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Abstract

In order to identify new resident space objects from observations like tracklets, well-known algorithms like
the tracklet-tracklet correlation are applied, which estimate whether a pair of tracklets might belong to
the same resident space object. Subsequently, an orbit determination has to be performed for every pair
to confirm the object. This procedure is known to be time consuming. We will show that an interposed
clustering analysis enhances the computational speed of the whole process by reducing the number of false
associations and thus the number of needed validations. Cluster analysis is a commonly used machine
learning technique for grouping objects. It has been shown to be very successful in many fields. Starting
from other research in the field of tracklet association, we use Markov Clustering, a graph-based clustering
algorithm. We use a large observation data set provided by SMARTnet, which was split into subsets for
training and testing. An important part of our work is the development of evaluation techniques that are
suited for our task. Classical evaluation techniques often do not fulfil our requirements, because tracklets
of the same object may coexist in more than one connected component of the graph that is clustered. That
is the case because the edges of the graph result from the tracklet-tracklet correlation. In such a case, it
is impossible to obtain a cluster containing all tracklets of one object. These scenarios are not considered
in the established evaluation methods of clustering results. We present modifications of methods which
allow for efficient evaluation of the clustering results and optimization of the cluster analysis for object
identification. Furthermore, we show that our training results in a successful clustering for diverse test
data. The whole process is realized in a data management and processing system for orbital objects
called ”Backbone Catalogue of Relational Debris Information” (BACARDI).
Keywords: Markov-Clustering, Tracklet-Association, Python, BACARDI, Clustering-Evaluation, Space
Debris

1. Introduction

The rapidly growing number of resident space ob-
jects poses an increasing threat to manned and un-
manned missions, and especially to operated satel-
lites [1]. It is therefore imperative to observe and
track the object population in Earth’s orbit as com-
prehensively as possible. To achieve this, it is a pre-
requisite to gather information about new resident
space objects that are not already catalogued. To
move things forward, a data management and pro-
cessing framework for observation data of resident
space objects, called Backbone Catalogue of Re-
lational Debris Information (BACARDI)[2], is de-

veloped and maintained by the German Aerospace
Center (DLR).

The result of observations we are interested in
here are short arcs, called tracklets. However, for a
single tracklet, the corresponding state vector is not
accurate enough to predict the object’s position or
to keep this object in a data base. Therefore, after
importing tracklets into BACARDI, it is first tried
to associate the tracklets to already catalogued ob-
jects [3]. If this fails, the tracklets are used to iden-
tify new objects. To calculate a meaningful initial
orbit for a new object, we need at least two track-
lets of the same object. To identify which tracklets
belong to the same object, it is state of the art to
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test pairwise with other uncorrelated tracklets [4].
We will refer to this process as tracklet-tracklet cor-
relation (TTC). For every associated pair, an orbit
determination is performed in order to verify if the
tracklet-pair belongs to the same object.
However, the TTC has some disadvantages,

e.g. for larger time spans between measurements
we obtain wrong correlations, which has also been
observed elsewhere [5]. It follows that huge com-
putational resources would be occupied in order to
examine a huge number of false associations.
Based on the results of the TTC, first attempts

exist to improve this process by Markov cluster-
ing [5]. The Markov clustering algorithm has al-
ready been successfully used for a broad range of
applications, e.g. grouping of protein sequences [6,
7] but also identifying galaxy groups [8].
As in the work of Yanez et al. [5], we will apply

Markov Clustering to find clusters of pairwise cor-
related tracklets, which ideally belong to the same
object and thus reduce the number of false associ-
ations. As a consequence, the orbit determination
only has to be called for every cluster, thus reduc-
ing the computational time. Furthermore, a num-
ber of more than two tracklets improves the quality
of the orbit determination, and objects might even
be identified if a small fraction of tracklets in the
cluster belongs to another object.
Moreover, in this work we will show how to mod-

ify typical evaluation methods in order to evaluate
the quality of the clustering for this kind of appli-
cation. Furthermore, we will apply a training and
testing strategy to determine the parameters of the
Markov clustering. For all this, we will use a large
data set provided by SMARTnet, a global telescope
network jointly operated by DLR’s German Space
Operations Center (GSOC) and the Astronomical
Institute of the University of Bern (AIUB) and sup-
ported by international partners [9]. We utilize data
from several months and several sensors and corre-
late measurements with a time interval of up to ten
days between them in order to model a procedure
that is realistic for application.

2. Methods

This section is a recap of literature knowledge.
We will shortly introduce the tracklet-tracklet-
correlation, Markov clustering method and the eval-
uation methods.

2.1 Tracklet-Tracklet Correlation

The input for the clustering process is the result
of a pairwise association of tracklets, also called
tracklet-tracklet correlation (TTC) [4]. From tele-
scope measurements, we know the right ascension α
and declination δ and their time derivatives α̇ and
δ̇ of two tracklets i and j at the times ti and tj with

i ̸= j. The aim of the TTC is to identify which pairs
of tracklets belong to the same object. Therefore,
a boundary value formulation is used to evaluate a
hypothesized orbital state of a pair of tracklets and
an optimization scheme should find the best fitting
orbits. Every hypothesized orbital state is defined
by the number of half-revolutions, the direction of
its orbital motion around Earth, and the positions
of the potential object relative to the Earth. For
every hypothesized orbital state, Lambert’s prob-
lem [10, 11] is solved, which gives the estimated
velocities of the object ṽi and ṽj . The calculated
velocities are compared to the measured velocities
vi and vj by the evaluation function

L = (ż− ˜̇z)T (Cż + C˜̇z)(ż− ˜̇z), (1)

with ż = (α̇i, δ̇i, α̇j , δ̇j) the angular rates calculated
from the velocity and the corresponding covariances
C . The tilde ˜ marks the estimated results from
Lambert’s problem. This function is on the one
hand used as the loss function for the optimization
scheme and on the other hand used to decide which
tracklets will be considered for the cluster analysis.
Pairs with a loss value L below a threshold L∗ will
be considered, the others will not.

2.2 Markov Clustering

The Markov Clustering Algorithm (MCL) is a
graph-based clustering method invented by van
Dongen [12].

A weighted graph G = (V,E,w) is an abstract
structure composed of a finite number of edges E,
which connect two vertices V , also called nodes,
with weight w. However, we use w = 1 through-
out this work, and vertices correspond to tracklets.
Two vertices are connected via an edge, if the loss
value L of the corresponding tracklet pair is smaller
than the threshold value L∗. Since there are no di-
rected relations between two vertices, we speak of
an undirected graph.

The advantage of graph-based clustering algo-
rithms is that a similarity measure is not needed
between every pair of data points. This is impor-
tant in our case, because from the TTC we do
not obtain a loss value L for every pair. This is
due to several constraints, e.g., the algorithm to
solve Lambert’s problem might not converge or the
threshold for the loss value L∗

TTC or the time inter-
val ∆tmax,TTC is exceeded. Thus, we need a clus-
tering algorithm that deals with this appropriately.
The graph-based clustering translates a missing loss
value to a missing edge. Furthermore, benchmark
tests have shown that graph-based algorithms can
compete with other clustering methods in terms of
performance [13].

MCL partitions a graph by simulating random
walks. The idea is that a random walk stays
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mainly within dense subgraphs and just rarely
walks through sparse connections between dense re-
gions. Algebraic matrix operations eliminate the
inter-cluster connections and enhance the intra-
cluster connections. Algorithm 1 describes the
MCL.

Algorithm 1 Markov Clustering

Input: graph G, self-loop parameter c ≥ 0, expan-
sion e > 1, inflation l > 1.
Output: clustering of G.

1: Generate adjacency matrix A from G and nor-
malize columns.

2: Add self-loops to A as: A = A + cI , with the
unity matrix I .

3: Normalize columns of A.
4: while termination criterion not fulfilled do
5: Expand: A = Ae.
6: Inflate: ai,j = ali,j∀ai,j ∈ A then normalize

every column of A.
7: Prune: Remove every entry of A smaller than

threshold (0.001) but leave maximum of row.
8: end while
9: Identify weakly connected components of the

graph associated with A that represent clusters.

For the MCL, we need three parameters: the self-
loop parameter, the inflation, and the expansion.
To avoid negative eigenvalues in the adjacency ma-
trix, which correspond to oscillating behaviour [12],
we use self-loops with edge weight 1 and thus set
the self-loop parameter c = 1. The expansion is
responsible for ensuring that distant vertices can
be reached in a random walk. The inflation am-
plifies the differences between the matrix elements
and thus affects the granularity of the solution. We
will set the parameters inflation and expansion in
Section 5.
For the graph implementations, we use the

Python package networkx [14] and for the MCL
implementation we use the package from Allard et
al. [15].

2.3 Evaluation methods

In order to find the best parameter set, we need
to evaluate the results of the clusterings. Since we
know which tracklets belong to which object, we
can use this ground truth to compare it to the clus-
tering results. Here, we will use three evaluation
methods, the adjusted Rand Index (ARI), the ad-
justed Mutual Information (AMI), and the pairwise
F-score (PFS). The former methods are typically
used in the field of multi-class clustering evaluation.
The PFS is based on the classical F-score [16], which
is typically used for binary classification problems,
and will be modified in this work. They are all sym-
metric. For ARI and AMI, we use the implementa-

tion of the scikit-learn Python package [17, 18],
and for PFS we use the pair confusion matrix pro-
vided in the same package.

For the ARI and the PFS, the data points, here
the tracklets, are evaluated pairwise. Every pair is
grouped into the categories shown in Table 1.

Table 1: Confusion matrix for pairwise treatment of
data points.

Ground truth Predicted clustering:
same cluster different clusters

same true positive false negative
cluster (TP) (FN)

different false positive true negative
clusters (FP) (TN)

The (unadjusted) Rand Index (RI) is a measure
of similarity [19] and is given by

RI =
TP + TN

TP+ FP + FN+ TN
∈ [0, 1], (2)

where TP, TN, FP, FN are the number of true pos-
itives, true negatives, false positives, and false neg-
atives, respectively (see also Table 1).

However, for random labeling, the score is in-
creasing when the number of clusters is approaching
the number of data points, which is shown in Fig-
ure 1. Vinh et al. [20] showed that a correction is
important if the number of data points is small com-
pared to the number of clusters. This is the case in
our application, because we usually measure just a
few tracklets per object.

Figure 1: Scores of evaluation methods of a clustering
with random uniform labeling against a reference as-
signment of 10 clusters. Number of data points is
fixed to 1000. Scores of ARI and AMI are similar.
Figure is based on [17].

For the RI, this effect is corrected using the ex-
pected RI for random labeling E[RI] [21, 22]. The

IAC-22-A6.9.1 Page 3 of 10



73rd International Astronautical Congress, Paris, France. 18-22 September 2022.
Copyright ©2022 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF

to publish in all forms.

so-called adjusted Rand Index (ARI) is then given
as

ARI =
RI− E[RI]

max(RI)− E[RI]
∈ [−1, 1], (3)

with max(RI) being the maximum RI. Thus, for
random labelling, the score is close to zero and, for
similar clusterings, it is close to 1, cmp. Fig. 1.
The Adjusted Mutual Information (AMI) is based

on basic concepts of information theory. The (un-
adjusted) Mutual Information (MI) measures the
amount of information two compared clusterings
share. The more information they share, the more
similar are the clusterings.
Let U and V be two clusterings on N similar data

points, then the Mutual Information (MI) [23] of U
and V is

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

P (i, j) log

(
P (i, j)

P (i)P ′(j)

)
, (4)

with P (i) = |Ui|/N and P ′(j) = |Vj |/N the prob-
ability that a random data point is in the cluster
Ui and Vi, respectively. Furthermore, P (i, j) =
|Ui ∩ Vj |/N is the probability that a random data
point is part of the cluster Ui and Vj .
For MI, the score also depends strongly on the

number of data points and clusters. Therefore, the
expectation value of MI E[MI], for details see [20],
is again used to adjust the result. The adjusted
Mutual Information (AMI) [20] is given by

AMI =
MI− E[MI]

mean(H(U), H(V ))− E[MI]
∈ [−1, 1],

(5)

with H(U) = −
∑|U |

i=1 P (i) log(P (i)), H(V ) =

−
∑|V |

j=1 P
′(j) log(P ′(j)) the entropy of U and V ,

respectively. An AMI score close to zero is obtained
for independent clusterings, a score close to one
means the clusterings show significant similarities,
and a score of exactly one is obtained for identical
clusterings.
In this work, we also use a modification of the

classical F-score [16]. The F-score is typically used
to measure the accuracy of a binary classification. If
the truth label of every predicted cluster is known, a
one-versus-all approach can be used for multi-class
classification problems.
Since we do not know which object should be

represented by which cluster, we use the pairwise
F-score (PFS), which counts true positive, false neg-
ative, and false positive pairs.
The F-score combines the precision (P) and the

recall (R), also called the sensitivity of the model,
given by

P =
TP

TP + FP
∈ [0, 1], (6)

R =
TP

TP + FN
∈ [0, 1]. (7)

Precision is the proportion of pairs correctly classi-
fied as positive out of all pairs classified as positive.
Recall is the probability of classifying a positive pair
correctly as a positive pair.

The F-score weights recall β times higher than
precision and is therefore defined by

Fβ =
(1 + β2)PR

β2P + R
, (8)

with β ≥ 0 [24].
For our problem here, it is most important that

two tracklets that belong to different objects also
belong to different clusters. Therefore, we use β =
1/2.
Compared to ARI and AMI, true negative pairs

are not taken into account, and therefore the pair-
wise F-score (PFS) does not show any dependence
between number of clusters and number of data
points, see Fig. 1.

3. Data processing

The way our Python package works can be broken
down into the steps as shown in Figure 2. First, the
TTC, which is realized as a separate Python pack-
age, has to be run. One part of the package pre-
pares the data for creating a graph from it. An op-
tional pre-processing step can manipulate the data,
e.g., depending on the threshold of the loss value
L∗ or time differences between measurements. Af-
terwards, the graph is created.

Figure 2: Process of tracklet clustering. From the TTC
we obtain the data. Thereby, a threshold ∆tmax,TTC

and loss threshold L∗
TTC can be defined. The aster-

isk * implies that the TTC is an external Python
package. The data is then pre-processed for the
graph construction. In this step, the thresholds for
loss L∗

TTC and time interval ∆tmax can be specified.
Next, the graph is constructed with a defined mini-
mal node degree d. Following that, the clustering is
performed.

Figure 3 gives an impression of our data set we
obtained from the telescope network SMARTnet
[9]. It consists of 64,155 tracklets, which have been
created from observations in the period from April
2017 to December 2019. Figure 3a shows the num-
ber of tracklets per object. Within the data set we
have 1107 objects, of which 61 objects consist of
just one tracklet and thus are unusable for an ini-
tial orbit determination. Figure 3b shows that the
data set does not cover 24h of UTC-time. This is
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due to the local distribution of contributing tele-
scope stations and the fact that observations are
only performed at night. From Figure 3c, we can
see that the number of tracklets per 30-day time
interval varies a lot.

(a) Histogram of number of tracklets per object with cor-
responding box-plot. It shows that 50% of the objects
contain between 10 and 78 tracklets. The median is 28.

(b) Number of tracklets per hour of UTC-time.

(c) Number of tracklets per time interval of 30 days. The
month August 2018 (coloured in red) is taken for the
training.

Figure 3: Statistical analysis of whole data set.

In the following, we use the tracklets of the month
of August 2018 as training data set. We choose this
month because it contains a total of 2615 track-
lets relatively evenly distributed over the time inter-
val. These tracklets belong to 404 different objects.
In addition, the month contains some objects that
were rarely observed and some that have been ob-
served frequently (up to 50 times). This means that
the variety and complexity of possible tracklets will
be maximized. The median value of the number of
tracklets per object is four. Multiple tracklets per
object are important because we need at least two

tracklets per predicted cluster to determine an ini-
tial orbit. Since the number of tracklets compared
to the number of objects is small, it is important
to use the for chance adjusted evaluation methods
ARI and AMI as already stated in section 2.3.

Figure 4 shows the association results for the
training data set with the loss threshold L∗ = 0.1
and the maximum time difference of tracklet pairs
∆tmax = 10d. Similar to the results in the work of
Yanez et al. [5], we observe mixed clouds of false and
correct associations, especially for larger time dif-
ferences ∆t between the measurements. The clouds
are due to the fact that the observations do not
cover 24h of UTC-time, see Fig. 3b. Since our data
set is much larger than the data set used by Yanez
et al. [5], it is more pronounced. Furthermore, we
consistently observe in Figure 4 that the result for
the TTC is best for small ∆t.

In order to choose a good threshold value L∗, we
look at the percentage of false associations for track-
lets with a maximum time difference of ∆tmax =
0.5 d depending on L∗. These tracklet pairs have
been observed during the same night and thus lead
to more reliable TTC results than tracklet pairs
with larger time distances. As shown in Figure 5,
the percentage of false associations starts to dras-
tically increase from L∗ = 0.1. Thus, we chose
L∗ = 0.1. With this and ∆tmax = 10d, we have
75% false associations for the training data set.
Note that Yanez et al. [5] chose L∗ = 1 and had
31.5% false associations for ∆tmax = 2.5 d. With
our data set, and using ∆tmax = 2.5 d and L∗ = 1,
we obtain about 56% false associations, and with
our selected threshold value of L∗ = 0.1, we obtain
about 32.2% false associations, close to the obser-
vation of Yanez et al. [5].

Since some space objects are observed infre-
quently due to various observation planning strate-
gies, we set the maximum time distance of tracklet
pairs to ∆tmax = 10d to increase the probability of
observing at least the required two tracklets.

In order to reduce the number of false associa-
tions before the clustering, we try to remove the
nodes with a low degree. Such nodes, being part of
a sparse subgraph, are expected to correlate more
strongly with a wrong association than a node in a
dense subgraph. Removing all nodes from the graph
that have a degree smaller than various thresholds
dmin for our training data set, we see that the frac-
tion of wrong associations increases, compare Fig-
ure 6. A look at Figure 7, which shows an example
graph with 2093 nodes and 22 032 edges, shows that
the graph consists of one dense part with 1162 ver-
tices and many sparse subgraphs. Note that the po-
sitions of the nodes are generated with the spring
layout provided by networkx [14]. In Figure 7b,
we can observe that dense subgraphs mostly con-
tain correct associations. However, many sparse
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Figure 4: Loss values L of tracklet pairs in log scale as
a function of the time interval ∆t in days between
the two measurements. Here, we set ∆tmax = 10d
and L∗ = 0.1.

Figure 5: Fraction of false positives (FP) at different
threshold values L∗. Maximum time difference of
two tracklets is set to ∆tmax = 0.5 d.

graphs also contain correct associations. Thus, by
removing nodes with a degree d > 1, we also remove
sparse subgraphs and with it increase the fraction of
wrong associations. Therefore, we chose dmin = 1,
as with this we only remove isolated nodes.

4. Clustering evaluation

Combining the TTC with a subsequent graph clus-
tering will lead to graphs that normally depart in
different connected components, compare Fig. 7.
This is due to the thresholds ∆tmax and L∗ intro-
duced above. It is likely that different connected
graph components contain tracklets from the same
object and thus, it is impossible for the clustering
algorithm to cluster all tracklets of one object to-
gether. However, if the tracklets toi and toj , which
belong to the same object o but are in different con-
nected components, belong to different clusters Ci

and Cj with i ̸= j, then the usual evaluation meth-
ods will count the pair (toi , t

o
j) as a false negative

Figure 6: Fraction of false positives (FP) contained in
the graph for different minimum node degrees dmin.

(a) whole graph

(b) section of graph

Figure 7: Graph for the training data set. Vertices of
the same colour belong to tracklets of the same ob-
ject.

pair, compare Table 1 for ARI and PFS. This has
an unwanted negative impact on the evaluation of
the clustering result. For the AMI the evaluation
score also decreases, because the shared informa-
tion between the clustering and the ground truth
decreases as well. Note that ground truth currently
means that all tracklets of one object are in one
cluster.

Our aim for an application in BACARDI is to re-
move as many false associations from the tracklet-
tracklet correlation while losing as few correct asso-
ciations as possible. Therefore, we need evaluation
methods that do not penalize the algorithm for the
case described above. Moreover, this is important
to be able to compare the clustering results from
different data sets. Without modifications, it is pos-
sible that a clustering C of a graph G, which has

IAC-22-A6.9.1 Page 6 of 10



73rd International Astronautical Congress, Paris, France. 18-22 September 2022.
Copyright ©2022 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF

to publish in all forms.

several false associations, achieves a higher evalua-
tion score than a clustering C ′ of a graph G′, which
contains only true associations but decomposes into
several components.

Therefore, we evaluate different modifications of
the evaluation methods that do not penalize the
algorithm if tracklets of an object are located in
different subgraphs.

Modification 1 Given a graph G, which consists
of k connected graph components, and let s1, ..., sk
be the scores of an evaluation method of the single
connected components 1, ..., k. Then we define the
score of the evaluation method as the mean of the
subscores

S =
1

k

k∑
i=1

si.

In Modification 1, node pairs from different com-
ponents are not considered and thus, the influence
of equal objects in different components is elimi-
nated. In Figure 8, we see that varying the inflation
has almost no influence on the score. A higher in-
flation results in more clusters. Due to the unequal
size of the connected components, and since each
component contributes equally to the score, changes
in the clustering of the large connected component
have hardly any influence on the score. Therefore,
Modification 1 is not useful for us.

Figure 8: Comparison of evaluation methods with dif-
ferent modifications for the Markov-Clustering of the
training data set. The respective score is shown as
a function of the inflation l. The Expansion is fixed
to e = 6. Scores of ARI and AMI with Modification
1 are similar.

We are also testing another modification of the
evaluation methods, which does not penalize finding
two nodes that belong to the same object but occur
in different connected components.

Modification 2 We define the modified ground
truth clustering C̄truth of the graph G = (V,E,w) as
the clustering C̄truth = {C̄1, C̄2, ...} that, for nodes
u, v, which belong to the same object and graph com-
ponent, yields that u, v ∈ C̄i else u ∈ C̄i and v ∈ C̄j

with i ̸= j.

Modification 2 means that instead of having all
tracklets of one object in one ground truth clus-
ter, we split this ground truth cluster into several
clusters, depending on the connected graph com-
ponents this object is split up into in the initial
graph. Thus, for ARI and PFS, the pair (toi , t

o
j)

with ton ∈ Cn and n ∈ [i, j] is now a true nega-
tive instead of a false negative pair. For all evalua-
tion methods introduced in 2.3, no punishment for
splitting up into different components is observed.
However, true negative pairs increase the score for
ARI and AMI and thus, there is an influence of the
number of objects in different graph components on
the score.

Since true negative pairs do not influence the
PFS, we have successfully eliminated the influence
of the decay in this method with Modification 2.
As a result, we can compare clusterings of different
graphs with the PFS modified by Modification 2.

However, although Modification 2 for ARI and
AMI is difficult for the comparison of clusterings of
different data sets, it is possible to use it to com-
pare the clustering results of the same data set, e.g.,
for different clustering parameters. This is because,
starting with the same graph, the number of true
negative pairs due to equal objects in different com-
ponents leads to the same increase of the score for
all of the clusterings. However, to compare different
data sets, we can use the F-score with Modification
2, where true negatives are not considered. In the
following, we will use Modification 2.

Additionally, for evaluation of clusterings, we use
the fraction of right associations (RA) inside the
clusters, which will be calculated as

RA =
|Eeq|

|Eeq|+ |Eneq|
, (9)

where |Eeq| are the number of edges which connect
nodes of the same object inside the clusters and
|Eneq| are the number of edges connecting nodes of
different objects inside the clusters.

5. Tracklet-Clustering results

Knowing the evaluation methods, we now look at
our training data set and search for the best values
for the expansion e and the inflation l.
Figure 9 shows the results of MCL with different

parameter sets applied to the training data. We
see for MCL a broad range of parameters leading
to good results, which shows the stability of this
algorithm. Due to Fig. 9, we decide on values for
the parameters expansion e = 6 and inflation l = 6.

In Table 2 we can see the reached scores of the
different evaluation methods. We find that from
the initial 75% false associations the number has
reduced to about 10%. Thereby, we still have 3975
correct associations from an initial value of 5462
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Figure 9: Markov Clustering Algorithm (MCL) results
for different parameter sets of expansion and infla-
tion evaluated with ARI, AMI, PFS, and RA. The
colour code shows the score. Note the score range is
different for the four diagrams.

correct associations. However, from the 16 570 false
associations we just have 456 left.

Table 2: Clustering result of training data set for ex-
pansion e = 6 and inflation l = 6.

Markov
ARI 0.64
AMI 0.71
PFS 0.73
RA 0.89

In order to estimate how many ”new” space ob-
jects we would recognize, we assume that the or-
bit determination will work if a cluster contains at
least two tracklets and all of them belong to just
one object. The training data set contains a total
of 404 objects. Tracklets not associated with any
other tracklet by the TTC are not considered in the
constructed graph. As a consequence the training
data set graph includes a total of 300 space objects.
The clustering result contains in total 788 clusters
of which 300 clusters include more than one track-
let. 182 of these contain just tracklets from one
object each. These clusters include 143 different
objects and thus, we would find 143 new space ob-
jects. Consequently, 39 clusters represent an object
already represented by another cluster. Initial orbit
determination even works with some wrong track-
lets included. Therefore, if we assume that just 75%
of the tracklets have to belong to one object, we
would have found 168 new space objects. Further-
more, for just applying the TTC we would need to
perform orbit determinations for 22 032 correlated
pairs. Whereas, after clustering the orbit determi-
nation has to be performed just for the 300 clusters
that contain more than one tracklet.

After optimizing the parameters with the training
data set, they have to be tested for an independent
data set. For testing, we use the remaining available
months from April 2017 to December 2019, evaluate
the clustering results with the fixed parameters, and
compare the evaluation results.

Figure 10 shows that for almost every score 25%
of the test data is performing better than the train-
ing data. However, for ARI, AMI, and PFS, the me-
dian is worse than the results from training, whereas
RA is better. On average, just 23% of the false as-
sociations but more than 68% of the true associa-
tions remain. Furthermore, the maximum number
of false associations remaining is about 74%. It fol-
lows that even in the worst case 26% of the false
associations are still filtered out. This shows that
MCL is successfully filtering the false associations
from TTC. Furthermore, it has to be noted that
the data sets of all months vary a lot in their char-
acteristics. Figure 3c gives an impression of the
variability. We can assume that not only the num-
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ber of tracklets differ per month but also the im-
plied graph structure, for example, the number of
connected components and the number of tracklets
per component. Taking these considerations into
account, we can expect the Markov Clustering to
be good enough for our application.

Figure 10: Statistics of MCL results on monthly data
sets for the modified evaluation methods ARI, AMI,
PFS, and RA. The orange lines show the medians,
and blue crosses mark the scores of the training data
set.

6. Outlook

We applied the Markov Clustering to a large and
real data set, which we split up into a training set
and a test set. As is common in the field of machine
learning, we searched for the inflation and expan-
sion parameters in a training data set and examined
the applicability on the test data set. By using
evaluation methods that we have adjusted to this
special problem, we have shown that Markov Clus-
tering is a very good method for finding new ob-
jects from tracklets, even if the foregoing tracklet-
tracklet correlation contains many wrongly associ-
ated pairs and the clustered data varies a lot in its
characteristics.
In a next step it would be interesting to investi-

gate if other graph-based clustering methods lead to
better results. Especially agglomerative clustering
methods might be interesting to gain more insights.
Furthermore, other weight functions for the edges
might be useful, e.g., those that are dependent on
the loss value, because lower loss values might be an
indication for a better fitting. Additionally, apply-
ing a hyperparameter optimization might help to
improve the results even more. Moreover, it would
be interesting to analyze how the parameters of the
graph, e.g., number of edges and connected compo-
nents, influence the clustering result.
Taking all of the above into account, we will

• perform hyperparameter optimization,

• try different clustering algorithms, especially
agglomerative ones,

• try different weight functions, and

• analyze what influences the clustering results.
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