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Abstract

The present thesis aims to provide a validation database of existing RANS models for high Reynolds
number flows with history effects due to streamwise changing mild pressure gradients, and to assess the
predictive accuracy and its uncertainty of each RANS model. For this purpose, two recent wind tunnel
experiments with mild pressure gradients were selected, and the two-dimensional computational set-
ups for RANS simulations were defined. The first test case is the Virginia Tech wind tunnel experiment
conducted in the framework of the North Atlantic Treaty Organization (NATO) Science & Technology
Organization (STO) Air Vehicles Technology (AVT) 349 project (Fritsch et al. (2022)). The second
test case considered is the Laboratoire de Mécanique de Lille (LML) wind tunnel experiment by Cuvier
et al. (2017). Both flow cases encompass streamwise changing mild pressure gradients, which result
in the non-equilibrium effects and history effects. For both test cases, the influence of changes in the
computational setup and their sensitivities were investigated. The RANS simulations were carried
out using three turbulence models, the SA-neg, the Menter SST, and the SSG/LRR-! models and
the results were compared with the experimental data.

The experimental and RANS results are in good agreement in regions where the flow is in near
equilibrium. Some appreciable discrepancies are observed in the region where the flow is at APG
and in non-equilibrium. However, the deviations are relatively small due to mild pressure gradients,
which is a further reason to demand highly accurate measurement data. The largest deviations of the
RANS predictions from the experimental data are found in the regions of the largest non-equilibrium,
i.e., in the regions of the largest streamwise changes in the local pressure gradient. Also, the greater
discrepancy is observed in the LML test case than the Virginia Tech test case, which is most likely
due to the larger pressure gradient coefficient. These observations might suggest that the existing
RANS models, that are calibrated for equilibrium boundary layer flows, fail to capture all details of
non-equilibrium effects. Comparisons of different RANS models reveal a fairly less model dependency
on both test cases than might be expected. This could be explained by the fact that the SSG/LRR-
I model uses the same length-scale equation (i.e., ! equation) as the Menter SST model, and all
models are mainly calibrated for equilibrium turbulent boundary layer flows. Also, comparisons of
different numerical set-ups demonstrate the difficulty of reproducing a 3D experimental set-up in 2D

computations.
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Chapter 1

Introduction

1.1 Motivation

Computational Fluid Dynamics (CFD) is an essential tool to understand the ow phenomena that
occur in many engineering problems. Due to the growth of available computational resources, the role
of CFD in industries has been becoming more and more important. In uid dynamics, the complexity
of the ow is governed by the Reynolds number. The higher the Reynolds number is, the more complex
features the ow has. At low Reynolds numbers, the ow is laminar, i.e., uid particles smoothly travel

in layers. At high Reynolds numbers, the ow becomes turbulent, i.e., uid particles travel chaotically
and irregularly. In many practical uid dynamic problems such as the ow over a wing of aircraft,
the ow is turbulent rather than laminar. However, the turbulence is essentially three-dimensional,
multi-scale, unsteady, random, and chaotic motions, and this fact makes it challenging to replicate
turbulence ows in computers correctly.

The most straightforward but most expensive method to tackle this challenge is Direct Numerical
Simulation (DNS). In DNS, one directly applies the Navier-Stokes equations and tries to resolve all
the turbulence scales from the Kolmogorov scale to the largest ow pattern without any models.
However, this requires a signi cant number of grid points, and the computational cost increases as
the Reynolds number goes up because the ratio of the largest eddy to the smallest is proportional
to / Re**“. In three-dimensional computations, the computational cost increases by the factor of
Re’™*. For this reason, even with a state-of-the-art supercomputer, the DNS is still not applicable
to high Reynolds number turbulent ows, which are of great interest in many industrial applications.
The Large Eddy Simulation (LES) is another approach, where large scale eddies are directly resolved,
but small scale eddies are modeled by Itering of the original Navier-Stokes equations. Due to the
less computational cost than DNS and its capability to capture the turbulence behaviors, the LES
has been extensively used as a tool to understand the unknown physics of turbulence ows, and such
simulations in the literature play an important role as a database of turbulence ows. However, the
LES still requires a large computational resource, and it has not yet been used as a standard numerical
tool in the industry.
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For the above-mentioned reasons, the Reynolds-Averaged-Navier-Stokes (RANS) simulation has been
used as a standard tool in the industry for the last decades due to its a ordable cost and its applicability
to high Reynolds number ows. In RANS simulations, one solves the statistically averaged Navier-
Stokes equations with modeling and the resulting new unknown term | Reynolds stress term. Since
the Prandtl's mixing length idea (Prandtl (1925)), di erent modeling approaches and their variants
have been proposed, modi ed, and calibrated | Baldwin and Lomax model (Baldwin and Lomax
(1978)), k model (Jones and Launder (1972)),k ! model (Wilcox (1988)), Spalart-Allmaras
(SA) model (Spalart and Allmaras (1992)), k ! SST (Menter (1994)), and the list continues. In the
aerospace eld, especially the SA model, the Menter SST model, and their variants have been most
commonly used and have proved their capabilities of predicting many relevant turbulent ows.

Despite those successes in RANS turbulence modelings history, there are still open questions on their
performances and predictive accuracy for complex real-world ows. One such example is a turbulent
boundary layer ow with pressure gradients, which is of the main interest in the present work. Pressure
gradients can in uence the development of the boundary layers (e.g., the thickness of the boundary
layer or proles of mean velocity and turbulence quantities) and potentially result in separation.
For example, an adverse pressure gradient decelerates the ow, which could lead to the separation
eventually, while a favorable pressure gradient stabilizes the boundary layer and reduce the turbulence.
Although we have several understandings of the e ects of pressure gradients, unfortunately, we are
still far away from the full knowledge of such ows. For example, the e ects of pressure gradients on
the mean velocity pro les are still under debate, e.g., the existence of log-law and half-power-law (sqrt-
law) (Perry et al. (1966); Knopp et al. (2021)). When the ow is subjected to streamwise changing
pressure gradients, the boundary layer could be non-equilibrium (not self-preserving) and contain the
history e ects (Mellor and Gibson (1966); Bobke et al. (2017)). How to characterize and quantify
such e ects are also still open in the literature. Due to the limited understanding of pressure gradient
e ects, the commonly used existing RANS models do not incorporate such e ects as a modeling term
or a coe cient explicitly but have mainly been calibrated for simple canonical ows such as turbulent
boundary layers at zero pressure gradient (ZPG). Therefore, their predictive accuracy for pressure
gradient ows is questionable, and modeling improvement for these ows is of great interest.

For this purpose, establishing well-de ned validation test cases is a crucial task, which turbulence
modelers can use for the validation and/or calibration of their RANS models for pressure gradient
ows. However, such validations are still rare in the literature due to the lack of carefully designed
experiments that are intended to be used as CFD test cases. It should be worth mentioning that
such validation test cases for high Reynolds number ows can only be achieved based on wind tunnel
experiments since the DNS approach is not applicable in this regime. To tackle this problem, in the
present study, two recent wind tunnel experiments with pressure gradients have been selected, and
e orts to set them up as validation test cases have been made. The rst test case is the wind tunnel
experiment conducted in the Virginia Tech Stability Wind Tunnel (see Fritsch et al. (2020)) in the
framework of the North Atlantic Treaty Organization (NATO) Science & Technology Organization
(STO) Air Vehicles Technology (AVT) 349 project on \Non-Equilibrium Turbulent Boundary Layers

in High Reynolds Number Flow at Incompressible Conditions". This ow case involves streamwise
changing mild pressure gradients and hence is expected to contain non-equilibrium e ects. The second
test case is the wind tunnel experiment conducted in the Laboratoire de Mecanique de Lille (LML)
wind tunnel (Cuvier et al. (2017)) in the framework of the EUHIT European project ( www.euhit.org ).
This ow case has approximately constant pressure gradient regions but slightly stronger pressure
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gradients. Both experiments have been designed such that modelers can use them as CFD test cases,
and therefore they are suitable for this purpose.

1.2 Objectives

The objectives of the present work are summarized as follows:

To provide a validation database of existing RANS models for high Reynolds number ows with
history e ects due to streamwise changing mild pressure gradients

" To assess the predictive accuracy and its uncertainty of RANS models for the established vali-
dation test cases

1.3 Organization of Thesis

In Chapter 2, theoretical backgrounds and known phenomena on turbulent boundary layer ows
subjected to pressure gradients will be described. In Chapter 3, the numerical methodology used in the
present work will be described, including discretization methods and turbulence models. In Chapter
4, the rst test case, the Virgina Tech wind tunnel experiment, will be discussed. Description of the
experimental and numerical setup will be given, and nally, the obtained results will be discussed. In
Chapter 5, another test case, the LML wind tunnel experiment, will be described, and corresponding
results will be discussed. Finally, Chapter 6 will present the conclusions of the main results and
suggestions for future work.



Chapter 2

Literature Review

This chapter provides a literature review of previous research on turbulence boundary layer ows
at pressure gradients. Firstly, some of the important experimental and theoretical studies will be re-
viewed. Subsequently, previous research on validations of the existing RANS models with experimental
results will be described.

2.1 Turbulent Boundary Layer Flows at Pressure Gradients

2.1.1 Turbulent Boundary Layers at Zero Pressure Gradient

For turbulent boundary layers at zero pressure gradient (ZPG), for su ciently large Reynolds humbers,
the existence of the universal logarithmic law in the mean velocity pro le has been demonstrated by
a large number of experiments and is widely accepted.

u* EIog y" +B; (2.1)

where

ut= Loy = Y (2.2)
u

with u being the mean velocity,u = P “w= the friction velocity, , the wall shear stress, the
freestream density,y the wall distance, the kinematic viscosity, the von Karman constant, and B
the intercept. The intercept B is known to be dependent on the wall roughness. Di erent values for
and B are reported in the literature. The most classical ones are = 0:41 andB =5:0 by Coles and
Hirst (1969), while = 0:384 andB = 4:17 were found byOsterlund et al. (2000). See also Marusic
et al. (2013) for an overview.

The turbulent boundary layer at ZPG is typically divided into four layers: the viscous sublayer
(y* < 5), the buer layer (5 <y* < 30), the logarithmic layer (30 <y* < 0:15 *), and the wake
layer (y* > 0:15 *), with  being the boundary layer thickness. The rst three layers (i.e., the
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viscous sublayer, the bu er layer, and the logarithmic layer) are often collectively called an inner
region, while the logarithmic layer and the wake layer are called an outer region. Note that di erent
studies reported slightly di erent values from each other for the bounds of the logarithmic layer.

In contrast to the turbulent boundary layer ows at ZPG, a universal wall law for the inner region for
the turbulent boundary layers at pressure gradients, particularly at adverse pressure gradients, has
not been found until now. For the APG TBL ows, the region between the bu er and wake layers is
often called the overlap layer. The structure of the overlap layer and its universality remain open in
the literature.

2.1.2 Turbulence Boundary Layers at Pressure Gradients

Experimental and theoretical study

The foundation of the turbulent boundary layer ows at pressure gradients was made by Clauser
Clauser (1954, 1956) over 50 years ago. He de ned a non-dimensional pressure gradient parameter,
which has been commonly used in the literature. The pressure gradient parameter (sometimes called
Rottta-Clauser pressure gradient parameter) is de ned as Eq. (2.3), where being displacement
thickness, the density, u the friction velocity, P the pressure, ands the streamwise coordinate. He
claimed that a boundary layer ow departs from equilibrium when is not constant.

@P
RS T U7 @s (2.3)
The term \equilibrium" in regards to the turbulent boundary layer ows seems to be often confused
by the community. The strict de nition of the equilibrium boundary layer is proposed by Townsend
(1956) and later by Rotta (1962). According to their de nition, all mean-relative motions and energy-
containing components of turbulence (e.g., Reynolds shear stress and the turbulence intensities) have
to be invariant with the streamwise position when scaled with local velocity and length scales (see
also Marusic et al. (2010)). Rotta showed that this condition can only be satis ed by the sink- ow
boundary layer on a smooth wall. Later, the sink ow experiment by Jones et al. (2001) validated
this theory at high Reynolds numbers (1800< Re < 3000). Following this strict de nition, turbulent
boundary layer ows at zero pressure gradient are not in equilibrium but near-equilibrium.

Around the same time as Clauser (1956), Coles (1956) proposed to represent the mean velocity pro le
with a linear combination of two universal laws: the law-of-the-wall and law-of-the-wake (Eq. (2.4)),
which includes pressure gradient e ects. In Eq. (2.4), is the Coles wake factor,W; is the Coles
wake function, is the boundary layer thickness.

e 1 hy
u = —log(y" )+ B+ —Wc =; (2.4)

As mentioned earlier, the overlap layer's structure and its universality are still open. Various propo-
sitions have been made in the literature. One of them is the two-layer structure hypothesis that the
overlap layer is divided into two layers. This hypothesis originates from Stratford (1959), who pro-
posed a square-root law (also referred to as sqrt-law or half-power law) for the velocity pro le in his
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analysis using a velocity scale based on the pressure gradien§. The de nition of u, is shown in Eq.
(2.5). This velocity scale was considered as more appropriate than a friction velocity in the case
of APG because in the extreme APG case, the ow will separate, andi becomes zero.

ap =

Up s (2.5)

Stratford's sqgrt-law was later extended by Townsend (1961) who usedi as a velocity scale and ob-
tained a law with a logarithmic part and a square-root part. Afzal (1996) arrived at similar expressions
to Townsend using asymptotic matching (Eq. (2.6)).

" "
1 4 —— 2
u" == log y* +2 1+ psyt 1 +2log p———— + B; (2.6)

where p: denotes

+ @P
- &~ 2.7
pS u 3 @S ( )
Another hypothesis, the three-layer structure was also studied by Yajnik (1970), Mellor and Gibson
(1966), and later Durbin and Belcher (1992). They are all based on asymptotic analysis.

Regarding the non-equilibrium e ects of the turbulent boundary layers, Mellor and Gibson (1966)
postulated that there is a universal relations between the defect shape facto6 = (1  1=H)=(u =U,)
and the pressure coe cient parameter , whereH = = being the shape factor, the displacement
thickness, the momentum thickness,u the friction velocity, and U, the edge velocity.

One of the important classical experiments was conducted by Nagano et al. (1993), who studied
turbulent boundary layer ows with moderate to strong adverse pressure gradients (rc = 0:76 4:66).
They found that the mean velocity prole in viscous scaling shifts downwards from the standard
logarithmic law with an increasing adverse pressure gradient, suggesting a reduction in the sub-layer
thickness. The same observations were later reported by other studies, including Monty et al. (2011).
In contrast, Dixit and Ramesh (2010) among others found the shift-up of the mean velocity pro le for
strong FPG ows. In Nagano et al. (1993), it was also observed that the wake part pushes up as the
magnitude of the adverse pressure gradient increases (see Fig.2.1). The opposite trend was observed
in several FPG ow experiments, i.e., the wake part shifts down due to the FPG (see Fig. 2.2).

Skre andhge Krogstad (1994) investigated an equilibrium boundary layer ows with a strong adverse
pressure gradient (rc = 12:2 21:4). They analyzed the turbulent kinetic energy (TKE) budgets
and found that the pressure gradient does not a ect the distribution mechanism of the TKE for their
equilibrium boundary layer ows. Fig.2.3 shows the comparison of their experimental data with the
relations for the equilibrium TBLs proposed by Mellor and Gibson (1966).

Some of the more recent experiments for the pressure gradient ows are e.g., Anderson (2011), Harun
(2012), Volino (2020), and Knopp et al. (2021). Harun (2012) gives a good review of known and
unknown pressure gradient e ects.
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Fig. 2.1: Viscous scaled mean velocity pro les of the adverse pressure gradient ows by Nagano
et al. (1993). P* in the legend denotes p{ previously shown. The increment of the wake part can
be observed.

Fig. 2.2: Viscous scaled mean velocity pro les of the favorable pressure gradient ows by Jones et al.
(2001). In contrast to the adverse pressure gradient ows by Nagano et al. (1993), the wake part was
suppressed.

Fig. 2.3: Correlation between defect shape factoiG and pressure gradient parameter from Skre
andage Krogstad (1994). The dashed curve represents the curve by Mellor and Gibson (1966), and
the black dot represents the experimental data by Skre andage Krogstad (1994).
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Numerical study

In addition to the experimental studies, numerical studies have also been conducted thanks to the
progress of the computational power. Some of the earliest DNS simulations of turbulent boundary
layer ows at pressure gradients are found in Spalart and Leonard (1987); Spalart and Watmu
(1993). Later, Lee and Sung (2009) investigated equilibrium adverse pressure gradient ows using
DNS simulations. More recently, adverse pressure gradient ows containing small separation bubbles
were studied using DNS simulations by Coleman et al. (2018).

Apart from DNS simulations, near-equilibrium boundary layers under adverse pressure gradients were
studied by Bobke et al. (2017) using Large Eddy Simulations (LES). They focused on the history

e ects in the adverse pressure gradients and found that Clauser pressure-gradient parameter and the
Reynolds number are not su cient to characterize the ow states.

2.2 \Validation of RANS Models for TBL Flows at Pressure
Gradients

As mentioned in Chapter 1, establishing well-de ned validation test cases for pressure gradient ows
at high Reynolds numbers is an important task for calibrations and/or improvements of the existing
RANS modes for pressure gradient ows. Despite its demands, such validation test cases are still rare.

One of the recent attempts is found in Knopp et al. (2022), where a turbulent boundary layer ow
subjected to a strong adverse pressure gradient was experimentally and numerically investigated.
Modi cations of the existing RANS models were also attempted earlier by Knopp (2016), where the
modi cation of k ! type models incorporating a sqrt-law for the mean velocity pro le were considered,
which is a similar idea by Rao and Hassan (1998). This work was later extended for SSG/LRR-
model in Knopp (2019).

Vaquero et al. (2019) considered the experimental work by Cuvier et al. (2017) and compared di erent
simulation techniques including RANS, hybrid RANS/LES, and Zonal Detached Eddy Simulation
(ZDES). They observed that the mean velocity pro les in the APG region were poorly reproduced by
all models. The same test case will be addressed later in the present work.
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Chapter 3

Numerical Methodology: The
DLR-TAU code

All simulations in the present work were performed by the DLR-TAU code. The DLR-TAU code
(hereafter referred to as TAU) is a CFD software package developed at the German Aerospace Center
(DLR), which mainly consists of a compressible nite-volume ow solver for hybrid unstructured grids,
see e.g., Schwamborn et al. (2006) for an overview. TAU is based on cell-vertex type nite-volume
discretization and uses the dual-grid approach. In the preprocessing step, the dual-grid is constructed
from the primary grid and then treated as control volumes for the nite-volume discretization. In
Section 3.1, the governing equations used in TAU will be described. In Section 3.2, the RANS
turbulence models used in the present work will be described in detail. In Section 3.3, the dual-grid
approach and the discretization schemes of the governing equations will be explained.

3.1 Governing Equations

3.1.1 Compressible Navier-Stokes Equations

The governing equations of uids consist of conservation of mass, momentum and energy. The di er-
ential form of these equations for compressible ows are written as follows:

@Q, @, |_,.

@t+ 7@}((”')_0’ (3.2)
@ .\, @ . @p @

@t(”')+ @?((UJU.) @x+ ax’ (3.2)
@ @ = @ v @n

@{E)+ @?((UJH) @x Ui ax’ (3.3)
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where denotes density,u; velocity components, p pressure, ' viscous stress tensorE total energy
per unit volume, H total enthalpy per unit volume and ¢ heat ux vector. The subscript i;j =(1;2;3)

stands for x-, y-, z-direction, respectively.

Total energy E and total enthalpy H are de ned as

E=e+ %uiui; (3.4)
H:h+%uiui:e+ E+%uiui:E+E; (3.5

where e denotes internal energy per unit volume,h enthalpy per unit volume. Here we assume the
perfect gas.

The heat ux vector is obtained from Fourier's law:

@T
= = 3.6
@x (3.6)
where denotes thermal conductivity and T temperature.
The viscous stress tensor ' are de ned as
@y 2 Qv
j =2Sj + @ijzzsij 3 @x !’ 3.7

where S; is strain-rate tensor, the second coe cient of viscosity and j the Kronecker delta. The
Stokes's hypothesis is used for the second term. The de nition of strain-rate tensor is as follows:

o _1 @u, @y .
Si =3 or’ ox (3.8)

3.1.2 Compressible Reynolds-Averaged Navier-Stokes Equations

The idea behind the Reynolds-Averaged Navier-Stokes (RANS) equations is Reynolds decomposition,
where ow variables are decomposed into a mean and a uctuating part. For example, velocity
componentu; can be represented as

up = ui + u; (3.9)

where the mean part is denoted by an overbar and the uctuation part by a prime. Note that the
mean of a uctuation part is zero, i.e., U? = 0. For compressible ows where density is not constant,
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Favre averaging (also called mass-weighted averaging) is often used instead of Reynolds averaging in
order to simplify the equations. The Favre averaging for a quantity f is performed as follows:

f=fef® = 1. (3.10)

where a Favre-averaged part is denoted by a tilde and a uctuating part by double prime. Note that
the Favre average of the uctuating part is again zero, but the Reynolds average of the uctuation part
here is nonzero, i.e.,ﬁPO: 0;u®6 0. Usually, the density and the pressure are Reynolds-averaged,
and velocity and thermodynamic variables are Favre-averaged. The Favre- and Reynolds-averaged

compressible Navier-Stokes equations are

%ﬁ @%( )= 0 (3.11)

gt( t) + @@;( th th) = @@x+ @?;( i o (3.12)

@@{ E)+ @@?( bH = @@?( g  UOhoo+ _]ij u® g% (3.13)
+ @@’;hui 5 e

Here, the Favre-averaged Reynolds stress tensor is written as

i}: = Rij = l]lIOQ,IJOO (3-14)
Considering the symmetric property of the Reynolds stress tensor, one can understand that six ad-
ditional unknown variables are added to the set of governing equations. Due to the introduction of

these six unknowns, the governing equations can no longer be solved without modelings. This leads
to the necessity of turbulence modelings which will be discussed in the following section.

3.2 Turbulence Models

3.2.1 Treatments of the Reynolds Stress Tensor

RANS turbulence models out there can be classi ed by how the Reynolds stress tensor is treated.
The simplest approach is the so-called linear eddy viscosity model (EVM), where the Reynolds stress
tensor is modeled via the Boussinesq hypothesis

Rij = 2 tg-- + —K i (315)
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with the traceless strain tensorS; de ned as follows
1@, 6
2 @x @x

1
Sij = Si' égkk ij - (3.17)

(3.16)

Sj =

The linear eddy viscosity model is the base of many common turbulence models, including the Spalart-
Allmaras type models andk-! type models, which will be described in the following.

Another approach is to directly evaluate the Reynolds stress tensor by solving their transport equa-
tions. This approach is called the di erential Reynolds stress model.

3.2.2 The Spalart-Allmaras One Equation Model

The Spalart-Allmalas (SA) model is the method that solves the transport equation of ~instead of
solving for the original turbulent eddy viscosity . The relationships between ~and are as follows:

==ty (3.18)

3

fv1 = fé,l; = - G1=7:1 (3.19)

with  the average kinematic viscosity.

The general formulation of transport equation of ~is given by

@-, @ - - - - N
+ —(~)= PO pO O+ cH + TO 3.20
@ "ox! ™ (20
where P () denotes the production term, D () the diusion term, and ) the wall destruction

term. C (9 and T () are the modi cation terms for compressibility and turbulence onset respectively.
These terms are treated optionally.

The rst three terms are given as follows:

P®=cn(l fi)Se (3.21)
1 @ @ @ a@
pe@=-2> © = == . 3.22
@x (+e@¥+cbz @5 @x (3.22)
2
© = Gufy g : (3.23)

(3.24)
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where each function is given by

fio= Cs€xp Ga 2 ;

\ﬁ/ @u @y
_ = ) p 1 u Y
SEST @il ST 20 0= 5 ¢ @x
_ (3.25)
fro=1 Cfyzg 2O T
v2 = 1+7f\,1’ w=0 m
_ 6 . — i -
g=r1+ Cua(r ry; r=min w,lo
and the constants are summarized as follows:
Cpy = 0:1335; =2=3; ¢cp=0:622;
1+
=0:41; cw1=c%l+ %2 02=0:3; Guz=2 (3.26)

G3=1:2; c4=05

In the production term, the modi ed vorticity S is responsible for controlling the rate of production.
The ft, decreases the production near a laminar region according to the value of.

The wall destruction term describes the e ect that eddies are destructed due to the presence of a
wall. The viscous e ect of the wall destroys eddies near the wall. Also, the pressure uctuation is
blocked by the presence of a wall. Since this e ect becomes weaker as going away from the wall, the
destruction term is proportional to 1=c?, whered is the distance from the wall.

The di usion term consists of the linear part and the additional nonlinear part. The nonlinear part
is important to get an accurate result near the boundary of the turbulent region since therein the
di usion e ect is dominant.

In this work, we use the model classied as SA-neg in the NASA Turbulence Modeling Resource
(TMR) website (https://turbmodels.larc.nasa.gov/ ). This model was originally developed to
deal with the situation where the viscosity takes a non-physical negative value. This happens quite
often when the grids are coarse, or the ow is transient. To handle this issue, the SA-neg model uses
other forms for the production term, the di usion term, and wall destruction term in the case of ~< 0.
The standard SA model is used for ~ 0.

P®=cy(l a3)Se (3.27)
1 @ @
D (e) - = = fn —_ ; 328
2
(&)= cu1 g ; (3.29)

(3.30)
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with

_ Gt 3

fr Cn1 3

Ch1 = 16: (3.32)

Notice that the modi ed production term is herein de ned in terms of the vorticity S, and the wall
destruction term takes the negative sign.

3.2.3 Two-Equation k-! Shear Stress Transport (SST) Model

The k-!I' SST model is the method where two transport equations for the speci c turbulent kinetic
energy k and the speci c dissipation rate ! are solved to close the RANS equations. The model is
widely understood as a combination of the classicak-! model by Wilcox (1988) and the k- model by
Jones and Launder (1972). The idea is presented by Menter (1994) in order to overcome the freestream
sensitivity of the original k-!' model while keeping the good predictive performance near walls. In his
paper, two models are proposed; one is the so-called Menter Baseline (BSL) model, and the other is
Menter Shear Stress Transport (SST) model. The SST model uses a modi ed de nition of the eddy
viscosity to account for the e ect of the transport of the principal turbulent shear stress. The SST is
widely used in the CFD community due to its strength in predicting adverse pressure gradient ows.

The two turbulence equations in the compressible form used in TAU are as follows.

k-equation
@@kt) N @@;( Re, =P® "+ p® (3.32)

where P (%) is the production term, " the dissipation term, and D ®) the di usion term. Note that
the turbulent kinetic energy is given as a half of the trace of the Reynolds stress tensor

Rkk . (3.33)

Each term is de ned as follows:

PR = R g{ =2 (t)sizl_t g( % k% =2 (t)sij Si g k%; (3.34)
D ® = @@; . ® © g ; (3.36)

where ® and ® are closure coe cients, and ) the eddy viscosity.
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! -equation

@' ) @ (1) 1) 1) ()

=+ = (1 g)= PV )+ C + DV 3.37
where P () is the production term, (‘) the dissipation term, C$’ the cross-di usion term, and

D ) the diusion term.

Each term is de ned as follows:

P = (g)p ®. (3.38)
M= w2 (3.39)
. !

c)= <d>!g;@%; (3.40)

D)= @@; RGN0 g;( : (3.41)

where (), () (@ and () are closure coe cients, S¢  is called scaling of the production term,
and ® the eddy viscosity. The de nition of S{'’ is given by

SO : 3.42
N O (3:42)

As mentioned previously, Menter's BSL and SST model are understood as a combination df-!
model by Wilcox and the k- model. This is due to that fact that the closure coe cients are smoothly
changed between the near wall region and the freestream region with the help of a blending function.

= Fl i+(1 Fl) 01 (343)

where being six closure coe cients, F; the blending function, and the subscriptsi and o stand
for the near wall region (Cinner' region) and the freestream region (‘outer' region), respectively. The
blending function is given by

F, = tanh( G); (3.44)
where

Gi=min[max( 1; 2); 3l; (3.45)
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with
Py
17 0:09d (3.46)
500
2= >y (3.47)
(d)
3= # (3.48)
C b;O d2
and
|
|
C 54 =max gd>!—@g;@%;1o 20 . (3.49)

The de nition of the eddy viscosity for the original k ! model by Wilcox (1988) and also for the
BSL model is given by

® = Tk: (3.50)

As stated previously, the SST model uses a modi ed de nition of the eddy viscosity. This is intended
to improve its sensitivity to adverse pressure gradients. The eddy viscosity in SST is de ned as

M = ke, _ R ! ; (3.51)
max(ail; F2) ! max Lk
: 1
where
a; =0:31, F,=tanh(G3); Gy=max(2 1; 2): (3.52)

The parameters 1 and , are the same as the ones used in the blending functioR;.

Here, is called a scalar velocity gradient parameter, and two di erent de nitions have been published
by Menter. The rst version Menter SST 1994 (Menter (1994)) uses the de nition by vorticity

q
= 2e, €, (3.53)

while the later published version Menter SST 2003 (Menter et al. (2003)) is based on strain rate

q
= Zgi' Sij : (3.54)

Lastly, the closure coe cients are summarized in Table3.1. It should be noted that the closure
coe cients in TAU follow a publication by Menter and Rumsey (1994).
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®) ") (®) ") ") (d)

Inner region (k-! part) 0.09 0.0752 0.85 0.5 0.5555555 0
Outer region (k-" part) 0.09 0.0828 1.0 0.857 0.440 1.714

Table 3.1: Closure coe cients of Menter SST model in TAU

3.2.4 SSG/LRR- ! Reynolds Stress Model

The Reynolds stress models (RSM) are the models where the Reynolds stresses are directly treated by
solving their transport equations without the Boussinesq hypothesis. The SSG/LRR! RSM is one of
the most successful RSM, especially in the aerospace eld, and it has been veri ed and validated by
NASA and DLR based on the test cases on the Turbulence Modeling Resource (TMR) website (Eisfeld
et al. (2016)). What the SSG/LRR-! model di erentiates with other RSMs is the treatment of the
pressure-strain correlation term, which will be described in the following. The SSG/LRR{! model
combines the formulation by Speziale-Sarkar-Gatski (SSG) (Speziale et al. (1991)) and the one by
Launder, Reece, and Rodi (LRR) (Launder et al. (1975)) through blending of the model coe cients,
in analogy to Menter's BSL and SST model. The SSG formulation is based on dissipatioti, which

is used for the freestream region, and the LRR model is based onh, which is used for the near-wall
area.

Firstly, the Reynolds stress transport equation is given by

@ R;j @
7@t + @ Rijtk = Py + i "i+ Dy, (3.55)
where Rj being the Reynolds stress tensor,Pj the production term, j the pressure-strain

correlation term, " j the dissipation term, and D j the diusion term.

The production term does not need any modelings and is given by

% Rjk %Z (356)

Pi = Rk
The pressure-strain correlation term is modeled as follows due to Speziale, Sarkar, and Gatski (SSG)
(Speziale et al. (1991))
.1 . 1
i C." + écl P B +Co" Byl ébxlbxl i

q__
2
+ C3 C3 Babla KRS + C4 R Bk S + Bk Sik §b<| S i (3.57)

+ Cs K By Wik + B Wi
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where by; is an anisotropy tensor andW; the rotation tenor, which are respectively represented as

Ri 1

B =L 3y (3.58)
A ]
Wi =3 @x ox (3.59)

Also, C; and C; are model-dependent coe cients. As mentioned earlier, these coe cients and the
above SSG formulation are blended with the LRR model. See Eisfeld et al. (2016), Eisfeld (2019) for
the values of coe cients.

The dissipation term is simply modeled as an isotropic tensor

2
o= 3 "o (3.60)
The isotropic dissipation rate " can be formulated as
"= CK (3.61)

in which C =0:09. In order to calculate this quantity, the value of ! is necessary. For this purpose,
the ! -equation by Menter's BSL model is introduced and solved together with the Reynolds stress
transport equations.

The di usion term has two model formulations. One is so-called simple gradient di usion (Shir (1973))

and the other is generalized gradient di usion (Daly (1970)). In the present work, the simple gradient

di usion version is used for all simulations. The formulation is given by
" ! #

@ L DO R @R

= B — @ (3.62)

with a mode coe cient DSP) whose value should also be referred to (Eisfeld et al., 2016).

3.3 Discretizaiton Scheme

3.3.1 Discretization of Computational Domain

The discretization strategy in TAU is a cell-vertex type nite-volume scheme with dual control vol-
umes. In TAU, the ow variables are stored at the vertices of the primary grid, which is a grid
generated by an external grid generation tool and imported into TAU. The so-called dual-grid is cre-
ated in the pre-processing step by connecting the centroids of the primary grid cells, and the dual
grid cells are used as control volumes for the nite-volume discretization of the governing equations.
An example of the primary grid and accordingly generated dual grid is illustrated in Fig. 3.1.
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Fig. 3.1: Exemplary hybrid primary grid (black) and the corresponding dual grid (red) around a
NACA-0021 airfoil (Reu (2015))

3.3.2 Spatial Discretization

The integral form of the governing equations in the computational domain can generally be written
as

4 I 4

@ wa+ FC FY dS= Qd ; (3.63)
@t o

where W being the conservative variablesF°¢ the convective uxes, FV the viscous uxes, and Q the
source term. Applying the nite-volume discretization, for a control volume V, the equations read

av, 1X
@t v

F5 Fy  Su+Qp (3.64)

where J stands for the indices for the adjacent control volumes. In CFD computations, the selection
of the discretization schemes for convective uxes is of great importance.

Central Scheme with Arti cial Dissipation

A central scheme is a method where the uxes at a cell face are computed from the arithmetic average
of the conservative variables on both sides of the face. This would allow numerical instabilities such
as odd-even decoupling or overshoots at shocks, and therefore arti cial dissipation has to be added
for the scheme's stability. The central uxes can be approximated by di erent approaches such as an



3.3. Discretizaiton Scheme 21

average of uxes, an average of variables, the skew-symmetric Kok scheme (Kok (2009)), and so on.
With the average of ux approach as an example, the convective uxes are computed as

1 1
Fi3 5 F©+ Fy §~DIJ (3.65)

with the arti cial dissipative ux D,; and the arti cial dissipation coe cient ~ , which is either scalar
dissipation or matrix dissipation. The dissipative uxes for scalar dissipation are written as:

Dy = "@ (w, Ww;) "K@ 2w r 2w, (3.66)

where the coe cients "k@ ;"k®) are used to control the amount of dissipation to be added. The
2nd order dissipation coe cient "X@ is responsible for handling discontinuities, while the 4th order
coe cient "X® s for dissipation in smooth regions. For the scalar dissipation, ~becomes the maxi-
mum eigenvalue of the ux Jacobian weighted by an additional term that accounts for grid stretching.
With the matrix dissipation scheme, the solution accuracy can be improved by considering the full
convective ux Jacobian, resulting in a more appropriate weighting of each dissipation term.

Due to the presence of stretched cells to resolve boundary layers and the demand for high accuracy,
the Kok scheme with matrix dissipation is for the mean convective uxes in the present work.

Upwind Scheme

Several upwind schemes are available in TAU. The upwind schemes are typically preferred over central
schemes to improve the shock-capturing capability in the compressible regime. In the present study,
which only deals with incompressible ows, however, Roe upwind scheme (Roe (1981)) is used for
convective uxes of turbulent equations according to the turbulence models for stability reasons.

3.3.3 Time Discretization

In addition to the spatial descretization, the time derivative of the governing equations must be
treated. The Backward Euler implicit descretization scheme has been used together with the Lower-
Upper Symmetric Gauss-Seidel (LU-SGS) iterative solver. The governing equations in general form
read

@w

— = R (W); 3.67

ai- R (W) (3.67)
with the residual R(W). The steady state solution of the above equations is found by solving the
time-dependent problem with pseudo-timet and seeking the solution where the residual becomes
zero.

@w

@ - R o (3.68)
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The Backward Euler scheme is given by

Wn+l AL

o R, (3.69)

where n represents the iteration step.

The LU-SGS scheme is based on the LDU factorization. Applying an approximate LDU factorization,
the system matrix can be described in matrix notation as follows:

[L+DID !D+U] WN= R" (3.70)
where
wh=wn"t whn: (3.71)

and L only consists of block terms in the strictly lower triangular matrix, U only consists of block
terms in the strictly upper triangular matrix, and D is a diagonal matrix. This is solved by the
following two steps:

D I(R" L W) (3.72)
w D u wn (3.73)

Forward sweep: W

Backward sweep : W "

where W s an intermediate solution updated in the forward sweep.

Furthermore, in the present study, a multi-grid method is used to accelerate the convergence. Besides,
a low-Mach number preconditioning is applied to obtain accurate solutions in the incompressible
regime using the compressible ow solver TAU.
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Chapter 4

The Virginia Tech Stability Wind
Tunnel Experiment

This chapter describes the rst test case, the Virginia Tech Stability Wind Tunnel (VTSWT) experi-
ment. The experiment was performed in the framework of the NATO AVT-349 research project. The
collaborative experimental and computational study of the experiment has been conducted within
the subgroup of the larger NATO AVT-349 Research Technical Group, and its primary outcome was
recently published (Fritsch et al. (2022)). The collaborative group consists of Virginia Tech, DLR, the
University of Melbourne, Chalmers University of Technology, MARIN/IST, and the Sirehna Naval
Group. The present thesis mainly addresses the computational e orts presented by DLR from this
collaboration.

In the following, the experimental will rstly be described. Secondly, the computational set-ups,
including the development of the computational grids and numerical methods, will be explained.
Subsequently, the obtained results and the discussion will be presented.

4.1 Experimental set-ups

4.1.1 Flow Case

The experiments were conducted in the Virginia Tech Stability Wind Tunnel (VTSWT). The test
section is a cuboid 185m 1:85m in cross section and B2m long in the streamwise direction. A
contraction section exists in front of the test section, and a boundary layer trip is installed 3584 m
ahead of the entrance of the test section. A schematic view of the ow case and its coordinate system
is illustrated in Fig.4.1. Coordinate x is de ned from the test section entrance, while the origin of
coordinatey is de ned on the port-side wall of the test section (bottom wall in Fig. 4.1). Coordinate z

is de ned such that z = 0 m represents the mid-plane of the wind tunnel. Hereafter, to avoid potential
confusion, we refer to the port-side wall of the wind tunnel as “bottom wall' and the starboard-side
wall as “top wall' unless otherwise noted. The boundary layer of our interest is the one developing
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Fig. 4.1: Flow case set-up

on the bottom wall. A NACA0012 airfoil with 0.914 m chord length is installed in the test section,
whose quarter chord is positioned nominally atx = 3:44m;y = 0:924 m. Streamwise varying pressure
distribution is generated on the walls of the test section by changing the angle of attack of the airfoil.
The airfoil can be rotated nominally from 10 to 12 degrees. The experiment was conducted for two
di erent Reynolds numbers, 2 million and 3.5 million, based on the airfoil chord length. Yet, this
study only considers the 2 million case.

4.1.2 Measurement Techniques

Two di erent types of measurements were performed in the experiment. One is a rake of Pitot tubes
technigue, where 30 Pitot-probes are used to resolve the pro les of the boundary layers of interest.
Fig. 4.2 shows the experimental set-up of the boundary layer rake. The mean velocity proles are
computed from the measured static pressure and the stagnation pressure values with the help of the
incompressible Bernoulli's equation. The measurement positions are summarized in Table4.1. The
other method is a planar time-resolved Particle Image Velocimetry (TR-PIV). However, only rake
measurement results are addressed in the present work. The comparisons between RANS simulations
and PIV measurement data for turbulence quantities are presented in Fritsch et al. (2022).

Station Streamwise position,x [m]

P3 1.253
P4 1.863
PS5 2.472
P6 3.082
P7 3.691
P8 4.301
P9 4911

Table 4.1: Rake probe measurement positions in the steramwise direction
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