals equation of state into the ideal gas law, we set a = 0 and b = 0. Then, equation
(3.8) becomes

3

5p(0)

dp(0)

dt
= − 1

|G|

∫
∂G

v(0) · nds, (3.10)

which equals the result of the ideal gas analysis conducted by Meister [46] for a ratio
of specific heats of γ = 5

3 . This is the value for γ we expect due to our choice for the
specific heat at constant volume of ĉv̂ = 3

2R̂.
Equation (3.10) describes the correlation between the leading orders of the pressure and
the velocity distribution for an inviscid, ideal gas. The conclusion drawn by Meister is
that the global temporal evolution of the spatial constant pressure term p(0) is governed
by compression of the gas over the boundary of the flow domain or expansion of the gas
due to chemical reactions. This is important for the construction of a numerical scheme
for low Mach number flows. Following this conclusion one can define the leading order
pressure to be the same in the whole computational domain.
The additional terms present in the case of a Van der Waals gas that can be seen in
equation (3.8) on page 29 are products of the leading order of the density distribution,
the molecular weight and the constants a and b. These quantities are always of O(1)

as the Mach number approaches zero. Hence, the conclusions drawn in the ideal gas
analysis are still valid for a Van der Waals gas in general.
However, the influence of expansion or compression of the gas over the boundary of the
flow domain on pressure is not as simple for a Van der Waals gas as it is in the formulation
of the ideal gas law. In the case of a Van der Waals gas, the acting pressure is reduced by
the two terms depending on the constants a and b that are introduced in section 2.2.1.
The two terms that are shown in equation (2.9) on page 11 do not only depend on a and
b but also on the density. Since the effects that alter pressure also influence the density
distribution, these correctional terms can lead to either an increase or a decrease of the
change in pressure, depending on the specific fluid. Hence, the influence of expansion or
compression of the gas over the boundary of the flow domain that can be found for an
ideal gas still applies for a Van der Waals gas in general, but the real gas effects present
in the Van der Waals equation of state can alter this influence.
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In this analysis, no acoustic effects are observed. This is due to the choice of the spatial
scale which only shows the convective velocities. To analyze the acoustic effects, a spatial
scale of M ·x could be chosen instead. To obtain both acoustic and convective influences
at once, a multiple scale analysis needs to be conducted that includes both a spatial scale
of M · x and the x-scale used in this work.
A multiple scale analysis for both viscous and inviscid flows using a spatialM ·x and a x-
scale is conducted by Meister [46]. In their work, the governing equations are thoroughly
analyzed for an ideal gas. Here we are concerned with the enhancement of a numerical
scheme for a Van der Waals gas. The insight necessary for this purpose can be gained
by conducting only a single scale asymptotic analysis. Hence, a multiple scale analysis
is out of the scope of this work.
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4. Numerical Scheme

The formulation of governing equations is helpful to understand and analyze a problem.
However, to gain a detailed spatial solution or even the temporal development of this
solution, the use of a numerical scheme is necessary. Especially when there is no analytical
solution to a problem, solving it with the help of a numerical scheme is the best way to
obtain results. In this chapter we cover the numerical approximation of the governing
equations we discuss in chapter 2. We limit our discussion to two-dimensional schemes.
We begin this chapter with giving a brief overview of the code used in this work. We
describe finite volume methods in general and define both weak solutions and the opera-
tors necessary to formulate the balance equation which is the foundation of finite volume
methods. We also describe the discretization of both the computational domain and the
convective fluxes in detail. Then we introduce the estimation of thermodynamic quan-
tities within the code. We also briefly cover the nondimensionalization applied in the
numerical scheme.
In the second part of the chapter we consider flux functions. We summarize the challenges
in applying a flux function to the region of small Mach numbers and give an overview over
functions adapted for flows under these conditions. We identify two numerical schemes
that are suitable for the objectives of this work.
Then we choose the MAPS (Mach number-based Advection Pressure Splitting) flux func-
tion for the further analysis. We describe both MAPS and the extension to MAPS+ in
detail. We also distinguish between the general version of MAPS+ and special adapta-
tions for low Mach number flows.
In the next step we investigate whether MAPS+ can also be used to calculate the flux
of a Van der Waals gas. To do this, we first analyze the differences in the continuous
flux Jacobi matrix depending on the equation of state since these differences need to be
present in MAPS+ as well. Then we transform MAPS+ into a sum of discrete flux Jacobi
matrices in terms of the conservative variables. This way we are able to compare the
discrete flux function to the results of the analysis of the continuous flux Jacobi matrix
of the Euler equations. We conduct this comparison both for a high Mach number and
for M → 0. In the latter case, we analyze the O-behavior of the different terms of both
matrices as the Mach number approaches zero. By this means we demonstrate that the
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MAPS+ scheme is defined in a way suitable for a Van der Waals gas.
In the last part of the section concerning flux functions, we perform a discrete asymptotic
analysis of both the general and the altered MAPS+ scheme. The results for the general
MAPS+ scheme contradict the results of the continuous asymptotic analysis while both
agree for the altered MAPS+ scheme. This difference is also present in the numerical
results we show to conclude the section.
In the last part of the chapter, we focus on preconditioning schemes for the low Mach
number region. First we present some general reasons for the usage of a preconditioner in
addition to a description of its effects. We also generally define a preconditioning scheme
and cover the transformation from primitive to conservative variables.
Then we give an overview of preconditioners currently available for an ideal gas. We
briefly cover the evolution of preconditioning schemes and the different ways to con-
struct a preconditioning matrix. We also describe the approaches of other authors to use
preconditioning schemes for real gases.
Next, we explain the different requirements of a numerical scheme for a Van der Waals
gas concerning a preconditioning scheme compared to one for an ideal gas and deduce
the overall form a preconditioning matrix must have. The mentioned differences are then
demonstrated by calculating the eigenvalues and condition numbers of the precondition-
ing of both the ideal gas and the Van der Waals gas continuous flux Jacobi matrix. By
doing this we show that it is possible to alter the eigenvalues in the Van der Waals gas
case in a favorable way.
In the next section, we describe the preconditioning schemes we use for the simulations.
Finally, we present the results of numerical simulations. We compare two different pre-
conditioning schemes for a Van der Waals gas and show that their convergence rates are
independent of the Mach number for M → 0. Then we show the capability of one of the
schemes for different characteristic thermodynamic conditions.

4.1. Overview

The CFD (computational fluid dynamics) platform used in the following is the DLR
TAU-code. It can be applied for the simulation of both viscous and inviscid flows from
the low subsonic to the hypersonic flow regime. TAU is a compressible flow solver that
can be used to model a variety of steady and unsteady flows. It contains a wide range of
models and adaptations for different requirements. Here, we only give a brief overview of
the code and only cover the models used in the subsequent sections; a detailed description
of the DLR TAU-code can be found in Schwamborn et al. [64], Gerhold [24] and Mack
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and Hannemann [44].
TAU can be used with structured and unstructured grids. They are transferred into a
dual grid during the preprocessing, making the solver independent of the specific grid
elements used in the primary grids. All terms within the solver are computed on the
nodes or at the faces of this dual grid.
In TAU, a Godunov-type finite volume method is used to solve the system of governing
equations. For the calculation of the inviscid terms, either a second-order central scheme
or one of many different upwind schemes is available. The viscous terms are computed
with a second-order central scheme. If an upwind scheme is used, a second-order spatial
accuracy can be achieved by using linear reconstruction which is applied on the left and
right states of the dual grid faces. In the following, we focus on upwind schemes.
Both implicit and explicit methods can be used for time integration. As an implicit
scheme, the Lower-Upper Symmetric Gauss-Seidel scheme is available, which is an ap-
proximate factorization scheme. For explicit schemes one of many Runge-Kutta schemes
can be chosen. A dual time stepping approach following the work of Jameson [29] is avail-
able for time-accurate computations. There, within every physical time step a steady
state problem is solved.
To improve the performance of the code in the region of low Mach numbers, several ideal
gas preconditioning schemes are available. The implemented preconditioners are to be
used together with an explicit Runge-Kutta method.

4.1.1. Finite Volume Method

Finite volume methods can be used to discretize the conservation equations. Based on
the integral formulation, weak solutions are determined. The computational domain is
separated into many control volumes within which the governing equations are solved.
We describe the properties of control volumes in subsection 4.1.2.

Definition 4.1.1.
Let R+

0 3 t
u7−→ u (., t) be of limited variation and u (., t) ∈

[
L∞ ∩ L1

]
(G ∪ ∂G;Z) for

every fixed t ∈ R+
0 . Then the mapping u is called a weak solution of system (2.17) on

page 16 if
d

dt

∫
σ
udx +

d∑
j=1

∫
∂σ

f j (u)njds = 0 (4.1)

for every control volume σ ⊂ G, where n = (n1, . . . , nd)
T is the outer unit normal vector

of ∂σ.
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For conservation equations like the Euler equations, a weak solution describes the prop-
erty that the temporal variation of the mean values of the physical quantities within
a control volume are defined by the fluxes over the boundaries of said control volume.
However, the introduction of weak solutions leads to a loss of the uniqueness of the so-
lution for the Euler equations. So multiple solutions that fulfill the governing equations
are possible.
Next, we introduce the cell averaging operator Mσ. This is motivated by the integral
form presented in equation (4.1).

Definition 4.1.2.
Let |σ| be the volume of the control volume σ ⊂ G. Then

[
L∞ ∩ L1

]
(σ;Z) 3 u (., t)

Mσ7−−→ (Mσu) (t) :=
1

|σ|

∫
σ
u (x, t) dx ∈ Rd+2

is called the cell averaging operator on σ.

We take B to be the set of control volumes σi ⊂ G, i = 1, . . . ,#B, which represents a
disjoint covering of the limited domain G. With the use of the operator Lσi which is
given by

(Lσiu) (t) =
1

|σi|

d∑
j=1

∫
∂σi

f j (u (x, t))nj (x) ds for all σi ∈ B,

we arrive at the integral form of the balance equation

d

dt
(Mσiu) (t) + (Lσiu) (t) = 0 for all σi ∈ B (4.2)

by introducing the cell averaging operator into the representation of the weak solution.
This form of the balance equation represents the foundation of any finite volume method.
Within these methods, the temporal evolution of values averaged on the cells is calculated.
With the help of equation (4.2), a separation of the temporal and spatial discretization
is possible. This leads to a great flexibility of the numerical schemes. In many cases,
the approximation of equation (4.2) is accomplished in two subsequent steps. First, the
discretization of the contour integrals in applied, which leads to a semi discrete system.
In the second step this system is approximated with the help of a time integration scheme.
In the following subsections, we describe the discretization of the computational domain
and the convective fluxes.
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4.1.2. Discretization of the computational domain

To simulate a flow with the help of a numerical scheme, we need to discretize both
the spatial part G and the temporal part R+

0 . In the following, we describe the spatial
discretization of G in two dimensions. We also introduce the necessary notation.
To generate the triangulation, we define a set of boundary node points both on the
surface of the profile and at the farfield boundary. The number of boundary points and
hence the distance between two adjacent points defines the size of the resulting triangles.
A higher amount of boundary points leads to smaller triangles.
In the following step a Delaunay triangulation is applied using this set of boundary
points. A characteristic of this method is that no additional node point lies within the
circumcircle of any triangle. The Delaunay triangulation maximizes the minimum angle
of all the triangles which is favorable for the numerical scheme. Then inner node points
of the grid are calculated with the algorithm developed by Friedrich [23]. These points
are then linked with the existing triangulation using the algorithm by Bowyer [7] which
ensures that the grid fulfills the Delaunay criteria. The resulting triangulation represents
the primary grid.
In the final step, the secondary grid is constructed from the primary one. For this
purpose, the inner points xs = (xs1, xs2)T are defined as follows.

xs =
∑

m∈C(T )

αsmxm

with
C (T ) = {i ∈ {1. . . . ,#Nh} | point xi is vertex of T },

where T is a triangle, and

αsm =
1

2
∑

m∈C(T ) |lm|
∑

m∈C(T )
m6=m

|lm|

and
|li| = ‖xj − xk‖2 for i, j, k ∈ C (T ) .

To create the secondary grid, these inner points are connected to the center points of the
edges of all triangles. This concept is also illustrated in Figure 4.1 (left).
Now we introduce the necessary notation to specify a control volume. Let Th be an
arbitrary triangulation of the region G, where we indicate the separate triangles as T .
In addition, Nh is the index set of all node points of the triangulation Th. We separate
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Figure 4.1.: General form of a control volume (left) and representation of the boundaries
between control volumes σi and σj (right)

this set into the indices of the internal node points Nh,G and the indices of the boundary
node points Nh,∂G . So, it is Nh = Nh,G ∪Nh,∂G .
We call the open subset of R2 that contains the node point xi = (xi1, xi2)T control volume
σi. This control volume is bounded by the connecting lines between the inner points xs
and the center points of the edges of the respective triangles. This is illustrated in Figure
4.1 (left). If the node point xi is a boundary point, the connecting line between xi and
the center point of the boundary edge is part of the boundary of the control volume.
With N (i) we describe the set of all indices j, for which

∫
∂σi∩∂σj 1 ds 6= 0 is true.

The two straight sections that separate control volume σi from control volume σj for
j ∈ N (i) are called lkij , k = 1, 2. The respective unit normal vectors on lkij are called nkij ,
see Figure 4.1 (right).

4.1.3. Discretization of the convective fluxes

Based on the spatial discretization of the two-dimensional computational domain G which
we introduce in the preceding subsection 4.1.2, we can write the convective fluxes of the
balance equation (4.2) as
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(
L̃σiũ

)
(t) =

1

|σi|

{ ∑
j∈N (i)

2∑
k=1

∫
lkij

T (n)−1 f̃1 (T (n) ũ) ds

+

∫
∂σi∩∂Th

T (n)−1 f̃1 (T (n) ũ)

} (4.3)

with the rotational matrix T .
Within the finite volume method, average values on each grid cell are calculated which
we indicate by the notation ũ. If we view these values as constant distributions within
each control volume, there are in general jump discontinuities of the physical values at
the boundary pieces lkij . To approximate this Riemann problem, we introduce the term
numerical flux function.

Definition 4.1.3.
A mapping

H : R4 × R4 × R2 → R4

is called numerical flux function.

To ensure that this arbitrary numerical flux function has a reasonable physical and math-
ematical relationship with the considered differential equation, we define the allowed set
of numerical flux functions by the following consistency constraint.

Definition 4.1.4.
The numerical flux function H is called consistent to the operator L̃, if

H (ũ, ũ;n) = T (n)−1 f̃1 (T (n) ũ)

for all ũ ∈ Z and n ∈ R2 with ‖n‖2 = 1 is true.

Godunov realized the discontinuous jump at the interface to be the Riemann problem
which has an exact solution for the Euler equations. Hence, the numerical flux functions
which are introduced by this definition are often referred to as Riemann solvers.
In modern CFD codes, the Riemann problem is no longer solved exactly. Instead, ap-
proximate Riemann solvers are used. The approach presented by Godunov and Bo-
hachevsky [25], using the exact solution of the Riemann problem, requires iterative com-
putations within every time step which are numerically expensive. The approximate
Riemann solvers only produce a fraction of the computational costs while still providing
a sufficient accuracy.
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The choice of an appropriate Riemann solver for a specific problem is an important part
of building a stable and sufficiently precise numerical scheme. We discuss flux functions in
more detail in section 4.2 and describe the MAPS+ flux function HMAPS+ in subsection
4.2.2. With the help of this numerical flux function we can discretize the inner contour
integrals by ∫

lkij

T (n)−1 f̃1 (T (n) ũ) ds ∼= |lkij |HMAPS+

(
ũi, ũj ;n

k
ij

)
.

To approximate the integrals over the boundary pieces we use the boundary conditions
described in subsection 2.4 on page 18. The solid wall boundary condition (2.20) allows
for an exact calculation of the contour integral in equation (4.3). Hence, the application
of a numerical flux function is not necessary at a solid wall and the contour integral takes
the form

∫
∂σi∩∂Th,w

T (n)−1 f̃1 (T (n) ũ) ds ∼=
∑

lσi⊂∂Th,w

|lσi |


0

p̃ (xmi , t)n1

p̃ (xmi , t)n2

0

 ,

where xmi is the center point of an arbitrary line segment lσi which is part of the bound-
ary ∂σi.
For the farfield boundary condition, the usage of the numerical flux function HMAPS+ is
required. For the following description, we separate the farfield boundary condition into
Th,ff = Th,in +Th,out,sub +Th,out,sup, where Th,in stands for the inflow boundary conditions
while Th,out,sub and Th,out,sup represents the subsonic and supersonic outflow conditions,
respectively. At the inflow boundaries, we take ũin (xmi ) to be the vector of conservative
variables that is defined in subsection 2.4.2 for the flow approaching the boundary. Then
we get∫

∂σi∩∂Th,in
T (n)−1 f̃1 (T (n) ũ) ds ∼=

∑
∂σi⊂∂Th,in

|lσi |HMAPS+ (ũi, ũin (xmi ) ;n)

with i ∈ C (Th,in).
For the subsonic outflow boundary condition, we write ũout (xmi ) for the vector of con-
servative variables defined in subsection 2.4.2 for the flow leaving the boundary. With
this we get
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∫
∂σi∩∂Th,out,sub

T (n)−1 f̃1 (T (n) ũ) ds ∼=
∑

∂σi⊂∂Th,out,sub

|lσi |HMAPS+ (ũi, ũout (xmi ) ;n)

with i ∈ C (Th,out,sub).
For the supersonic outflow boundary condition, the left- and right-hand side values of
the conservative variables at the boundary are identical. Hence, we get the convective
boundary fluxes∫

∂σi∩∂Th,out,sup

T (n)−1 f̃1 (T (n) ũ) ds ∼=
∑

∂σi⊂∂Th,out,sup

|lσi |T (n)−1 f̃1 (T (n) ũi)

with i ∈ C (Th,out,sup).

4.1.4. Implementation of Thermodynamics

In TAU, real gases represented by cubic equations of state are implemented as an exten-
sion to the ideal gas modeling. This way gases that follow another state equation than
the ideal gas law can be modeled. The approach follows the Multi-Fluid Mixing method
as proposed by Banuti et al. [5].
In addition, caloric imperfect gases can be considered. This means that the specific heat
at constant pressure is not a constant but depends on temperature. The available states
for the fluids range from liquid to supercritical condition. The evaluation of the thermo-
dynamic properties is an important part of the flow solver since a precise estimation of
pressure and temperature or enthalpy in every grid cell is needed for the calculation of
the fluxes during each time step.
In general, the thermodynamic model in TAU requires two state variables as an input.
The different modules then calculate all remaining variables. The specific input variables
depend on the problem within the solver and consist of the set density, temperature,
pressure, enthalpy, internal energy and entropy. In addition to these variables, the output
of the specific thermodynamic module can contain the speed of sound, the specific heats
at constant volume and pressure and a variety of transport coefficients.
We consider the description of the thermodynamics, represented by a cubic equation of
state in two parts. This agrees with the implementation in TAU. This way, any quantity
ψ can be written as

ψ = ψid + ψres.

The first part ψid represents the ideal gas component while the second part ψres describes
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the deviation from the ideal gas behavior. This second part is called the residual com-
ponent. Note that ψres increases as the real gas deviates from an ideal gas. If the fluid
can be described by the ideal gas law, ψres equals zero.
With a given thermal equation of state, the deviations can be calculated. The specific
relations for ψres are derived in standard textbooks such as Baehr and Kabalac [3] and a
summary is given in Banuti [4].
In TAU, several cubic equations of state (EOS) are implemented following this approach.
The available equations include the Van der Waals EOS [75], the Soave-Redlich-Kwong
EOS as proposed by Soave [65], the Peng-Robinson EOS [54] and the RK-PR EOS
proposed by Cismondi and Mollerup [14]. The equations are implemented in the form
presented by Kim et al. [31].

4.1.5. Nondimensionalization

The nondimensionalization used for the analysis within this chapter differs from the one
introduced in chapter 2.3 on page 14. Since we want to analyze the behavior of the flux
function as it is implemented in the numerical scheme, we apply the same reference values
for the nondimensionalization as they are used in the code. Most numerical schemes do
not use a separate reference velocity but a combination of thermodynamic reference
values to nondimensionalize the velocity.
In the DLR TAU-code, the expression chosen for the reference velocity is vref =

√
pref
ρref

.
This is not a reference value in the sense that we introduce in chapter 2.3 as it is generally
not of the same order of magnitude as the local velocity. Hence, it shows a different
behavior for M → 0 than v does.
For the nondimensionalization, some basic reference values are defined by the user of the
code. The thermodynamic references p̂ref and T̂ref are given by the freestream values and
the lenght-reference l̂ref is defined using the specific grid. In addition, the reference value
of the co-volume b̂ref is defined for the Van der Waals thermodynamics. The density
reference ρ̂ref is calculated within the code using the implemented thermal equation of
state and the given reference values for pressure and temperature. All other reference
values are calculated using these given values.
The full set of reference values used in the TAU-code is listed in Table 4.1. These are
the expressions used for the nondimensionalization, the analysis of the numerical scheme
within this chapter is based on.
The usage of the set of reference values presented in chapter 2.3 leads to dimensionless
quantities of O(1) as the Mach number approaches zero. However, this is not achieved
for the nondimensionalization used in numerical codes. The choice of reference values for
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Table 4.1.: Names, units and reference values of physical quantities as used in the DLR
TAU-code

Physical Quantity Unit Reference Value

Cartesian coordinate x̂ [m] l̂ref

pressure p̂ [Pa] = [kg/(m · s2)] p̂ref

temperature T̂ [K] T̂ref

density ρ̂ [kg/m3] ρ̂ref

co-volume b̂ [m3/mol] b̂ref

velocity vector v̂ [m/s] v̂ref =
√

pref
ρref

time t̂ [s] l̂ref
v̂ref

speed of sound ĉ [m/s]
√

p̂ref
ρ̂ref

specific internal energy ê [J/kg] = [m2/s2] p̂ref
ρ̂ref

specific total energy Ê [J/kg] = [m2/s2] p̂ref
ρ̂ref

specific total enthalpy Ĥ [J/kg] = [m2/s2] p̂ref
ρ̂ref

molar mass M̂w [kg/mol] b̂refρ̂ref

specific gas constant R̂ [m2/(K · s2)] v̂2ref
T̂ref

intermolecular forces-constant â [(kg · m5)/(mol2 · s2)] ρ̂refv̂
2
refb̂

2
ref

the DLR TAU-code as listed in Table 4.1 results in dimensionless convective velocities of
O(M).

The nondimensionalization with this set of reference values leads to the following form
of the Euler equations:

∂tu +

d∑
j=1

∂xjf j(u) = 0
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with

f j(u) =



ρvj

ρv1vj + δ1jp
...

ρvdvj + δdjp

ρHvj


for j = 1, . . . , d.

The caloric Van der Waals equation of state has the dimensionless form

p =
2MwρE −Mwρ|v|2 + 2 aρ

2

Mw

3Mw − 3bρ
− aρ2

M2
w

. (4.4)

Here, the Mach number does not appear in the dimensionless equations, other than in
the ones that result from the nondimensionalization in chapter 2.3.

4.2. Flux Function

In this section we are concerned with numerical flux functions that are consistent in the
sense of Definition 4.1.4 on page 40.

4.2.1. Flux Functions for low Mach numbers

For flows that encounter both high and low Mach numbers, special schemes can be
developed. Many well-known flux functions have been adapted in an attempt to improve
the properties of the scheme within the region of low Mach numbers. Ideally, in this
region the convergence becomes independent of the Mach number.
The compressible equations tend towards the incompressible ones where the density is in-
dependent of pressure, as the Mach number approaches zero (see for example Klainerman
and Majda [34]). The flux functions have to represent the behavior of the compressible
equations in the entire flow regime. Hence, at low Mach numbers, the flux functions
should represent the incompressible equations as well.
However, there are two major challenges for a compressible scheme at low Mach numbers
that are thoroughly investigated by Guillard and Nkonga [27] and Volpe [74]. First,
the time step size needs to be very small compared to the characteristic times of the
flow since the acoustic velocities are very high compared to the convective ones. The
relationship between time step size and the characteristic velocities is expressed in the
CFL-constraint. Second, the numerical diffusion negatively impairs the solution.
There are many attempts to modify the flux function of a finite volume scheme with
the goal to obtain better results for a flow at low Mach numbers. This idea was first
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proposed by Turkel [68]. Examples of this approach are the works of Dellacherie [16] or
Rieper [58], where the authors attempt to only modify the part of the flux function that
describes the numerical diffusion. Another, more detailed approach is published by Klein
[35]. Their method is based on an asymptotic expansion and considers different orders
in terms of the Mach number in the composition of the pressure term. It is applied for
example in the works of Cordier et al. [15] and Noelle et al. [53]. The algorithm proposed
by Schneider et al. [62] is also based on the work of Klein. They develop a method to
construct numerical fluxes in an upwind scheme in a way that the divergence constraint
in the asymptotic limit is met.
A group of popular upwind methods are AUSM (Advection Upstream Splitting Method)-
family schemes. This is due to their simple structure and robust as well as accurate
behavior at high Mach numbers. The AUSM scheme was initially developed by Liou and
Steffen [43], [41]. There are different modifications for flows at low Mach numbers. The
AUSM+-up scheme proposed by Liou [42] is based on a special design of the dissipation
terms, while Edwards and Liou [20] introduce a pressure-velocity coupling. The method
by Edwards and Liou also depends on the usage of a time-derivative preconditioning.
Sachdev et al. [61] further develop the AUSM+-up scheme into a more generalized form
that is better suitable for unsteady flows.
Rossow [60] follows a similar approach in expanding the MAPS (Mach number-based
Advection Pressure Splitting) scheme towards the incompressible limit. They compare
the MAPS flux function to the Roe flux-difference splitting (see Roe [59]). By expanding
both schemes in terms of the Mach number and analyzing them in the limit of M → 0,
certain dissipation terms are identified that are only present in the Roe scheme and play
an important part in the modeling of crossflow diffusion. These terms are then included
into the basic MAPS scheme, extending it to MAPS+. Like most flux functions that are
extended towards the incompressible limit, MAPS+ is intended to be used together with
a time-derivative preconditioning.
Both the AUSM+-up and the MAPS+ scheme prove to be robust and accurate at all
Mach numbers. However, in their development only ideal gases are considered. Since the
MAPS+ scheme also shows good results for simulations of supercritical fluids, we decide
to use MAPS+ for the investigations in this work.

4.2.2. MAPS+

MAPS+ is an extension of the MAPS flux function which consists of momentum fluxes
based on the central velocity component qcd and the upwind velocity component qup as
well as the pressure term p12. In the following, we use q to refer to the total directional
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velocity, hence, it is q = v1n1 + v2n2.
MAPS+ is formulated in the conservative variables (ρ, ρv1, ρv2, ρh), where h is the specific
internal enthalpy. So here the energy equation is not represented by the internal energy
but by the enthalpy. For the presentation of MAPS+ we use uL and uR for the left-
and right-hand side variable at the interface between two cells, respectively. They are
the mean values of the respective grid cells.
The two velocity components of the MAPS scheme are defined as

qcd =
cav

2

(
MaL +MaR

2
− βM |MaR| − |MaL|

2

)
and

qup =
cav

2
Mam

with the average speed of sound

cav =
(cL + cR)

2

and the left- and right-hand Mach numbers given by

MaL =
qL
cav

and MaR =
qR
cav

.

The maximum Mach number Mam is defined as

Mam = max (|MaL|, |MaR|) ,

while the function βM is given by

βM = max (0, 2Mamax 1 − 1) (4.5)

with
Mamax,1 = min (Mam, 1) .

The contribution of pressure is defined as

p12 = pav − βppd

with the average pressure
pav =

pL + pR
2
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and the pressure difference

pd =
1

2

(
pR

MaR
|MaR|

− pL
MaL
|MaL|

)
.

The scaling function βp is defined as

βp = max(0, 2Mamin,1 − 1) (4.6)

with the Mach number

Mamin,1 = min [min (|MaL|, |MaR|) , 1] .

The two momentum fluxes (ρv)L and (ρv)R of MAPS are defined as

(ρv)L = (qcd + qup) ρL

and
(ρv)R = (qcd − qup) ρR.

Finally, the flux function is given by

HρΦ
MAPS (ũi, ũj ;n) = (ρv)L ΦL + (ρv)R ΦR + p12Ψ,

with Φ = (1, v1, v2, h)T and Ψ = (0, n1, n2, 0)T .
For the extension to MAPS+, dissipation terms are added to improve the behavior of the
compressible scheme in the incompressible limit. The extended MAPS+ flux function is
given by

HρΦ
MAPS+ (ũi, ũj ;n) = HρΦ

MAPS (ũi, ũj ;n)− (ΦL + ΦR) pscal −Ψqscal.

The terms of extension are the pressure scaling

pscal =
max (1−Ma0, 0)

2cmax

pR − pL
2

and the velocity scaling

qscal =
ρL + ρR

4
max (1−Ma0, 0) cmin (qR − qL)
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with the Mach number
Ma0 = min

(
qmax

cmin
, 1

)
. (4.7)

The remaining terms are defined as:

cmax = max (cL, cR) ,

cmin = min (cL, cR)

and
qmax = Mamcmax. (4.8)

In the case of a low Mach number, MAPS+ is adapted by changing these additional
terms to

cmax,mod =

√
q2

max

[
1

2

(
1− qref2

c2
max

)]2

+ qref2 , (4.9)

cmin,mod = cmax,mod

and

qmax,mod = qmax

[
1− 1

2

(
1−

q2
ref

c2
max

)]
,

with the reference velocity

q2
ref = min

[
max

(
|q|2,K2c2

max

)
, c2

max

]
,

where K is the product of a constant Kc and the reference Mach number. Usually, Kc

is set to be one.
In this case, the Mach number Ma0 is calculated using the modified expressions. It gets
changed to

Ma0 = min

(
qmax,mod

cmin,mod
, 1

)
. (4.10)

In the following, we refer to the MAPS+ scheme using terms (4.7) to (4.8) as the general
MAPS+ scheme while we call the one using terms (4.9) to (4.10) the altered MAPS+
scheme.

4.2.3. Approximation of the continuous flux function

The continuous flux function of the Euler equations can be expressed by a Jacobi matrix
as defined in equation (2.4) on page 8. We want to analyze the differences in this matrix
caused by the use of an ideal and a Van der Waals gas equation of state. To do this,
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we examine the O-formulation of the entries of the matrix for both cases as the Mach
number approaches zero.
In a first step, it is helpful to look at the transformation matrix between the primi-
tive variables q1 = (ρ, v1, v2, p)

T and the conservative variables u = (u1, u2, u3, u4)T =

(ρ, ρv1, ρv2, ρE)T . To arrive at this matrix, we first write the primitive variables in terms
of the conservative ones. For an ideal gas we get

q1,id =

(
u1,

u2

u1
,
u3

u1
, (γ − 1)

[
u4 −

1

2

u2
2 + u2

3

u1

])T
, (4.11)

where the first three entries can be gained directly from the vector of conservative vari-
ables. To get the fourth entry we first rearrange the dimensionless version of the caloric
ideal gas equation (2.5) to

p = (γ − 1)

(
ρE − 1

2
ρv2

)
which then leads us to the fourth entry of the vector in equation (4.11).
In the next step we calculate the transformation matrix

(
∂q1
∂u

)
id
using the representation

of the primitive variables given in equation (4.11). This leads to

(
∂q1

∂u

)
id

=



1 0 0 0

−u2
u21

1
u1

0 0

−u3
u21

0 1
u1

0

1
2 (γ − 1)

u22+u23
u21

− (γ − 1) u2u1 − (γ − 1) u3u1 γ − 1


. (4.12)

If we replace the conservative variables, we can also write this matrix as

(
∂q1

∂u

)
id

=



1 0 0 0

−v1
ρ

1
ρ 0 0

−v2
ρ 0 1

ρ 0

1
2 (γ − 1) |v|2 −v1 (γ − 1) −v2 (γ − 1) γ − 1


.

To calculate the transformation matrix for a Van der Waals gas, we first write the vector
of primitive variables in terms of the conservative ones applying the nondimensional
caloric equation of state for a Van der Waals gas (4.4) on page 45. The first three entries
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are identical to the vector in equation (4.11). For the fourth entry we write the right-hand
side of equation (4.4) in terms of the conservative variables and arrive at

p =
2Mwu4 −Mw

u22+u23
u1

+ 2
au21
Mw

3Mw − 3bu1
− au2

1

M2
w

.

Hence, we get the following form of the vector of primitive variables:

q1,V dW =

u1,
u2

u1
,
u3

u1
,
2Mwu4 −Mw

u22+u23
u1

+ 2
au21
Mw

3Mw − 3bu1
− au2

1

M2
w

T

(4.13)

Now we calculate the transformation matrix
(
∂q1
∂u

)
V dW

using this vector. The first three
rows are identical to the ones in matrix (4.12). For the first entry in the last row we get

(
∂(q1)4

∂u1

)
V dW

=
(3Mw − 3bu1)

(
Mw

u22+u23
u21

+ 4 au1Mw

)
+ 3b

(
2Mwu4 −Mw

u22+u23
u1

+ 2
au21
Mw

)
(3Mw − 3bu1)2

−2
au1

M2
w

=
3M2

w
u22+u23
u21

+ 12au1 − 3bMw
u22+u23
u1
− 12 ab

Mw
u2

1

(3Mw − 3bu1)2

+
6bMwu4 − 3bMw

u22+u23
u1

+ 6 ab
Mw

u2
1

(3Mw − 3bu1)2 − 2
au1

M2
w

We can further simplify this equation to

(
∂(q1)4

∂u1

)
V dW

=
6bMwu4 + 3M2

w
u22+u23
u21
− 6bMw

u22+u23
u1
− 6 ab

Mw
u2

1 + 12au1

(3Mw − 3bu1)2 − 2
au1

M2
w

=
2bM3

wu4 +M4
w
u22+u23
u21
− 2bM3

w
u22+u23
u1
− 2abMwu

2
1 + 4aM2

wu1

3M2
w (Mw − bu1)2

+
−6ab2u3

1 + 12abMwu
2
1 − 6aM2

wu1

3M2
w (Mw − bu1)2

=
2bM3

wu4 +M4
w
u22+u23
u21
− 2bM3

w
u22+u23
u1
− 6ab2u3

1 + 10abMwu
2
1 − 2aM2

wu1

3M2
w (Mw − bu1)2 .
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If we replace the conservative variables we can rewrite this as(
∂(q1)4

∂u1

)
V dW

=
2bM3

wρE +M4
w|v|2 − 2bM3

wρ|v|2 − 6ab2ρ3 + 10abMwρ
2 − 2aM2

wρ

3M2
w (Mw − bρ)2

=
2bMwρ

(
E − |v|2

)
+M2

w|v|2 − 6 ab
2

M2
w
ρ3 + 10 ab

Mw
ρ2 − 2aρ

3 (Mw − bρ)2

The second entry in the last row becomes(
∂(q1)4

∂u2

)
V dW

=
−2Mw

u2
u1

3Mw − 3bu1
.

If we replace the conservative variables we get(
∂(q1)4

∂u2

)
V dW

=
−2Mwv1

3Mw − 3bρ
.

In a similar manner, we get (
∂(q1)4

∂u3

)
V dW

=
−2Mwv2

3Mw − 3bρ

for the third entry of the last row. Finally, we calculate the last entry which becomes(
∂(q1)4

∂u4

)
V dW

=
2Mw

3Mw − 3bu1
.

Again, we replace the conservative variables and arrive at(
∂(q1)4

∂u4

)
V dW

=
2Mw

3Mw − 3bρ
.

Hence, for a Van der Waals gas with the caloric equation of state (4.4) we get the following
form of the transformation matrix:
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(
∂q1

∂u

)
V dW

=

1 0 0 0

−v1
ρ

1
ρ 0 0

−v2
ρ 0 1

ρ 0

2bMwρ(E−|v|2)+M2
w|v|2−6 ab

2

M2
w
ρ3+10 ab

Mw
ρ2−2aρ

3(Mw−bρ)2
−2Mwv1
3Mw−3bρ

−2Mwv2
3Mw−3bρ

2Mw
3Mw−3bρ


.

(4.14)

Clearly, only the last row of the transformation matrix differs depending on which equa-
tion of state is used. The last row contains the changes of pressure with the different
conservative variables. In the first row, the changes of density are listed. Since density
is both a primitive variable in q1 and a conservative variable, this row does not change
depending on the choice of the state equation as density is solely described by itself.
Therefore, pressure is the only primitive variable out of q1 that depends on the specific
equation of state and hence we only see a change in the last row of the two matrices.
For M → 0, we get the following behavior of the different terms of the transformation
matrix for an ideal gas

(
∂q1

∂u

)
id

=


1 0 0 0

O(M) O(1) 0 0

O(M) 0 O(1) 0

O(M2) O(M) O(M) O(1)

 . (4.15)

For a Van der Waals gas we get

(
∂q1

∂u

)
V dW

=


1 0 0 0

O(M) O(1) 0 0

O(M) 0 O(1) 0

O(1) O(M) O(M) O(1)

 . (4.16)

Since |v| is of O(M) as M → 0 while all thermodynamic quantities are of O(1), the only
difference in the behavior of the terms of these matrices is the first term in the last row
(∂q1)4
∂u1

= ∂p
∂ρ . For an ideal gas, it is O(M2) but for a Van der Waals gas it is of O(1).

In a similar way, we can look at the behavior of the terms of the continuous Jacobi matrix
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in x1-direction A
(1)
u = ∂f1(u)

∂u . For the detailed derivation see Appendix (A.1). For an
ideal gas, we get

A
(1)
u =


0 1 0 0

O(M2) O(M) O(M) O(1)

O(M2) O(M) O(M) 0

O(M) O(1) O(M2) O(M)

 , (4.17)

see equation (A.4), while the usage of a Van der Waals gas leads to

A
(1)
u =


0 1 0 0

O(1) O(M) O(M) O(1)

O(M2) O(M) O(M) 0

O(M) O(1) O(M2) O(M)

 , (4.18)

see equation (A.7).
As for the transformation matrices, only one term shows a different behavior as M → 0.
This is the first term in the second row ∂(f1(u))2

∂u1
=

∂(ρv21+p)
∂ρ . For an ideal gas it is

of O(M2) as M → 0 while for a Van der Waals gas it is of O(1). This difference is
expected due to the different behaviors of ∂p∂ρ depending on the chosen equation of state,

which is dominant over the behavior of ∂(ρv21)
∂ρ in the case of a Van der Waals gas. Of

course, if we consider the continuous Jacobi matrix in x2-direction, the term showing
a different behavior depending on the state equation is the first term in the third row
∂(f2(u))3

∂u1
=

∂(ρv22+p)
∂ρ .

This analysis shows that there is a great difference in the behavior of some terms in the
Jacobi matrices as the Mach number approaches zero. Hence, a numerical flux function
designed for an ideal gas can only be expected to show good results for a Van der Waals
gas if these differences introduced due to the different state equations are also present in
the definition of the numerical flux function. Therefore, we need to analyze the MAPS+
function in this regard.
To compare the numerical MAPS+ flux function to the continuous Jacobi matrix of the
Euler equations, we have to transfer the dissipation terms of MAPS+ into the form of
a Jacobi Matrix. Following Rossow [60], we write the dissipation terms of the MAPS+
scheme as
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HρMAPS+ (ũi, ũj ;n) =
1

2cmax
(1− |Ma0|)4p+ ρβM4q + |q|4ρ

Hρv1MAPS+ (ũi, ũj ;n) = n1β
p4p+

1

2cmax
v1 (1− |Ma0|)4p+

1

2
n1ρcmax (1− |Ma0|)4q

+ρv1β
M4q + |q|4 (ρv1)

Hρv2MAPS+ (ũi, ũj ;n) = n2β
p4p+

1

2cmax
v2 (1− |Ma0|)4p+

1

2
n2ρcmax (1− |Ma0|)4q

+ρv2β
M4q + |q|4 (ρv2)

HρhMAPS+ (ũi, ũj ;n) =
1

2cmax
h (1− |Ma0|)4p+ ρhβM4q + |q|4 (ρh) .

The notation 4φ is an abbreviation for the numerical difference φL − φR.
We can express these equations as the sum of two Jacobi matrices. The first one being in
terms of the primitive variables q1, the second in terms of the conservative ones. Using
the transformation matrix ∂q1

∂u from primitive variables q1 to conservative variables u, we
can rewrite this sum in terms of conservative variables. This is necessary to compare it to
the continuous Jacobi matrix of the Euler equations which is formulated in conservative
variables as well. For simplicity, in the flowing we consider a flow-aligned coordinate
system. This gives us q = v1. With this, we can write the Jacobi matrix of the diffusive
part of the general MAPS+ scheme as

Au,MAPS+ =


0 ρβM 0 1

2cmax
(1− |Ma0|)

0 ρv1β
M + ρcmin

2 (1− |Ma0|) 0 v1
2cmax

(1− |Ma0|) + βp

0 ρv2β
M + ρcmin

2 (1− |Ma0|) 0 v2
2cmax

(1− |Ma0|) + βp

0 ρ(E + p
ρ)βM 0

E+ p
ρ

2cmax
(1− |Ma0|) + v1

 · ∂q1

∂u

+


v1 0 0 0

0 v1 0 0

0 0 v1 0

0 0 0 v1

.
(4.19)

To compare this representation of MAPS+ to the Jacobi matrix of the Euler equations,
we transform the latter into a similar form. Since we consider a flow-aligned coordinate
system with q = v1, we can compare matrix (4.19) to the continuous Jacobi matrix in
x1-direction A

(1)
u = ∂f1(u)

∂u . We separate a matrix in terms of the conservative variables
similar to the last term in equation (4.19) as it is done for the MAPS+ scheme and
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write the remaining terms as functions of the primitive variables q1. The detailed deriva-
tion is presented in Appendix A.2. This leads us to the following representation of the
continuous Jacobi matrix in x1-direction, written as the sum of two matrices

A
(1)
u =


0 ρ 0 0

0 ρv1 0 1

0 ρv2 0 0

0 ρ(E + p
ρ) 0 v1

 ∂q1

∂u
+


v1 0 0 0

0 v1 0 0

0 0 v1 0

0 0 0 v1

 . (4.20)

This matrix is valid for both an ideal and a Van der Waals gas, as it is shown in Ap-
pendices A.2.1 and A.2.2. Comparing equations (4.19) and (4.20), it stands out that we
only consider the pressure component in the momentum equation in x1-direction in the
continuous Jacobi matrix while it is present in both momentum equations in the flow-
aligned MAPS+ scheme. However, the momentum equation in x2-direction including the
pressure component is of course included in the continuous Jacobi matrix in x2-direction.
Apart from this difference, MAPS+ is a close approximation of the continuous flux func-
tion represented by equation (4.20) for Mach numbers close to or above one. Note that
the terms multiplied by (1− |Ma0|) only have a small influence as the Mach number
approaches unity from below. For supersonic flows, these terms are not considered, since
Ma0 = 1 in this flow region, see the definition of Ma0 in equation (4.7) on page 49. In
addition, for supersonic flows it is βM = βp = 1, see the definitions of βM and βp in
equations (4.5) and (4.6), respectively. Hence, in this flow region, the MAPS+ Jacobi
matrix is an exact representation of the continuous flux function of the Euler equation.
Due to the separation in primitive and conservative variables, this holds for any thermo-
dynamic state equation. The multiplication with ∂q1

∂u introduces the different behaviors
of the equations of state into the MAPS+ scheme. Hence, the numerical algorithm given
by equation (4.19) represents the flux of a Van der Waals gas as well as the one of an
ideal gas.
However, this is only the case for a Mach number above 0.5. For smaller Mach numbers,
and hence in the case ofM → 0, the functions βM and βp become zero, see their definition
in equations (4.5) and (4.6), respectively. At the same time, the influence of the terms
multiplied by (1− |Ma0|) increases. These differences are introduced to MAPS+ to
ensure the correct calculation of diffusion at small Mach numbers, both in and across the
direction of the flow, see Rossow [60].
Since we are interested in the application of MAPS+ to small Mach numbers, we look
at the flow aligned Jacobi matrix of the MAPS+ scheme for a Mach number below 0.5:
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Au,MAPS+ =


0 0 0 1

2cmax,mod
(1− |Ma0|)

0
ρcmin,mod

2 (1− |Ma0|) 0 v1
2cmax,mod

(1− |Ma0|)
0

ρcmin,mod
2 (1− |Ma0|) 0 v2

2cmax,mod
(1− |Ma0|)

0 0 0
E+ p

ρ

2cmax,mod
(1− |Ma0|) + v1


∂q1

∂u

+


v1 0 0 0

0 v1 0 0

0 0 v1 0

0 0 0 v1

.
(4.21)

Here, we use cmax,mod and cmin,mod instead of cmax and cmin since we are concerned with
flows at a low Mach number and hence want to analyze the altered MAPS+ scheme.
It is clear that this matrix is not as easily compared to the continuous Jacobi matrix as
the one given in equation (4.19). The additional terms introduced to MAPS+ that are
shown in equation (4.21) are thoroughly investigated by Rossow [60]. In their work, they
show that these terms have the expected effect for an ideal gas. Hence, we can deduce
that the matrix representing MAPS+ for a Mach number below 0.5 closely resembles the
matrix (4.19) for an ideal gas. Therefore, our goal is to show that the differences in the
behavior of the terms of the matrix between an ideal gas and a Van der Waals gas are
correctly reproduced by the MAPS+ scheme.
As for the continuous flux Jacobi matrix of the Euler equations, we investigate the
behavior of the terms of the MAPS+ flux Jacobi matrix as the Mach number approaches
zero. Again, we look at a flow-aligned coordinate system. For an ideal gas we get

Au,MAPS+ =


O(M) O(1) O(1) O(M−1)

O(M2) O(M) O(M) O(1)

O(M2) O(M) O(M) O(1)

O(M) O(1) O(1) O(M−1)

 ,

as M → 0 while for a Van der Waals gas we get the following behavior:

Au,MAPS+ =


O(M−1) O(1) O(1) O(M−1)

O(1) O(M) O(M) O(1)

O(1) O(M) O(M) O(1)

O(M−1) O(1) O(1) O(M−1)

 . (4.22)

The derivation of the behavior of the different terms is shown in Appendix A.3. The
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obvious difference of the Jacobi matrix for a Van der Waals gas is the increase of all
terms in the first column by two orders of magnitude with respect to the Mach number
compared to the Jacobi matrix for an ideal gas. These terms are the ones that are
multiplied by 4ρ. The analysis of the continuous Jacobi matrices shows this difference
in the momentum equations, see the matrices (4.17) and (4.18). Hence, the influence of
the different equation of state on the flux Jacobi matrix that we found by analyzing the
continuous Jacobi matrices is also present in the MAPS+ scheme.
The additional differences concerning the increased influence of the terms multiplied by
4ρ on the continuity and energy equations, so the changes in behavior of the first terms
in the first and last row, do not alter the performance of MAPS+. For a Van der Waals
gas, the terms multiplied by the density difference show the same behavior for a vanishing
Mach number as the terms multiplied by the energy density differences do. So, in matrix
(4.22), the first and the forth column contain identical entries. However, in the density
and energy density equations, the terms multiplied by 4ρE are higher than the terms
multiplied by 4ρ by a factor over 1000, where the exact value depends on the fluid. So
even though for a Van der Waals gas the terms multiplied by 4ρ show the same behavior
for M → 0 as the terms multiplied by 4ρE do, the latter are dominant independent of
the Mach number. Hence, the energy density differences are still the main components
in these two equations.
Therefore, the adjustments made for small Mach numbers work as well for a Van der
Waals gas as they do for an ideal gas.

4.2.4. Asymptotic Analysis

Since we want to analyze the flux function the way it is implemented in the numerical
scheme, it is favorable to nondimensionalize the equations by applying the reference
values used in the scheme instead of using the nondimensionalization that is suitable
for an asymptotic analysis. We also discuss this in section 4.1.5 and the used reference
values are listed in Table 4.1 on page 44. This leads to nondimensional parameters that
are not all of O(1) as M → 0. To overcome this issue and arrive at parameters of O(1),
we introduce the following auxiliary parameters into all equations of the flux functions:

c̃ = c, p̃ = p, h̃ = h ρ̃ = ρ, q̃ = Mq, and ṽ = Mv

As in chapter 3, we use the Mach number M instead of the local Mach number Ma for
the investigation.
Using the auxiliary variables, we get the following form of the integral balance equation
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presented in equation (4.2) on page 37:

d

dt
(Mσiũ) (t) +

(
L̃σiũ

)
(t) = 0 for all σi ∈ B

We conduct this analysis for both the general and the altered MAPS+ scheme. Since
both are an extension of MAPS, we start with an analysis of the MAPS scheme.
In the following, we use the discretization described in subsection 4.1.2 on page 38. The
subscript i indicates the cell mean value of the respective quantity in a grid cell σi ∈ B.
The subscript j refers to a grid cell σj with j ∈ N (i). The maximum and minimum
functions that are indicated by the subscripts max,ij and min,ij , respectively, indicate the
maximum and minimum of the respective quantities in the grid cells σi and σj .

4.2.4.1. MAPS scheme

For the average speed of sound, the introduction of the auxiliary parameters leads to

c̃av =
c̃i + c̃j

2
=
ci + cj

2
,

while the Mach number of each grid cell becomes

M̃ai =
q̃i
c̃av

= M
2qi

ci + cj
and M̃aj = M

2qj
ci + cj

.

With Φmax,ij = max (Φi,Φj) the maximum Mach number becomes

M̃am = max
(
|M̃ai|, |M̃aj |

)
= max

(
|M 2qi

ci + cj
|, |M 2qj

ci + cj
|
)

= M
2|q|max,ij

ci + cj
,

while for the Mach number M̃amax,1, the following is true:

M̃amax,1 = min
[
max

(
|M̃ai|, |M̃aj |

)
, 1
]

= min

(
M

2|q|max,ij

ci + cj
, 1

)
For M → 0 the first term of the minimum function is dominant and we get

M̃amax,1 = M
2|q|max,ij

ci + cj
.
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With this, we can evaluate the function β̃M :

β̃M = max
(

0, 2 · M̃amax,1 − 1
)

= max

(
0,M

4|q|max,ij

ci + cj
− 1

)
for M → 0 we get:

β̃M = 0.

Given these intermediate results, we can write the velocity components as

q̃cd =
c̃av
2

(
M̃ai + M̃aj

2
− β̃M |M̃aj | − |M̃ai|

2

)

=
ci + cj

4

(
M

2

2qi
ci + cj

+
M

2

2qj
ci + cj

)
=
ci + cj

4

(
M
qi + qj
ci + cj

)
= M

qi + qj
4

and
q̃up =

c̃av
2
M̃am =

ci + cj
4
·M 2|q|max,ij

ci + cj
= M

|q|max,ij

2
,

which leads to the momentum fluxes

(ρ̃v)i = (q̃cd + q̃up) ρi = M

(
qi + qj

4
+
|q|max,ij

2

)
ρi

and
(ρ̃v)j = (q̃cd − q̃up) ρj = M

(
qi + qj

4
− |q|max,ij

2

)
ρj .

In the next step, we evaluate the components of the pressure contribution. For the
average pressure we get

p̃av =
p̃i + p̃j

2
=
pi + pj

2
,

while the pressure difference becomes

p̃d =
1

2

(
p̃j
M̃aj

|M̃aj |
− p̃i

M̃ai

|M̃ai|

)
=

1

2

pj M 2qj
ci+cj

|M 2qj
ci+cj

|
− pi

M 2qi
ci+cj

|M 2qi
ci+cj

|


=

1

2

(
pj
qj
|qj |
− pi

qi
|qi|

)
.

With Φmin,ij = min (Φi,Φj) the Mach number M̃amin,1 is

M̃amin,1 = min
[
min

(
|M̃ai|, |M̃aj |

)
, 1
]

= min

(
M

2|q|min,ij

ci + cj
, 1

)
.
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For M → 0 we get:

M̃amin,1 = M
2|q|min,ij

ci + cj
.

Hence, we can evaluate β̃p:

β̃p = max(0, 2 · M̃amin,1 − 1) = max

(
0, 2 ·M 2|q|min,ij

ci + cj
− 1

)
For M → 0 we get

β̃p = 0.

With these results, the pressure contribution p̃12 simplifies to

p̃12 = p̃av − β̃pp̃d =
pi + pj

2
.

For the extension to MAPS+ we distinguish between the general MAPS+ scheme for
all Mach numbers and the altered MAPS+ scheme with modified terms for low Mach
numbers.

4.2.4.2. General MAPS+ scheme

In the general case, we can write the remaining terms as

c̃max,ij = max (c̃i, c̃j) = cmax,ij ,

c̃min,ij = min (c̃i, c̃j) = cmin,ij

and
q̃max,ij = M̃amc̃max,ij = M

2|q|max,ijcmax,ij

ci + cj
.

And the Mach number M̃a0 becomes:

M̃a0 = min

(
q̃max,ij

c̃min,ij
, 1

)
= min

M 2|q|max,ijcmax,ij

ci+cj

cmin,ij
, 1

 = min

(
M

2|q|max,ij

ci + cj

cmax,ij

cmin,ij
, 1

)

For M → 0 again the first term of the minimum function is the dominant one. Hence,
we get:

M̃a0 = M
2|q|max,ij

ci + cj

cmax,ij

cmin,ij
(4.23)
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For the pressure scaling we get

p̃scal =
max

(
1− M̃a0, 0

)
2 · c̃max,ij

· p̃j − p̃i
2

(4.24)

In equation (4.23) we see that M̃a0 is smaller than 1 as M → 0. Hence, we can further
simplify equation (4.24) to

p̃scal =
1− M̃a0

2 · c̃max,ij
· p̃j − p̃i

2
=

(
1−M 2|q|max,ij

ci+cj

cmax,ij

cmin,ij

)
(pj − pi)

4cmax,ij

=
pj − pi
4cmax,ij

−M |q|max,ij (pj − pi)
2cmin,ij (ci + cj)

.

The velocity scaling becomes

q̃scal =
ρ̃i + ρ̃j

4
·max

(
1− M̃a0, 0

)
c̃min,ij (q̃j − q̃i) .

Again, we use the fact that M̃a0 < 1 for M → 0 to simplify the maximum function.
This leads us to

q̃scal =
ρ̃i + ρ̃j

4
·
(

1− M̃a0

)
c̃min,ij (q̃j − q̃i)

=
ρi + ρj

4

(
1−M 2|q|max,ij

ci + cj

cmax,ij

cmin,ij

)
cmin,ij ·M (qj − qi)

=
M

4
(ρi + ρj) cmin,ij (qj − qi)−M2 |q|max,ijcmax,ij (ρi + ρj)

2 (ci + cj)
(qj − qi) .

Finally, we can combine all intermediate results and arrive at the expression for the flux
functions. With the shorthand notation 4ijΦ = Φi − Φj we get for the density flux:

HρMAPS+ (ũi, ũj ;n) = (ρ̃v)i + (ρ̃v)j − 2p̃scal

= M

(
qi + qj

4
+
|q|max,ij

2

)
ρi +M

(
qi + qj

4
− |q|max,ij

2

)
ρj

−2

(
pj − pi
4cmax,ij

−M |q|max,ij (pj − pi)
2cmin,ij (ci + cj)

)
=
4ijp

2cmax,ij
−M |q|max,ij

cmin,ij

4ijp

ci + cj
+M

|q|max,ij

2
4ijρ

+M
(qi + qj) (ρi + ρj)

4

(4.25)
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The two momentum fluxes HρvζMAPS+ (ũi, ũj ;n) with ζ = 1, 2 can be written as

HρvζMAPS+ (ũi, ũj ;n) = (ρ̃v)i (ṽζ)i + (ρ̃v)j (ṽζ)j + nζ p̃12 −
[
(ṽζ)i + (ṽζ)j

]
p̃scal − nζ q̃scal

= M

(
qi + qj

4
+
|q|max,ij

2

)
ρi ·M (vζ)i

+M

(
qi + qj

4
− |q|max,ij

2

)
ρj ·M (vζ)j + nζ

pi + pj
2

−M
[
(vζ)i + (vζ)j

]( pj − pi
4cmax,ij

−M |q|max,ij (pj − pi)
2cmin,ij (ci + cj)

)
−nζ

(
M

4
(ρi + ρj) cmin,ij (qj − qi)

−M2 |q|max,ijcmax,ij (ρi + ρj)

2 (ci + cj)
(qj − qi)

)
= nζ

pi + pj
2

+M
(vζ)i + (vζ)j

4cmax,ij
4ijp+ nζM

ρi + ρj
4

cmin,ij4ijq

−M2 |q|max,ij

2cmin,ij

(vζ)i + (vζ)j
ci + cj

4ijp

−nζM2 |q|max,ijcmax,ij

2

ρi + ρj
ci + cj

4ijq

+M2 |q|max,ij

2
4ij (ρvζ) +M2 qi + qj

4

[
(ρvζ)i + (ρvζ)j

]
.

(4.26)

The enthalpy flux becomes

HρhMAPS+ (ũi, ũj ;n) = (ρ̃v)i h̃i + (ρ̃v)j h̃j −
(
h̃i + h̃j

)
p̃scal

= M

(
qi + qj

4
+
|q|max,ij

2

)
(ρh)i +M

(
qi + qj

4
− |q|max,ij

2

)
(ρh)j

− (hi + hj)

(
pj − pi
4cmax,ij

−M |q|max,ij (pj − pi)
2cmin,ij (ci + cj)

)
=
hi + hj
4cmax,ij

4ijp−M
|q|max,ij

2cmin,ij

hi + hj
ci + cj

4ijp+M
|q|max,ij

2
4ij (ρh)

+M
qi + qj

4

[
(ρh)i + (ρh)j

]
.

(4.27)

To conduct an asymptotic analysis, we insert an asymptotic series of the form

ψj = ψ
(0)
j +Mψ

(1)
j +M2ψ

(2)
j + o

(
M2
)
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for every physical quantity in the numerical flux functions (4.25), (4.26) and (4.27). Due
to Lemma 2 this results in the following asymptotic difference equations:

d

dt
ρ

(0)
i =

∑
j∈N (i)

2∑
k=1

4ijp
(0)

2c
(0)
max,ij

|lkij |, (4.28)

0 =
∑

j∈N (i)

2∑
k=1

p
(0)
i + p

(0)
j

2
nkij,ζ |lkij | for ζ = 1, 2

and
d

dt
(ρE)

(0)
i =

∑
j∈N (i)

2∑
k=1

h
(0)
i + h

(0)
j

4c
(0)
max,ij

4ijp
(0)|lkij | (4.29)

for every i ∈ Nh,G . Again, we need to expand the relations into Taylor series to gain
equations (4.28) and (4.29) which are given by equations (A.17) and (A.24).
A direct result of equations (4.28) and (4.29) is the following Theorem.

Theorem 5.
For ∂Th = ∂Th,w ∪ ∂Th,ff with the boundary condition

p(x, t) = const+Mp(1)(x, t) +M2p(2)(x, t)

for all (x, t) ∈ ∂Th,ff × R+
0 and const ∈ R+, the following is true for the leading order

pressure distribution calculated by the general MAPS+ scheme:

p
(0)
i = p

(0)
j for all i, j ∈ Nh.

The proof is given by Meister [47].
Now, we analyze the function HρMAPS+ (ũi, ũj ;n) in equation (4.25) in more detail. We
get for the mass balance
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d

dt
(ρ) =

∑
j∈N (i)

2∑
k=1

(
4ijp

(0)

2c
(0)
max,ij

)
|lkij |

+M
∑

j∈N (i)

2∑
k=1

(
4ijp

(1)

2c
(0)
max,ij

−
c

(1)
max,ij4ijp

(0)

2
(
c

(0)
max,ij

)2 −
|q|(0)

max,ij

c
(0)
min,ij

4ijp
(0)

c
(0)
i + c

(0)
j

+
|q|(0)

max,ij

2
4ijρ

(0) +

(
q

(0)
i + q

(0)
j

)(
ρ

(0)
i + ρ

(0)
j

)
4

)
|lkij |

+O(M2),

(4.30)

where the different terms are given by equations (A.17) and (A.18).
In the following we consider the special case of a structured, equidistant, Cartesian grid
to which we refer as Sh.

Theorem 6.
If Sh is a structured discretization of the flow domain G with ∂Sh = ∂Sh,w ∪ ∂Sh,ff and
with the boundary condition

p(x, t) = const+M2p(2)(x, t)

for all (x, t) ∈ ∂Sh,ff × R+
0 and const ∈ R+, and for all i ∈ Nh,G the statement

ρ
(0)
i = ρ

(0)
j for all j ∈ N(i) (4.31)

with

nil = −nik =

(
1

0

)
for l, k ∈ N (i)

is true, then there exists a velocity field such that the following statement holds for the
pressure terms evaluated by the general MAPS+ scheme:

p
(1)
i 6= p

(1)
k

Proof.
Due to Theorem 5, the leading order pressure is constant everywhere. Considering the
discretization Sh, we can simplify the asymptotic mass equation (4.30) to
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d

dt
ρi = M

∑
j∈(l,k)

(
4ijp

(1)

2c
(0)
max,ij

+
|q|(0)

max,ij

2
4ijρ

(0)

+

(
q

(0)
i + q

(0)
j

)(
ρ

(0)
i + ρ

(0)
j

)
4

)
+O(M2).

We arrive at the following mass equation of order O(M):

p
(1)
i − p

(1)
l

2c
(0)
max,il

+
p

(1)
i − p

(1)
k

2c
(0)
max,ik

= −
|q|(0)

max,il

2

(
ρ

(0)
i − ρ

(0)
l

)
−
|q|(0)

max,ik

2

(
ρ

(0)
i − ρ

(0)
k

)

−

(
q

(0)
i + q

(0)
l

)(
ρ

(0)
i + ρ

(0)
l

)
4

−

(
q

(0)
i + q

(0)
k

)(
ρ

(0)
i + ρ

(0)
k

)
4

.

Using condition (4.31) we can simplify this to

p
(1)
i − p

(1)
l

2c
(0)
max,il

+
p

(1)
i − p

(1)
k

2c
(0)
max,ik

=
ρ(0)

2

(
−2q

(0)
i − q

(0)
l − q

(0)
k

)
. (4.32)

From this relation, it is obvious that p(1) cannot be spatially constant for an arbitrary
velocity field.

If we do not consider the special case of a constant density field, the relationship between
velocity and pressure is more complicated than the one stated in equation (4.32) since
it also includes the density field. So, for p(1) to be spatially constant, the velocity field
needs to be a certain function of the density field. If the density field is arbitrary, there
exists a velocity field such that the first order of pressure cannot be spatially constant.
This Theorem shows that there can be fluctuations of the first order pressure term inde-
pendent of both the fineness of the discretization and the Mach number. This leads to
the following corollary:

Corollary 6.1.
There is a discretization of the domain G so that with the existence of an i ∈ Nh,∂G with

ρ
(0)
i = ρ

(0)
j for all j ∈ N (i),

the first order pressure terms as calculated by the general MAPS+ scheme have variations
on a length scale independent of M .
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This clearly contradicts the results of the continuous asymptotic analysis. This analysis
of the numerical scheme is based on one spatial and one temporal scale. Hence, it should
result in a first order pressure term that is spatially constant.
We can repeat the proof of Theorem 6 using the asymptotic balance equations for the
momentum and energy equations. This is redundant to proof the existence of pressure
waves on a length scale independent of M since the evidence that one relation causes
these fluctuations is sufficient. However, in the next step we want to show that these
pressure waves are not caused with the altered MAPS+ scheme, hence we need to detect
all mechanisms that result in these fluctuations.
Now, we analyze the momentum flux functions with HρvζMAPS+ (ũi, ũj ;n) given in equa-
tion (4.26) in more detail. To arrive at the final form, we expand the equation into a
Taylor series. We get the momentum balance as shown in equation (A.22) as
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d

dt
(ρvζ)i =

∑
j∈N (i)

2∑
k=1

(
p

(0)
i + p

(0)
j

2

)
nkij,ζ |lkij |

+M
∑

j∈N (i)

2∑
k=1

(
p

(1)
i + p

(1)
j

2
nkij,ζ +

(vζ)
(0)
i + (vζ)

(0)
j

4c
(0)
max,ij

4ijp
(0)

+
ρ

(0)
i + ρ

(0)
j

4
c

(0)
min,ij4ijq

(0)nkij,ζ

)
|lkij |

+M2
∑

j∈N (i)

2∑
k=1

(
p

(2)
i + p

(2)
j

2
nkij,ζ +

(vζ)
(0)
i + (vζ)

(0)
j

4c
(0)
max,ij

4ijp
(1)

+
(vζ)

(1)
i + (vζ)

(1)
j

4c
(0)
max,ij

4ijp
(0) +

(vζ)
(0)
i + (vζ)

(0)
j

4
(
c

(0)
max,ij

)2 c
(1)
max,ij4ijp

(0)

+
ρ

(1)
i + ρ

(1)
j

4
c

(0)
min,ij4ijq

(0)nkij,ζ

+
ρ

(0)
i + ρ

(0)
j

4
c

(1)
min,ij4ijq

(0)nkij,ζ

+
ρ

(0)
i + ρ

(0)
j

4
c

(0)
min,ij4ijq

(1)nkij,ζ

− |q
(0)|max,ij

2c
(0)
min,ij

(vζ)
(0)
i + (vζ)

(0)
j

c
(0)
i + c

(0)
j

4ijp
(0)

−
|q(0)|max,ijc

(0)
max,ij

2

ρ
(0)
i + ρ

(0)
j

c
(0)
i + c

(0)
j

4ijq
(0)nkij,ζ

+
|q(0)|max,ij

2
4ij (ρvζ)

(0)

+
q

(0)
i + q

(0)
j

4

[
(ρvζ)

(0)
i + (ρvζ)

(0)
j

])
|lkij |

+O(M3) for ζ = 1, 2.

Again, we consider the special case of a structured, equidistant, Cartesian grid Sh. The
leading order pressure is constant in the vicinity of control volume σi, see Theorem 5.
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Hence, we can simplify the momentum balance to

d

dt
(ρvζ)i =

∑
j∈(l,k)

p(0)nij,ζ

+M
∑
j∈(l,k)

(
p

(1)
i + p

(1)
j

2
+
ρ

(0)
i + ρ

(0)
j

4
c

(0)
min,ij4ijq

(0)

)
nij,ζ

+M2
∑
j∈(l,k)

(
p

(2)
i + p

(2)
j

2
nij,ζ +

(vζ)
(0)
i + (vζ)

(0)
j

4c
(0)
max,ij

4ijp
(1)

+
ρ

(1)
i + ρ

(1)
j

4
c

(0)
min,ij4ijq

(0)nij,ζ

+
ρ

(0)
i + ρ

(0)
j

4
c

(1)
min,ij4ijq

(0)nij,ζ

+
ρ

(0)
i + ρ

(0)
j

4
c

(0)
min,ij4ijq

(1)nij,ζ

−
|q(0)|max,ijc

(0)
max,ij

2

ρ
(0)
i + ρ

(0)
j

c
(0)
i + c

(0)
j

4ijq
(0)nij,ζ

+
|q(0)|max,ij

2
4ij (ρvζ)

(0)

+
q

(0)
i + q

(0)
j

4

[
(ρvζ)

(0)
i + (ρvζ)

(0)
j

])

+O(M3) for ζ = 1, 2.
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We can rewrite the momentum balance of O(M2) as

(
p

(1)
i − p

(1)
l

) (vζ)
(0)
i + (vζ)

(0)
l

4c
(0)
max,il

+
(
p

(1)
i − p

(1)
k

) (vζ)
(0)
i + (vζ)

(0)
k

4c
(0)
max,ik

=

−
p

(2)
i + p

(2)
l

2
+
p

(2)
i + p

(2)
k

2
−
ρ

(1)
i + ρ

(1)
l

4
c

(0)
min,il

(
q

(0)
i − q

(0)
l

)
+
ρ

(1)
i + ρ

(1)
k

4
c

(0)
min,ik

(
q

(0)
i − q

(0)
k

)
−
ρ

(0)
i + ρ

(0)
l

4
c

(1)
min,il

(
q

(0)
i − q

(0)
l

)
+
ρ

(0)
i + ρ

(0)
k

4
c

(1)
min,ik

(
q

(0)
i − q

(0)
k

)
−
ρ

(0)
i + ρ

(0)
l

4
c

(0)
min,il

(
q

(1)
i − q

(1)
l

)
+
ρ

(0)
i + ρ

(0)
k

4
c

(0)
min,ik

(
q

(1)
i − q

(1)
k

)
+
|q(0)|max,ilc

(0)
max,il

2

ρ
(0)
i + ρ

(0)
l

c
(0)
i + c

(0)
l

(
q

(0)
i − q

(0)
l

)

−
|q(0)|max,ikc

(0)
max,ik

2

ρ
(0)
i + ρ

(0)
k

c
(0)
i + c

(0)
k

(
q

(0)
i − q

(0)
k

)
−
|q(0)|max,il

2

[
(ρvζ)

(0)
i − (ρvζ)

(0)
l

]
−
|q(0)|max,ik

2

[
(ρvζ)

(0)
i − (ρvζ)

(0)
k

]
−
q

(0)
i + q

(0)
l

4

[
(ρvζ)

(0)
i + (ρvζ)

(0)
l

]
−
q

(0)
i + q

(0)
k

4

[
(ρvζ)

(0)
i + (ρvζ)

(0)
k

]
for ζ = 1, 2.
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Using condition (4.31),we can simplify this equation to

(
p

(1)
i − p

(1)
l

) (vζ)
(0)
i + (vζ)

(0)
l

4c
(0)
max,il

+
(
p

(1)
i − p

(1)
k

) (vζ)
(0)
i + (vζ)

(0)
k

4c
(0)
max,ik

=

−
p

(2)
i + p

(2)
l

2
+
p

(2)
i + p

(2)
k

2
− ρ(1)

2
c

(0)
min,il

(
q

(0)
i − q

(0)
l

)
+
ρ(1)

2
c

(0)
min,ik

(
q

(0)
i − q

(0)
k

)
− ρ(0)

2
c

(1)
min,il

(
q

(0)
i − q

(0)
l

)
+
ρ(0)

2
c

(1)
min,ik

(
q

(0)
i − q

(0)
k

)
− ρ(0)

2
c

(0)
min,il

(
q

(1)
i − q

(1)
l

)
+
ρ(0)

2
c

(0)
min,ik

(
q

(1)
i − q

(1)
k

)
+
|q(0)|max,ilc

(0)
max,ilρ

(0)

c
(0)
i + c

(0)
l

(
q

(0)
i − q

(0)
l

)

−
|q(0)|max,ikc

(0)
max,ikρ

(0)

c
(0)
i + c

(0)
k

(
q

(0)
i − q

(0)
k

)
−
|q(0)|max,il

2

[
(ρvζ)

(0)
i − (ρvζ)

(0)
l

]
−
|q(0)|max,ik

2

[
(ρvζ)

(0)
i − (ρvζ)

(0)
k

]
−
q

(0)
i + q

(0)
l

4

[
(ρvζ)

(0)
i + (ρvζ)

(0)
l

]
−
q

(0)
i + q

(0)
k

4

[
(ρvζ)

(0)
i + (ρvζ)

(0)
k

]
for ζ = 1, 2.

(4.33)

Without further simplification, this relation shows that the first order pressure distribu-
tion cannot be always spatially constant for arbitrary velocity and momentum fields.
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Finally, we look at the function HρhMAPS+ (ũi, ũj ;n) in equation (4.27). We get

d

dt
(ρh)i =

∑
j∈N (i)

2∑
k=1

(
h

(0)
i + h

(0)
j

4c
(0)
max,ij

4ijp
(0)

)
|lkij |

+M
∑

j∈N (i)

2∑
k=1

(
h

(0)
i + h

(0)
j

4c
(0)
max,ij

4ijp
(1) +

h
(1)
i + h

(1)
j

4c
(0)
max,ij

4ijp
(0)

−

(
h

(0)
i + h

(0)
j

)
c

(1)
max,ij

4
(
c

(0)
max,ij

)2 4ijp
(1)

−
|q|(0)

max,ij

2c
(0)
min,ij

h
(0)
i + h

(0)
j

c
(0)
i + c

(0)
j

4ijp
(0)

+
|q|(0)

max,ij

2
4ij (ρh)(0)

+
q

(0)
i + q

(0)
j

4

[
(ρh)

(0)
i + (ρh)

(0)
j

])
|lkij |

+O(M2).

With the leading order pressure being constant in the vicinity of control volume σi,
see Theorem 5, and the structured, equidistant, Cartesian grid Sh, we can simplify this
equation to

d

dt
(ρh)i = M

∑
j∈(l,k)

(
h

(0)
i + h

(0)
j

4c
(0)
max,ij

4ijp
(1) −

(
h

(0)
i + h

(0)
j

)
c

(1)
max,ij

4
(
c

(0)
max,ij

)2 4ijp
(1)

+
|q|(0)

max,ij

2
4ij (ρh)(0)

+
q

(0)
i + q

(0)
j

4

[
(ρh)

(0)
i + (ρh)

(0)
j

])
+O(M2).
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We arrive at the following equation of order O(M) for the stationary case:

(
p

(1)
i − p

(1)
l

) h(0)
i + h

(0)
l

2c
(0)
max,il

+
(
p

(1)
i − p

(1)
k

)h(0)
i + h

(0)
k

2c
(0)
max,ik

−
(
p

(1)
i − p

(1)
l

) (h(0)
i + h

(0)
l

)
c

(1)
max,il

4
(
c

(0)
max,il

)2

−
(
p

(1)
i − p

(1)
k

) (h(0)
i + h

(0)
k

)
c

(1)
max,ik

4
(
c

(0)
max,ik

)2 = −
|q|(0)

max,il

2

[
(ρh)

(0)
i − (ρh)

(0)
l

]

−
|q|(0)

max,jk

2

[
(ρh)

(0)
i − (ρh)

(0)
k

]
−
q

(0)
i + q

(0)
l

4

[
(ρh)

(0)
i + (ρh)

(0)
l

]
−
q

(0)
i + q

(0)
k

4

[
(ρh)

(0)
i + (ρh)

(0)
k

]
(4.34)

If we extend condition (4.31) of a constant density field to a constant enthalpy-density
field

(ρh)
(0)
i = (ρh)

(0)
j for all j ∈ N(i),

we can simplify equation (4.34) to

(
p

(1)
i − p

(1)
l

) h(0)
i + h

(0)
l

2c
(0)
max,il

1−
c

(1)
max,il

2c
(0)
max,il

+
(
p

(1)
i − p

(1)
k

) h(0)
i + h

(0)
k

2c
(0)
max,ik

1−
c

(1)
max,ik

2c
(0)
max,ik


=

(ρh)(0)

2

(
−2q

(0)
i − q

(0)
l − q

(0)
k

)
.

(4.35)
For an arbitrary velocity field and without special requirements on the first and second
order speed of sound this relation also leads to a first order pressure term p(1) that cannot
be spatially constant.
Now, we repeat this analysis for the altered MAPS+ scheme.

4.2.4.3. Altered MAPS+ scheme

In the case of the altered MAPS+ scheme, we need to consider the reference velocity
q̃2
ref,ij . For a small Mach number, it becomes

q̃2
ref,ij = min

[
max

(
|q̃|2,M2K2

c c̃
2
max,ij

)
, c̃2

max,ij

]
= min

[
max

(
M2|q|2,M2c2

max,ij

)
, c2

max,ij

]
.
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For M → 0 we can simplify this expression to

q̃2
ref,ij = M2 max

(
|q|2, c2

max,ij

)
= M2q2

ref,ij .

Hence, we use the dimensionless quantity q2
ref,ij to refer to the maximum of |q|2 and

c2
max,ij .
With this, we can write the remaining modified terms as

c̃max,mod =

√√√√q̃2
max,ij

[
1

2

(
1−

q̃2
ref,ij

c̃2
max,ij

)]2

+ q̃2
ref,ij

=

√√√√(M 2|q|max,ijcmax,ij

ci + cj

)2
[

1

2

(
1−M2

q2
ref,ij

c2
max,ij

)]2

+M2q2
ref,ij

= M

√√√√(4|q|2max,ijc
2
max,ij

(ci + cj)
2

)(
c4

max,ij − 2M2c2
max,ijq

2
ref,ij +M4q4

ref,ij

4 · c4
max,ij

)
+ q2

ref,ij

= M

√√√√√ |q|2max,ij

(
M2q2

ref,ij − c2
max,ij

)2

c2
max,ij (ci + cj)

2 + q2
ref,ij ,

c̃min,mod = c̃max,mod

and

q̃max,mod = q̃max,ij

[
1− 1

2

(
1−

q̃2
ref,ij

c̃2
max,ij

)]

= M
2|q|max,ijcmax,ij

ci + cj

[
1− 1

2

(
1−M2

q2
ref,ij

c2
max,ij

)]

= M
2|q|max,ijcmax,ij

ci + cj
−M |q|max,ijcmax,ij

ci + cj

(
1−M2

q2
ref,ij

c2
max,ij

)

= M
2|q|max,ijcmax,ij

ci + cj
−M |q|max,ijcmax,ij

ci + cj
+M3

q2
ref,ij

cmax,ij

|q|max,ij

ci + cj

= M
|q|max,ijcmax,ij

ci + cj
+M3

q2
ref,ij

cmax,ij

|q|max,ij

ci + cj
.
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The modified terms are also used to calculate the Mach number M̃a0. Hence, we get

M̃a0 = min

(
q̃max,mod

c̃min,mod
, 1

)
= min


M
|q|max,ijcmax,ij

ci+cj
+M3 q2ref,ij

cmax,ij

|q|max,ij

ci+cj

M

√
|q|2max,ij(M2q2ref,ij−c

2
max,ij)

2

c2max,ij(ci+cj)
2 + q2

ref,ij

, 1



= min


|q|max,ijcmax,ij

ci+cj
+M2 q2ref,ij

cmax,ij

|q|max,ij

ci+cj√
|q|2max,ij(M2q2ref,ij−c

2
max,ij)

2

c2max,ij(ci+cj)
2 + q2

ref,ij

, 1

 .

(4.36)

To be able to use this Mach number for the asymptotic analysis, we expand the first
term of the minimum condition as a Taylor series, see equation (A.32) in appendix A.4.
This results in

M̃a0 = min

([
cmax,ij |q|max,ij√

c2
max,ij |q|2max,ij + q2

ref,ij (ci + cj)
2

+M2
|q|max,ijq

2
ref,ij

(
2c2

max,ij |q|2max,ij + q2
ref,ij (ci + cj)

2
)

cmax,ij

(
c2

max,ij |q|2max,ij + q2
ref,ij (ci + cj)

2
) 3

2

+O(M4)

]
, 1

)
.

If we look at the first term, we can see that it is smaller than one. Hence, for M → 0 we
can simplify this expression to

M̃a0 =
cmax,ij |q|max,ij√

c2
max,ij |q|2max,ij + q2

ref,ij (ci + cj)
2

+M2
|q|max,ijq

2
ref,ij

(
2c2

max,ij |q|2max,ij + q2
ref,ij (ci + cj)

2
)

cmax,ij

(
c2

max,ij |q|2max,ij + q2
ref,ij (ci + cj)

2
) 3

2

+O(M4).

The pressure scaling using the modified expressions is defined as

p̃scal =
max

(
1− M̃a0, 0

)
2c̃max,mod

· p̃j − p̃i
2

.
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Since the Mach number M̃a0 is smaller than one as M → 0, we can simplify this to

p̃scal =
1− M̃a0

2c̃max,mod
· p̃j − p̃i

2

=
1

2M

1√
|q|2max,ij(M2q2ref,ij−c

2
max,ij)

2

c2max,ij(ci+cj)
2 + q2
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·
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c2

max,ij |q|2max,ij + q2
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2
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(
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2
)
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(
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max,ij |q|2max,ij + q2
ref,ij (ci + cj)

2
) 3

2

+O(M4)

 · pj − pi
2

.

(4.37)

For the asymptotic analysis, we expand the second factor into a Taylor series, see equation
(A.33) in appendix A.4. This leads to

p̃scal

=
1

2M

(
ci + cj√

c2
max,ij |q|2max,ij + q2

ref,ij (ci + cj)
2

+M2
|q|2max,ijq

2
ref,ij (ci + cj)(
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2
) 3

2

+O(M4)

)

·

1− cmax,ij |q|max,ij√
c2
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2
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2
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(
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2
)
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2
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 · pj − pi
2
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We can simplify this to

p̃scal

=
1

4M

 ci + cj√
c2
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2
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(
2c2
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+O(M3).

The velocity scaling can be written as

q̃scal =
ρ̃i + ρ̃j

4
·max

(
1− M̃a0, 0

)
· c̃min,mod (q̃j − q̃i)

which we can simplify to

q̃scal =
ρ̃i + ρ̃j

4

(
1− M̃a0

)
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ρi + ρj

4
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2
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2
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(
2c2
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2
)
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(
c2
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2
) 3
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2 + q2
ref,ij ·M (qj − qi) .

(4.38)

Here, we expand the last square root into a Taylor series. See equation (A.34) in Appendix
A.4 for the detailed derivation. This leads to the following expression, which is suitable
for an asymptotic analysis:
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q̃scal =
ρi + ρj

4
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We can further simplify this equation to get

q̃scal = M2 ρi + ρj
4

(√
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As for the general MAPS+ scheme, we combine the intermediate results to arrive at the
flux functions. The density flux becomes

HρMAPS+ (ũi, ũj ;n)

= (ρ̃v)i + (ρ̃v)j − 2p̃scal

= M
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4
+
|q|max,ij

2

)
ρi +M

(
qi + qj

4
− |q|max,ij

2

)
ρj

− 1

2M

(
ci + cj√
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2

)
(pj − pi)

−M
2

(
|q|2max,ijq

2
ref,ij (ci + cj)(
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2
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(4.39)
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We can simplify this to

HρMAPS+ (ũi, ũj ;n)

=
1

2M
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(4.40)
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The momentum flux HρvζMAPS+ (ũi, ũj ;n) results in

HρvζMAPS+ (ũi, ũj ;n)

= (ρ̃v)i (ṽζ)i + (ρ̃v)j (ṽζ)j + nζ p̃12 −
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]
p̃scal − nζ q̃scal
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+O(M6) for ζ = 1, 2.
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We rearrange this equation to

HρvζMAPS+ (ũi, ũj ;n)

= −nζ
pi + pj

2
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2
4ij (ρvζ) +M2 qi + qj

4

[
(ρvζ)i + (ρvζ)j

]
+O(M3)

(4.41)

with ζ = 1, 2.
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Finally, we can write the ρh-flux as

HρhMAPS+ (ũi, ũj ;n)

= (ρ̃v)i · h̃i + (ρ̃v)j · h̃j −
(
h̃i + h̃j

)
· p̃scal

= M

(
qi + qj

4
+
|q|max,ij

2

)
(ρh)i +M

(
qi + qj

4
− |q|max,ij

2

)
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1
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M
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2
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2
) 3

2

+
cmax,ij |q|3max,ijq

2
ref,ij (ci + cj)(

c2
max,ij |q|2max,ij + q2

ref,ij (ci + cj)
2
)2

−
|q|max,ijq

2
ref,ij

(
2c2

max,ij |q|2max,ij + q2
ref,ij (ci + cj)

2
)
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(
c2

max,ij |q|2max,ij + q2
ref,ij (ci + cj)

2
)2 (ci + cj)
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We rearrange this equation to

HρhMAPS+ (ũi, ũj ;n)

=
1

M

hi + hj
4

 ci + cj√
c2

max,ij |q|2max,ij + q2
ref,ij (ci + cj)

2
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2

)
4ijp

−M (hi + hj)

4

(
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2
ref,ij (ci + cj)(
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max,ij |q|2max,ij + q2
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2
) 3
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2
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2
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(
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ref,ij (ci + cj)

2
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(
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ref,ij (ci + cj)

2
)2 (ci + cj)

)
4ijp

+M
|q|max,ij

2
4ij (ρh) +M

qi + qj
4

[
(ρh)i + (ρh)j

]
+O(M3).

(4.42)

In the next step, we insert the asymptotic sequence into the equations. To arrive at a
final result, we expand each equation into a Taylor series. The mass balance is given by
equation (A.27) as
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d

dt
ρi =

1

M

∑
j∈N (i)
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ξ2

1 +
(
q

(0)
ref

)2
ξ2

2

− ξ1ξ2

ξ2
1 +

(
q

(0)
ref

)2
ξ2

2
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2
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2

[
ξ2
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(
q
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2
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2
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i + c
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+O(M)

(4.43)

with
ξ1 = c

(0)
max,ij |q

(0)|max,ij (4.44)

and
ξ2 = c

(0)
i + c

(0)
j . (4.45)
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From this equation, it is clear that Theorem 5 is also true for the altered MAPS+ scheme.
Next, we deduce the following Theorem from the mass equation of O(1):

Theorem 7.
If Sh is a structured discretization of the flow domain G with ∂Sh = ∂Sh,w ∪∂Sh,ff , then
the following statement holds for the pressure terms evaluated by the altered MAPS+
scheme:

p
(1)
i = p

(1)
j for all i, j ∈ Nh.

Proof.
Due to Theorem 5, the leading order pressure is constant everywhere. Considering the
discretization Sh, we can simplify the asymptotic mass equation (4.43) to

d

dt
ρi =

∑
j∈N (i)

2∑
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1
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2
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 |lkij |
+O(M).

We arrive at the following mass equation of order O(1):

(
p
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l

) c
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l
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
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−
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(0)
k

)2

 = 0

From this relation, it is obvious that p(1) is spatially constant regardless of the velocity
distribution.
However, so far, we only show that fluctuations in p(1) are not caused by the mass balance.
But for the general MAPS+ scheme we show that these fluctuations can also originate in
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the balances of momentum and enthalpy density, see equations (4.33) and (4.35) on page
71. Hence, in the following we show that both the momentum and the density enthalpy
flux functions lead to a spatially constant p(1)-field as well.
First, we analyze the functions HρvζMAPS+ (ũi, ũj ;n) for ζ = 1, 2 in equation (4.41) in
more detail. The result of the expansion into a Taylor series is presented in equation
(A.29). Hence, we get the momentum balance
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d

dt
(ρvζ)i =

∑
j∈N (i)

2∑
k=1

(
−nζ

p
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j

2
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where ξ1 and ξ2 are given by equations (4.44) and (4.45), respectively and ξ3 represents

ξ3 =
(
q

(0)
ref,ij

)2
.

Again, we consider the special case of a structured, equidistant, Cartesian grid Sh. With
the leading order pressure being constant in the vicinity of control volume σi, see Theorem
5, we can simplify the momentum balance to

d

dt
(ρvζ)i =

∑
j∈N (i)
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+O(M2) for ζ = 1, 2.

With the given discretization, we can write the momentum balance of O(M) as
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Again the p(1)-distribution is spatially constant regardless of the velocity field.
Finally, we analyze the function HρhMAPS+ (ũi, ũj ;n) in equation (4.42). The result of
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the expansion into a Taylor series is shown in equation (A.31). With this, we can write
the balance

d

dt
(ρh)i =

1
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where ξ1 and ξ2 are given by equations (4.44) and (4.45), respectively.
Again, we consider the special case of a structured, equidistant, Cartesian grid Sh. The
leading order pressure is constant in the vicinity of control volume σi, see Theorem 5.
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Hence, we can simplify the balance equation to

d

dt
(ρh)i =
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We write the balance of O(1) as
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From this relation we can see that p(1) is spatially constant.
Hence, for the altered MAPS+ scheme, all flux functions lead to a spatially constant field
of the first order pressure.

4.2.5. Numerical Results

To fortify the results of the asymptotic analysis of the MAPS+ scheme in numerical
simulations, we choose the inviscid flow around the NACA0012-profile. We vary the
inflow Mach number in the region from 0.1 to 10−4. For all calculations a two step
Runge-Kutta scheme is used. The grid is built following the description in subsection
4.1.2 on page 38.
The initial conditions are a spatially constant distribution of all thermodynamic variables.
We define the inflow pressure pin = pref and the inflow temperature Tin = Tref, all other
variables are calculated by the thermodynamic modules in the solver. In addition, a
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spatially constant velocity field is given by initiating a spatially constant field of the
Mach number of Main = Maref. These values are also taken for the farfield state that is
needed to define the farfield boundary condition.
The pressure distributions of the results for inflow Mach numbers 10−1, 10−2 and 10−3

are shown in Figure 4.2. On the left-hand side, we show the calculations using the general
MAPS+ scheme while on the right-hand side the calculations using the altered MAPS+
scheme are presented. From top to bottom, the inflow Mach number is altered from
10−1 over 10−2 to 10−3. For these calculations, nitrogen modeled as a Van der Waals
gas is used with the inflow conditions of a pressure of pin = 105Pa and a temperature of
Tin = 300K. This is condition 1 as listed in Table 4.4 on page 115.
The variations in pressure which are present in the flow field are small compared to
the inflow and background pressure. Hence, in Figure 4.2, we show the distribution of
the local deviation from this background pressure of 105Pa. We call this difference the
pressure offset.
In the figure, we see that the general MAPS+ scheme only produces a reasonable result
for the Mach numbers of Main = 10−1 and 10−2 which are shown in Subfigures 4.2a and
4.2c, respectively. For lower Mach numbers, the numerical error increases and the results
deteriorate, see Subfigure 4.2e. The altered MAPS+ scheme, on the other hand, leads to
reasonable results for all investigated Mach numbers.
Now we compare the results obtained for an inflow Mach number of 10−1 using the general
and altered MAPS+ scheme that are shown in Subfigures 4.2a and 4.2b, respectively.
Both results are qualitatively similar, which supports the observation that the general
MAPS+ scheme correctly calculates the flow at an inflow Mach number of 10−1. Next,
we compare the results for the general and the altered MAPS+ scheme for an inflow
Mach number of 10−2 shown in Subfigures 4.2c and 4.2d, respectively. At this Mach
number, we see a distinct difference between the results obtained with the two schemes.
While the result obtained with the altered MAPS+ scheme contains smooth transitions
between the different pressure levels, we see disrupted transitions in Subfigure 4.2c which
is obtained using the general MAPS+ scheme. Hence, at an inflow Mach number of 10−2,
we can already see an influence of the numerical error in the results obtained with the
general MAPS+ scheme.
Comparing the plots for the different calculations done with the altered MAPS+ scheme,
we first notice that the three plots in Subfigures 4.2b, 4.2d and 4.2f are qualitatively sim-
ilar. They only differ by the general magnitude of the pressure offset which is of O(M2)

as the Mach number decreases.
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(a) general MAPS+, Main = 10−1
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(b) altered MAPS+, Main = 10−1
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(d) altered MAPS+, Main = 10−2
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Figure 4.2.: Pressure distributions in Pa (offset to background pressure of 105Pa) calcu-
lated with the general and altered MAPS+ scheme at different inflow Mach
numbers
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Clearly, we do not see this similarity in the plots for the calculations done with the
general MAPS+ scheme. The cause of the deterioration of the general MAPS+ scheme
are the fluctuations of the first order pressure term on a length scale independent of the
Mach number shown in Corollary 6.1. To prove the existence of these fluctuations in the
numerical results, we consider the behavior of the pressure quotient

pind =
p̃max − p̃min

p̃max
,

with
p̃max = max (p̃i) for i in Nh

and
p̃min = min (p̃i) for i in Nh

as a function of the Mach number analogous to the work of Meister [48]. For stationary
numerical results the behavior

pind =
p̃max − p̃min

p̃max
= O(M2) for M → 0

reflects the behavior of the Euler equations as can be deducted from the single scale
asymptotic analysis.
In Figure 4.3, pind is shown for the general MAPS+ scheme as a function of the Mach
number. The plot follows the relation

pind =
p̃max − p̃min

p̃max
= O(M) for M → 0,

as it can be expected from the results of the analytical analysis presented in Corollary 6.1.
So, we can show the existence of fluctuations in the first order pressure term in the
numerical experiment. This agrees with the results of the asymptotic analysis and shows
why the general MAPS+ scheme leads to unphysical results in the limit of small Mach
numbers. Note that pind is of order O(M2) down to a Mach number of 10−2. This agrees
with our observation that the result obtained with the general MAPS+ scheme for a
Mach number of 10−2 is qualitatively reasonable.
Next, we consider the behavior of the pressure quotient for calculations with the altered
MAPS+ scheme. From the asymptotic analysis, we expect the first order pressure term
to be spatially constant in these calculations. The plot of the pressure quotient shown
in Figure 4.4 satisfies this expectation. For the altered MAPS+ scheme, the pressure
quotient shows the behavior
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Figure 4.3.: Plot of the pressure quotient for the general MAPS+ scheme

pind =
p̃max − p̃min

p̃max
= O(M2) for M → 0,

which indicates that there are no fluctuations of the first order pressure term. This as
well agrees with the results of the asymptotic analysis.

Remark.
In this section, we show that the altered MAPS+ scheme correctly models the Euler
equations to an inflow Mach number as low as 10−4. However, to gain these numerical
results very small CFL numbers have to be used for the numerical scheme to be stable.
Birken and Meister [6] notice that a scheme becomes unstable unless the time step size is
of O(M2) as M → 0, hence we choose the CFL number to be of O(M2). To gain results
using this method is numerically very expensive and not suitable for practical applica-
tions. A solution to this problem is the use of a preconditioning scheme which allows for
a time step size and hence a CFL number of O(1) as the Mach number approaches zero.
Therefore, we cover preconditioning schemes in the next section.
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Figure 4.4.: Plot of the pressure quotient for the altered MAPS+ scheme

4.3. Preconditioning Scheme

Flows relevant for practical applications can often cover a range of Mach numbers from
low subsonic to hypersonic. An example is the flow around an airfoil at transonic Mach
numbers. In the region of the stagnation point, the Mach number approaches zero while
it can reach values above one in other parts of the domain. Ground test cases of rockets
also cover a wide range of Mach numbers as the supersonic plume is in close proximity to
the surrounding air that moves at very low Mach numbers, if at all. A third example are
combustion processes, where a subsonic deflagration can turn into a supersonic detonation
within a small spatial distance. If we want to simulate these flows with a numerical flow
solver, a scheme covering the whole range of Mach numbers is necessary.
However, the unmodified flow solvers available in the literature are only applicable to
a part of the Mach number regime. Solvers based on the incompressible equations are
not built to model compressible effects and hence cannot be used to simulate flows at
high Mach numbers. Flow solvers that originate from the compressible equations, on the
other hand, cannot be applied to incompressible flows in general. A thorough discussion
of this issue is given by Langer [38].
To obtain a flow solver suitable for the whole range of Mach numbers, two different
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approaches are common. On the one hand, it is possible to take an incompressible
scheme and add compressible effects to cover flows at a higher Mach number. On the
other hand, a compressible scheme can be extended towards the incompressible limit.
Here, we choose to follow the second approach since the flows we are interested in show
strong compressible effects in a big part of the flow domain.
If a compressible scheme is used to calculate flows at low Mach numbers, different prob-
lems occur. Typically, the numerical error grows as the Mach number decreases. At
the same time the computational costs increase. These issues with both accuracy and
efficiency have been reported by many different authors, see for example the work of
Briley et al. [8], Merkle and Choi [51] and Volpe [74].
This is due to the growing difference between the eigenvalues of the problem which are the
characteristic velocities. The influence of this difference in the eigenvalues at low Mach
numbers on numerical schemes is shown by Guillard and Nkonga [27]. The convective
velocities are of order O(M) as the Mach number decreases while the acoustic velocities
are of order O(1).

Remark.
Note that this is only true for the chosen nondimensionalization. With a different set of
reference values, the convective velocities v1 and v2 and the total velocity q can be of
O(1) and the speed of sound c of O

(
1
M

)
. However, there is still a difference of O(M)

between q and c. So, they are of different orders as the Mach number approaches zero.

The increasing difference of the eigenvalues can better be described by their ratio. This
is closely related to the condition number of the flux Jacobi matrix.

Definition 4.3.1.
The property

κ(A) =
|λmax(A)|
|λmin(A)|

,

where λmax(A) and λmin(A) are the largest and smallest eigenvalue of A, respectively,
is called the condition number of the matrix A.

A problem with a low condition number is said to be well-conditioned while a prob-
lem with a high condition number is said to be ill-conditioned. Since λmax(A

(i)
u ) and

λmin(A
(i)
u ) are of different orders as the Mach number approaches zero, the flux Ja-

cobi matrix of the Euler equations A(i)
u is ill-conditioned for small Mach numbers. This

eigenvalue stiffness has negative effects on the convergence of both explicit and implicit
schemes.
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A preconditioning scheme is a common remedy for these issues. The goal of a precondi-
tioner is to decrease the condition number by altering the eigenvalues so that they are
of the same order of magnitude. This allows for a numerical error independent of the
Mach number as well as a bigger time step size and hence a reduction in costs. An ideal
preconditioning scheme would lead to a condition number of one.
In general, a preconditioning scheme is used to premultiply the time derivative by a
matrix suitable for scaling the eigenvalues of the system. This method is not consistent
in time and can only be used to find a steady state solution. The steady state solution
of the preconditioned system is the same as the solution of the original system.
As stated in section 4.1 on page 35, a dual time-stepping approach is used for time
accurate computation in the DLR TAU-code. This means that a steady state problem is
solved within every physical time step. Hence, this limitation to steady state solutions
does not prevent us from using a preconditioning scheme for time accurate computations
within TAU.
A preconditioner can be built following different approaches and using different sets of
variables. Hence, there is not just one preconditioner, but several families of precondi-
tioning matrices. Premultiplying the time derivative by a preconditioning matrix means
equation (2.3) on page 8 is replaced by

Γ(u)
∂u

∂t
+

d∑
i=1

A
(i)
u
∂u

∂xi
= 0, (4.46)

where Γ(u) is the preconditioning matrix formulated in the conservative variables u.
Equation (4.46) is equivalent to the following expression:

∂u

∂t
+ Γ−1(u)

d∑
i=1

A
(i)
u
∂u

∂xi
= 0,

with the inverse of the preconditioning matrix Γ−1(u).
Preconditioning schemes are usually derived using a set of primitive variables that con-
tains pressure, the Cartesian velocities and one additional variable. The choice of pressure
as a primitive variable is preferable since it plays an important role in the incompressible
limit and allows for a direct treatment of pressure waves. To distinguish a precondition-
ing matrix formulated in the primitive variables q from the preconditioner Γ(u) that is
formulated in conservative variables, we call the former P (q).
Since the preconditioning matrix P (q) is in terms of some set of primitive variables q

and the system (4.46), where the preconditioner is applied, is in terms of the conservative
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variables, the preconditioning matrix needs to be transformed to conservative variables.
This leads to the following form of the preconditioning matrix in terms of the conservative
variables u:

Γ (u) =
∂u

∂q
P (q)

∂q

∂u
, (4.47)

where ∂u
∂q and ∂q

∂u are the transformation matrices from conservative to primitive variables
and vice versa, respectively.
Here, we consider the following sets of primitive variables:

• q1 = (ρ, v1, v2, p)

• q2 = (p, v1, v2, T )

• q3 = (p, v1, v2, h)

• q4 = (p, v1, v2, s)

• q5 = (p, v1, v2, ρ)

Different authors mean either Γ(u) and P (q) or Γ−1(u) and P−1(q) when they refer to
the preconditioning matrix. Within this work, we call Γ(u) and P (q) preconditioner.

4.3.1. Preconditioning schemes for an ideal gas

In this section, we briefly discuss the evolution of preconditioning schemes and the cur-
rently available preconditioners. A detailed review is given by Turkel [67]. For simplicity,
we formulate all schemes in two spatial dimensions.
In 1967, Chorin [13] proposed the method of artificial compressibility to solve the steady
state incompressible Euler equations. The idea of this method is to add a density time
derivative to the continuity equation to regain the hyperbolic type of the equation. This
converts a mixed system of elliptic-hyperbolic type to a fully hyperbolic system. The
continuity equation

∂v1

∂x1
+
∂v2

∂x2
= 0,

is replaced by
∂ρ

∂t
+
∂v1

∂x1
+
∂v2

∂x2
= 0

with
ρ = δp, (4.48)
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where the relation (4.48) plays the role of the state equation. The parameter δ is called
artificial compressibility. Inserting the state equation, this can also be written as

∂ (δp)

∂t
+
∂v1

∂x1
+
∂v2

∂x2
= 0.

In other words, the time derivative is multiplied by the preconditioning matrix

P =

 δ 0 0

0 1 0

0 0 1

 .
Chorin chooses the parameter δ and the time step size in a way such that the scheme is
stable and the convergence towards steady state is as fast as possible.
The idea to multiply the time derivative by an artificial term with the goal to accelerate
the convergence to steady state has since been studied by several authors. It cannot only
be applied to the incompressible equations, but also to the compressible ones.
Turkel [66] presents a generalization of the artificial compressibility method. In a first
step, they develop a preconditioning matrix for the incompressible Euler equations follow-
ing the same approach as Chorin but with the difference that the pressure time derivative
is added to all equations. So, 

1
β2 0 0

αv1
β2 1 0

αv2
β2 0 1

 · ∂∂t
 p

v1

v2

 , (4.49)

with functions α and β is added to the system of equations 0 0 0

0 1 0

0 0 1

· ∂
∂t

 p

v1

v2

+

 0 1 0

1 v1 0

0 0 v1

· ∂
∂x1

 p

v1

v2

+

 0 0 1

0 v2 0

1 0 v2

· ∂
∂x2

 p

v1

v2

 = 0.

Here, α is evaluated using

α =


1 +Ma2

g, Maref < 1

2

(
1−

√
1 + 1

Ma2g

)
, Maref ≥ 1,

with the global Mach number Mag and a reference Mach number Maref, while β is a
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function of (v2
1 + v2

2). Turkel chooses β in a way that ensures it to have a nonzero value
at the stagnation point. They define

β

 max
[
(2− α)

(
v2

1 + v2
2

)
, ε
]
, α < 1

K max
[
α
(
v2

1 + v2
2

)
, ε
]
, α ≥ 1,

where K is a constant slightly larger than one and ε is chosen to be a fraction of the
maximum value of

(
v2

1 + v2
2

)
.

In the next step, the compressible system

∂

∂t


p

v1

v2

s

+


v1 ρc2 0 0

ρ−1 v1 0 0

0 0 v1 0

0 0 0 v1

· ∂∂x1


p

v1

v2

s

+


v2 0 ρc2 0

0 v 0 0

ρ−1 0 v2 0

0 0 0 v2

· ∂∂x2


p

v1

v2

s

 = 0

is considered.
In a generalization of the preconditioning matrix for the incompressible equations that
is shown in equation (4.49), the compressible system is preconditioned with

P (q4) =



1
ρβ2 0 0 0

αv1
ρβ2 1 0 0

αv2
ρβ2 0 1 0

0 0 0 1


. (4.50)

This has the effect that the equations are decoupled and the entropy equation is not
preconditioned. Therefore, the compressible system is similar to the incompressible one.
Usually, this preconditioner is applied in q2 variables where it takes the form

P (q2) =



1
β2 0 0 0

αv1
ρβ2c2

1 0 0

αv2
ρβ2c2

0 1 0

1−β2

ρcpβ2 0 0 1


. (4.51)

For the transformation, ideal gas assumptions are applied.
This preconditioning scheme is further modified by Turkel [66] to also include precondi-
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tioners by other authors. The modified scheme can be written as

P (q2) =



1
β2 − (γ − 1)δ 0 0 γp

T δ

αv1
ρβ2c2

1 0 0

αv2
ρβ2c2

0 1 0

1
ρcp

(
1
β2 − g

)
0 0 g


, (4.52)

with g = 1 + (γ − 1) δ. The parameter δ is needed for the transformation to a not
preconditioned system. It is set to δ = 1 if the preconditioning is required and to
δ = 0 to switch the preconditioning off. This is the most commonly used preconditioning
scheme by Turkel.
Turkel also applies the approach used in (4.50) to q5 variables. Again, a generalization
of the incompressible preconditioning matrix is applied which leads to the compressible
preconditioner

P (q5) =



1
ρβ2 0 0 0

αv1
ρβ2 1 0 0

αv2
ρβ2 0 1 0

0 0 0 1


(4.53)

If this matrix is transferred to q4 variables, assuming an ideal gas, it takes the following
form:

P (q4) =



1
ρβ2 0 0 0

αv1
ρβ2 1 0 0

αv2
ρβ2 0 1 0

1
p

(
c2−1
β2

)
0 0 1


. (4.54)

Hence, with the preconditioning scheme derived in the q5 notation, the entropy equation
is no longer decoupled.
Another approach is taken by Briley et al. [9]. Their preconditioning matrix is derived in
q1 variables and applied to the isoenergetic Navier Stokes equations. The preconditioning
matrix takes the following form:
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P (q1) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 β


Here, the rate of change of the pressure contribution is decreased by a factor β. For
this preconditioner, β is proportional to a parameter that resembles the square of the
reference Mach number. It is given by

β =

 M2
ref, Mref < 1

1, Mref ≥ 1,

where Mref = vref/
√
γRTref with the isentropic exponent γ. The reference values vref

and Tref should be chosen such that they represent the global flow properties for the
considered test case. For external flows, it is recommended to use the freestream values.
Briley shows that the use of this preconditioner greatly improves the convergence rate
at a reference Mach number of 0.05 for a turbulent flow through a ninety-degree channel
bend.
Choi and Merkle [12],[11] study the convergence of implicit solutions of the Euler equa-
tions and introduce a similar preconditioning matrix. In conservative variables it takes
the form

Γ(u) =


1 0 0 0

0 1 0 0

0 0 1 0
q
2

(
Ma−2 − 1

)
v1

(
1−Ma−2

)
v2

(
1−Ma−2

)
Ma−2


when it is transformed from primitive variables using the ideal gas law. Here, Ma

resembles the local Mach number. The preconditioner by Choi and Merkle is similar to
the one by Briley, but a progress in the sence that it is no longer restricted to isoenergetic
flows. In addition, it is implemented in conservative variables.
Erikson [22] presents an extension of the preconditioning matrix by Briley. They adapt
the matrix so that the entropy of the system is preserved. This leads to the following
preconditioning matrix:
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P (q1) =



1 0 0 −1−β
c2

0 1 0 0

0 0 1 0

0 0 0 β


Erikson suggests a value for β of

β ≈ v2
1 + v2

2

c2
.

Van Leer et al. [40] also present a family of preconditioning schemes in q4 variables and
a flow-aligned coordinate system. However, these preconditioners require a well-defined
flow angle. This can become a problem in the vicinity of the stagnation point or on
unstructured meshes.
Weiss and Smith [77] take a different approach on the derivation of a preconditioning
scheme formulated in q2 variables. Instead of multiplying a separate matrix P (q2) to
the transformation matrices in equation (4.47), the product P (q2) ∂q2

∂u is replaced by the
preconditioning matrix 

θ 0 0 ∂ρ
∂T

0 ρ 0 0

0 0 ρ 0

−1 0 0 ρcp


,

where θ is given by

θ =

(
1

v2
ref
− 1

ρcp

∂ρ

∂T

)
with the reference velocity vref which is defined as follows:

vref =


εc, |q| < εc

|v|, εc ≤ |q| < c, ε = 10−5

c, |q| ≥ c

(4.55)
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Hence, the preconditioning matrix in conservative variables is given by

Γ(u) =



θ 0 0 ∂ρ
∂T

θv1 ρ 0 v1
∂ρ
∂T

θv2 0 ρ v2
∂ρ
∂T

θH − 1 ρv1 ρv2 H ∂ρ
∂T + ρcp


.

A similar approach is taken by Diangui [17] where a preconditioning matrix in q3 variables
is constructed. The final form of this preconditioning matrix in conservative variables is

Γ(u) =



θ 0 0 ∂ρ
∂h

θv1 ρ 0 v1
∂ρ
∂h

θv2 0 ρ v2
∂ρ
∂h

θH − 1 ρv1 ρv2 H ∂ρ
∂h + ρ


, (4.56)

where θ is given by

θ =

(
1

v2
ref
− 1

ρ

∂ρ

∂h

)
and vref is defined by equation (4.55).

4.3.1.1. Approaches for Real Gases

The preconditioning schemes described in the previous section are only designed for ideal
gases. However, many relevant applications require a preconditioner that is applicable to
a real gas, like the simulation of refrigerants in cooling channels or combustion processes
that involve real gas thermodynamics. Hence, we review approaches to use precondition-
ers for real gases.
Especially the modeling of two-phase flows in the region of low Mach numbers is chal-
lenging, since the speed of sound can vary by multiple orders of magnitude between the
different phases of the fluid, see for example Eddington [19]. This increases the difference
between the eigenvalues of the system and hence intensifies the need for a preconditioning
scheme. Particularly flows covering cavitation phenomena include both a wide range of
thermodynamic states and compressible effects. The physics of cavitation are described
in detail in Reisman et al. [57].
There are many approaches in the literature to apply preconditioning schemes to two
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phase flows, e.g. for the simulation of cavitating flows. However, in these cases the
gaseous and liquid phases are described by two different equations of state. Typically,
the gas phase is assumed to follow the ideal gas law and the liquid phase is either modeled
to be incompressible or is described by a stiffened equation of state. The latter is designed
for water under very high pressures and treats the fluid as if it was an ideal gas that is
already under a very high pressure. A detailed description of the stiffened equation of
state and further developments can be found in O Le Métayer and Saurel [39].
In the work of Merkle et al. [50], a preconditioning scheme for ideal gases is applied to
a two-phase flow by using the mass fraction of one fluid as the dependent variable. A
similar path is taken by Kunz et al. [37] with the difference that the volume fraction
is taken as a variable. In these approaches, the densities for both the liquid and vapor
phases are assumed to be constant and hence no real gas effects are considered.
More detailed models for two phase flows apply separate continuity equations for the
different phases including special mass transfer terms that account for the phase change.
The work of Venkateswaran et al. [71], [72] is an example for such a scheme. These
models are usually called homogeneous mixture model since the interface between the
liquid and the gaseous phase is assumed to be in dynamic and thermal equilibrium and
hence the momentum and energy equations are formulated for the mixture. In their work,
Venkateswaran et al. use a preconditioning method to model compressible cavitation.
However, the densities of the different phases are kept constant in the earlier work. In
the more recent publication the density varies with pressure but is independent of the
other thermodynamic properties. So again, real gas effects are not examined.
There are many more schemes that apply ideal gas preconditioners to two phase flows,
for example the work of Murrone and Guillard [52], Chen at al. [10] and Goncalves and
Patella [26]. But in these works, the different fluids are treated either as an ideal gas
or are described by a simplified equation. Hence, these approaches do not consider the
mathematical properties of a real gas equation of state.
Zong and Yang [79], on the other hand, adapt the preconditioning scheme by Weiss
and Smith to a cubic equation of state. Since the formulation of this preconditioner
requires thermodynamic derivatives of the state variables instead of applying the ideal
gas assumptions, it is in general possible to apply it to a real gas equation of state.
In their work, Zong and Yang present a detailed derivation of all required thermodynamic
quantities and derivatives. However, they only apply their preconditioning scheme to su-
percritical flows. In a test case of a flow around the NACA0012 profile at subcritical
conditions, we find that a numerical scheme with this specific preconditioner does not
converge to a steady state solution below an inflow Mach number of about 0.05. There-
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fore, this preconditioning scheme is not suitable for our purposes, while it works well for
supercritical conditions and a Mach number around 10−1, which is sufficient for some
applications.

4.3.2. Different Requirements for a Van der Waals gas

The purpose of multiplying a preconditioning matrix to the flux Jacobi matrix is to gain
a condition number close to one. Hence, an ideal preconditioning matrix would be the
inverse of the flux Jacobi matrix. But it is numerically expensive to calculate this inverse
at every grid point. In addition, the exact form of the flux Jacobi matrix is generally
not known and hence the direct calculation of the inverse is not possible. Therefore,
preconditioning matrices are approximations of the inverse of the flux Jacobi matrices,
that are numerically more easily calculated and have one general form for every grid cell.
In section 4.2.3 starting on page 49, we show that the differences in the equation of state
lead to different behaviors of the entries of the flux Jacobi matrix as the Mach number
approaches zero. The derivative of pressure with respect to density strongly depends on
the chosen state equation. For an ideal gas it is of order O(M2) as the Mach number
approaches zero while for a Van der Waals gas it is of order O(1). This difference leads
to a different behavior of certain terms of the flux Jacobi matrix.
Since the preconditioning matrix approximates the inverse flux Jacobi matrix, a precon-
ditioner built for the ideal gas Euler equations cannot, in general, lead to a favorable
condition number of the Van der Waals gas flux Jacobi matrix. The different behavior
of the terms of the flux Jacobi matrix as the Mach number approaches zero need to be
considered when the preconditioning scheme is built. Hence, in general, for an ideal gas
and a Van der Waals gas, different preconditioning schemes are required.
In section 4.2.3, we analyze the continuous flux Jacobi matrix of the Euler equations in
x1-direction. There we also refer to the differences between this matrix and the one in x2-
direction. The flux Jacobi matrix representing the flux function contains the properties
of all directional Jacobi matrices of the Euler equations.
Since the preconditioning matrix is applied to the Jacobi matrix representing the flux
function, we cannot build separate preconditioning schemes for the different spatial di-
rections but have to include all properties in one single matrix as well. The differences
between the continuous Jacobi matrices in the different spatial directions only concern the
momentum equations. From this, we can formulate requirements for a preconditioning
scheme that contains the properties of the inverses of all directional matrices:

• For the rows of the matrix that represent the momentum equations, both the terms
multiplied by 4ρ and the ones multiplied by 4 (ρE) only differ by the respective
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Cartesian velocity.

• The terms on the principal axis in the two rows of the momentum equations are
identical. They only vary in the square of the respective Cartesian velocity, if at
all.

• The same holds for the terms that are multiplied by 4 (ρv1) and 4 (ρv2) of these
two rows that are not on the principal axis.

• The terms multiplied by momentum differences in both the mass and energy equa-
tion only differ by the respective Cartesian velocity each

Hence, the preconditioning matrix takes the form

Γ (u) =


η1 η2v1 η2v2 η3

η4v1 η5v
2
1 η6v1v2 η7v1

η4v2 η6v1v2 η5v
2
2 η7v2

η8 η9v1 η9v2 η10

 (4.57)

with the ten functions η1 to η10 that need to be defined. These functions are in terms
of the thermodynamic properties pressure, density and enthalpy or temperature as well
as properties of the fluid but independent of the velocity. So, the requirements we define
for the preconditioner reduce the entries of the matrix we need to define to ten. Note
that no additional entry is necessary to transfer this scheme to three spatial dimensions.
If a preconditioning matrix fulfills these requirements, the resulting matrices of a precon-
ditioning of the flux Jacobi matrix of the Euler equations in any spatial direction have
similar condition numbers. They only differ due to the specific flow situation. Hence, we
can limit the analysis of preconditioning matrices to the effect on the flux Jacobi matrix
in only one spatial direction and still get a generally valid result.
In addition, with these requirements an approximation of the inverse of the continuous
flux Jacobi matrix of the Euler equations has comparable effects to an approximation
of the inverse of the Jacobi matrix of a numerical flux function. That means that the
resulting condition numbers are within a small range when both approximated matrices
are used to precondition either the continuous Jacobi matrix of the Euler equations or a
Jacobi matrix that represents a numerical flux function. Since the continuous flux Jacobi
matrix has a simpler form compared to the MAPS+ flux Jacobi matrix, we choose the
former as the base for the construction of a preconditioning scheme applicable to a Van
der Waals gas. The resulting preconditioner is presented in the following section.
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4.3.2.1. Analytical Demonstration

To demonstrate the different requirements on an ideal gas and a Van der Waals gas
preconditioner, we look at their effects on a flux Jacobi matrix. For the ideal gas precon-
ditioning scheme, we take the preconditioner presented by Turkel in q2 = (p, v1, v2, T )

variables

P (q2)Turkel =



1
β2 − (γ − 1)δ 0 0 γp

T δ

αv1
ρβ2c2

1 0 0

αv2
ρβ2c2

0 1 0

1
ρcp

(
1
β2 − g

)
0 0 g


,

with g = 1 + (γ − 1) δ. Here, we set α = 0 and δ = 1 since this combination shows to be
a good choice for flows that are at an overall low Mach number, see Turkel et al. [69].
For β we choose the relation

β = min
[
max

(
|q|2,K|q∞|2

)
, c2
]
,

where K is a constant which is set to one and |q∞| is the absolute value of the inflow
velocity.
To transfer the matrix to conservative variables, we multiply it by the two transformation
matrices for an ideal gas:

Γ (u)Turkel =

(
∂u

∂q2

)
id

P (q2)Turkel

(
∂q2

∂u

)
id

=



1 + ξ1 ξ2v1 ξ2v2 −ξ2

ξ1v1 1 + ξ2v
2
1 ξ2v1v2 −ξ2v1

ξ1v2 ξ2v1v2 1 + ξ2v
2
2 −ξ2v2

c2

γ−1ξξ1 ξv1 ξv2 1− ξ


with

ξ = 1 +
γ − 1

2
Ma2,

ξ1 =
β

c2
− q2

2
ξ2

and
ξ2 =

γ − 1

c2
.
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If we compare this matrix to the requirements for a preconditioning scheme we list at
the beginning of section 4.3.2, we see that all requirements are indeed met.
For the Van der Waals gas preconditioning scheme, we take the matrix written in equation
(4.57) in the slightly modified form

Γ (u) =


η1 η2v1 η2v2 η3

η4v1 η5 η6v1v2 η7v1

η4v2 η6v1v2 η5 η7v2

η8 η9q η9q η10


with the following definitions of the functions η1 to η10:

η1 =
5M2

wp− 3Mwbpρ+ aρ2

5M2
wp− aρ2

,

η2 = η6 =
2M2

wρ

5M2
wp− aρ2

,

η3 = η7 = − 2M2
wρ

5M2
wp− aρ2

,

η4 = −
ρ
(
3M2

wbp− 2Mwaρ+ 9abρ2
)

5M3
wp−Mwaρ2

,

η5 = 1,

η8 =
−15M3

wbp
2 + 10M2

wapρ+ 9M2
wb

2p2ρ− 54Mwabpρ
2 + 2a2ρ3

10M4
wp− 2M2

waρ
2

,

η9 =
15M2

wp− 30Mwbpρ+ 7aρ2

10M2
wp− 2aρ2

and

η10 =
ρ
(
3M2

wbp− 2Mwaρ+ 9abρ2
)

5M3
wp−Mwaρ2

This matrix approximates the inverse of the flux Jacobi matrix of the Euler equations
for a Van der Waals gas represented by the caloric equation of state (2.14) on page 14.
Since the procedure of taking an inverse of a fully occupied matrix requires many steps,
we use the python library SymPy to calculate the inverse. The presented matrix is then
acquired by considering the requirements stated at the beginning of section 4.3.2. It is
formulated in conservative variables.
To compare the two preconditioning matrices, we multiply each matrix with both the
ideal gas and the Van der Waals gas flux Jacobi matrix in x1-direction. In the next
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step, we calculate the eigenvalues of the resulting matrices and the respective condition
numbers and compare them with each other. In Table 4.2, the values used for the
calculations are listed. For β, we use the expression β =

(
v2

1 + v2
2

)
.

Table 4.2.: Conditions for the calculations of the eigenvalues

Values Ideal Gas Van der Waals (Oxygen)

γ 1.39502 -
Mw - 0.0226820
a - 1.38191 · 10−6

b - 3.18575 · 10−5

c 1.39502 1.39502
p 1 1
ρ - 1
T 1 -
v1 10−1/10−4 10−1/10−4

v2 10−1/10−4 10−1/10−4

β 2 · 10−2/2 · 10−8 2 · 10−2/2 · 10−8

In Table 4.3, the eigenvalues and corresponding condition numbers are listed for precon-
ditioning of both the ideal gas and the Van der Waals gas flux Jacobi matrix by each
preconditioning scheme. In addition, we present the values of the non-preconditioned
matrices.
From the values, we see that there is only a small difference between the two precondi-
tioning schemes at a Mach number of M = 10−1. Both preconditioners lead to a lower
condition number when they are applied to the ideal gas flux Jacobi matrix. The con-
dition number in the case of a Van der Waals gas matrix is higher but still well below
10. Compared to the cases without preconditioning, both preconditioners improve the
condition number by a factor of 6.5 in the ideal gas case and 4 in the Van der Waals
gas case. However, at this Mach number, most numerical schemes converge well without
a preconditioning scheme. So, the preconditioners are not yet required in this Mach
number regime.
At the lower Mach number of M = 10−4, there is a notable difference between the
two schemes. The preconditioner of Turkel works as well for the ideal gas flux Jacobi
matrix as it does at the Mach number of 10−1. The same applies for the Van der Waals
gas preconditioner applied to the corresponding flux Jacobi matrix. In both cases, the
condition numbers are the same for both Mach numbers. Compared to the calculations
without a preconditioning schemes the condition numbers are lowered by about four
orders of magnitude in both cases. Hence, here the preconditioners produce the expected
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Table 4.3.: Eigenvalues and condition numbers of the resulting matrices from the precon-
ditioning of the ideal gas and the Van der Waals gas flux Jacobi matrix with
the two preconditioning schemes at Mach numbersM = 10−1 andM = 10−4,
as well as the values of the non-preconditioned matrices

Preconditioner Mach Flux Jacobi Eigenvalues Condition
Number Matrix Number

Turkel 10−1 ideal gas −0.078, 0.1, 0.1, 0.18 2.3

Turkel 10−4 ideal gas −7.8 · 10−5, 1.0 · 10−4, 2.3
1.0 · 10−4, 1.8 · 10−4

Turkel 10−1 Van der Waals −0.084, 0.064, 0.1, 0.22 3.5

Turkel 10−4 Van der Waals −6.5 · 10−9, 1.0 · 10−4, 2.1 · 106

1.0 · 10−4 + 0.014i,
1.0 · 10−4 + 0.014i

VdW 10−1 ideal gas −0.15, 0.1, 0.17, 0.24 2.4

VdW 10−4 ideal gas −2.6 · 10−8, 1.0 · 10−4, 5.6 · 105

1.3 · 10−4 + 0.015i,
1.3 · 10−4 − 0.015i

VdW 10−1 Van der Waals −0.15, 0.1,0.1, 0.35 3.5

VdW 10−4 Van der Waals −1.4 · 10−4, 1.0 · 10−4, 3.5
1.0 · 10−4, 3.5 · 10−4

none 10−1 ideal gas −1.3, 0.1, 0.1, 1.5 15

none 10−4 ideal gas −1.4, 0.1 · 10−4, 1.4 · 104

0.1 · 10−4, 1.4

none 10−1 Van der Waals −1.2, 0.1, 0.1, 1.4 14

none 10−4 Van der Waals −1.3, 0.1 · 10−4, 1.3 · 104

0.1 · 10−4, 1.3

results.
However, if the preconditioning schemes are applied to the matrices they are not designed
for, they increase the condition numbers of the matrices. So, they enlarge the stiffness
of the problem. In addition, both preconditioners lead to complex eigenvalues.
So, at low Mach numbers, a preconditioning scheme that is used for a set of equations
containing a different thermodynamic relation than the one enclosed in the precondi-
tioner causes two problems. It increases the condition number and also worsens the
circumstances for the numerical solver by producing complex eigenvalues. One possible
effect of complex eigenvalues is that they are no longer within the stability domain of
the time integration scheme and hence cause it to abort.
It is also possible to repeat this analytical investigation with the MAPS+ flux Jacobi
matrix. The resulting eigenvalues are similar to the ones for the flux Jacobi matrices of
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the Euler equations presented here. In addition, similar results can be obtained for other
values of the variables listed in Table 4.2.
This analytical demonstration also shows that it is possible to successfully precondition
a Van der Waals gas flux Jacobi matrix. The premise is that the used preconditioning
scheme is designed for a Van der Waals gas. Then favorable eigenvalues can be gained.
However, the thermodynamic relations the presented Van der Waals gas preconditioning
scheme is based on are not the same as the ones implemented in the DLR TAU-code. This
preconditioner is based on the analytic caloric equation of state as it is derived in equation
(2.14) on page 14, while the real gas thermodynamics implemented in the DLR TAU-
code are based on an iterative calculation of thermodynamic properties within the code.
These two versions of real gas thermodynamics do not agree with each other. Hence, the
behavior of the terms of the transformation matrices ∂u

∂q and ∂q
∂u as the Mach number

approaches zero cannot be expected to be the same. So, the presented preconditioner
cannot lead to favorable eigenvalues when it is used in the DLR TAU-code together with
the implemented thermodynamics.

4.3.3. Preconditioning scheme for a Van der Waals gas

For the flux Jacobi matrices and hence for the preconditioning scheme, the transformation
matrices between primitive and conservative variables are the relevant difference between
an ideal gas and a Van der Waals gas. Especially in the limit of a low Mach number,
some of the terms of these matrices show different behaviors depending on the applied
equation of state. We discuss this in detail in section 4.2.3 starting on page 49.
This difference is why a preconditioning scheme in conservative variables that is built
for an ideal gas cannot be used for a Van der Waals gas and vice versa. However, in
primitive variables a preconditioning scheme is applicable to either gas, as long as no
assumptions concerning the thermodynamic equations are used to build the scheme.
Therefore, the preconditioners by Turkel stated in equations (4.50) and (4.53) on page
102 are applicable to both an ideal gas and a Van der Waals gas, while the preconditioners
described in equations (4.51) and (4.54) are limited to an ideal gas. All preconditioning
matrices in equations (4.50) to (4.54) are derived in a similar way, but in different sets
of variables. We have to consider this when we choose a preconditioning scheme.
Hence, for the following simulations, we choose the preconditioner described by equation
(4.52) as it is a generalization of the scheme described in equation (4.50). However,
to avoid the limitation to an ideal gas, we conduct the change from q4 to q2 variables
in general terms using the derivatives of the thermodynamics implemented in the DLR
TAU-code.
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In a similar way, the preconditioning scheme by Diangui presented in equation (4.56) can
be applied to a Van der Waals gas. Here, we simply have to evaluate the derivatives of
enthalpy using the real gas thermodynamic relations implemented in the code.
In a last step, we transfer the preconditioning schemes from primitive to conservative
variables. We use the numerical derivatives of the implemented thermodynamic relations
to create the transformation matrices. This leads to the final preconditioning schemes
formulated in conservative variables. Compared to the preconditioning scheme presented
in section 4.3.2.1, this approach has the disadvantage that the numerical derivatives need
to be evaluated for every grid cell at each time step. However, it has the advantage that
the formulation of the preconditioner is independent of the used equation of state as long
as the derivatives are defined in an appropriate way. Hence, this method can be applied
to any implemented thermodynamic relation while the preconditioning scheme shown in
section 4.3.2.1 is limited to one single caloric equation of state.

4.3.4. Numerical Results

We choose the inviscid flow around a NACA0012 profile as a test case for the numerical
results. This is the same setup as in section 4.2.5. We also use similar initial and
boundary conditions as for the computations in section 4.2.5 and the same grid. All
calculations are conducted using a two-step Runge-Kutta scheme with a CFL number
of 0.8.
First, we present results of the two chosen preconditioning schemes for a Van der Waals
gas. We compare these results with each other and with a reference solution of an ideal
gas at one set of thermodynamic conditions and for two different Mach numbers. For the
ideal gas, we use the preconditioner of Turkel presented in equation (4.51) on page 101.
The fluxes are calculated with the altered MAPS+ scheme for the low Mach region that
we analyze in section 4.2.4. For the comparison of the schemes, we consider both field
solutions of different quantities and the convergence rate. The quantities we present in
the field solutions are pressure, density, the x1-component of velocity and the local Mach
number.
In the next step we compare the convergence rate of the two chosen preconditioning
schemes. We present the convergence rates of both preconditioners for one set of ther-
modynamic properties but multiple inflow Mach numbers. This way, we can show that
both preconditioning schemes have a convergence rate independent of the Mach number
for M → 0.
Finally, we demonstrate the capability of the preconditioning scheme of Diangui. We
show the results of simulations for a wide range of thermodynamic conditions for two
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different Van der Waals gases. The conditions used for the calculations are summarized
in Table 4.4. Again, we present field solutions of pressure, density, the x1-component of
velocity and the Mach number.

Table 4.4.: Conditions used for the calculations

Condition fluid state inflow pressure inflow temperature
1 nitrogen gas 105Pa 300K
2 nitrogen liquid 104Pa 64K
3 nitrogen supercritical 106Pa 300K
4 ideal gas gas 105Pa 273.15K
5 oxygen gas 105Pa 300K
6 oxygen liquid 105Pa 64K
7 oxygen supercritical 106Pa 300K

4.3.4.1. Comparison of preconditioning schemes

First, we present the numerical solutions of the flow around a NACA0012 profile. The
considered fluid is nitrogen modeled as a Van der Waals gas. The inflow Mach number
is M = 10−3 and condition 1 in Table 4.4 is used.
In Figures 4.5 and 4.6, the numerical results are shown. They are obtained with the
preconditioning schemes by Turkel and Diangui, respectively. In both figures, the field
solutions of the thermodynamic properties are presented in the upper row, with pressure
on the left and density on the right-hand side. In the bottom row, the subfigure on
the left-hand side shows the distribution of the x1-component of velocity and the subfig-
ure on the right-hand side presents the Mach number distribution. Again, the plots of
the thermodynamic properties show the difference to the background values since these
differences are very small in comparison.
The pressure distributions in these figures are similar to the one shown in Subfigure 4.2f
on page 93 that is obtained without a preconditioning scheme. So as expected, the use
of a preconditioning scheme does not change the solution.
The density distributions in Subfigures 4.5b and 4.6b show the offset to the background
density of 1.284068 kg

m3 . This value indicates that the modeled nitrogen is indeed at a
gaseous state. The plotted density differences are of the order of 10−7 kg

m3 which is due to
the low Mach number.
The distributions of the Mach number shown in Subfigures 4.5d and 4.6d have a slimmer
shape than the x1-velocity distributions shown in Subfigures 4.5c and 4.6c. This shows
the influence of variations of thermodynamic quantities such as pressure or density on
the speed of sound.
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Figure 4.5.: Field solutions for a Van der Waals gas obtained using the preconditioning
scheme by Turkel at a Mach number of Main = 10−3

In general, we see similar results for all plotted quantities in both figures. It can be
said that the numerical scheme is able to converge to a reasonable solution using each
preconditioning scheme at the presented inflow Mach number.
As a reference, in Figure 4.7 the distributions of the same quantities are shown for the
flow of an ideal gas around the NACA0012 profile. The inflow Mach number is set to
Main = 10−3 and condition 4 in Table 4.4 is used for the inflow pressure and temperature.
We choose the Mach number and pressure this way to be the same as for the calculations
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Figure 4.6.: Field solutions for a Van der Waals gas obtained using the preconditioning
scheme by Diangui at a Mach number of Main = 10−3

using the Van der Waals thermodynamic modeling, while the temperature results from
the ideal gas law.
As expected, the numerical solver converges to a reasonable solution for the ideal gas
case. In addition, the ideal gas solution is qualitatively similar to the solutions obtained
for a Van der Waals gas. This strengthens the statement that the solver converges to a
reasonable solution for the Van der Waals gas.
The background density in Subfigure 4.7b is slightly lower than the one in the cases for
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Figure 4.7.: Field solutions for an ideal gas obtained using the preconditioning scheme
by Turkel at a Mach number of Main = 10−3

a Van der Waals gas shown in Subfigures 4.5b and 4.6b. The inflow temperature in the
ideal gas case is slightly lower than for the calculations with a Van der Waals gas which
should lead to a higher density due to the ideal gas law. The lower value of the density
in comparison is due to the fact that the ideal gas does not exactly represent nitrogen
and hence there are differences in the modeling compared to the modeling as a Van der
Waals gas. Apart from this difference, the results of the ideal gas calculations closely
resemble the ones for a Van der Waals gas. This makes sense as the chosen conditions
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lay well within the region where ideal gas assumptions are valid. Hence, the deviations
due to real gas effects are very small.
Now, we present the solution of a repetition of these calculations for an inflow Mach
number of Main = 10−4 while all other parameters stay unchanged. In Figures 4.8 and
4.9, the results for the numerical simulations using the Van der Waals gas thermodynam-
ics are shown. Again, the applied preconditioning schemes are the ones by Turkel and
Diangui, respectively. The order of the subfigures is the same as in Figures 4.5 to 4.7.
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Figure 4.8.: Field solutions for a Van der Waals gas obtained using the preconditioning
scheme by Turkel at a Mach number of Main = 10−4
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Figure 4.9.: Field solutions for a Van der Waals gas obtained using the preconditioning
scheme by Diangui at a Mach number of Main = 10−4

Both schemes produce similar results for the majority of the quantities. The pressure
distribution, the flow field of the x1-component of the velocity and the distribution of
the Mach number are all alike. But only the calculations done with the preconditioning
scheme by Diangui result in a reasonable distribution of density.
Looking at Subfigure 4.9b, we see that the difference of the density to the background
value is of the order of 10−9 kg

m3 . The density distribution obtained with the precondition-
ing scheme of Turkel shown in Subfigure 4.8b contains values of the order of 10−8 kg

m3 . This

120



is the numerical error that overlies the actual density distribution. So due to this error,
the preconditioning scheme by Turkel cannot produce reasonable results for the density
distribution and hence is not applicable at an inflow Mach number of Main = 10−4 for
this configuration.
Comparing the results obtained for an inflow Mach number ofMain = 10−4 in Figures 4.8
and 4.9 with the ones for the inflow Mach number of Main = 10−3 in Figures 4.5 and
4.6, we notice that all distributions are qualitatively similar in both cases (except for
Subfigure 4.8b). This is because the solution becomes self-similar in the incompressible
limit, so the qualitative nature of the distribution of any quantity becomes independent
of the Mach number as M → 0. The fact that the shown distributions are qualitatively
similar is a strong indication that the preconditioning schemes work as expected.
As a reference, we present the results of the ideal gas simulations at an inflow Mach
number of Main = 10−4 in Figure 4.10. The other inflow conditions are similar to the
case of the inflow Mach number of 10−3. Again, in the ideal gas case the numerical solver
converges to a reasonable solution.
The distributions of pressure, x1-component of velocity and Mach number shown in Sub-
figures 4.10a, 4.10c and 4.10d are similar to the ones obtained with the two Van der
Waals gas preconditioners in the real gas case. The density distribution in Subfigure
4.10b is similar to the one shown in Subfigure 4.9b that is obtained with the precondi-
tioning scheme by Diangui. This underlines the quality of the solution obtained with the
preconditioning scheme by Diangui.
In addition to the flow field, we compare the convergence rates for all three precondi-
tioning schemes in Figure 4.11. In the three subfigures, the normalized density residuum
is plotted over the number of iterations for both Van der Waals gas preconditioning
schemes in the upper and middle plot and the ideal gas scheme as a reference in the
bottom plot. The convergence rates belong to the calculations done at an inflow Mach
number of Main = 10−3 with the results shown in Figures 4.5 to 4.7.
At these conditions, both preconditioning schemes for a Van der Waals gas take approx-
imately the same number of iterations of about 10, 000 for the convergence rate to reach
the fully converged state. For the preconditioner of Turkel, the fully converged state is
at a density residuum of 3 · 10−3 which is slightly higher then the final residuum of the
preconditioner of Diangui which is at 1 · 10−3. Both preconditioners have a convergence
rate comparable to the one of the ideal gas preconditioning scheme we use as a reference.
In the ideal gas case, the solver needs approximately 10, 000 iterations as well and the
fully converged state is reached at a density residuum of 1 · 10−3. So, there is only a
small difference between the convergence behavior of the three considered preconditioning
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Figure 4.10.: Field solutions for an ideal gas obtained using the preconditioning scheme
by Turkel at a Mach number of Main = 10−4

schemes.
From the shown results it can be said that both Van der Waals gas preconditioning
schemes work equally well in the region for an inflow Mach number of Main = 10−1

to Main = 10−3. In the region from Main = 10−3 to Main = 10−4, however, only
the preconditioning scheme by Diangui converges to a stable solution while for the pre-
conditioner of Turkel the solution deteriorates due to numerical errors. Hence, for the
demonstration of the capability of the preconditioning scheme in section 4.3.4.3, we only
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(b) Convergence rate of the preconditioning scheme of Diangui for a Van der Waals gas
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(c) Convergence rate of the preconditioning scheme of Turkel for an ideal gas

Figure 4.11.: Convergence rates of all preconditioning schemes at Main = 10−3
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consider the scheme by Diangui.

4.3.4.2. Comparison of the convergence rates of both preconditioning schemes

Now we compare the convergence rates of the two preconditioning schemes for a Van
der Waals gas. We use one set of thermodynamic conditions and multiple inflow Mach
numbers. In Figures 4.12 and 4.13, the normalized density residua are plotted over the
number of iterations for the calculations using the preconditioning scheme by Turkel and
Diangui, respectively. We compare the convergence rates at the inflow Mach numbers
of Main = 10−1, Main = 10−2, Main = 10−3 and, for the scheme by Diangui, of
Main = 10−4. The considered calculations are again flows of gaseous nitrogen around a
NACA0012 profile at condition 1 in Table 4.4 on page 115.
In both figures, the plots at all considered Mach numbers agree well. The density
residuum of the fully converged solution stays at a value of 3 · 10−3 for the precondi-
tioning scheme of Turkel and at 1 · 10−3 for the one of Diangui as the Mach number
decreases. Both schemes need approximately 10, 000 iterations to reach the fully con-
verged stage for either inflow Mach number. So, both preconditioning schemes have a
convergence rate that is independent of the Mach number as M → 0.

4.3.4.3. Demonstration of the capability of the preconditioning scheme

In this section, we present the results of numerical simulations using the preconditioning
scheme of Diangui. In each simulation, we consider the flow of a fluid modeled as a
Van der Waals gas around the NACA0012 profile. The inflow Mach number is set to
Main = 10−4 for all calculations, while the inflow pressure and temperature vary. The
specific conditions used are listed in Table 4.4 on page 115. We consider both nitrogen
and oxygen, modeled by the Van der Waals gas implementation in the DLR TAU-code.
First, we continue with the calculations using nitrogen as a gas. In Figure 4.14, the flow
of supercritical nitrogen at condition 2 in Table 4.4 is presented. Again, the figure shows
the field solutions of pressure and density in the upper row and the x1-component of
velocity and the Mach number in the bottom row.
These results are qualitatively similar to the ones for gaseous nitrogen presented in Fig-
ure 4.9. The distribution of the pressure offset shown in Subfigure 4.14a is lower than
the one for gaseous nitrogen in Subfigure 4.9a by a factor of 10 since the background
pressure is lower by this factor as well due to the different inflow conditions. For the same
reason the distribution of the density offset shown in Subfigure 4.14b is lower than the
one in Subfigure 4.9b. The value of the background density of 0.6039360338 kg

m3 agrees
well with the expected value for supercritical nitrogen. The velocity distribution shown

124



Number of Iterations

D
e

n
s

it
y

 R
e

s
id

u
u

m

0 5000 10000 15000 20000

10
­3

10
­2

10
­1

10
0
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(b) Convergence rate at Main = 10−2
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(c) Convergence rate at Main = 10−3

Figure 4.12.: Convergence rates at different Mach numbers for calculations using the
preconditioning scheme by Turkel for a Van der Waals gas
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(d) Convergence rate at Main = 10−4

Figure 4.13.: Convergence rates at different Mach numbers for calculations using the
preconditioning scheme by Diangui for a Van der Waals gas

in Subfigure 4.14c is lower than the one for gaseous nitrogen shown in Subfigure 4.9c by
a factor of 2 while the Mach number distributions in Subfigures 4.14d and 4.9d agree
well. This is due to the lower value of the speed of sound for a supercritical fluid. So,
the distributions shown in Figure 4.14 agree well with the expectations for supercritical
nitrogen. Hence, we can conclude that the preconditioning scheme works as well for
supercritical nitrogen as it does in the gaseous case.
In addition, we consider liquid nitrogen at condition 3 in Table 4.4. The results of this
calculation are presented in Figure 4.15. Again, we show the four different field solutions.
The presented results are qualitatively similar to the ones for gaseous and supercritical
nitrogen presented in Figures 4.9 and 4.14.
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Figure 4.14.: Field solutions for a Van der Waals gas obtained using the preconditioning
scheme by Diangui at a Mach number of Main = 10−4 and condition 2

Similar to the difference between the gaseous and supercritical case, the pressure offset
distribution shown in Figure 4.15 is at a higher level than the other presented distribu-
tions. This difference agrees with the different inflow pressure due to the used condition.
The same applies to the distribution of the density offset shown in Subfigure 4.15b. The
value of the background density is 12.9497796 kg

m3 which is a reasonable value for liquid
nitrogen at this elevated pressure.
Overall, the distributions shown in Figure 4.15 agree well with the expectations for liquid
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Figure 4.15.: Field solutions for a Van der Waals gas obtained using the preconditioning
scheme by Diangui at a Mach number of Main = 10−4 and condition 3

nitrogen. So, the preconditioning scheme of Diangui is applicable to nitrogen modeled
as a Van der Waals gas at a liquid, a gaseous and a supercritical state.
The next fluid we consider is oxygen. We present the numerical results of calculations
with gaseous, supercritical and liquid oxygen in Figures 4.16, 4.17 and 4.18, respectively.
For all calculations the inflow Mach number is Main = 10−4. For the flow of gaseous
oxygen, condition 4 in Table 4.4 is used while conditions 5 and 6 are used for the flow
of supercritical and liquid oxygen, respectively. In all cases, oxygen is modeled as a
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Figure 4.16.: Field solutions for a Van der Waals gas obtained using the preconditioning
scheme by Diangui at a Mach number of Main = 10−4 and condition 5

Van der Waals gas. For all results, we present the field solutions of pressure, density,
x1-component of velocity and Mach number.
The results are qualitatively similar to the ones we obtain for nitrogen. All three pres-
sure offset distributions are qualitatively similar while representing the respective inflow
condition. The distributions of the density offsets are similar as well and the values of
the background density represent the respective state of the oxygen, namely the gaseous,
supercritical and liquid state.
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Figure 4.17.: Field solutions for a Van der Waals gas obtained using the preconditioning
scheme by Diangui at a Mach number of Main = 10−4 and condition 6

The Mach number distributions are similar both in a qualitative and a quantitative
manner in all three cases since the inflow Mach number is the same. The x1-velocity
distributions are qualitatively similar but vary in magnitude. This is due to the different
values of the speed of sound that is caused by the different condition of pressure and
temperature and the differences in the states of oxygen.
So overall this preconditioning scheme leads to the expected results both for nitrogen
and oxygen modeled as a Van der Waals gas. From this it can be expected that the
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Figure 4.18.: Field solutions for a Van der Waals gas obtained using the preconditioning
scheme by Diangui at a Mach number of Main = 10−4 and condition 7

preconditioning scheme by Diangui works well for any fluid modeled by a Van der Waals
gas to an inflow Mach number as low as 10−4 in comparable cases or a local Mach number
as low as 10−5 in general.
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5. Summary and Outlook

This work is concerned with the analysis and application of numerical schemes.
The Euler equations describing the flow of an inviscid fluid are described. To close the
system of equations, the Van der Waals equation of state is used. From the definition of
the thermal equation of state, a caloric state equation is derived, assuming the specific
heat at constant pressure cp to be constant. In the process of the derivation, it is
proven that cp is independent of the specific volume for a Van der Waals gas. Next, the
nondimensionalization is described which introduces the Mach number into the governing
equations. Then the boundary and initial conditions used within this work are stated.
In the next step, the properties of asymptotic functions are described and the process of
an asymptotic expansion is explained. Then an asymptotic expansion of the governing
equations for a Van der Waals gas is conducted for the first time to analyze their behavior
in the limit of a small Mach number. As a result, the pressure distribution is found to be
spatially constant in the limit of a vanishing Mach number. This agrees with the behavior
in the ideal gas case. Additionally, the behavior of the change of pressure with time is
analyzed. It is found that the leading order of the pressure is governed by compression
or expansion of the gas over the boundary of the flow domain like in the case of an ideal
gas, but that the real gas effects present in the Van der Waals equation of state can alter
this influence.
Next, numerical schemes are considered. Finite volume schemes are defined and the
discretization of both the computational domain and the convective fluxes is described.
The MAPS+ flux function is chosen for the analysis. It consists of a general part and
special adaptations for the low Mach number region and is described in detail. Then the
different terms in the flux Jacobi matrix representing MAPS+ and the flux Jacobi matrix
representing the continuous flux function are compared. By showing that their behavior
for a vanishing Mach number is similar, it is concluded that the MAPS+ flux function
is a close approximation of the continuous flux function. This analysis is conducted for
both an ideal gas and a Van der Waals gas with the result that MAPS+ approximates
both gases equally well.
In the next step, a discrete asymptotic analysis of the MAPS+ flux function is conducted.
This results in the statement that the general MAPS+ scheme can lead to fluctuations
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of the first order pressure term on a length scale independent of the Mach number while
no such fluctuations are possible with the altered MAPS+ scheme which includes the
adaptations for the low Mach number region. These variations in the first order pressure
terms contradict the results of the continuous asymptotic analysis. The result of this
finding is that only the altered MAPS+ scheme is suitable for the simulation of low
Mach number flows. To complete this section, numerical results are shown which confirm
that the altered MAPS+ scheme produces reasonable results in the limit of a low Mach
number while the general MAPS+ scheme deteriorates as the Mach number decreases.
Finally, preconditioning schemes are analyzed. A detailed overview over the currently
available schemes is given and the different requirements of ideal and Van der Waals gases
concerning preconditioners are discussed. The differences in the properties of the flux
Jacobi matrices in both cases are analyzed with the result that an ideal gas precondition-
ing scheme cannot, in general, lead to favorable results in the case of a Van der Waals
gas. This is then demonstrated by the analytical preconditioning of both the ideal gas
and the Van der Waals gas flux Jacobi matrix. For this demonstration, an ideal gas pre-
conditioning scheme by Turkel is compared to a Van der Waals gas preconditioner that is
constructed by simplifying the inverse of the Van der Waals gas flux Jacobi matrix. The
demonstration shows that the Van der Waals gas preconditioner works as expected for
the corresponding flux Jacobi matrix while the ideal gas preconditioning scheme leads to
complex eigenvalues and an increased condition number when used in the Van der Waals
gas case.
However, the constructed preconditioning matrix is limited to the analytical caloric equa-
tion of state for a Van der Waals gas and hence cannot be used with a numerical estima-
tion of the thermodynamic properties as it is implemented in most CFD codes. Hence,
the DLR TAU-code is used in combination with two suitable preconditioning schemes by
other authors to demonstrate the capability of preconditioners for a Van der Waals gas
using the TAU-code. The preconditioning schemes are implemented into the code using
derivatives of the thermodynamic modules within the code for the transformation from
primitive to conservative variables. The simulations with these preconditioners show
that flows of a real gas described by the Van der Waals gas equation of state can be
successfully simulated to a local Mach number as low as 10−5 for liquid, gaseous and
supercritical states. In addition, the convergence rates of these preconditioning schemes
are found to be independent of the Mach number as M → 0.
The work conducted in this thesis is intended as a baseline for further investigation of
preconditioning schemes for real gases. The analysis done for an inviscid fluid can be
extended to viscous calculations. In addition, the investigations done in this work are
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not limited to a Van der Waals gas but can be extended to other, more detailed cubic
equations of state.
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A. Appendix

A.1. Behavior of Jacobi matrices for a vanishing Mach
number

The continuous Jacobi matrix in x1-direction A
(1)
u = ∂f1(u)

∂u is defined in equation (2.4)
on page 8. The convective flux in x1-direction is given by

f1(u) =


ρv1

ρv2
1 + p

ρv1v2

ρHv1

 .

In a similar way as in subsection 4.2.3 on page 49 we can write this vector in terms of
the conservative variables u = (u1, u2, u3, u4)T = (ρ, ρv1, ρv2, ρE)T . This leads to

f1(u) =


u2

u22
u1

+ (γ − 1)
(
u4 − 1

2
u22+u23
u1

)
u2u3
u1

γ u2u4u1
− (γ−1)

2

(
u32+u2u23

u21

)

 . (A.1)

For the representation of pressure see equation (4.11) on page 50. The term ρHv1 can
be rewritten as

ρHv1 = ρv1

(
E +

p

ρ

)
= ρv1E + v1p. (A.2)

If we insert the conservative variables into this relation we get

ρHv1 =
u2u4

u1
+ (γ − 1)

(
u2u4

u1
− 1

2

u3
2 + u2u

2
3

u2
1

)
which can be simplified to the last entry in equation A.1.
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Taking the derivative, we arrive at

A
(1)
u =



0 1 0 0

−u22
u21

+ 1
2ξ

u22+u23
u21

2u2u1 − ξ
u2
u1

−ξ u3u1 ξ

−u2u3
u21

u3
u1

u2
u1

0

−γ u2u4
u21

+ ξ
(
u32+u2u23

u31

)
γ u4u1 −

ξ
2

(
3u22+u23
u21

)
−ξ
(
u2u3
u21

)
γ u2u1


with

ξ = γ − 1.

In the next step we replace the conservative variables. This leads to

A
(1)
u =



0 1 0 0

−v2
1 + 1

2ξ|v|
2 (3− γ) v1 −ξv2 ξ

−v1v2 v2 v1 0

−γv1E + ξ
(
v3

1 + v1v
2
2

)
γE − ξ

2

(
3v2

1 + v2
2

)
−ξ (v2v3) γv2


. (A.3)

For M → 0, γ and E are of O (1) while v1, v2 and |v| are of O (M). Hence, in the limit
of a vanishing Mach number we get the following behavior of the different terms in the
Jacobi matrix:

A
(1)
u =


0 1 0 0

O(M2) O(M) O(M) O(1)

O(M2) O(M) O(M) 0

O(M) O(1) O(M2) O(M)

 (A.4)

Now we repeat this derivation for a Van der Waals gas. From the representation of the
primitive variables in terms of the conservative variables in equation (4.13) we take the
pressure of a Van der Waals gas written in conservative variables. For the enthalpy flux,
we take equation (A.2) and insert the conservative variables. This leads to

ρHv1 =
u2u4

u1
+

2Mwu2u4 −Mw
u32+u2u23

u1
+ 2

au21u2
Mw

3u1 (Mw − bu1)
− au1u2

M2
w

.
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Hence, the convective flux in x1-direction for a Van der Waals gas is given by

f1(u) =



u2

u22
u1

+
2Mwu4−Mw

u22+u
2
3

u1
+2

au21
Mw

3Mw−3bu1
− au21

M2
w

u2u3
u1

u2u4
u1

+ 2Mwu2u4
3u1(Mw−bu1) −

Mw(u32+u2u23)
3u21(Mw−bu1)

+ 2au1u2
3Mw(Mw−bu1) −

au1u2
M2
w


. (A.5)

Now, we take the derivative to arrive at the Jacobi matrix. The first and third entry of
the convective flux vector are identical to the ideal gas case, hence the first and third
line of the Jacobi matrix are identical to the matrix in equation (A.3). The second row
can be deduced with the help of the fourth row of the matrix in equation (4.14). For the
first entry of the last row we get

∂ (f1 (u))4

∂u1
=− u2u4

u2
1

+
−2Mwu2u4 (3Mw − 6bu1)

9u2
1 (Mw − bu1)2 +

Mw

(
u3

2 + u2u
2
3

) (
6Mwu1 − 9bu2

1

)
9u4

1 (Mw − bu1)2

+
6aMwu2 (Mw − bu1) + 6abMwu1u2

9M2
w (Mw − bu1)2 − au2

M2
w

.

Now we replace the conservative variables and arrive at

∂ (f1 (u))4

∂u1
= −v1E +

−2Mwv1E (3Mw − 6bρ)

9 (Mw − bρ)2 +
Mw

(
v3

1 + v1v
2
2

) (
2Mwρ− 3bρ2

)
3ρ (Mw − bρ)2

+
2aMwρv1 (Mw − bρ) + 2abMwρ

2v1

3M2
w (Mw − bρ)2 − aρv1

M2
w

= −v1E +
−2Mwv1E (Mw − 2bρ)

3 (Mw − bρ)2 +
2Mwv1|v|2 (Mw − 2bρ) + bMwρv1|v|2

3 (Mw − bρ)2

+
2aMwρv1 (Mw − bρ) + 2abMwρ

2v1

3M2
w (Mw − bρ)2 − aρv1

M2
w

= −v1E +
2Mwv1 (2bρ−Mw)

(
E − |v|2

)
+ bMwρv1|v|2

3 (Mw − bρ)2

+
2aMwρv1 (Mw − bρ) + 2abMwρ

2v1

3M2
w (Mw − bρ)2 − aρv1

M2
w

.
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For the second entry in the last row we get

∂ (f1 (u))4

∂u2
=
u4

u1
+

2Mwu4

3u1 (Mw − bu1)
−
Mw

(
3u2

2 + u2
3

)
3u2

1 (Mw − bu1)
+

2au1

3Mw (Mw − bu1)
− au1

M2
w

.

Replacing the conservative variables this becomes

∂ (f1 (u))4

∂u2
= E +

2MwE

3 (Mw − bρ)
−
Mw

(
3v2

1 + v2
2

)
3 (Mw − bρ)

+
2aρ

3Mw (Mw − bρ)
− aρ

M2
w

= E +

(
2E − |v|2 − 2v2

1

)
+ 2 aρ

M2
w

3(Mw−bρ)
Mw

− aρ

M2
w

.

The third entry in the last row can be written as

∂ (f1 (u))4

∂u3
= − 2Mwu2u3

3u2
1 (Mw − bu1)

,

replacing the conservative variables we get

∂ (f1 (u))4

∂u3
= − 2Mwv1v2

3 (Mw − bρ)
.

And finally, the fourth entry of the last row is

∂ (f1 (u))4

∂u4
=
u2

u1
+

2Mwu2

3u1 (Mw − bu1)
.

If we replace the conservative variables we get

∂ (f1 (u))4

∂u4
= v1 +

2Mwv1

3 (Mw − bρ)
.

Combining all these results, we can write the Jacobi matrix for a Van der Waals gas:

A
(1)
u =



0 1 0 0

−v21 +
2bMwρ

(
E−|v|2

)
+M2

w|v|
2−ξ2

3ξ21

2v1 +
−2Mwv1

3ξ1

−2Mwv2
3ξ1

2Mw
3ξ1

−v1v2 v2 v1 0

−v1E +
2Mwv1(2bρ−Mw)

(
E−|v|2

)
+bMwρv1|v|

2

3ξ21

E +

(
2E−|v|2−2v21

)
+2ξ4

3ξ1
Mw

− ξ4 − 2Mwv1v2
3ξ1

v1 +
2Mwv1

3ξ1

+v1ξ3 − v1ξ4


(A.6)

with
ξ1 = Mw − bρ,
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ξ2 = 6
ab2

M2
w

ρ3 − 10
ab

Mw
ρ2 + 2aρ,

ξ3 =
2aMwρξ1 + 2abMwρ

2

3M2
wξ

2
1

and
ξ4 =

aρ

M2
w

For M → 0, a, b, Mw, ρ and E are of O (1) while v1, v2 and |v| are of O (M). Hence,
in the limit of a vanishing Mach number we get the following behavior of the different
terms in the Jacobi matrix for a Van der Waals gas:

A
(1)
u =


0 1 0 0

O(1) O(M) O(M) O(1)

O(M2) O(M) O(M) 0

O(M) O(1) O(M2) O(M)

 . (A.7)

A.2. Transformation of flux Jacobi matrix

Here, we want to transform the flux Jacobi matrix into a form similar to the Jacobi
matrix of the MAPS+ scheme presented in equation (4.19) on page 55. Hence, we want
to write the flux Jacobi matrix as

A
(1)
u = Aprim

∂q1

∂u
+


v1 0 0 0

0 v1 0 0

0 0 v1 0

0 0 0 v1

 . (A.8)

In a first step, we transform the matrix for an ideal gas, followed by the transformation
for a Van der Waals gas.

A.2.1. Jacobi matrix of an ideal gas

In terms of the conservative variables, the flux Jacobi matrix of an ideal gas is given by
equation (A.1).
To attain the matrix Aprim, we first need to subtract the last matrix in equation (A.8)
from the flux Jacobi matrix. In terms of the conservative variables we get
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Aprim =



0 1 0 0

−
u22
u21

+ 1
2
ξ
u22+u23
u21

2
u2
u1

− ξ
u2
u1

−ξ u3
u1

ξ

−u2u3
u21

u3
u1

u2
u1

0

−γ u2u4
u21

+ ξ

(
u32+u2u

2
3

u31

)
γ
u4
u1

− ξ
2

(
3u22+u23
u21

)
−ξ
(
u2u3
u21

)
γ
u2
u1


−



u2
u1

0 0 0

0
u2
u1

0 0

0 0
u2
u1

0

0 0 0
u2
u1



=



−u2
u1

1 0 0

−
u22
u21

+ 1
2
ξ
u22+u23
u21

u2
u1

− ξ
u2
u1

−ξ u3
u1

ξ

−u2u3
u21

u3
u1

0 0

−γ u2u4
u21

+ ξ

(
u32+u2u

2
3

u31

)
γ
u4
u1

− ξ
2

(
3u22+u23
u21

)
−ξ
(
u2u3
u21

)
ξ
u2
u1



(A.9)

with
ξ = γ − 1.

Next, we need to multiply this matrix with the transformation matrix from conservative
to primitive variables. In order to attain the transformation matrix, we write the vec-
tor of conservative variables in terms of the primitive variables q1 = (q1, q2, q3, q4)T =

(ρ, v1, v2, p)
T . For the representation of pressure we first rewrite the dimensionless version

of the caloric ideal gas equation (2.5) on page 9 to

ρE =
p

ξ
+

1

2
ρv2.

We get the vector of conservative variables:

u =

(
q1, q1q2, q1q3,

q4

ξ
+

1

2
q1

(
q2

2 + q2
3

))T
With this, we can write the transformation matrix as

(
∂u

∂q1

)
=



1 0 0 0

q2 q1 0 0

q3 0 q1 0

q22+q23
2 q1q2 q1q3

1
ξ


.

For the multiplication, it is helpful to rewrite this matrix in terms of conservative vari-
ables. This gives us
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(
∂u

∂q1

)
=



1 0 0 0

u2
u1

u1 0 0

u3
u1

0 u1 0

u22+u23
2u21

u2 u3
1
ξ


.

Now, we multiply the result of equation (A.9) with the transformation matrix from
conservative to primitive variables. This gives us the following form of the matrix Aprim:

Aprim =



−u2
u1

1 0 0

−
u22
u21

+ 1
2
ξ
u22+u23
u21

u2
u1

− ξ
u2
u1

−ξ u3
u1

ξ

−u2u3
u21

u3
u1

0 0

−γ u2u4
u21

+ ξ

(
u32+u2u

2
3

u31

)
γ
u4
u1

− ξ
2

(
3u22+u23
u21

)
−ξ
(
u2u3
u21

)
ξ
u2
u1



·



1 0 0 0

u2
u1

u1 0 0

u3
u1

0 u1 0

u22+u23
2u21

u2 u3
1
ξ


=



0 u1 0 0

0 u2 0 1

0 u3 0 1

0 γu4 − ξ
2

u22+u23
u1

0
u2
u1



Replacing the conservative variables, we can get

Aprim =


0 ρ 0 0

0 ρv1 0 1

0 ρv2 0 1

0 γρE − ξ
2ρ|v|

2 0 v1

 . (A.10)

The second term in the last row can be reformulated which results in

γρE − ξ

2
ρ|v|2 = (γ − 1) ρE − 1

2
(γ − 1) ρ|v|2 + ρE

With the caloric equation of state (2.5) we can introduce pressure into the equation which
gives us

(γ − 1) ρE − 1

2
(γ − 1) ρ|v|2 + ρE = p+ ρE.
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Now, we can write the Jacobi matrix for an ideal gas in its final form

A
(1)
u =


0 ρ 0 0

0 ρv1 0 1

0 ρv2 0 0

0 ρ(E + p
ρ) 0 v1

 ∂q1

∂u
+


v1 0 0 0

0 v1 0 0

0 0 v1 0

0 0 0 v1

 . (A.11)

A.2.2. Jacobi matrix of a Van der Waals gas

The flux Jacobi matrix of a Van der Waals gas is given by equation (A.6). In terms of
the conservative variables, we can write it as

A
(1)
u =



0 1 0 0

−
u22
u21

+

2bMwξ5+M2
w
u22+u23
u21

−ξ2

3ξ21

2
u2
u1

+
−2Mw

u2
u1

3ξ1

−2Mw
u3
u1

3ξ1

2Mw
3ξ1

−u2u3
u21

u3
u1

u2
u1

0

2Mw
u2
u1

(2bu1−Mw)
ξ5
u1

+bMwu1
u32+u2u

2
3

u31
3ξ21

u4
u1

+

(
2
u4
u1
−

3u22+u23
u21

)
+2ξ4

3ξ1
Mw

− ξ4 −
2Mw

u2u3
u21

3ξ1

u2
u1

+
2Mwu2
3u1ξ1

−u2u4
u21

+
u2
u1
ξ3 − u2

u1
ξ4



with
ξ1 = Mw − bu1,

ξ2 = 6
ab2

M2
w

u3
1 − 10

ab

Mw
u2

1 + 2au1,

ξ3 =
2aMwu1ξ1 + 2abMwu

2
1

3M2
wξ

2
1

,

ξ4 =
au1

M2
w

and

ξ5 = u4 −
u2

2 + u2
3

u1
.
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Now, we subtract the last matrix in equation (A.8) from the flux Jacobi matrix:



0 1 0 0

−
u22
u21

+

2bMwξ5+M2
w
u22+u23
u21

−ξ2

3ξ21

2
u2
u1

+
−2Mw

u2
u1

3ξ1

−2Mw
u3
u1

3ξ1

2Mw
3ξ1

−u2u3
u21

u3
u1

u2
u1

0

2Mw
u2
u1

(2bu1−Mw)
ξ5
u1

+bMwu1
u32+u2u

2
3

u31
3ξ21

u4
u1

+

(
2
u4
u1
−

3u22+u23
u21

)
+2ξ4

3ξ1
Mw

− ξ4 −
2Mw

u2u3
u21

3ξ1

u2
u1

+
2Mwu2
3u1ξ1

−u2u4
u21

+
u2
u1
ξ3 − u2

u1
ξ4



−



u2
u1

0 0 0

0
u2
u1

0 0

0 0
u2
u1

0

0 0 0
u2
u1



=



−u2
u1

1 0 0

−
u22
u21

+

2bMwξ5+M2
w
u22+u23
u21

−ξ2

3ξ21

u2
u1

+
−2Mw

u2
u1

3ξ1

−2Mw
u3
u1

3ξ1

2Mw
3ξ1

−u2u3
u21

u3
u1

0 0

2Mw
u2
u1

(2bu1−Mw)
ξ5
u1

+bMwu1
u32+u2u

2
3

u31
3ξ21

u4
u1

+

(
2
u4
u1
−

3u22+u23
u21

)
+2ξ4

3ξ1
Mw

− ξ4 −
2Mw

u2u3
u21

3ξ1

2Mwu2
3u1ξ1

−u2u4
u21

+
u2
u1
ξ3 − u2

u1
ξ4


(A.12)

For the next step, we need the transformation matrix from conservative to primitive
variables for a Van der Waals gas. First, we write the vector of conservative variables in
terms of the primitive variables q1 = (q1, q2, q3, q4)T = (ρ, v1, v2, p)

T . For this purpose,
we rewrite the caloric Van der Waals equation of state (4.4) on page 45 as

ρE =
3

2Mw

(
p+

aρ2

M2
w

)
(Mw − bρ) +

1

2
ρ|v|2 − aρ2

M2
w

With this, we get the vector of conservative variable as

u =

(
q1, q1q2, q1q3,

3

2Mw

(
q4 +

aq2
1

M2
w

)
(Mw − bq1) +

1

2
q1

(
q2

2 + q2
3

)
− aq2

1

M2
w

)T
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Now, we can write the transformation matrix as

(
∂u

∂q1

)
=



1 0 0 0

q2 q1 0 0

q3 0 q1 0

−9ab
2M3

w
q2

1 + a
M2
w
q1 + 1

2

(
q2

2 + q2
3

)
− 3b

2Mw
q4 q1q2 q1q3

3
2Mw

(Mw − bq1)


.

To gain the first entry in the last row, we transform the derivative to(
∂u4

∂ (q1)1

)
=
−3b

2Mw

(
q4 +

aq2
1

M2
w

)
+

3aq1

M3
w

(Mw − bq1) +
1

2

(
q2

2 + q2
3

)
− 2

aq1

M2
w

=
−3b

2Mw
q4 −

3ab

2M3
w

q2
1 +

3a

M2
w

q1 −
3ab

M3
w

q2
1 +

1

2

(
q2

2 + q2
3

)
− 2a

M2
w

q1

=
−9ab

2M3
w

q2
1 +

a

M2
w

q1 +
1

2

(
q2

2 + q2
3

)
− 3b

2Mw
q4.

For the multiplication we rewrite the transformation matrix in terms of conservative
variables. For the first term in the last row, we use the representation of pressure in
terms of the conservative variables that is given in equation (4.13) on page 51 to get
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(
∂u4

∂ (q1)1

)
=
−9ab

2M3
w

u2
1 +

a

M2
w

u1 +
u2

2 + u2
3

2u2
1

− 3b

2Mw

2Mwu4 −Mw
u22+u23
u1

+ 2
au21
Mw

3 (Mw − bu1)
− au2

1

M2
w


=
−9ab

2M3
w

u2
1 +

a

M2
w

u1 +
u2

2 + u2
3

2u2
1

− b

Mw − bu1
u4 +

b

2 (Mw − bu1)

u2
2 + u2

3

u1

− ab

M2
w (Mw − bu1)

u2
1 +

3ab

2M3
w

u2
1

=
−9abu2

1 (Mw − bu1) + 2aMwu1 (Mw − bu1)− 2abMwu
2
1

2M3
w (Mw − bu1)

+
3ab (Mw − bu1)u2

1

2M3
w (Mw − bu1)

+

(
u2

2 + u2
3

)
(Mw − bu1) + bu1

(
u2

2 + u2
3

)
2u2

1 (Mw − bu1)

− b

Mw − bu1
u4

=
−9abMwu

2
1 + 9ab2u3

1 + 2aM2
wu1 − 2abMwu

2
1 − 2abMwu

2
1 + 3abMwu

2
1

2M3
w (Mw − bu1)

− 3ab2u3
1

2M3
w (Mw − bu1)

+
Mw

(
u2

2 + u2
3

)
2u2

1 (Mw − bu1)
− b

Mw − bu1
u4

=
6ab2u3

1 − 10abMwu
2
1 + 2aM2

wu1

2M3
w (Mw − bu1)

+
Mw

(
u2

2 + u2
3

)
2u2

1 (Mw − bu1)
− b

Mw − bu1
u4.

We arrive at

(
∂u

∂q1

)
=



1 0 0 0

u2
u1

u1 0 0

u3
u1

0 u1 0

6ab2u31−10abMwu21+2aM2
wu1

2M3
w(Mw−bu1)

+
Mw(u22+u23)

2u21(Mw−bu1)
− b

Mw−bu1u4 u2 u3
3(Mw−bu1)

2Mw


.

Now, we multiply the result of equation (A.12) with the transformation matrix from
conservative to primitive variables. This gives us the following form of the matrix Aprim:
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Aprim =



−u2
u1

1 0 0

−
u22
u21

+

2bMwξ5+M2
w
u22+u23
u21

−ξ2

3ξ21

u2
u1

+
−2Mw

u2
u1

3ξ1

−2Mw
u3
u1

3ξ1

2Mw
3ξ1

−u2u3
u21

u3
u1

0 0

2Mw
u2
u1

(2bu1−Mw)
ξ5
u1

+bMwu1
u32+u2u

2
3

u31
3ξ21

u4
u1

+

(
2
u4
u1
−

3u22+u23
u21

)
+2ξ4

3ξ1
Mw

− ξ4 −
2Mw

u2u3
u21

3ξ1

2Mwu2
3u1ξ1

−u2u4
u21

+
u2
u1
ξ3 − u2

u1
ξ4



·



1 0 0 0

u2
u1

u1 0 0

u3
u1

0 u1 0

6ab2u31−10abMwu
2
1+2aM2

wu1
2M3

w(Mw−bu1)
+

Mw

(
u22+u23

)
2u21(Mw−bu1)

− b
Mw−bu1

u4 u2 u3
3(Mw−bu1)

2Mw



=



0 u1 0 0

0 u2 0 1

0 u3 0 0

0
−aMwu21+3abu31
3M2

w(Mw−bu1)
− Mw

3(Mw−bu1)

u22+u23
u1

+
5Mw−3bu1
3(Mw−bu1)

u4 0
u2
u1



In the following, we present the simplification of some of the entries of this matrix. We
refer to the entry in row i and column j of Aprim as aij .

a21 = −u
2
2

u2
1

+
2bMwξ5 +M2

w
u22+u23
u21
− ξ2

3ξ2
1

+
u2

2

u2
1

− 2Mw

3ξ1

u2
2

u2
1

− 2Mw

3ξ1

u2
3

u2
1

+
2Mw

3ξ1

(
6ab2u3

1 − 10abMwu
2
1 + 2aM2

wu1

2M3
w (Mw − bu1)

+
Mw

(
u2

2 + u2
3

)
2u2

1 (Mw − bu1)
− b

Mw − bu1
u4

)

To simplify this entry, we substitute the abbreviations ξ1 to ξ5 by the corresponding
expressions:
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a21 =
2bMw

3 (Mw − bu1)2

(
u4 −

u2
2 + u2

3

u1

)
+

M2
w

3 (Mw − bu1)2

u2
2 + u2

3

u2
1

−
6 ab

2

M2
w
u3

1 − 10 ab
Mw

u2
1 + 2au1

3 (Mw − bu1)2 − 2Mw

3 (Mw − bu1)

u2
2 + u2

3

u2
1

+
2Mw

3 (Mw − bu1)

6ab2u3
1 − 10abMwu

2
1 + 2aM2

wu1

2M3
w (Mw − bu1)

+
2Mw

3 (Mw − bu1)

Mw

(
u2

2 + u2
3

)
2u2

1 (Mw − bu1)

− 2Mw

3 (Mw − bu1)

b

(Mw − bu1)
u4

= −6ab2Mwu
3
1 − 10abM2

wu
2
1 + 2aM3

wu1

3M3
w (Mw − bu1)2 +

6ab2Mwu
3
1 − 10abM2

wu
2
1 + 2aM3

wu1

3M3
w (Mw − bu1)2

− 2bMwu1

3 (Mw − bu1)2

u2
2 + u2

3

u2
1

+
2M2

w

3 (Mw − bu1)2

u2
2 + u2

3

u2
1

− 2Mw (Mw − bu1)

3 (Mw − bu1)2

u2
2 + u2

3

u2
1

=
2M2

w − 2bMwu1

3 (Mw − bu1)2

u2
2 + u2

3

u2
1

− 2M2
w − 2bMwu1

3 (Mw − bu1)2

u2
2 + u2

3

u2
1

= 0

a41 =
2Mw

u2
u1

(2bu1 −Mw) ξ5
u1

+ bMwu1
u32+u2u23

u31

3ξ2
1

− u2u4

u2
1

+
u2

u1
ξ3 −

u2

u1
ξ4 +

u2u4

u2
1

+
u2

u1

(
2u4u1 −

3u22+u23
u21

)
+ 2ξ4

3ξ1
Mw

− u2

u1
ξ4 −

2Mw
u2u23
u31

3ξ1

+
2Mwu2

3u1ξ1

(
6ab2u3

1 − 10abMwu
2
1 + 2aM2

wu1

2M3
w (Mw − bu1)

+
Mw

(
u2

2 + u2
3

)
2u2

1 (Mw − bu1)
− b

Mw − bu1
u4

)
Again, we substitute the corresponding expressions for ξ1 to ξ5. This leads to

a41 =
2Mw (2bu1 −Mw)

3 (Mw − bu1)2

u2

u2
1

(
u4 −

u2
2 + u2

3

u1

)
+

bMwu1

3 (Mw − bu1)2

u3
2 + u2u

2
3

u3
1

+
u2

u1

2aMwu1 (Mw − bu1) + 2abMwu
2
1

3M2
w (Mw − bu1)2 − u2

u1

au1

M2
w

+
2Mw

3 (Mw − bu1)

u2u4

u2
1

− Mw

3 (Mw − bu1)

u2

u1

3u2
2 + u2

3

u2
1

+
2Mw

3 (Mw − bu1)

u2

u1

au1

M2
w

− u2

u1

au1

M2
w

− 2Mw

3 (Mw − bu1)

u2u
2
3

u3
1

+
2Mwu2

3u1 (Mw − bu1)

6ab2u3
1 − 10abMwu

2
1 + 2aM2

wu1

2M3
w (Mw − bu1)

+
2Mwu2

3u1 (Mw − bu1)

Mw

(
u2

2 + u2
3

)
2u2

1 (Mw − bu1)
− 2Mwu2

3u1 (Mw − bu1)

b

(Mw − bu1)
u4,
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which we can further simplify to

a41 = u2
2aM2

w − 2abMwu1 + 2abMwu1

3M2
w (Mw − bu1)2 − u2

2a

M2
w

+
2Mw

3 (Mw − bu1)
u2

a

M2
w

+
2Mwu2

3 (Mw − bu1)

6ab2u2
1 − 10abMwu1 + 2aM2

w

2M3
w (Mw − bu1)

− 4bMwu1 − 2M2
w

3 (Mw − bu1)2

u3
2 + u2u

2
3

u3
1

+
bMwu1

3 (Mw − bu1)2

u3
2 + u2u

2
3

u3
1

− Mw

3 (Mw − bu1)

3u3
2 + u2u

2
3

u3
1

− 2Mw

3 (Mw − bu1)

u2u
2
3

u3
1

+
2M2

w

3 (Mw − bu1)2

u3
2 + u2u

2
3

2u3
1

+
4bMwu1 − 2M2

w

3 (Mw − bu1)2

u2

u2
1

u4 +
2Mw

3 (Mw − bu1)

u2u4

u2
1

− 2bMw

3 (Mw − bu1)2

u2u4

u1

= u2
2aM3

w − 2abM2
wu1 + 2abM2

wu1

3M3
w (Mw − bu1)2 − u2

2aMw

(
M2
w − 2bMwu1 + b2u2

1

)
3M3

w (Mw − bu1)2

+
2aM2

w (Mw − bu1)

3M3
w (Mw − bu1)2 u2 +

Mwu2

3 (Mw − bu1)

6ab2u2
1 − 10abMwu1 + 2aM2

w

M3
w (Mw − bu1)

− 4bMwu1 − 2M2
w

3 (Mw − bu1)2

u3
2 + u2u

2
3

u3
1

+
bMwu1

3 (Mw − bu1)2

u3
2 + u2u

2
3

u3
1

− Mw

3 (Mw − bu1)

3u3
2 + u2u

2
3

u3
1

− 2Mw

3 (Mw − bu1)

u2u
2
3

u3
1

+
2M2

w

3 (Mw − bu1)2

u3
2 + u2u

2
3

2u3
1

+
4bMwu1 − 2M2

w

3 (Mw − bu1)2

u2

u2
1

u4 +
2Mw

3 (Mw − bu1)

u2u4

u2
1

− 2bMw

3 (Mw − bu1)2

u2u4

u1

=
2aM3

wu2 − 6aM3
wu2 + 12abM2

wu1u2 − 6ab2Mwu
2
1u2 + 2aM3

wu2 − 2abM2
wu1u2

3M3
w (Mw − bu1)2

+
+6ab2Mwu

2
1u2 − 10abM2

wu1u2 + 2aM3
wu2

3M3
w (Mw − bu1)2 − 3bMwu1 −M2

w

3 (Mw − bu1)2

u2

u2
1

u2
2 + u2

3

u1

− Mw

(Mw − bu1)

u2

u1

u2
2 + u2

3

u2
1

+
2bMwu1 − 2M2

w

3 (Mw − bu1)2

u2

u2
1

u4 +
2Mw

3 (Mw − bu1)

u2u4

u2
1

=

(
3bMwu1 −M2

w

)
u2

(
u2

2 + u2
3

)
−
(
3M2

w − 3bMwu1

)
u2

(
u2

2 + u2
3

)
3 (Mw − bu1)2 u3

1

= 0.

a42 = u4 +

(
2u4 −

3u22+u23
u1

)
+ 2ξ4u1

3ξ1
Mw

− ξ4u1 +
2Mwu

2
2

3u1ξ1
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First, we replace ξ1 and ξ4 by the corresponding expressions, which leads to

a42 = u4 +
2Mw

3 (Mw − bu1)
u4 −

Mw

3 (Mw − bu1)

3u2
2 + u2

3

u1
+

2
au21
Mw

3 (Mw − bu1)
− au2

1

M2
w

+
2Mwu

2
2

3u1 (Mw − bu1)

=
2aMwu

2
1 − 3aMwu

2
1 + 3abu3

1

3M2
w (Mw − bu1)

− Mw

3 (Mw − bu1)

u2
2 + u2

3

u1
+

2Mw + 3Mw − 3bu1

3 (Mw − bu1)
u4

=
−aMwu

2
1 + 3abu3

1

3M2
w (Mw − bu1)

− Mw

3 (Mw − bu1)

u2
2 + u2

3

u1
+

5Mw − 3bu1

3 (Mw − bu1)
u4.

Now, we replace the conservative variables in Aprim. For the second entry in the last row
we can also insert pressure from the caloric equation of state for a Van der Waals gas
(4.4) on page 45:

a42 =
−aMwu

2
1 + 3abu3

1

3M2
w (Mw − bu1)

− Mw

3 (Mw − bu1)

u2
2 + u2

3

u1
+

5Mw − 3bu1

3 (Mw − bu1)
u4

=
−aMwρ

2 + 3abρ3

3M2
w (Mw − bρ)

− Mw

3 (Mw − bρ)
ρ|v|2 +

5Mw − 3bρ

3 (Mw − bρ)
ρE

=

−aρ2
Mw

+ 3abρ3

M2
w
−Mwρ|v|2 + 2MwρE

3 (Mw − bρ)
+ ρE

=

−aρ2
M2
w
· 3 (Mw − bρ) + 2aρ2

Mw
−Mwρ|v|2 + 2MwρE

3 (Mw − bρ)
+ ρE

=

2aρ2

Mw
−Mwρ|v|2 + 2MwρE

3 (Mw − bρ)
− aρ2

M2
w

+ ρE = p+ ρE

With this, we get

Aprim =



0 ρ 0 0

0 ρv1 0 1

0 ρv2 0 0

0 ρ
(
E + p

ρ

)
0 v1


. (A.13)
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Now, we can write the Jacobi matrix for a Van der Waals gas in its final form

A
(1)
u =


0 ρ 0 0

0 ρv1 0 1

0 ρv2 0 0

0 ρ(E + p
ρ) 0 v1

 ∂q1

∂u
+


v1 0 0 0

0 v1 0 0

0 0 v1 0

0 0 0 v1

 . (A.14)

This matrix is identical to the one in equation (A.11) on page VIII for an ideal gas. The
multiplication with ∂q1

∂u introduces the differences due to the different equations of state.
So, for our purpose, we can use equation (A.11) regardless of the equation of state.

A.3. Behavior of the MAPS+ Jacobi matrix for a vanishing
Mach number

In this section, we analyze the different entries of matrix (4.21) on page 57 as the Mach
number approaches zero for both an ideal and a Van der Waals gas. As M → 0, ρ,
p and E are of O(1) while v1 is of O(M). In subsection 4.2.4.3 on page 73 we see
that cmax,mod = O(M) and (1− |Ma0|) = O(1) as M → 0. For the behavior of the
transformations matrices, we take the results in equation (4.15) and (4.16) for the ideal
and Van der Waals gas case, respectively.
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For an ideal gas, we get

Au,MAPS+ =


0 0 0 O(M−1)

0 O(M) 0 O(1)

0 O(M) 0 O(1)

0 0 0 O(M−1)

 ·


1 0 0 0

O(M) O(1) 0 0

O(M) 0 O(1) 0

O(M2) O(M) O(M) O(1)



+


O(M) 0 0 0

0 O(M) 0 0

0 0 O(M) 0

0 0 0 O(M)



=


O(M) O(1) O(1) O(M−1)

O(M2) O(M) O(M) O(1)

O(M2) O(M) O(M) O(1)

O(M) O(1) O(1) O(M−1)



+


O(M) 0 0 0

0 O(M) 0 0

0 0 O(M) 0

0 0 0 O(M)



=


O(M) O(1) O(1) O(M−1)

O(M2) O(M) O(M) O(1)

O(M2) O(M) O(M) O(1)

O(M) O(1) O(1) O(M−1)

 .
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While the usage of a Van der Waals gas leads to

Au,MAPS+ =


0 0 0 O(M−1)

0 O(M) 0 O(1)

0 O(M) 0 O(1)

0 0 0 O(M−1)

 ·


1 0 0 0

O(M) O(1) 0 0

O(M) 0 O(1) 0

O(1) O(M) O(M) O(1)



+


O(M) 0 0 0

0 O(M) 0 0

0 0 O(M) 0

0 0 0 O(M)



=


O(M−1) O(1) O(1) O(M−1)

O(1) O(M) O(M) O(1)

O(1) O(M) O(M) O(1)

O(M−1) O(1) O(1) O(M−1)



+


O(M) 0 0 0

0 O(M) 0 0

0 0 O(M) 0

0 0 0 O(M)



=


O(M−1) O(1) O(1) O(M−1)

O(1) O(M) O(M) O(1)

O(1) O(M) O(M) O(1)

O(M−1) O(1) O(1) O(M−1)

 .

A.4. Taylor series

In general, a Taylor series is defined as follows.

Definition A.4.1.
The Taylor series of the function f(x) at the point a is the power series

∞∑
n=0

f (n) (a)

n!
,

where f (n) (a) denotes the nth derivative of the function f(x) evaluated at the point a
and n! is the factorial of n.

In the following, we only consider Taylor series up to the second power.
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A.4.1. Taylor series of the caloric Van der Waals equation of state

Inserting the asymptotic sequence into the caloric Van der Waals equation of state (2.19)
on page 17, we get

p(0) +Mp(1) +M2p(2) =
2Mw

(
ρ(0) +Mρ(1) +M2ρ(2)

) (
E(0) +ME(1) +M2E(2)

)
3Mw − 3b

(
ρ(0) +Mρ(1) +M2ρ(2)

)
−
M2Mw

(
ρ(0) +Mρ(1) +M2ρ(2)

) (
|v(0)|+M |v(1)|+M2|v(2)|

)2
3Mw − 3b

(
ρ(0) +Mρ(1) +M2ρ(2)

)
+

2a
Mw

(
ρ(0) +Mρ(1) +M2ρ(2)

)2
3Mw − 3b

(
ρ(0) +Mρ(1) +M2ρ(2)

) − a
(
ρ(0) +Mρ(1) +M2ρ(2)

)2
M2
w

.

Now we expand the right hand side of this equation into a Taylor series around M = 0.
Since we are only interested in the O(1) part of the expression, we only consider the
function f(M) and neglect the derivatives. Hence, we can write

p(0) = f(0) =
2Mw (ρE)(0) + 2a

Mw
[ρ(0)]

2

3Mw − 3bρ(0)
− a[ρ(0)]

2

M2
w

. (A.15)

A.4.2. Taylor series of the density flux function of the general MAPS+
scheme

If we insert the asymptotic sequence into the density flux function of the general MAPS+
scheme presented in equation (4.25) on page 62 we get

HρMAPS+ (ũi, ũj ;n) =

∑2
k=0M

k4ijp
(k)

2
∑2

k=0M
kc

(k)
max,ij︸ ︷︷ ︸

f1(M)

−M

(∑2
k=0M

k|q(k)|max,ij∑2
k=0M

kc
(k)
min,ij

∑2
k=0M

k4ijp
(k)∑2

k=0M
kc

(k)
i +

∑2
k=0M

kc
(k)
j

)
︸ ︷︷ ︸

f2(M)

+M

∑2
k=0M

k|q(k)|max,ij

2

(
2∑

k=0

Mk4ijρ
(k)

)

+M

2∑
k=0

(
Mkq

(k)
i +Mkq

(k)
j

) ∑2
k=0

(
Mkρ

(k)
i +Mkρ

(k)
j

)
4

.

(A.16)
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We expand the right hand side of this equation into a Taylor series around M = 0. The
part of O(1) is given by

HρMAPS+ (ũi, ũj ;n) =
4ijp

(0)

2c
(0)
max,ij

. (A.17)

For the part of O(M), we need to consider the derivative f ′(M). In a first step, we only
look at the first summand, so

f1(M) =

∑2
k=0M

k4ijp
(k)

2
∑2

k=0M
kc

(k)
max,ij

.

Now, we can write the derivative as

f ′1(M) =
4ijp

(1) + 2M4ijp
(2)

2
∑2

k=0M
kc

(k)
max,ij

−

(∑2
k=0M

k4ijp
(k)
)(

c
(1)
max,ij + 2Mc

(2)
max,ij

)
2
(∑2

k=0M
kc

(k)
max,ij

)2 .

For M = 0 we get

f ′1(0) =
4ijp

(1)

2c
(0)
max,ij

−
c

(1)
max,ij4ijp

(0)

2
(
c

(0)
max,ij

)2

Next, we look at the second summand. We can simplify the process of taking the deriva-
tive when we remember that we are only interested in the expression for M = 0. With
this, we can deduce

f ′2(0) =
|q(0)|max,ij

c
(0)
min,ij

4ijp
(0)

c
(0)
i + c

(0)
j

.

In a similar way we obtain the results for the remaining terms in equation (A.16). Com-
bining all these expressions, we get

f(0) =
4ijp

(1)

2c
(0)
max,ij

−
c

(1)
max,ij4ijp

(0)

2
(
c

(0)
max,ij

)2 −
|q(0)|max,ij

c
(0)
min,ij

4ijp
(0)

c
(0)
i + c

(0)
j

+
|q(0)|max,ij

2
4ijρ

(0)

+

(
q

(0)
i + q

(0)
j

)(
ρ

(0)
i + ρ

(0)
j

)
4

.

(A.18)
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A.4.3. Taylor series of the momentum flux functions of the general
MAPS+ scheme

We insert the asymptotic sequence into the momentum flux functions of the general
MAPS+ scheme presented in equation (4.26) on page 63. This results in

HρvζMAPS+ (ũi, ũj ;n) = nζ

∑2
k=0

(
Mkp

(k)
i +Mkp

(k)
j

)
2

+M

∑2
k=0

[
Mk (vζ)

(k)
i +Mk (vζ)

(k)
j

]
∑2

k=0M
k4c

(k)
max,ij

2∑
k=0

Mk4ijp
(k)

︸ ︷︷ ︸
f1(M)

+ nζM

∑2
k=0

(
Mkρ

(k)
i +Mkρ

(k)
j

)
4

2∑
k=0

Mkc
(k)
min,ij

2∑
k=0

Mk4ijq
(k)

︸ ︷︷ ︸
f2(M)

−M2

∑2
k=0M

k|q(k)|max,ij

2
∑2

k=0M
kc

(k)
min,ij

∑2
k=0

[
Mk (vζ)

(k)
i +Mk (vζ)

(k)
j

]
∑2

k=0

(
Mkc

(k)
i +Mkc

(k)
j

) 2∑
k=0

Mk4ijp
(k)

︸ ︷︷ ︸
f3(M)

− nζM2

∑2
k=0M

k|q(k)|max,ij
∑2

k=0M
kc

(k)
max,ij

2︸ ︷︷ ︸
f4(M)

·

∑2
k=0

(
Mkρ

(k)
i +Mkρ

(k)
j

)
∑2

k=0

(
Mkc

(k)
i +Mkc

(k)
j

) 2∑
k=0

Mk4ijq
(k)

︸ ︷︷ ︸
f4(M)

+M2

∑2
k=0M

k|q(k)|max,ij

2

2∑
k=0

Mk4ij (ρvζ)
(k)

+M2

∑2
k=0

(
Mkq

(k)
i +Mkq

(k)
j

)
4

2∑
k=0

[
Mk (ρvζ)

(k)
i +Mk (ρvζ)

(k)
j

]
.

(A.19)

We expand the right hand side of this equation into a Taylor series around M = 0. For
the O(1) part we get

f(0) =
p

(0)
i + p

(0)
j

2
. (A.20)
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For the part of O(M), we consider the derivative f ′(M). In a first step, we only need
the derivative at M = 0, which we can deduce as

f ′(0) = nζ
p

(1)
i + p

(1)
j

2
+

(vζ)
(0)
i + (vζ)

(0)
j

4c
(0)
max,ij

4ijp
(0) + nζ

ρ
(0)
i + ρ

(0)
j

4
c

(0)
min,ij4ijq

(0). (A.21)

For the part of O(M2), we need to calculate the second derivative f ′′(M). In a first step,
we consider the summand f1(M). The first derivative can be calculated as

f ′1(M) = M

∑2
k=0

[
Mk (vζ)

(k)
i +Mk (vζ)

(k)
j

]
∑2

k=0M
k4c

(k)
max,ij

(
4ijp

(1) + 2M4ijp
(2)
)

+M
(vζ)

(1)
i + 2M (vζ)

(2)
i + (vζ)

(1)
j + 2M (vζ)

(2)
j∑2

k=0M
k4c

(k)
max,ij

2∑
k=0

Mk4ijp
(k)

−M

∑2
k=0

[
Mk (vζ)

(k)
i +Mk (vζ)

(k)
j

]
(∑2

k=0M
k4c

(k)
max,ij

)2

(
4c

(1)
max,ij + 8Mc

(2)
max,ij

) 2∑
k=0

Mk4ijp
(k)

+

∑2
k=0

[
Mk (vζ)

(k)
i +Mk (vζ)

(k)
j

]
∑2

k=0M
k4c

(k)
max,ij

2∑
k=0

Mk4ijp
(k).

From the second derivative, we only consider the part f ′′1 (0). We can deduce this as

f ′′1 (0) =
(vζ)

(0)
i + (vζ)

(0)
j

2c
(0)
max,ij

4ijp
(1) +

(vζ)
(1)
i + (vζ)

(1)
j

2c
(0)
max,ij

4ijp
(0)

−
(vζ)

(0)
i + (vζ)

(0)
j

2
(
c

(0)
max,ij

)2 c
(1)
max,ij4ijp

(0).
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Now, we take the first derivative of the summand f2(M). We get

f ′2(M) = nζM

∑2
k=0

(
Mkρ

(k)
i +Mkρ

(k)
j

)
4

2∑
k=0

Mkc
(k)
min,ij

(
4ijq

(1) + 2M4ijq
(2)
)

+nζM

∑2
k=0

(
Mkρ

(k)
i +Mkρ

(k)
j

)
4

(
c

(1)
min,ij + 2Mc

(2)
min,ij

) 2∑
k=0

Mk4ijq
(k)

+nζM
ρ

(1)
i + 2Mρ

(2)
i + ρ

(1)
j + 2Mρ

(2)
j

4

2∑
k=0

Mkc
(k)
min,ij

2∑
k=0

Mk4ijq
(k)

+nζ

∑2
k=0

(
Mkρ

(k)
i +Mkρ

(k)
j

)
4

2∑
k=0

Mkc
(k)
min,ij

2∑
k=0

Mk4ijq
(k).

For the second derivative at M = 0 we get

f ′′2 (0) = nζ
ρ

(0)
i + ρ

(0)
j

2
c

(0)
min,ij4ijq

(1) + nζ
ρ

(0)
i + ρ

(0)
j

2
c

(1)
min,ij4ijq

(0)

+nζ
ρ

(1)
i + ρ

(1)
j

2
c

(0)
min,ij4ijq

(0).
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Next, we look at the summand f3(M). We write the first derivative as

f ′3(M) =

M2
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(2)
i (vζ)

(1)
j + 2M (vζ)

(2)
j∑2
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·
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From the second derivative f ′′3 (M), we only consider the part f ′′3 (0). Hence, we can write

f ′′3 (0) =
|q(0)|max,ij

c
(0)
min,ij

(vζ)
(0)
i + (vζ)

(0)
j

c
(0)
i + c
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j
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(0).

In the next step, we consider the summand f4(M) which is given by

f4(M) = nζM
2
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k=0M

k|q(k)|max,ij
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·
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If we look at the second derivative of f3(M), we see that the O(M2)-part of f ′3(M) is
not considered in f ′′3 (0). Hence, we write the first derivative of f4(M) as

f ′4(M) = nζM
2∑

k=0

Mk|q(k)|max,ij
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·
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Next, we derive the second derivative for M = 0. This leads us to

f ′′4 (0) = nζ |q(0)|max,ijc
(0)
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ρ
(0)
i + ρ
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j

c
(0)
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j
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(0).

Combining these intermediate results and taking the second derivative of the remaining
terms in equation (A.19), we arrive at
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,
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which leads us to the final result of

HρvζMAPS+ (ũi, ũj ;n) =
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(A.22)
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A.4.4. Taylor series of the density enthalpy flux function of the general
MAPS+ scheme

Now we insert the asymptotic sequence into the density enthalpy flux function of the
general MAPS+ scheme presented in equation (4.27) on page 63. The result is

HρhMAPS+ (ũi, ũj ;n) =
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(
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)
4
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(A.23)

We expand the right hand side of this equation into a Taylor series around M = 0. The
part of O(1) is given by

f(0) =
h

(0)
i + h

(0)
j

4c
(0)
max,ij

4ijp
(0). (A.24)

For the part of O(M), we consider the derivative f ′(M). In a first step, we look at the
first summand f1(M). We can write the derivative as

f ′1(M) =
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For M = 0, we get
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For the second summand f2(M), we only consider f ′(0). Hence, we arrive at
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In a similar way we obtain the results for the remaining terms in equation (A.23). Com-
bining all these expressions, we get
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(A.25)

A.4.5. Taylor series of the density flux function of the altered MAPS+
scheme

Now we insert the asymptotic sequence into the density flux function of the altered
MAPS+ scheme presented in equation (4.40) on page 80. To expand it into a Taylor
series, we multiply the expression by the Mach number. This gives us

M · HρMAPS+ (ũi, ũj ;n) =
1
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with
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(A.26)

We expand the right hand side of this equation into a Taylor series around M = 0. The
part of O(1) is given by
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For the part of O(M), we calculate the derivative f ′(M). Here, we are only interested
in the part of M = 0. Hence, we get
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Combining these results, we arrive at
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A.4.6. Taylor series of the momentum flux function of the altered
MAPS+ scheme

We insert the asymptotic sequence into the momentum flux function of the altered
MAPS+ scheme given by equation (4.41) on page 82. This leads to
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(A.28)

with ζ = 1, 2 and ξ given by equation (A.26). The abbreviation ξq is given by

ξq =

2∑
k=0

Mk|q(k)|max,ij .

Now, we expand the right hand side of this equation into a Taylor series around M = 0.
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In a first step, we write the part of O(1) as

f(0) = −nζ
p
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j

2
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(0)
i + c

(0)
j

)2

−
|q(0)|max,ijc

(0)
max,ij

(
c

(0)
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j

4
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(0).

For the part of O(M), we calculate the derivative f ′(M). Here, we only consider the
part of M = 0. Hence, we get
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f ′(0) = −nζ
p

(1)
i + p

(1)
j

2
+

 ξ2√
ξ2

1 +
(
q

(0)
ref,ij

)2
ξ2

2

− ξ1ξ2

ξ2
1 +

(
q

(0)
ref,ij

)2
ξ2

2


·

(vζ)
(0)
i + (vζ)

(0)
j

4
4ijp

(1)

+

 ξ2√
ξ2

1 +
(
q

(0)
ref,ij

)2
ξ2

2

− ξ1ξ2

ξ2
1 +

(
q

(0)
ref,ij

)2
ξ2

2

 (vζ)
(1)
i + (vζ)

(1)
j

4
4ijp

(0)

+
1

2

( (
c

(1)
i + c

(1)
j

)
√
ξ2

1 +
(
q

(0)
ref,ij

)2
ξ2

2

− ξ2

2

[
ξ2

1 +
(
q

(0)
ref,ij

)2
ξ2

2

] 3
2

[
2c

(0)
max,ijξ1|q(1)|max,ij

+2c
(1)
max,ij |q

(0)|max,ijξ1 + 2
(
q

(0)
ref,ij

)2
ξ2

(
c

(1)
i + c

(1)
j

)
+ 2q

(0)
ref,ijq

(1)
ref,ijξ2

]

−
ξ1

(
c

(1)
i + c

(1)
j

)
ξ2

1 +
(
q

(0)
ref,ij

)2
ξ2

2

−
c

(0)
max,ij |q(1)|max,ijξ2

ξ2
1 +

(
q

(0)
ref,ij

)2
ξ2

2

−
+c

(1)
max,ij |q(0)|max,ijξ2

ξ2
1 +

(
q

(0)
ref,ij

)2
ξ2

2

+
ξ1ξ2[

ξ2
1 +

(
q

(0)
ref,ij

)2
ξ2

2

]2

[
2c

(0)
max,ij |q

(1)|max,ijξ1 + 2c
(1)
max,ij |q

(0)|max,ijξ1

+ 2
(
q

(0)
ref,ij

)2
ξ2

(
c

(1)
i + c

(1)
j

)
+ 2q

(0)
ref,ijq

(1)
ref,ijξ2

])
(vζ)

(0)
i + (vζ)

(0)
j

4
4ijp

(0)

+
1

16

( |q(0)|2max,ij

(
q

(0)
ref,ij

)2
ξ2(

ξ2
1 +

(
q

(0)
ref,ij

)2
ξ2

2

) 3
2

+
ξ1|q(0)|2max,ij

(
q

(0)
ref,ij

)2
ξ2(

ξ2
1 +

(
q

(0)
ref,ij

)2
ξ2

2

)2

−
|q(0)|max,ij

(
q

(0)
ref,ij

)2
ξ2

c
(0)
max,ij

(
ξ2

1 +
(
q

(0)
ref,ij

)2
ξ2

2

)2

[
2ξ2

1 +
(
q

(0)
ref,ij

)2
ξ2

2

])

·
[
(vζ)

(0)
i + (vζ)

(0)
j

]
4ijp

(0)

with
ξ1 = c

(0)
max,ij |q

(0)|max,ij

XXXIV



and
ξ2 = c

(0)
i + c

(0)
j .
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Finally, we get the result of
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(A.29)
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A.4.7. Taylor series of the density enthalpy flux function of the altered
MAPS+ scheme

Now, we insert the asymptotic sequence into the density enthalpy flux function of the
altered MAPS+ scheme given by equation (4.42) on page 84. This leads to

HρhMAPS+ (ũi, ũj ;n)

=
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M
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(
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4
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
+O(M),

(A.30)

with ξ given by equation (A.26) on page XXIX.
If we multiply this equation by the Mach number, it is very similar to the second line in
equation (A.28). Hence, we can apply the calculations done above and arrive at the final
result of
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(A.31)

with ξ1 and ξ2 given by equation (A.4.6) and (A.4.6), respectively.
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A.4.8. Taylor series of the Mach number M̃a0

The Mach number M̃a0 of the extended MAPS+ scheme is given in equation (4.36) on
page 75 as

M̃a0 = min


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We expand the first term of the minimum into a Taylor series around M = 0. Hence,
the function f(M) is given as
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while the second derivative can be written as
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Since we expand the Mach number into a Taylor series around M = 0, we need to
evaluate the different functions at M = 0. This gives us
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Hence, for the Mach number M̃a0 we get

M̃a0 = f(0) +Mf ′(0) +
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(A.32)

since f (3)(0) = 0.

A.4.9. Taylor Series for the pressure scaling p̃scal

For the modified expressions, the pressure scaling is given by equation (4.37) on page 76
as

p̃scal =
1
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.

For the asymptotic analysis, we expand the second factor into a Taylor series around
M = 0. Hence, the function f(M) is given as
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Evaluating these expressions at M = 0 we get
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1√

|q|2max,ijc
2
max,ij

(ci+cj)
2 + q2

ref,ij

,

f ′(0) = 0

and

f ′′(0) =
2q2

ref,ij |q|2max,ijc
2
max,ij

c2
max,ij (ci + cj)

2

(
|q|2max,ijc

2
max,ij

(ci+cj)
2 + q2

ref,ij

) 3
2

.
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Combining these expressions we get

p̃scal = f(0) +Mf ′(0) +
M2

2
f ′′(0) +O(M4)

=
1√

|q|2max,ijc
2
max,ij

(ci+cj)
2 + q2

ref,ij

+
M2

2

2q2
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2
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c2
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2
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) 3
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2
) 3

2

+O(M4)

(A.33)

since again f (3)(0) = 0.

A.4.10. Taylor Series for the velocity scaling q̃scal

For the modified expressions, the velocity scaling is given by equation (4.38) on page 77
as

q̃scal =
ρi + ρj

4

(
1− cmax,ij |q|max,ij√

c2
max,ij |q|2max,ij + q2

ref,ij (ci + cj)
2

−M2
|q|max,ijq

2
ref,ij

(
2c2

max,ij |q|2max,ij + q2
ref,ij (ci + cj)

2
)

cmax,ij

(
c2

max,ij |q|2max,ij + q2
ref,ij (ci + cj)

2
) 3

2

+O(M4)

)

·M

√√√√√ |q|2max,ij

(
M2q2

ref,ij − c2
max,ij

)2

c2
max,ij (ci + cj)

2 + q2
ref,ij ·M (qj − qi) .

For the asymptotic analysis, we expand the last square root into a Taylor series around
M = 0. Hence, the function f(M) is given as

f(M) =

√√√√√ |q|2max,ij

(
M2q2

ref,ij − c2
max,ij

)2

c2
max,ij (ci + cj)

2 + q2
ref,ij .
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The first derivative with respect to M is

f ′(M) =
2Mq2

ref,ij |q|2max,ij
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2
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and the second derivative is
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.

Evaluating these expressions at M = 0 we get

f(0) =

√
|q|2max,ijc

2
max,ij
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2 + q2

ref,ij ,

f ′(0) = 0

and
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2
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.

Combining these expressions and considering f (3)(0) = 0 we get

q̃scal = f(0) +Mf ′(0) +
M2

2
f ′′(0) +O(M4)

=

√
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(A.34)
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