Field Campaign on InSAR Retrieval of Snow Mass in Alpine Terrain

Thomas Nagler¹, Helmut Rott¹, Stefan Scheiblauer¹, Nico Mölg¹, Ludivine Libert¹, Lars Keuris¹, Ralf Horn², Jens Fischer², Alberto Moreira², and Julia Kubanek³

enveo

LISSIG, Berne, 6-8 Feb 2023

OBJECTIVES:

- Testing and evaluating methods for snow mass (SWE) retrievals in Alpine environment with focus on the repeat-pass interferometric SAR (RP-InSAR) approach.
- Proof of concept for applying geostationary SAR systems for InSAR SWE retrieval, specifically addressing the feasibility of the HydroTerra mission (geostationary C-band SAR) that was proposed to ESA in response to the Call for Earth Explorer 10 Mission Ideas.

enveo

 Assessing the performance of polar orbiting L-band InSAR for SWE retrievals, in support of preparations for the mission ROSE-L (Radar Observation System for Europe at L-band).

Airborne and In-situ Measurements

DLR F-SAR C+L	C-band	L-band	
Center frequency	5300 MHz	1325 MHz	
Signal bandwidth	384 MHz	150 MHz	
Azimuth resolution	0.50 m	0.60 m	
Range resolution	0.50 m	1.30 m	
Pixel size	0.2 m x 0.3 m	0.4 m x 0.6 m	

F-SAR, geocoded $\sigma^{\circ}VV$ image OB, MB, UB - Sites of field measurements and areas for retrieval validation

Test site Wörgetal Location of snow pits & corner reflectors

Soz Track 11 OB UB L-Band R-G-B = HH-HV-VV

Field Measurements

Snow Accumulation and Backscatter Signatures

8

3

5

6

Accumulation of snowfall events

Rol	Event	∆SD [cm]	std. dev [cm]	∆SWE [mm]
OB	SE1	15.6	2.1	14.8
MB	SE1	13.3	2.4	12.6
UB	SE1	12.3	1.1	11.7
OB	SE2	43.2	2.3	62.6
MB	SE2	47.2	6.2	68.4
UB	SE2	42.1	6.2	61.0

C- & L-band σ° & pol-ratios:

 \leftarrow No response to snowfall events

SWE Retrieval by means of Repeat-pass SAR Interferometry

Basic Approach:

• Differential processing of repeat-pass InSAR data to obtain $\Delta \phi_{snow}(t_2-t_1)$

 $\Delta \phi = \Delta \phi_{flat} + \Delta \phi_{topo} + \Delta \phi_{atm} + \Delta \phi_{snow}$

• The interferometric phase delay in dry snow is related to snow depth and density (for backscatter dominated by signal of snow/ground interface)

$$\Delta SWE = \rho_s \,\Delta d_s$$

$$\Delta \phi_{snow} = -\frac{4\pi}{\lambda} \,\Delta d_s \left(\cos\theta_i - \sqrt{\varepsilon - \sin\theta_i^2} \right) \qquad \epsilon' = 1 + 1.60 \,\rho_s + 1.86 \,\rho_s^3 \,\left[g \, cm^{-3} \right]$$

- Linear approximation for $\theta_i \leq 40^\circ$: $\Delta \phi_{snow} = -\frac{2\pi}{\lambda} \frac{1.6}{\cos \theta_i} \Delta SWE$
- For obtaining $\Delta \phi_{snow}$ from $\Delta \phi$ a reference phase (sites with zero or known Δ SWE) is needed: $\Delta \phi_{snow} = \Delta \phi - \Delta \phi_{ref}$

Critical issues:

- Temporal decorrelation (related to snowfall, snow drift,)
- Reference phase at sites with zero or known \triangle SWE *
- 2π phase ambiguity
- Correction for change in $\Delta \phi_{atm}$ *

* Wörgetal-campaign: $\Delta \phi_{CR}$ is used as reference phase

enveo

Coherence and Phase Images C-band

Coherence and Phase Images L-band

Track 10, VV

enveo

SWE Maps based on Track 10

enveo

Map of snow accumulated on 5 March 2021, derived from *C-band VV InSAR* data

Map of snow accumulated during the period 14 to 18 March 2021, derived from *L-band VV InSAR* data

 $\Delta SWE retrievals based on Track 10 \& 11$ Mean values for Rol's, compared with in-situ measurements **SE2** L-band: $\Delta SWE_{ret} - \Delta SWE_{obs} = 1.6 \text{ mm} \text{ ; RMSD} = 6.5 \text{ mm}$ **SE1** L-band: $\Delta SWE_{ret} - \Delta SWE_{obs} = 1.2 \text{ mm} \text{ ; RMSD} = 2.9 \text{ mm}$ **SE1** C-band: $\Delta SWE_{ret} - \Delta SWE_{obs} = 0.2 \text{ mm} \text{ ; RMSD} = 2.5 \text{ mm}$

- The Wörgetal campaign confirms the high potential of the repeat-pass InSAR approach, using L- and C-band data, for observing the mass of snow accumulating in Alpine terrain.
- Temporal decorrelation related to snowfall and the 2π phase ambiguity are limiting factors for continuous applications, depending on radar frequency.

enveo

- C-Band InSAR data show good results for retrieving snow accumulation of moderate intensity, but repeat-pass data decorrelate at snowfall events of higher intensity.
- The F-SAR L-band InSAR data show high coherence and good performance for SWE retrieval also for the high accumulation event.
- VV-polarized RP-InSAR data show slightly higher coherence than HH-polarized data, but the differences in retrieved SWE are insignificant.
- C- and L-band co- and cross-pol backscatter intensity of the Wörgetal data set does not show a response to the snow accumulation events.
- Feasibility studies on the application of geostationary interferometric SAR for SWE retrieval are in progress, based on simulated SAR data.