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Model Predictive Control Applied to Different
Time-scale Dynamics of Flexible Joint Robots
Maged Iskandar, Christiaan van Ommeren, Xuwei Wu, Alin Albu-Schäffer, and Alexander Dietrich

Abstract—Modern Lightweight robots are constructed to be
collaborative, which often results in a low structural stiffness
compared to conventional rigid robots. Therefore, the controller
must be able to handle the dynamic oscillatory effect mainly
due to the intrinsic joint elasticity. Singular perturbation theory
makes it possible to decompose the flexible joint dynamics
into fast and slow subsystems. This model separation provides
additional features to incorporate future knowledge of the joint-
level dynamical behavior within the controller design using
the Model Predictive Control (MPC) technique. In this study,
different architectures are considered that combine the method of
Singular Perturbation and MPC. For Singular Perturbation, the
parameters that influence the validity of using this technique to
control a flexible-joint robot are investigated. Furthermore, limits
on the input constraints for the future trajectory are considered
with MPC. The position control performance and robustness
against external forces of each architecture are validated exper-
imentally for a flexible joint robot. The experimental validation
shows superior performance in practice for the presented MPC
framework, especially respecting the actuator torque limits.

Index Terms—MPC, Singular Perturbation, Fast and Slow
Time Scales Dynamics, MPC for Flexible Joint Robots.

I. INTRODUCTION
The lightweight robot design is a beneficial concept in

various aspects such as energy efficiency, payload-to-weight
ratio, and safety features in human-robot interaction [1], [2].
One of the main challenges related to that is to design a
controller that can handle both the oscillatory behavior (local
joint vibrations), caused by the mechanical flexibility, and the
motor constraints (e. g., torque or velocity limits). If both are
not considered properly, instabilities can occur [3]. Therefore,
for model-based control, it is crucial to provide a sufficiently
accurate model within the range of operation.

Various approaches are known from the literature to control
a robot with flexible elements [4]–[7]. A common technique
that aims at splitting the system dynamics into a slow and
fast subsystem and enabling the design of the control law for
both the slow and the fast models independently is Singular
Perturbation (SP) [8]. The control law of the link-dynamics
is usually obtained based on the approximate slow model of
the zeroth order [4], and the joint-level torque control loop
is designed and regulated separately within the SP approach.
In addition to that, parameter uncertainties are considered
through a regression vector. An extension of the control law
by corrective terms is suggested in [5], while in [6] the slow
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Fig. 1. Conceptual example of flexible joint robot and its simplified single
joint dynamical model. The elastic joint torque is transmitted between the
inertia of the motor and the link via the joint stiffness.

model of the flexible-joint robot is improved by adding an
additional perturbation term which reduces the overall tracking
error. Furthermore, in [7] shaping parts of the system dynamics
using a desired dynamical behavior is achieved to control
the flexible-joint in the link-side directly. As known from
the literature, the preservation of the natural inertia is highly
beneficial in terms of robustness [9].

The main restrictions of SP are the inability to incorpo-
rate actuator saturation and the fact that only current refer-
ence points are considered. A technique that addresses these
drawbacks is Model Predictive Control (MPC). It has been
applied across different areas, such as autonomous driving
[10], drones [11], or interconnected tanks [12]. Extensions of
the standard linear or non-linear MPC involve passivity-based
state constraints [13], the addition of safety filters [14], the
consideration of process uncertainty [15], or various learning
components [16]. In the area of flexible joint robots, the
authors in [17] have implemented an explicit MPC with the
advantage that hardware-requirements for real-time execution
are lower. However, offline solutions need to be recalculated
if the model is modified. In [18] gravity is considered in the
model linearization, which results in an adaptive MPC, as
it adapts its linear model according to the link position. In
general, the MPC approach can be combined with SP. For
example, in [19] the SP is applied to separate into a slow
and a fast model, then MPC is applied to control both of
them. In [20] a vision-based MPC approach is developed to
handle the joint flexibility and dampen out the corresponding
end-effector vibrations. The MPC technique can be employed
for robots with flexible-links [21], which can also include
parameter adaptation [22] within the control design.

One of the main challenges of applying SP to flexible-
joint dynamics is to identify under which circumstances this
theory can be applied. The reason is that an upper bound
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of the perturbation parameter can still exist, even though it
is approximated to be zero in the slow model [23], [24].
This upper bound can be found by the contraction mapping
principle [25] or based on the frequency domain approach [26].
When a simplified model [27] is considered, this parameter
is typically proportional to the inverse of the square of the
joint stiffness. Since the overall dynamics is altered by the
controller, the relative distance towards the upper bound can
be manipulated. However, even if this upper bound would
be higher than the actual perturbation parameter, instabilities
could still occur due to actuator saturation. Therefore, it is
crucial that the parameters in the controller are aligned with
the capabilities of the system to achieve better performance.

In this work, three different MPC structures are proposed
for the flexible-joint robot dynamics. The MPC is applied in
different dynamical scales as it follows the concept of the
two-time-scales of SP theory. The obtained MPC structures are
experimentally evaluated and validated in terms of position and
velocity tracking performance. As the SP is used to obtain the
reference models, its validity w. r. t. the physical parameters,
that is, joint stiffness and reduction factor of the motor inertia,
is provided at different control frequencies. The approach
allows to impose constraints in the control law including the
maximum allowable torque of the joint actuators. Furthermore,
the approach allows to realize link-side impedance/position
actions, enabling direct controllable interaction with the en-
vironment. The proposed method features excellent position-
tracking performance and vibration suppression. In summary,
the main contributions of this work are as follows:

• A framework that combines the derivation of the refer-
ence model based on the SP assumption and the MPC
approach to incorporate system constraints.

• Experimental evaluation and validation of three MPC
structures, which are applied at different dynamic time
scales. In addition, comparisons with the classical SP ap-
proach and a standard motor-PD controller are performed.

• Identification of validity regions of SP theory for flexible
joints. The obtained characterization is intuitively related
to the physical parameters of the system (joint stiffness,
reduction factor of motor inertia). Moreover, the effect of
the outer-loop control frequency is incorporated.

The paper is organized as follows. In Section II, the system
model to be used throughout this work is introduced, and
an overview of the standard SP approach for the flexible
joint robot is provided. The proposed MPC design idea and
structures are presented in Section Section III. Experimental
results and validations of the control design approach are
shown and discussed in Section IV. Finally, the conclusion
in Section V closes the paper.

II. FUNDAMENTALS

The dynamical equations of flexible-joint robots require
twice the number of generalized coordinates compared to
rigid-body systems. For revolute-joint robots, they can be
written based on the assumptions that the joint elasticity can
be modeled through a linear torsional spring and the kinetic

energy of each motor is only due to its own rotation [27]:

M(q)q̈ +C(q, q̇)q̇ + g(q) =K(θ − q) + τ ext , (1)

Bθ̈ +K(θ − q) = τm . (2)

Herein, q ∈ Rn represents the vector of the n link-side coordi-
nates and θ ∈ Rn describes the corresponding motor position
coordinates. Let τ =K(θ − q) be the elastic joint torque
which is transmitted between motor and link, with the positive
definite joint stiffness K � 0. Gravitational torques are repre-
sented by g(q) ∈ Rn, and the symmetric and positive definite
link-side inertia matrix is defined by M(q) ∈ Rn×n. Also,
C(q, q̇) ∈ Rn×n is the Coriolis/centrifugal matrix which is
formulated such that the skew-symmetry Ṁ(q) = C(q, q̇) +
C(q, q̇)T holds. External torques are described by τ ext, the
motor inertia by B ∈ Rn×n and accelerated by the motor
torque τm.1 Here, a wider class of systems can be considered
without loss of generality e. g. to include prismatic joints.

Commonly, the torque dynamics can be regulated by using
the singular-perturbation (SP) approach [8], [28] as

τm = τ d +KT(τ d − τ )− εKSτ̇ . (3)

That can be interpreted as classical PD control for torque
regulation [3], [29]. The desired joint torque τ d is fed forward
and the (measured) joint torque τ and its time derivative τ̇
are used in the feedback loop incorporating the corresponding
positive definite gain matrices KT, KS, and ε is a small
positive parameter. The term τ̇ is usually derived numerically,
based on τ , and ε is motivated by the singular-perturbation
method and is responsible for the two time-scale separation.2

The dynamics (1)–(2) can be rewritten as

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext , (4)

BK−1τ̈ + τ = τm −Bq̈ . (5)

According to SP theory the system can be expressed in a
two-time-scale manner, with

(M(qslow) +B)q̈slow +C(qslow, q̇slow)q̇slow

+g(qslow) = τm,slow + τ ext,slow
(6)

for the slow dynamics. The so-called boundary layer system
can be obtained through the deviation of the actual joint torque
from its quasi-steady-state value. That also defines the fast
component of the torque as

τ fast = τ − τ slow , (7)

where τ slow is the slow component of the joint torque. By
applying the SP approach to the flexible-joint dynamics, one
obtains two subsystems that can be separately controlled.
Intuitively speaking, the slow part (6) forms an equivalent
rigid-body model, which one also obtains when neglecting the
motor or torque dynamics. From that perspective the classical
SP control law (3) can be straightforwardly reformulated as

τm = (I +KT)τ d −KTτ slow︸ ︷︷ ︸
Slow component

+KT(τ slow − τ )− εKSτ̇︸ ︷︷ ︸
Fast component

(8)
1The motor is modeled as an ideal torque source neglecting underlying

(electrical) dynamics.
2In SP theory, the parameter ε should be sufficiently small to justify the

time separation of the sub-models.
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which results in the slow controlled link-side dynamics

(M(q) + (I +KT)
−1B)q̈ +C(q, q̇)q̇ + g(q) = τ d . (9)

Analogous to (6), it has the form of the rigid-body model
with inertia matrix M(q) + (I +KT)

−1B. From a physical
point of view, this can be intuitively interpreted as an active
reduction of the motor inertia from B to the desired value
Bd when choosing KT = BB−1d − I in (3). In this case
the torque control loop can be specified through the damping
parameter KS and the ratio of the reduction of the apparent
motor inertia BB−1d . The commanded motor torque (3) can
be combined with a link-side PD tracking controller as

τ d = g(q) + (M(q) +Bd)q̈d −Kq(q− qd)−Dq(q̇− q̇d),
(10)

with Kq,Dq � 0 being the desired link-side stiffness and
damping, respectively, and qd is the desired link position.
Noticeably, (10) is obtained using link-side coordinates but
conventionally the motor-side position and velocity are used
to generate the desired torque [29]. Interestingly, using the
link-side coordinates, one can consider the classical control
methods applied on rigid-body dynamics [30].

In (1)–(2), dissipative friction effects can be included in
different forms. The most dominant component in flexible-
joint robots is motor-side friction due to gear friction [29],
which is actively reduced by the factor BB−1d as a result of
(3). Further friction effects can be considered by using model-
based compensation techniques [31], [32] or the use of motor-
side friction observers [33]. Nevertheless, this work focuses on
the effects of joint elasticity, and therefore, friction effects are
not explicitly considered in the following analysis.

III. METHODS

Inspired by SP theory, the two-time-scale property can
be used to apply MPC in order to handle different ranges
of dynamical effects. This also allows to impose practically
motivated constraints within the low-level joint control to
consider the physical limitations of the system actuation.

A. MPC-Fast (motor dynamics)

Since SP theory allows the separation between fast dy-
namics (torque dynamics) and slow dynamics (rigid-body link
dynamics), it creates the prerequisites to apply MPC for the
low-level torque control loop. The joint stiffness K is related
to the perturbation parameter ε through

K =
Kε

ε2
. (11)

Let Kε � 0 be a diagonal matrix. Using (4)–(5) the dynamics
can be reformulated3 as

ε2τ̈ =Kε(B
−1τm − (M−1 +B−1)τ +M−1n) , (12)

with n = C(q, q̇) + g(q). Analogous to (7), the motor torque
is composed of slow and fast terms as

τm = τm,slow + τm,fast (13)

3Dependencies on the states have been omitted for the sake of readability.

Reference trajectory 
generation

Objective function 
(24)

Propagate dynamics 
and future predictions (27)

Robot system

Sampler
State-estimator

(22)-(23)

Optimizer
(QP solver)

Constraints 

Fig. 2. Schematic representation of the MPC architectures. The sampler
applies the current control input uk from the input sequence to the robot.

When ε→ 0 in (12) the slow component of the torque
dynamics τ slow|ε→0 can be obtained.

τ slow = (M−1 +B−1)−1(B−1τm,slow +M−1n) . (14)

Using (7) the fast component of the torque dynamics is

τ fast = τ − (M−1 +B−1)−1(B−1τm,slow +M−1n) . (15)

By means of SP [34] and through the substitution in (12) the
fast time scale can be introduced as ν = t/ε with time t. Thus,
the second derivative of (15) w. r. t. the time scale ν is4

τ ′′fast = τ
′′ = ε2τ̈ (16)

substituting τ̈ from (12). Keeping in mind that the dynamics
can be expressed in the fast time scale, one obtains

τ ′′fast = −Kε(M
−1 +B−1)τ fast +KεB

−1τm,fast . (17)

At this point (17) can be converted back to the normal time
scale by τ ′′fast = ε2τ̈ fast, that is,

τ̈ fast = −K(M−1 +B−1)τ fast +KB
−1τm,fast . (18)

That yields the representation of the fast torque dynamics
featuring

Pendulum for physical interaction
Elastic elements

Motor drive unit

Link-side position sensing

Fig. 3. Experimental setup of the flexible joint robot. The system is enhanced
with a pendulum-like load to be able to exert external forces.

[
τ̇ fast
τ̈ fast

]
=

[
0 1

−K(M−1+B−1) 0

]

︸ ︷︷ ︸
Afast

[
τ fast
τ̇ fast

]
+

[
0

KB−1

]

︸ ︷︷ ︸
Efast

τm,fast .

(19)

4The first and second time derivatives in the normal time scale t are
ż := dz

dt
, z̈ := d2z

dt2
, while in the fast time scale ν, they are given by

z′ := dz
dν
,z′′ := d2z

dν2
, with the relations z′ = εż,z′′ = ε2z̈.
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The model (19) can be used as a reference to predict the
behavior of the fast torque dynamics, which is directly related
to local vibrations in the joints. Based on this prediction it
is possible to determine the motor torque respecting physical
constraints, including the maximum feasible motor torque.

B. MPC-Slow (link dynamics)

Similarly, (6) can be targeted in terms of MPC. Then the
outer loop is controlled that way while the inner torque loop
is controlled through the classical SP scheme (3). Thus, the
MPC is responsible for the slow component in the commanded
motor torque. Therefore, the slow dynamics is used to compute
the link velocity and acceleration as following
[
q̇
q̈

]
=

[
0 1
0 −(M +B)−1C

]

︸ ︷︷ ︸
Aslow

[
q
q̇

]
+

[
0

(M +B)−1

]

︸ ︷︷ ︸
Eslow

τm,slow .

(20)
That represents the reference model deployed to predict the
link-side dynamics when gravity effects are compensated.

C. MPC-Full (motor dynamics & link dynamics)

The full model of the flexible-joint robot can be used to
obtain the total commanded MPC motor torque directly. In
this case the state vector contains both the motor- and the
link-side coordinates, rendering (1)–(2) to



q̇
q̈

θ̇

θ̈


=




0 1 0 0

−M−1K −M−1C M−1K 0
0 0 0 1

B−1K 0 −B−1K 0




︸ ︷︷ ︸
Afull




q
q̇
θ

θ̇


+




0
0
0

B−1




︸ ︷︷ ︸
Efull

τm

(21)
The resultant model (21) uses twice the number of states
compared to the previous ones, namely (19) and (20), which
affects the execution time as will be discussed in Section IV.

D. MPC formulation, objective function

The MPC formulation presented in the following can be
applied to all three cases (19)–(21). The general formulation
of the system dynamics as a function of its states z is given:

ż = Axz +Exu (22)
y = Cxz +Dxu (23)

Depending on the considered reference model, Ax may equal
Afast, Aslow, or Afull. Analogously, the same applies to Ex

w. r. t. Efast, Eslow, or Efull. Further, Cx is the output- and
Dx the feedforward-matrix, and u is the control input. That
leads to different state vectors based on the selected dynamic
expression. The actuation torque can be determined via

min
û

(ŷ − ŷref)
TQy(ŷ − ŷref) + û

TQuû (24)

with Qy = diag(Qy,1, . . . ,Qy,NP
) (25)

Qu = diag(Qu,1, . . . ,Qu,NC
) (26)

which define the weighting terms for the observed states and
the system input, respectively, with NP prediction horizon and
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Fig. 4. Feasibility check of NC and NP for different MPC structures. The
black line indicates the border of the region feasible in real-time.

NC control horizon, for more details see [35]. Additionally,
(24) is subject to (22)–(23) and the input constraints u ∈ U ,
where U describes the maximum feasible actuator torques.
The predicted output ŷ ∈ RNP as a function of the current
states zk and the input vector û is given by

ŷ = Ĉ(Ax,Cx)zk + D̂(Ax,Ex,Cx,Dx)û . (27)

Further, Ĉ and D̂ are the augmented discrete output and
input matrices. From an implementation point of view, it is
formulated as a quadratic programming problem to find û.
Fig. 2 shows the block diagram of the MPC architectures.
Depending on the selected reference model of the MPC struc-
tures the optimization searches the optimal commanded motor
torque that complies with (24) and the imposed constraints.

IV. EXPERIMENTAL RESULTS

The proposed MPC variations are implemented in a cas-
caded fashion. Both the slow and the fast control loops are
running at the same sampling rate. The experimental validation
is conducted on a flexible joint consisting of an elastic element
of the DLR C-Runner [36] with a DLR LWR III drive
unit [1] with a torque range of ±100 Nm, see Fig. 3. The
controller gains are reported in Table I, which are represented
as the outer-loop control frequency ωn and damping ratio ζ.
Furthermore, the shaping ratio of the apparent motor inertia
is γrf = BB−1d and the damping ratio of the fast torque
dynamics is ζf . The parameters of the considered joint are
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300 400 500
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V
alid region

V
alid region

V
alid region

V
alid region

Fig. 5. The validity of SP as a function of the joint stiffness and the shaping
factor of the motor inertia BB−1

d . Multiple regions are characterized based
on the outer-loop control frequency ωn .
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Fig. 6. Experiments with different controllers on a flexible joint. The performance of the classical motor-PD and SP controller are compared with three MPC
structures. Link-side and motor-side position and velocity are visualized for each case as well as the associated commanded motor torque.

B = 0.5980 kgm2(motor inertia), K = 362Nm/rad (intrin-
sic joint stiffness), and M = 1kgm2 for the link inertia. The
values for the control and prediction horizons, respectively,
are determined experimentally; each of the magenta crosses in
Fig. 4 shows a trial/test. The light green area shows the feasible
region for NP and NC , which are larger for MPC-slow/MPC-
fast than for MPC-full. This is expected since MPC-full has
twice the number of states and thus involves a numerically
more complex prediction model. The red borderline shows
the maximum allowable region for real-time execution of
the controllers. Notably, the MPC-fast and MPC-slow feature
identical values for NP and NC in the grid search (Fig. 4,
right) as they share the same number of states, thus equal

TABLE I
PARAMETERS OF THE CONTROLLERS IN THE EXPERIMENTS

ωn, ζ γrf ζf Qy Qu

Motor-PD 14 rad/s, 0.7
SP 15 rad/s, 1.0 2.0 1.0
MPC-full [60, 2e-2, 5e-4] [2e-6]
MPC-slow 2.0 1.0 [5, 1e-2] [1e-5]
MPC-fast 15 rad/s, 1.0 [1, 5e-3] [1.3]

computational complexity. In the MPC realization qpOASES
[37] is used to solve the constrained optimization problem
(24)-(26). The controller is computed at 1 kHz and the values
NP = 50 and NC = 5 are chosen such that fair conditions for
the comparison between the MPC structures are achieved.

A. Validity of the SP method

The SP theory assumes that there is a sufficiently small
parameter responsible for the separation between the fast and
the slow dynamics. In the general case of a flexible-joint robot,
the parameter ε directly related to the joint stiffness K is in
control of this separation, see (11). In Fig. 5, it can be observed
that the validity of the SP assumption depends not only on the
joint stiffness but also on the reduction factor of the apparent
motor inertia and the outer loop frequency. Practically, this
could mean that if the system is not controllable with the
SP approach for a specific stiffness, one could increase the
reduction factor for the motor inertia or decrease the outer loop
control frequency. The solid lines in Fig. 5 represent the region
for which the mean average error of the link position over five
seconds is larger than 0.26 rad. The characterization in Fig. 5
shows that a valid two-time-scale separation based on the SP
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Fig. 7. The experimental result of a position trajectory smoothly from 0 to
+0.26 rad is shown in the top. In the bottom the total motor torque is shown as
two components, one is slow and responsible to achieve the desired position,
the other is fast due to the dynamic deflection during motion phase.

theory can also be achieved with relatively low stiffness if the
outer control loop is not demanding. The validity of dynamical
separation is directly related to the closed-loop eigenvalues
of the linearized system and how they are compared to the
eigenvalues of the two subsystems (fast and slow) in the case
of an ideal dynamical separation/decoupling.

B. Link-side position and impedance control

The performance of the position and impedance control is
validated for all MPC variations together with the standard
motor-PD controller and the standard SP implementation [28].
The parameters have been tuned to achieve comparable rising
times for all controllers to provide conditions for fair com-
parisons. All controllers (except the motor-PD) are applied to
the link dynamics and actively use (q, q̇) as feedback signals.
Figure 6 shows the experimental results for the step responses,
the associated velocities, and generated motor torques. No-
tably, overshoot can be observed in the case of the classical
motor-PD controller as it ignores the flexibility in the joint.
The SP controller (3) shows continuous oscillations as well as
commanded torque saturation. Figure 6 shows that the MPC
versions minimize the generated motor torque as a result of
the respective objective functions. Interestingly, the proposed

MPC-fast structure shows smooth and faster convergence in
the link-side position. With MPC-slow and SP in the inner
control loop, slower convergence can be observed due to
the limited performance of the classical SP. The MPC-full
approach is expected to achieve superior performance as it
uses the complete model in the prediction phase, but due to
the limitation of increasing the value of the prediction horizon
NP , the performance is limited in the real implementation.

Additionally, a smooth trajectory with a step from 0 to 0.26
rad is applied to evaluate the tracking performance generated
through a septic polynomial to ensure that it is at least two
times differentiable. In Fig. 7 the different MPC structures
are compared together with the standard SP approach and the
motor-PD controller. The MPC-fast variant shows the lowest
link position error. To gain a closer look of the control action,
the individual components of the commanded motor torque are
also visualized in Fig. 7 (bottom) for the MPC-fast case. It can
be seen that the total motor torque consists of two components,
one is slow and responsible for position regulation/tracking,
the other is relatively fast and actively damps oscillations in-
troduced by the joint elasticity. This result reflects the physical
interpretation of the control action, which also incorporates the
future prediction of the fast dynamics. As the trajectory is less
demanding, the standard SP controller behaves better w. r. t. the
step command case. However, undesirable oscillations can be
noticed while following a more dynamical trajectory.

Further, a chirp signal (from 0 to approx. 4Hz) is used as
a desired position to validate the system for more dynamical
effects. The Root Mean Square Error (RMSE) for the position
and velocity are depicted in Table II, and in Fig. 8 the
velocities and the corresponding motor torques are shown.
The motor-PD controller features an early velocity deviation
compared to the link-side controllers. The SP approach shows
a noticeable high velocity amplitude (up to 4.7 rad/s) when the
desired signal frequency increases as the commanded motor
torque has already reached the saturation limits. In this case,
the experiment is terminated through the activation of the
safety stop and before the end of the trajectory execution at 20
sec, see Fig. 8. Here, MPC-full and MPC-slow controllers have
a comparatively high RMSE over the whole range of motion
due to phase shift w. r. t. the desired signals. The MPC-fast
controller has a comparable position error to the SP approach
but a smaller velocity error. It also can be seen from Fig. 8 that
all MPC variations do not exceed the actuation torque limits
when the frequency of the desired trajectory is increased.

C. Physical interaction behavior
The interaction behavior is illustrated by means of an exter-

nal force applied through a pendulum-like load, see Fig. 3. In

TABLE II
ROOT MEAN SQUARE ERROR (RMSE)

Pos. RMSE [rad] Vel. RMSE [rad/s] Additional info.
Motor-PD 0.1945 2.1071 –
SP 0.0893 1.4248 Safety stop
MPC-full 0.1364 1.5461 –
MPC-slow 0.1509 1.7658 –
MPC-fast 0.0803 0.7692 –
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Fig. 8. The experimental result when using sinusoidal desired position signal with increasing frequency (chirp signal). The desired and actual link-side
velocities are visualized on the left, and on the right, the corresponding motor torque is shown.

the experiments, the system is excited with the same amount
of energy by shifting the pendulum to a fixed distance from
the link. The injected energy can be seen by the comparable
initial peak velocity, see Fig. 9 (middle). Interestingly, the SP
approach saturates two times unnecessarily by the effect of
the initial impact. The MPC-fast controller features superior
vibration/oscillation damping as it aims to control the torque
dynamics. From a human-robot interaction perspective, MPC-
fast is more transparent to parameterize in order to achieve
the desired interaction behavior because it can be interfaced
with a link-side impedance controller as an outer control loop
such that the desired stiffness can be specified accurately.
Simultaneously, the torque tracking performance is maintained
in the inner control loop through the MPC while respecting the
torque limits. The experimental results show high performance
for the MPC-fast controller w. r. t. the other two variants of
MPCs (MPC-slow and MPC-full), the classical SP, and the
baseline motor-PD approach. In MPC-fast, the actuator con-
straints are considered directly in the low-level torque control
loop, and the effective perceived stiffness by the environment
can be transparently set.

V. CONCLUSIONS

A method to derive a joint-level controller for flexible joint
robots based on MPC techniques was presented. Motivated
by the two-time-scales separation from the singular pertur-
bation theory, three different MPC design structures were

investigated. The first one uses the fast torque dynamics as
a reference model and aims at regulating the torque control
loop within the joint torque limits. The second one considers
the slow link-side dynamics and is used to design an outer
position/impedance control loop. The third one exploits the
full model the flexible-joint robots to generate the commanded
torque respecting the actuator constraints. The proposed meth-
ods have been tested experimentally on a flexible-joint setup.
Compared to the state of the art, significant improvements in
the dynamic link-side position errors were achieved. This work
also provides more insights into the validity of the singular-
perturbation assumption for flexible-joint robot dynamics.
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G. Hirzinger, “The dlr lightweight robot: design and control concepts
for robots in human environments,” Industrial Robot: an international
journal, 2007.

[2] M. Iskandar, O. Eiberger, A. Albu-Schäffer, A. De Luca, and A. Dietrich,
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