
Removing Hanging Faces from Tree-Based Adaptive Meshes for Numerical

Simulations – an implementation in t8code

Florian Becker (German Aerospace Center | High-Performance Computing),

Gregor Gassner (University of Cologne | Numerical Simulation),

Johannes Holke (German Aerospace Center | High-Performance Computing)

SIAM Annual Meeting – Undergraduate Research, July 2022

DLR.de • Chart 1

Why AMR?

• Many mathematical applications are based on mesh structures

• The element size correlates with the accuracy (but also with the computational costs)

• AMR as a compromise of high accuracy and computational efficiency

DLR.de • Chart 2

numerical application with AMR

Adaptive Mesh Refinement (AMR) in Numerical Applications with t8code

numerical application with AMR

DLR.de • Chart 3

t8code (“tetcode”):

• A open-source C/C++ library for parallel AMR [4]

• Tree-based hybrid meshes

• Adaptive refinement of each tree

• A modular Space-filling Curve Index (SFC Index) for element enumeration

Coarse Mesh Adaptive Mesh

Adaptive Mesh Refinement (AMR) in Numerical Applications with t8code

Why AMR?

• Many mathematical applications are based on mesh structures

• The element size correlates with the accuracy (but also with the computational costs)

• AMR as a compromise of high accuracy and computational efficiency

Adaptive Mesh Refinement (AMR) in Numerical Applications with t8code

numerical application with AMR

DLR.de • Chart 4

Coarse Mesh Adaptive Mesh

How does tree-based AMR work?

t8code (“tetcode”):

• A open-source C/C++ library for parallel AMR [4]

• Tree-based hybrid meshes

• Adaptive refinement of each tree

• A modular Space-filling Curve Index (SFC Index) for element enumeration

Why AMR?

• Many mathematical applications are based on mesh structures

• The element size correlates with the accuracy (but also with the computational costs)

• AMR as a compromise of high accuracy and computational efficiency

Tree-based AMR

• Refinement criterion: refine an element 𝐸 in the mesh if 𝐸 ∩ 𝐺 ≠ ∅

• Refinement: the replacement of an element 𝐸 by its children: 𝐸 → 𝐶0, 𝐶1, 𝐶2, 𝐶3 with ∪𝑖 𝐶𝑖 = 𝐸

TreeRefinement Level

0

Geometry 𝐺

𝐸

Adaptive Mesh

DLR.de • Chart 5

Tree-based AMR

0

1

Geometry 𝐺

𝐶0 𝐶1

𝐶2 𝐶3

TreeRefinement Level Adaptive Mesh

DLR.de • Chart 6

• Refinement criterion: refine an element 𝐸 in the mesh if 𝐸 ∩ 𝐺 ≠ ∅

• Refinement: the replacement of an element 𝐸 by its children: 𝐸 → 𝐶0, 𝐶1, 𝐶2, 𝐶3 with ∪𝑖 𝐶𝑖 = 𝐸

Tree-based AMR

0

1

2

Geometry 𝐺

TreeRefinement Level Adaptive Mesh

DLR.de • Chart 7

• Refinement criterion: refine an element 𝐸 in the mesh if 𝐸 ∩ 𝐺 ≠ ∅

• Refinement: the replacement of an element 𝐸 by its children: 𝐸 → 𝐶0, 𝐶1, 𝐶2, 𝐶3 with ∪𝑖 𝐶𝑖 = 𝐸

Tree-based AMR

• Hanging Faces: the intersection of an elements vertex with an other elements face
Geometry 𝐺

0

1

2

TreeRefinement Level Adaptive Mesh

DLR.de • Chart 8

• Refinement criterion: refine an element 𝐸 in the mesh if 𝐸 ∩ 𝐺 ≠ ∅

• Refinement: the replacement of an element 𝐸 by its children: 𝐸 → 𝐶0, 𝐶1, 𝐶2, 𝐶3 with ∪𝑖 𝐶𝑖 = 𝐸

• Hanging Faces: the intersection of an elements vertex with an other elements face

How can we make the mesh conformal after adaptation?

Tree-based AMR

Geometry 𝐺

0

1

2

TreeRefinement Level Adaptive Mesh

DLR.de • Chart 9

• Refinement criterion: refine an element 𝐸 in the mesh if 𝐸 ∩ 𝐺 ≠ ∅

• Refinement: the replacement of an element 𝐸 by its children: 𝐸 → 𝐶0, 𝐶1, 𝐶2, 𝐶3 with ∪𝑖 𝐶𝑖 = 𝐸

Removing Hanging Faces via Transition Cells of Triangular Subelements

Removing hanging faces is a two-step procedure*:

1. Remove red nodes: balance the mesh

2. Remove blue nodes: use transition cells of triangular subelements

Adapted Mesh

*originally a recursive one-step procedure, proposed by Schneiders [5]

DLR.de • Chart 10

1. Balancing:

In balanced meshes, the maximum level difference of neighboring

elements is 1.

Adapted Mesh

*originally a recursive one-step procedure, proposed by Schneiders [5]

DLR.de • Chart 11

Removing hanging faces is a two-step procedure*:

1. Remove red nodes: balance the mesh

2. Remove blue nodes: use transition cells of triangular subelements

Removing Hanging Faces via Transition Cells of Triangular Subelements

Balanced Mesh

*originally a recursive one-step procedure, proposed by Schneiders [5]

DLR.de • Chart 12

Removing hanging faces is a two-step procedure*:

1. Remove red nodes: balance the mesh

2. Remove blue nodes: use transition cells of triangular subelements

Removing Hanging Faces via Transition Cells of Triangular Subelements

1. Balancing:

In balanced meshes, the maximum level difference of neighboring

elements is 1.

2. Transitioning:

A transitioned mesh is a mesh that is conformal due to the insertion

of transition cells 𝑇 - families of triangular subelements

{𝑆0, 𝑆1, … , 𝑆𝑛}.

Balanced Mesh

*originally a recursive one-step procedure, proposed by Schneiders [5]

DLR.de • Chart 13

Removing hanging faces is a two-step procedure*:

1. Remove red nodes: balance the mesh

2. Remove blue nodes: use transition cells of triangular subelements

Removing Hanging Faces via Transition Cells of Triangular Subelements

1. Balancing:

In balanced meshes, the maximum level difference of neighboring

elements is 1.

2. Transitioning:

A transitioned mesh is a mesh that is conformal due to the insertion

of transition cells 𝑇 - families of triangular subelements

{𝑆0, 𝑆1, … , 𝑆𝑛}.

Transitioned Mesh

𝑆0

𝑆1
𝑆2
𝑆3

𝑆4

𝑇

*originally a recursive one-step procedure, proposed by Schneiders [5]

DLR.de • Chart 14

Removing hanging faces is a two-step procedure*:

1. Remove red nodes: balance the mesh

2. Remove blue nodes: use transition cells of triangular subelements

Removing Hanging Faces via Transition Cells of Triangular Subelements

1. Balancing:

In balanced meshes, the maximum level difference of neighboring

elements is 1.

*originally a recursive one-step procedure, proposed by Schneiders [5]

2. Transitioning:

A transitioned mesh is a mesh that is conformal due to the insertion

of transition cells 𝑇 - families of triangular subelements

{𝑆0, 𝑆1, … , 𝑆𝑛}.

How can we find neighbors in transitioned meshes? Lets find a suitable SFC Index!

𝑆0

𝑆1
𝑆2
𝑆3

𝑆4

𝑇

Transitioned Mesh

DLR.de • Chart 15

Removing hanging faces is a two-step procedure*:

1. Remove red nodes: balance the mesh

2. Remove blue nodes: use transition cells of triangular subelements

Removing Hanging Faces via Transition Cells of Triangular Subelements

1. Balancing:

In balanced meshes, the maximum level difference of neighboring

elements is 1.

A Space-filling Curve (SFC) Index for transitioned meshes

• t8code uses the Morton-Index 𝑚 𝐸 ∈ ℕ0 to enumerate its elements

Tree Mesh with SFC

0
𝑚 𝐸

element array

DLR.de • Chart 16

• In transitioned meshes, we extend the Morton-Index by adding the Subelement-Index 𝑠 𝐸 ∈ ℕ0

A Space-filling Curve (SFC) Index for transitioned meshes

0
𝐶 ⋅ 𝑚 𝐸 + 𝑠(𝐸)

∀𝑆𝑖 , 𝑆𝑗 ∈ 𝑇:𝑚 𝑆𝑖 = 𝑚(𝑆𝑗)

element array

Tree Mesh with SFC

DLR.de • Chart 17

A Space-filling Curve (SFC) Index for transitioned meshes

• In transitioned meshes, we extend the Morton-Index by adding the Subelement-Index 𝑠 𝐸 ∈ ℕ0

0
𝐶 ⋅ 𝑚 𝐸 + 𝑠(𝐸)

∀𝑆𝑖 , 𝑆𝑗 ∈ 𝑇:𝑚 𝑆𝑖 = 𝑚(𝑆𝑗)

Tree Mesh with SFC

element array

DLR.de • Chart 18

A Space-filling Curve (SFC) Index for transitioned meshes

• In transitioned meshes, we extend the Morton-Index by adding the Subelement-Index 𝑠 𝐸 ∈ ℕ0

But is this approach efficient?

0
𝐶 ⋅ 𝑚 𝐸 + 𝑠(𝐸)

∀𝑆𝑖 , 𝑆𝑗 ∈ 𝑇:𝑚 𝑆𝑖 = 𝑚(𝑆𝑗)

Tree Mesh with SFC

element array

DLR.de • Chart 19

Benchmarks

balanced transitioned

Testcase – comparing balanced and transitioned meshes:

• Construct a balanced mesh and its transitioned version

• Compare the LFN runtime of these meshes

DLR.de • Chart 20

min level 4, max level 8

Results:

Benchmarks

L
F

N
 r

u
n

ti
m

e
 p

e
r

p
ro

c
e

s
s
 [
𝑠]

processes

min level = 10, max level = 16

balanced transitioned

min level 4, max level 8

DLR.de • Chart 21

Testcase – comparing balanced and transitioned meshes:

• Construct a balanced mesh and its transitioned version

• Compare the LFN runtime of these meshes

Results:

Benchmarks

DLR.de • Chart 22

L
F

N
 r

u
n

ti
m

e
 p

e
r

p
ro

c
e

s
s
 [
𝑠]

processes min level

L
F

N
 r

u
n

ti
m

e
 p

e
r

c
a

ll
[𝜇
𝑠]

max level = min level + 6

≈50k elements

≈200k LFN calls

≈7m elements

≈ 28m LFN calls

Testcase – comparing balanced and transitioned meshes:

• Construct a balanced mesh and its transitioned version

• Compare the LFN runtime of these meshes

balanced transitioned

min level 4, max level 8

min level = 10, max level = 16

Conclusion and Outlook

Conclusion:

• The efficiency of the binary search, based on the Morton Index, is not negatively affected by post processing it via the Subelement Index

• The neighbor finding algorithm could even be accelerated by exploiting the conformal property of the transitioned mesh

DLR.de • Chart 23

Conclusion and Outlook

Conclusion:

• The efficiency of the binary search, based on the Morton Index, is not negatively affected by post processing it via the Subelement Index

• The neighbor finding algorithm could even be accelerated by exploiting the conformal property of the transitioned mesh

Outlook/TODOs:

• Extension to 3D?

• Large scale runtime tests

• Merging the new software features into the main code base of t8code

DLR.de • Chart 24

References

1. Florian Becker. ”Removing hanging faces from tree-based adaptive meshes for numerical simulations”. Master thesis. Universität

zu Köln. 2021. https://elib.dlr.de/146849/1/RemovingHangingFacesFromTreeBasedAMR.pdf.

2. Johannes Holke. "Exascale-ready adaptive mesh refinement and applications in Earth system modelling“. 19th Workshop on high

performance computing in meteorology. 2021. https://elib.dlr.de/144163/

3. Johannes Holke. “Scalable algorithms for parallel tree-based adaptive mesh refinement with general element types”. PhD thesis.

Rheinische Friedrich-Wilhelms Universität Bonn. 2018. https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/7661.

4. Johannes Holke, Carsten Burstedde, et al. Github - holke/t8code: Parallel algorithms and data structures for tree-based amr with

arbitrary element shapes.

https://github.com/holke/t8code.git.

5. Robert Schneiders. "Refining quadrilateral and hexahedral element meshes“. 1996.

Special thanks to Johannes Holke and Gregor Gassner for making this project possible.

Thank you

Questions?

DLR.de • Chart 25

https://elib.dlr.de/146849/1/RemovingHangingFacesFromTreeBasedAMR.pdf
https://elib.dlr.de/144163/
https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/7661
https://github.com/holke/t8code.git

