Techno-economic Assessment of the Integration of Direct Air Capture and the Production of Hydrogen and Solar Fuels

Enric Prats-Salvado

Introduction: Why do we need synthetic chemicals?

- Carbon Capture and Utilization (CCU):
 - Important role in **transition**
 - Non-decarbonized sectors
- Energy-intensive processes \rightarrow Solar:
 - Cheap heat & electricity
 - Low carbon intensity

Source: UNEP Emissions Gap Report 2017

State of the art: Carbon capture

Source: Fasihi, 2019

	LT-DAC	HT-DAC (NG)
Electricity* (kWh/t CO ₂)	130	154
Thermal (kWh/t CO ₂)	1750	1458

*Compression not included (≈120 kWh/t CO₂ for 150 bar)

Source: Fasihi, 2019

State of the art: Carbon utilization with concentrated solar energy

Source: Blanco and Ramirez, 2016

How does a Thermochemical Cycle work?

How does a Thermochemical Cycle work?

How does a Thermochemical Cycle work?

Source: Agrafiotis et al., 2018

How is a Thermochemical Cycle powered?

Source: IEA, 2014

How is a Thermochemical Cycle powered?

Jülich Solar Tower (1.5 MW), Germany

Source: SolarPACES, DLR Images

TEA: Scenarios Overview

Source: Prats-Salvadó, 2021

Electricity ----> Heat ----> Waste Heat ----> Natural Gas ---->

Process Overview: Baseline

Electricity ---→ Heat ---→

TEA: Model Architecture

TEA: Total CAPEX and OPEX

Optimal Design Size			
Solar Field (MW)	280		
Peak CO ₂ processed (t/h)	6.00		
Annual CO ₂ processed (kt/y)	16.55		
Annual MeOH produced (kt/y)	11.36		

Operational Costs		
Raw Material Water (USD ₂₀₂₁ /t)	8.20	
DAC & Mirrors Water (USD ₂₀₂₁ /t)	1.64	
Grid Electricity (USD ₂₀₂₁ /MWh)	159.0	
Natural Gas (USD ₂₀₂₁ /GJ)	3.8	
Labour (USD ₂₀₂₁ /h)	39.1	
Mirror annual replacement (%)	0.2	
Maintenance (% of FCI)	2	

TEA: CAPEX of the DAC Technologies

TEA: Minimum Selling Price of Methanol

Economic ConditionsDiscount rate (%)10Taxes (%)20Linear Depreciation (y)20Plant Lifetime (y)25

Conclusions

- Solar thermochemical cycles are a **competitive alternative** to produce synthetic fuels
- Comprehensive process integration is critical to **reduce the MSP**
- There are remarkable synergies between DAC and synthetic fuels production processes
- The **carbon-neutrality** must be assessed with an LCA

DLR.de • Chart 19 Aachen Hydrogen Colloquium 2022

Thank you for your attention

Q & A

References

- Agrafiotis, Christos; Roeb, Martin; Sattler, Christian (2018): 4.18 Solar Fuels. In Ibrahim Dincer (Ed.): Comprehensive energy systems.
 Amsterdam, Netherlands: Elsevier.
- Blanco, Manuel; Ramirez Santigosa, Lourdes (2016): Advances in concentrating solar thermal research and technology. Oxford: Woodhead Publishing (Woodhead Publishing series in energy).
- Fasihi, Mahdi; Efimova, Olga; Breyer, Christian (2019): Techno-economic assessment of CO2 direct air capture plants. In *Journal of Cleaner Production* 224, pp. 957–980. DOI: 10.1016/j.jclepro.2019.03.086.
- International Energy Agency (2014): Technology Roadmap: Solar Thermal Electricity.
- Keith, David; Holmes, Geoffrey; St. Angelo, David; Heidel, Kenton (2018): A Process for Capturing CO2 from the Atmosphere. In *Joule* 2 (1573-1594). DOI: 10.1016/j.joule.2018.05.006.
- Prats-Salvado, Enric; Monnerie, Nathalie; Sattler, Christian (2021): Synergies between Direct Air Capture Technologies and Solar Thermochemical Cycles in the Production of Methanol. In *Energies* 14 (16), p. 4818. DOI: 10.3390/en14164818.
- SolarPACES (2022). Available online at https://www.solarpaces.org/, checked on April 2022.
- UNEP (2017): The emissions gap report 2017. A UN Environment synthesis report. Nairobi, Kenya: United Nations Environment Programme (UNEP). Available online at http://hdl.handle.net/20.500.11822/22070.

