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Why AMR?

• Many mathematical applications are based on mesh structures

• The element size correlates with the accuracy (but also with the computational costs)

• AMR as a compromise of high accuracy and computational efficiency
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numerical application with AMR

Adaptive Mesh Refinement (AMR) in Numerical Applications with t8code



numerical application with AMR
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t8code (“tetcode”):

• A open-source C/C++ library for parallel AMR [4]

• Tree-based hybrid meshes

• Adaptive refinement of each tree

• A modular Space-filling Curve Index (SFC Index) for element enumeration

Coarse Mesh Adaptive Mesh
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Coarse Mesh Adaptive Mesh

How does tree-based AMR work?

t8code (“tetcode”):

• A open-source C/C++ library for parallel AMR [4]

• Tree-based hybrid meshes

• Adaptive refinement of each tree

• A modular Space-filling Curve Index (SFC Index) for element enumeration

Why AMR?

• Many mathematical applications are based on mesh structures

• The element size correlates with the accuracy (but also with the computational costs)

• AMR as a compromise of high accuracy and computational efficiency



Tree-based AMR

• Refinement criterion: refine an element 𝐸 in the mesh if 𝐸 ∩ 𝐺 ≠ ∅

• Refinement: the replacement of an element 𝐸 by its children: 𝐸 → 𝐶0, 𝐶1, 𝐶2, 𝐶3 with ∪𝑖 𝐶𝑖 = 𝐸
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Tree-based AMR
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• Refinement criterion: refine an element 𝐸 in the mesh if 𝐸 ∩ 𝐺 ≠ ∅

• Refinement: the replacement of an element 𝐸 by its children: 𝐸 → 𝐶0, 𝐶1, 𝐶2, 𝐶3 with ∪𝑖 𝐶𝑖 = 𝐸
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• Refinement criterion: refine an element 𝐸 in the mesh if 𝐸 ∩ 𝐺 ≠ ∅

• Refinement: the replacement of an element 𝐸 by its children: 𝐸 → 𝐶0, 𝐶1, 𝐶2, 𝐶3 with ∪𝑖 𝐶𝑖 = 𝐸



Tree-based AMR

• Hanging Faces: the intersection of an elements vertex with an other elements face
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• Refinement criterion: refine an element 𝐸 in the mesh if 𝐸 ∩ 𝐺 ≠ ∅

• Refinement: the replacement of an element 𝐸 by its children: 𝐸 → 𝐶0, 𝐶1, 𝐶2, 𝐶3 with ∪𝑖 𝐶𝑖 = 𝐸



• Hanging Faces: the intersection of an elements vertex with an other elements face

How can we make the mesh conformal after adaptation?

Tree-based AMR
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• Refinement criterion: refine an element 𝐸 in the mesh if 𝐸 ∩ 𝐺 ≠ ∅

• Refinement: the replacement of an element 𝐸 by its children: 𝐸 → 𝐶0, 𝐶1, 𝐶2, 𝐶3 with ∪𝑖 𝐶𝑖 = 𝐸



Removing Hanging Faces via Transition Cells of Triangular Subelements

Removing hanging faces is a two-step procedure*:

1. Remove red nodes: balance the mesh

2. Remove blue nodes: use transition cells of triangular subelements

Adapted Mesh

*originally a recursive one-step procedure, proposed by Schneiders [5]
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1. Balancing:

In balanced meshes, the maximum level difference of neighboring

elements is 1.

Adapted Mesh

*originally a recursive one-step procedure, proposed by Schneiders [5]
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1. Remove red nodes: balance the mesh
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Balanced Mesh
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2. Transitioning:

A transitioned mesh is a mesh that is conformal due to the insertion 

of transition cells 𝑇 - families of triangular subelements

{𝑆0, 𝑆1, … , 𝑆𝑛}.

Balanced Mesh
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2. Transitioning:

A transitioned mesh is a mesh that is conformal due to the insertion 

of transition cells 𝑇 - families of triangular subelements

{𝑆0, 𝑆1, … , 𝑆𝑛}.
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*originally a recursive one-step procedure, proposed by Schneiders [5]

2. Transitioning:

A transitioned mesh is a mesh that is conformal due to the insertion 

of transition cells 𝑇 - families of triangular subelements

{𝑆0, 𝑆1, … , 𝑆𝑛}.

How can we find neighbors in transitioned meshes? Lets find a suitable SFC Index!
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Removing hanging faces is a two-step procedure*:

1. Remove red nodes: balance the mesh

2. Remove blue nodes: use transition cells of triangular subelements

Removing Hanging Faces via Transition Cells of Triangular Subelements

1. Balancing:

In balanced meshes, the maximum level difference of neighboring

elements is 1.



A Space-filling Curve (SFC) Index for transitioned meshes

• t8code uses the Morton-Index 𝑚 𝐸 ∈ ℕ0 to enumerate its elements

Tree Mesh with SFC

0
𝑚 𝐸

element array
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• In transitioned meshes, we extend the Morton-Index by adding the Subelement-Index 𝑠 𝐸 ∈ ℕ0

A Space-filling Curve (SFC) Index for transitioned meshes

0
𝐶 ⋅ 𝑚 𝐸 + 𝑠(𝐸)

∀𝑆𝑖 , 𝑆𝑗 ∈ 𝑇:𝑚 𝑆𝑖 = 𝑚(𝑆𝑗)

element array

Tree Mesh with SFC
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A Space-filling Curve (SFC) Index for transitioned meshes

• In transitioned meshes, we extend the Morton-Index by adding the Subelement-Index 𝑠 𝐸 ∈ ℕ0

But is this approach efficient?

0
𝐶 ⋅ 𝑚 𝐸 + 𝑠(𝐸)

∀𝑆𝑖 , 𝑆𝑗 ∈ 𝑇:𝑚 𝑆𝑖 = 𝑚(𝑆𝑗)

Tree Mesh with SFC

element array
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Benchmarks

balanced transitioned

Testcase – comparing balanced and transitioned meshes:

• Construct a balanced mesh and its transitioned version

• Compare the LFN runtime of these meshes
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min level 4, max level 8



Results:

Benchmarks
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Testcase – comparing balanced and transitioned meshes:

• Construct a balanced mesh and its transitioned version

• Compare the LFN runtime of these meshes



Results:

Benchmarks
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≈50k elements

≈200k LFN calls

≈7m elements

≈ 28m LFN calls

Testcase – comparing balanced and transitioned meshes:

• Construct a balanced mesh and its transitioned version

• Compare the LFN runtime of these meshes
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Conclusion and Outlook

Conclusion:

• The efficiency of the binary search, based on the Morton Index, is not negatively affected by post processing it via the Subelement Index

• The neighbor finding algorithm could even be accelerated by exploiting the conformal property of the transitioned mesh

DLR.de  •  Chart 23



Conclusion and Outlook

Conclusion:

• The efficiency of the binary search, based on the Morton Index, is not negatively affected by post processing it via the Subelement Index

• The neighbor finding algorithm could even be accelerated by exploiting the conformal property of the transitioned mesh

Outlook/TODOs:

• Extension to 3D?

• Large scale runtime tests

• Merging the new software features into the main code base of t8code
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