Numerical Investigation of a Helically Coiled Solar Cavity Receiver for Simultaneous Generation of Superheated Steam and Air

Yasuki Kadohiro (DLR, Institute of Future Fuels) 14.09.2022 - SFERA-III Doctoral Colloquium 2022

Contents

- Background
- Research questions/Problems
- Objective
- Approach
- Validation
- Summary
- Outlook

Background

- Concentrated solar thermal technologies have enormous potential for a carbon-neutral society.
- The high-grade thermal energy can be used for electricity generation or process heat.
- One promising application is hydrogen generation in a solid oxide electrolyzer (SOEC) which requires high-temperature air and steam (~850°C).

QSP Future Fuels Steam: 5 kg/h, 700°C SOEC: 2 kWel Hydrogen: 1600 L (4h)

SOEC (DLR TT)

Background

4

Research questions/Problems

*DS: direct steam generation SA: superheating air

- How to produce the superheated steam and air for SOEC (cavity receiver design)?
- Is it possible to simultaneously produce superheated steam and air with a single cavity receiver?
- If possible, what would be the receiver's performance?

Only few studies are done with the above mentioned receiver!

[1] Swanepoel, J. K., *et al.* (2021). Helically coiled solar cavity receiver for micro-scale direct steam generation. *Appl. Therm. Eng.*, 185, 116427.
[2] R. Uhlig, *et al.*, Energy Procedia, 69 (2015) 563-572.

[3] Heller, P., *et.al.* (2006). Test and evaluation of a solar powered gas turbine system. *Solar energy*, *80*(10), 1225-1230.

Objective

 Develop and numerically investigate a single cavity receiver that can conduct the following three processes: (i) water evaporation, (ii) superheating steam and (iii) superheating air.

Overall

- 1. Determine the cavity receiver's geometry
- 2. Conduct ray-tracing analysis to obtain a distributed heat flux map inside the proposed receiver
- 3. Conduct steady-state thermal analysis by using 1D two-phase fluid flow-3D cavity heat transfer combined numerical model

Red: Superheating air

Light blue: Superheating steam

Blue: Evaporating water

1. Determine the cavity receiver's geometry

- Absorber tube diameter and length
- Insulation cavity diameter and length

SOEC Operation Conditions (Thermoneutral Operation, 50 kWe SOEC)

	Steam Flow	Sweep Gas Flow
	(Cathode)	(Anode)
Temperature	820°C	850°C
Mass Flow	20 kg/h	80 kg/h
Pressure	1 atm	1 atm

Other conditions

- ΔT between fluid and tube wall < 150°C
- Fluid average velocity < 50 m/s
- Aspect ratio (cavity diameter/length) = 1

2. Ray-tracing analysis

FEMRAY (Finite Element Mesh Ray Tracing)

-> The code uses the geometric data and the optical properties of each finite element of the mesh to calculate the expected heat flux distribution using a simple ray-tracing algorithm.

3. Steady-state thermal analysis (entire flow)

3. Steady-state thermal analysis (1D two-phase fluid flow model)

[1] Fsadni, A. M., et.al. (2016). A review on the two-phase heat transfer characteristics in helically coiled tube heat exchangers. Int. J. Heat Mass Transf, 95, 551-565.

3.5

3.0

2.5 [ly] 2.0 [kg/l] 1.5 Mass flow [kg/l]

0.0

2.5

2.0

Validation, Conical helical tube and non-uniform heat flux

Absorber tube

Solar steam generator used in DLR project QSP Future Fuels

Experimental results

Time [h]

1.5

1.0

0.0

0.5

Validation, Conical helical tube and non-uniform heat flux

Summary

- Concentrated solar thermal technologies are combined with SOEC to produce green hydrogen
- We are numerically investigating a single solar cavity receiver that can conduct the following three processes: (i) water evaporation, (ii) superheating steam, and (iii) superheating air
- FERMRAY approach is used to analyze the heat flux map inside the cavity receiver
- 1D two-phase fluid flow model and 3D cavity heat transfer model are combined for the steady-state thermal analysis
- Validation was conducted with project QSP Future Fuels' experimental results and showed deviation < 6%

Outlook

- Complete the numerical investigation of proposed solar cavity receiver (results will be published in the future).
- Experimental investigation of Receiver 2 by using Synlight.

Receiver 2

Red: Superheating air

Light blue: Superheating steam

Blue: Evaporating water

Star Facilities for the European Research Area

Thank you very much for your attention! (Q & A)

Acknowledgments Institute of Future Fuels, DLR: Timo Roeder, Vamshi Krishna Thanda, Kai Risthaus, Nathalie Monnerie, Christian Sattler Institute of Solar Research, DLR: Reiner Buck, Ralf Uhlig

L'ail in

Background

*DS: direct steam generation SA: superheating air

Two basic receiver types exist: (1) external receivers and (2) cavity receivers.

- Cavity receivers are considered highly efficient receivers.
- Most cavity receiver designs consist of a helically coiled tube due to its compact design, easy manufacturing, and higher heat transfer performance.

Ho, C. K. (2017). Advances in central receivers for concentrating solar applications. *Solar energy*, *152*, 38-56.
 Swanepoel, J. K., *et al.* (2021). Helically coiled solar cavity receiver for micro-scale direct steam generation. *Appl. Therm. Eng.*, *185*, 116427.
 R. Uhlig, *et al.*, Energy Procedia, 69 (2015) 563-572.

Radiation inside the cavity (surface-to-surface model)

$$J_i = E_i + R_i \sum_{j=1}^N F_{ij} J_j$$

 J_i : radiosity [W] E_i : emissive power [W] R_i : reflectivity F_{ij} : view factor

Radiation outside the cavity

 $\dot{Q}_{rad,out} = \varepsilon_{cav,out} \sigma \left(\overline{T}_{cav,out}^4 - T_{amb}^4 \right) A_{cav,out}$

Natural convection outside the cavity

 $h_{nc,out} = 5.0 \text{ W/m}^2 \text{ K}$

Natural convection inside the cavity

$$h_{nc,in} = rac{k_{air}}{L_{rel}} N u_{nc}$$

$$Nu_{nc} = 0.0196 Ra_{nc}^{0.41} Pr^{0.13}$$

$$Ra_{nc} = \frac{g\beta_{air}(\bar{T}_{cav,in} - T_{amb})L_{rel}^3}{\nu_{air}\alpha_{air}}$$

$$L_{rel} = \left| \sum_{i=1}^{3} a_i \cos(\phi + \varphi_i)^{b_i} L_i \right|$$

S. Paitoonsurikarn, *et.al.* (2011). Numerical Investigation of Natural Convection Loss From Cavity Receivers in Solar Dish Applications. *J. Sol. Energy Eng.*, 133, 021004.

 β_{air} : thermal expansion coefficient [1/K] α_{air} : thermal diffusivity [m²/s] k_{air} : thermal conductivity [W/m K] v_{air} : kinematic viscosity [m²/s]

Radiation, convection and conduction

Thome-El Hajal maps

• Mass flux in our study: < 50 kg/s m²

Stratified or stratified wavy flow is a dominant flow

*Thome-El Hajal map is for the horizontal tube, but the same flow pattern is applied for helical tube due to the centrifugal force.

3. Steady-state thermal analysis (1D two-phase fluid flow model)

1. Nucleate boiling region (bubbly flow) [1]

$$\frac{h_{fc,tp}}{h_{fc,sp}} = 1 + 2.21 \left(\frac{1}{X_{tt}}\right)^{0.3} (1/X_{tt} < 1.2)$$

Martinelli parameter

Vapor quality

$$X_{tt} = \left(\frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_v}{\rho_l}\right)^{0.5} \left(\frac{\mu_l}{\mu_v}\right)^{0.1} \qquad \qquad x = \frac{\dot{Q}_{tot}}{\dot{m}L_{vap}}$$

2. Forced convection evaporation region (stratified, stratified wavy flow) [1]

$$\frac{h_{fc,tp}}{h_{fc,sp}} = 3.24 \left(\frac{1}{X_{tt}}\right)^{0.165} (1/X_{tt} \ge 1.2)$$

[1] Fsadni, A. M., et.al. (2016). A review on the two-phase heat transfer characteristics in helically coiled tube heat exchangers. Int. J. Heat Mass Transf, 95, 551-565.

3. Steady-state thermal analysis (1D two-phase fluid flow model)

Heat transfer coefficient in a single-phase flow [1]

$$h_{fc,sp} = \frac{k_{fluid}}{d_{in}} N u_{fc}$$

Frictional pressure loss in a single-phase flow (Darcy-Weisbach equation)

$$\Delta p_{sp} = f_D \frac{L}{d_{in}} \frac{1}{2} \rho V^2$$

Frictional pressure loss in a two-phase flow [2]

$$\Delta p_{tp} = K(x) \frac{G^{1.91}}{d_{in}^{1.2} \rho_m} L$$

Outlet fluid temperature

$$T_{fout,j} = T_{fin,j} + \frac{\dot{q}A_{T,out}}{\dot{m}c_{sp}}$$

Tube wall temperature (Newtons law of cooling)

$$\dot{q} = h_{fc} \left(T_{wave,j} - T_{fave,j} \right)$$

Two-phase frictional multiplier Flow rate mixture density $K(x) = -0.0373x^3 + 0.0367x^2 \qquad \rho_m = \left(\frac{x}{\rho_v} + \frac{1-x}{\rho_l}\right)^{-1}$ -0.00539x + 0.0108

[1] VDI e. V. (2010) VDI Heat Atlas (2 ed.). Springer, Berlin, Heidelberg.

[2] Santini, L., et. al. (2008). Two-phase pressure drops in a helically coiled steam generator. Int. J. Heat Mass Transf, 51(19-20), 4926-4939.

Nusselt number for single-phase flow

(i) If $Re \leq 6300$ (laminar flow), then,

$$Nu_{fc} = 3.66 + 0.08 \left[1 + 0.8 \left(\frac{d_{in}}{D} \right)^{0.9} \right] Re^m P r^{\frac{1}{3}} \left(\frac{Pr}{Pr_w} \right)^{0.14}$$

(ii) If Re > 10000 (fully developed turbulent flow), then,

$$Nu_{fc} = \frac{\left(\frac{\xi}{8}\right) RePr}{1 + 12.7\sqrt{\frac{\xi}{8}} \left(Pr^{\frac{2}{3}} - 1\right)} \left(\frac{P_r}{P_{rw}}\right)^{0.14}$$

(iii) If $6300 < Re \le 10000$ (transition region), then,

 $Nu_{fc} = \gamma Nu_{lam,6300} + (1 - \gamma) Nu_{turb,10000}$

where
$$m = 0.5 + 0.2903 \left(\frac{d_{in}}{D}\right)^{0.194}$$

where

$$\xi = \left[\frac{0.3164}{Re^{0.25}} + 0.03 \left(\frac{d_{in}}{D}\right)^{0.5}\right] \left(\frac{\mu_w}{\mu}\right)^{0.27}$$

where

$$\gamma = \frac{10000 - Re}{10000 - 6300} \quad (0 \le \gamma \le 1)$$

[1] VDI e. V. (2010) VDI Heat Atlas (2 ed.). Springer, Berlin, Heidelberg.

22

Darcy friction factor for single-phase flow [1]

(i) If $Re \leq 500$ (low laminar flow), then,

(iii) If $6300 < Re \le 10000$ (transition flow), then,

$$f_D = 4 \times 38 \times Re^{-1} \left(\frac{d_{in}}{D}\right)^{0.15}$$

$$f_D = 4 \times 0.31 \times Re^{-\frac{1}{3}} \left(\frac{d_{in}}{D}\right)^{0.15}$$

(ii) If $500 < Re \le 6300$ (laminar flow), then, (iv) If Re > 10000 (turbulent flow), then,

$$f_D = 4 \times 5.25 \times Re^{-\frac{2}{3}} \left(\frac{d_{in}}{D}\right)^{0.15} \qquad \qquad f_D = 4 \times 0.045 \times Re^{-\frac{1}{8}} \left(\frac{d_{in}}{D}\right)^{0.15}$$

²³ [1] Ali, S. (2001). Pressure drop correlations for flow through regular helical coil tubes. *Fluid Dyn. Res.*, 28(4), 295.

Validation, Cylindrical helical tube and uniform heat flux

24

Table. Parameters and conditions used in Santini et al. [1, 2].

Parameters	Value		
Helical tube inner diameter	0.01249 m		
Helical tube outer diameter	0.01723 m		
Helical coil diameter	1.00 m		
Total length of the tube	32.0 m		
System pressure	2 MPa (a)		
Temperature at inlet	181.61°C		
Averaged flux	51.0 kW/m ²		
Mass flux	206.0 kg/m ² s		

[1] Santini, L., *et.al.* (2016). Flow boiling heat transfer in a helically coiled steam generator for nuclear power applications. *Int. J. Heat Mass Transf.*, *92*, 91-99.

[2] Santini, L., et. al. (2008). Two-phase pressure drops in a helically coiled steam generator. Int. J. Heat Mass Transf, 51(19-20), 4926-4939.

Validation, Cylindrical helical tube and uniform heat flux

Heat transfer coefficient

Ave. deviation: 8.213% Max. deviation: 31.91%

Ave. deviation (T_{fluid}): 0.2279% Ave. deviation (T_{wall}): 0.3362% Max. deviation (T_{fluid}): 0.4310% Max. deviation (T_{wall}): 1.952%

Fluid temperature and tube wall temperature

Validation, Cylindrical helical tube and uniform heat flux

Two-phase frictional pressure drop

Ave. deviation: 6.954% Max. deviation: 20.19%

Average deviation < 10% Good agreement!!

Validation, Conical helical tube and non-uniform heat flux

Specifications of solar steam generator

Average value of experimental data

Parameters	Value
Cavity inner diameter	0.160 m
Cavity outer diameter	0.305 m
Cavity length	0.450 m
Helical tube inner diameter	0.006 m
Helical tube outer diameter	0.010 m
Helical tube length	4.428 m
Helical tube pitch	0.012 m
Helical tube taper angle	14°
Helical tube winding number	14
Surface emissivity of tube	0.930

Experiment	Inlet temp. [°C]	Inlet pressure [kPa (a)]	Mass flow [kg/h]
(i)	16.5	176.2	2.498
(ii)	18.6	176.5	2.499
(iii)	21.8	174.0	2.500
(iv)	20.3	152.2	2.501
(v)	27.5	198.0	2.498

Validation, Conical helical tube and non-uniform heat flux

Deviation: (i) 0.4817%, (ii) 0.6085%, (iii) 0.6966%, (iv) 0.03909%, (v) 0.6818%

Deviation < 6% Good agreement!!

Breakdown of energy losses from the solar cavity receiver

- Since the majority of energy is collected to AT, its energy loss becomes much larger than the other parts
- Since almost all of the solar simulator's heat flux is applied to the helical tube's inner surface, more energy transfers from the inner to outer surface as thermal conduction energy.

Receiver design

Receiver 1

Red: Superheating air Light blue: Superheating steam

Blue: Evaporating water

	Water evaporation	Steam superheat	Air superheat
Mass flow	30 kg/h	30 kg/h	120 kg/h
nlet temperature	20 °C	151.84 °C	20 °C
Outlet temperature	151.84 °C	820 °C	850 °C
Fluid pressure	500 kPa	500 kPa	500 kPa
nner tube diameter	0.020 m	0.015 m	0.020 m
Outer tube diameter	0.022 m	0.017 m	0.022 m
Ninding number	3.5	4.5	7.75
Pitch	0.067 m		0.067 m
Faper angle	20 °	20 °	20 °
Tube length	4.325 m	4.368 m	7.595 m

Cavity diameter; 0.535 m

Cavity length; 0.550 m

Receiver design

Receiver 2

Red: Superheating air Light blue: Superheating steam

Water evaporation **Steam superheat** Air superheat Mass flow 30 kg/h 30 kg/h 120 kg/h 20 °C 151.84 °C 20 °C Inlet temperature **Outlet temperature** 151.84 °C 820 °C 850 °C 500 kPa 500 kPa Fluid pressure 500 kPa 0.020 m Inner tube diameter 0.020 m 0.015 m **Outer tube diameter** 0.022 m 0.017 m 0.022 m Winding number 3.5 3.5 11.0 0.027 m Pitch 0.022 m 0.027 m $\mathbf{0}^{\circ}$ 0° 24° Taper angle **Tube length** 4.398 m 4.344 m 7.529 m

Cavity diameter; 0.425 m

Cavity length; 0.425 m

Blue: Evaporating water