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Abstract

Urban environment and its processes directly affect human life. Detailed and up-to-date urban
surface material maps are of great importance to modelers studying meteorology, climatology
and ecology, as well as to authorities seeking to understand the urban growth dynamics
and spatial evolution. However, mapping urban surface materials is challenging due to the
complex spatial patterns. An established source of up-to-date information is remote sensing,
as demonstrated by the widespread usage of SAR, LiDAR and optical data. Data from
imaging spectrometers can identify detailed spectral features of surface materials through the
fine and continuous sampling of the electromagnetic spectrum, which cannot be achieved with
the same accuracy using multispectral or RGB images. To date, numerous studies in urban
surface material mapping have been using data from airborne imaging spectrometers with
high spatial resolution, demonstrating the potential and providing good results. Compared
to these sensors, spaceborne imaging spectrometers have regional or global coverage, high
repeatability, and avoid expensive, time-consuming, and labor-intensive flight campaigns.
However, the spatial resolution of current spaceborne imaging spectroscopy data (also known
as hyperspectral data) is about 30 m, resulting in a mixed pixel problem that is challenging to
handle with conventional mapping approaches.

The main objective of this study is to perform urban surface material mapping with
imaging spectroscopy data at different spatial scales, simultaneously explore the information
content of these data to detect the chemical and physical properties of surface materials,
and take the mixed-pixel problem into account. Specifically, this thesis aims to (1) map
solar photovoltaic modules using airborne imaging spectroscopy data based on their spectral
features; (2) investigate the sampling robustness of urban material gradients; (3) analyze the
area transferability of urban material gradients.

To this end, we detected solar photovoltaics with an overall accuracy of about 80% to
90% by creating and combining spectral indices. This dissertation proved that the developed
approach is suitable for accurate photovoltaic detection. We also demonstrated that the
concept of urban surface material gradients is robust in sampling and transferable between
similar urban areas. With these results, urban material gradients can be a generic technique
for urban mapping with spaceborne imaging spectroscopy data. The methods developed in
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the three parts of this dissertation improve the usefulness of imaging spectroscopy data for
urban material detection from a classical method to the new concept of urban gradients, from
airborne to spaceborne data, from pure pixel detection to solving the mixed pixel problem. By
introducing and enhancing the gradient concept in urban mapping, the mixed pixel problem
can be tackled, which is a promising approach for the analysis of imaging spectroscopy data
from ongoing and upcoming spaceborne sensors. Overall, this thesis provides promising
urban surface material mapping results by proposing a physical feature based approach as
well as confirming and laying the foundation of the generic gradient concept in urban material
studies. Further work can build on these results and could open a new field for the application
of spaceborne imaging spectroscopy data.



Zusammenfassung

Die städtische Umwelt und ihre Prozesse wirken sich unmittelbar auf das menschliche
Leben aus. Detaillierte und aktuelle Karten der städtischen Oberflächenmaterialien sind für
Modellierer, die sich mit Meteorologie, Klimatologie und Ökologie beschäftigen, sowie für
Behörden, die die Dynamik des städtischen Wachstums und die räumliche Entwicklung ver-
stehen wollen, von großer Bedeutung. Die Kartierung der städtische Oberflächenmaterialien
ist jedoch aufgrund der komplexen räumlichen Muster eine Herausforderung. Eine bewährte
Quelle für aktuelle Informationen ist die Fernerkundung, wie die weit verbreitete Nutzung von
SAR-, LiDAR- und optischen Daten zeigt. Daten von bildgebenden Spektrometern können
hierbei durch die feine und kontinuierliche Abtastung des elektromagnetischen Spektrums de-
taillierte spektrale Merkmale von Oberflächenmaterialien erkennen, was mit multispektralen
oder RGB-Bildern nicht mit der gleichen Genauigkeit erreicht werden kann. Bislang wurden
in zahlreichen Studien zur Kartierung von städtischen Oberflächenmaterialien Daten von
flugzeuggestützten abbildenden Spektrometern mit hoher räumlicher Auflösung verwendet,
die ihr Potenzial unter Beweis stellen und gute Ergebnisse liefern. Im Vergleich zu diesen
Sensoren haben weltraumgestützte abbildende Spektrometer eine regionale oder globale
Abdeckung, eine hohe Wiederholbarkeit und vermeiden teure, zeit- und arbeitsaufwändige
Flugkampagnen. Allerdings liegt die räumliche Auflösung der aktuellen weltraumgestützten
abbildenden Spektroskopiedaten bei etwa 30 m, was zu einem Mischpixelproblem führt,
welches mit herkömmlichen Kartierungsansätzen nur schwer zu bewältigen ist.

Das Hauptziel dieser Studie ist die Kartierung städtischer Materialien mit bildgeben-
den Spektroskopiedaten in verschiedenen Maßstäben und die gleichzeitige Nutzung des
Informationsgehalts dieser Daten, um die chemischen und physikalischen Eigenschaften
von Oberflächenmaterialien zu erfassen sowie das Mischpixelproblem zu berücksichtigen.
Konkret zielt diese Arbeit darauf ab, (1) photovoltaische Solarmodule mit Hilfe von luft-
gestützten bildgebenden Spektroskopiedaten auf der Grundlage ihrer spektralen Merkmale
zu kartieren; (2) die Robustheit der Stichprobe von städtischen Materialgradienten zu unter-
suchen; (3) die Übertragbarkeit von städtischen Materialgradienten auf andere Gebiete zu
analysieren.
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Zu diesem Zweck haben wir durch die Erstellung und Kombination von Spektralin-
dizes (Ji et al., 2021a) Solaranlagen mit einer Gesamtgenauigkeit von rund 80% bis 90%
erkannt. Diese Dissertation zeigt, dass der entwickelte Ansatz für eine genaue Erfassung
von Photovoltaikanlagen geeignet ist. Wir haben auch gezeigt, dass das Konzept der Ma-
terialgradienten städtischer Oberflächen stichprobenrobust (Ji et al., 2020) und zwischen
ähnlichen städtischen Gebieten übertragbar ist (Ji et al., 2021c). Mit diesen Ergebnissen kann
das Konzept der urbanen Materialgradienten ein generischer Ansatz für die Stadtkartierung
mit weltraumgestützten abbildenden Spektroskopiedaten sein. Die drei Teile dieser Dis-
sertation verbessern somit die Anwendung von bildgebenden Spektroskopiedaten für die
Erfassung städtischer Materialien, von einer klassischen merkmalsbasierten Methode zum
neuen Konzept der städtischen Gradienten, von luftgestützten zu weltraumgestützten Daten,
von der reinen Pixeldetektion zur Lösung des Problems der gemischten Pixel. Insbesondere
durch die Einführung und Verbesserung des Gradientenkonzepts in der Stadtkartierung kann
das Problem der gemischten Pixel angegangen werden, was ein vielversprechender Ansatz
für die Analyse von abbildenden Spektroskopiedaten von aktuellen und zukünftigen wel-
traumgestützten Sensoren ist. Somit liefert diese Arbeit vielversprechende Ergebnisse für die
Kartierung von städtischen Oberflächenmaterialien, indem sie einen auf physikalischen Merk-
malen basierenden Ansatz vorschlägt und das generische Gradientenkonzept für städtische
Materialstudien bestätigt und begründet. Weitere Arbeiten können auf diesen Ergebnis-
sen aufbauen und könnten ein neues Feld für die Anwendung aktueller und zukünftiger
weltraumgestützter abbildender Spektroskopiedaten eröffnen.
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Chapter 1

Introduction

1.1 Urban environment and surface materials

1.1.1 Urban environment

Urbanization is one of the most pressing global challenges (Esch et al., 2013). About 55%
of the world’s population lives in urban areas, and this proportion is expected to rise to
68% by 2050 (DESA, 2018). Many countries face the challenge of balancing the needs of
growing urban populations with environmental and societal systems (Lakes et al., 2021).
In the long term, urbanization drives environmental change across multiple scales and in
various ways, including local urban heat islands (Zhang et al., 2011; Schuster et al., 2017),
biodiversity loss (McDonald et al., 2013), regional air pollution (Kennedy et al., 2009; Fenger,
1999), and global climate change (Wen et al., 2017). Therefore, a thorough understanding
of the ecological processes shaping the urban environment is a key element for studying
meteorology (Auer Jr, 1978), climatology (Seto and Shepherd, 2009), and ecology (Lakes
and Kim, 2012) of cities. Sustainable development increasingly depends on the successful
management of urban growth. Issues like cooling and shading potential, (Upreti et al., 2017),
urban green distribution (Wolch et al., 2014), or the condition of vegetation in terms of
drought and ecological quality (Grote et al., 2016) rely on solid urbanization management. A
special case is that cities have the potential to turn the COVID-19 crisis into an opportunity
nowadays. The current COVID-19 pandemic has lighted existing problems and inequalities
in urban planning and management, e.g., cramped housing conditions (Nix et al., 2021),
difficulty in maintaining a clean water supply (Feizizadeh et al., 2021), and inadequate
sanitation facilities in informal settlements (Corburn et al., 2020). The need for public health
interventions ranges from physical distancing, frequent hand washing, solid waste disposal,
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provision of safe water and sanitation, which underscores the urgency of eradicating urban
poverty and improving housing and infrastructure (Habitat, 2020; Austrian et al., 2020).

Therefore, continued urbanization drives the need to understand urban areas in order
to improve and promote the environmental and human sustainability of cities worldwide
(Weng and Quattrochi, 2018). Contemporary urbanization has the opportunity to foster
ecological sustainability not only driven by increased environmental awareness, but also
through returns from innovation, productivity, and efficiency (Grimm et al., 2008; Seto et al.,
2010). To ensure that policy maintains the benefits of urbanization and anticipates or manages
the negative consequences of urban growth, the interactions between socioeconomic and
environmental processes in urban landscapes need to be better explored (Alberti, 2005; Lakes
and Kim, 2012). To this end, a comprehensive understanding of urban materials is required.

1.1.2 Complexity of urban surface materials

Urban surface materials highly affect Earth’s ecosystem processes in multiple ways. For
example, the physical properties of urban surfaces influence urban micro-, meso-, and macro-
climate, such as urban heat islands. Moreover, the albedo of surface materials impacts the
radiative forcing of urban areas (Menon et al., 2010), leading to global warming. Surface
runoff and impervious surfaces also affect hydrological processes and need to be considered
simultaneously in urban planning to prevent flooding (Shao et al., 2019). Furthermore, urban
surface materials, such as asbestos on the roof, also affect human health and well-being
(Kantzioura et al., 2012; Yan et al., 2012). Urban surface material maps serve as fundamental
information to better understand and plan for sustainable and habitable urban conditions.
Therefore, knowing the details of urban surface materials is essential, e.g., specific heat
capacity and emissivity of surface materials can be used to estimate heat fluxes and heat
transfer, and their degree of imperviousness can be used to estimate water balance and surface
runoff, etc.

However, mapping urban surface materials is difficult for several reasons. First, there
are various natural and artificial surface materials in the urban environment. According to
different classification hierarchies, urban surface materials can include several to dozens of
classes. The abundances and classes of these materials are needed as inputs to urban climate
models, but the materials are not easily distinguished. For example, red concrete and red
clay can have very similar colors, but their daily and yearly temperature behaviors are very
different, resulting in varying heat contributions to the urban environment.

Moreover, the complexity of mapping urban surfaces is also due to the heterogeneity
of material distribution patterns. Urban surfaces generally consist of urban neighborhoods
such as impervious structures (e.g., buildings and transportation networks), vegetation types
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(e.g., parks, gardens, and agricultural fields), bare soil zones, and water bodies (Herold et al.,
2002). In each general category, more varieties of urban neighborhoods are included. The
heterogeneous mix of different materials in urban neighborhoods complicates the mapping
of surface materials (Quattrochi and Ridd, 1994). In addition, heterogeneous regions domi-
nated by small structures are characterized by the absence of pure materials, which further
complicates the identification of surface materials (Roessner et al., 2001).

Furthermore, the high complexity of urban surface materials is also related to the specific
local patterns of surface material compositions around the world. The occurrence of urban
surface materials varies due to geographical conditions (Jilge, 2019), climate variations
(Eliasson, 2000), political motivations (Pearsall and Pierce, 2010), historical reasons, etc.,
and therefore results in different combinations of urban surface materials in certain regions.
For instance, residential areas of European cities commonly use roof tiles, while Northern
American cities typically use slate as a roofing material for smaller single and multi-family
houses (Herold et al., 2003). The diverse co-occurrence of urban surface materials poses
greater challenges to the robustness and transferability of many urban surface mapping
methods. Therefore, the complexity of urban surfaces hinders the detailed mapping of
surface materials, which is of great importance for understanding urban dynamics in the
face of rapid urbanization. In this scenario, Earth observation data can be used as a suitable
solution to the mapping challenges.

1.2 Urban surface mapping using Earth observation (EO)
data

Earth Observation (EO) is the collection of information about the physical, chemical, and
biological systems of planet Earth. It monitors and assesses the state of and changes in the
Earth’s natural and man-made environment using technologies like remote sensing. Remote
sensing provides a view from space and monitors widespread changes in the Earth sciences,
particularly in areas such as meteorology, oceanology, hydrology, geology, geography,
forestry, agriculture, and geodynamics (Kramer, 2012).

In the last decades, studies on urbanization emphasize the need for the collection and
analysis of EO data (Wentz et al., 2014). The employment of EO data is of great benefit for
objective and independent monitoring urban areas, and as a complement to traditional filed
surveys or socioeconomic statistics, thus improving spatial resolution and interpretability
(Potere et al., 2009; Palacios-Lopez et al., 2021). Recent researches have highlighted a
number of approaches to land use data collection, characterization, and analysis that utilize
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remote sensing images as source data to derive global data sets with high spatial resolution,
including MODIS 500 urban land cover (Potere et al., 2009), Global Human Settlement
Layer (GHSL) (Pesaresi et al., 2013; Corbane et al., 2019), GlobeLand 30 (Chen et al., 2015),
GLOBELAND30-GLC309 (Chen and Chen, 2018), Global Urban Footprint (GUF) data set
(Esch et al., 2017), and recent World Settlement Footprint (WSF) (Marconcini et al., 2020;
Esch et al., 2022).

1.2.1 Mapping urban surfaces using optical EO data

Remote sensing (RS) is considered as one of the primary means of EO data collection, which
measures electromagnetic radiation interacting with the atmosphere and objects on Earth
(Zhu et al., 2018). The interactions of electromagnetic radiation with the Earth’s surface
can provide information not only about the distance between the sensor and the object, but
also about the direction, intensity, wavelength, and polarization of electromagnetic radiation
(Davis et al., 1978; Campbell and Wynne, 2011). Depending on the covered spectral range,
remote sensing technology includes optical, thermal, and microwave detection systems
(Small et al., 2018). Optical remote sensing is the detection of reflected solar radiation
from objects in the spectral range of visible (VIS, 400 nm - 700 nm), near-infrared (NIR,
700 nm - 1300 nm), and shortwave infrared (SWIR, 1300 nm - 3000 nm). It is capable of
discriminating physical and chemical properties of man-made materials and biophysical
conditions of vegetation species (Lausch et al., 2016) and is therefore widely used for urban
surface detection.

When monitoring complex urban surfaces using optical remote sensing data, three
characteristics should be taken into account. First, the spatial resolution of the optical
data affects urban surface detection. Spatial resolution refers to the size of a pixel of the
image on the ground. A pixel is the smallest "dot" that makes up an optical image and
essentially determines how detailed an image is. A pixel can be covered with only one
surface material (called a pure pixel) or with various urban surface materials (called a mixed
pixel). The reflectance of a pure pixel is defined as an endmember (Zare and Ho, 2013).
Classical classification methods require endmembers extracted from pure pixels as input.
However, despite other factors such as local surface complexity, in general, the lower the
spatial resolution of the image is, the fewer pure pixels can be found. Therefore, the spatial
resolution of the optical data directly affects urban surface mapping in terms of the level of
detail and the applicability of the classification methods.

The second essential factor is the temporal resolution of the EO sensors. Since the
urban surface material mapping is required as input for micro-, meso- and macro- climate
models, capturing timely surface information and the temporal variation of surface materials
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is essential for the analyses within these dynamic climate models. Although urban surface
material maps do not need to be updated in a very short period of time compared to, for
example, hazard maps that require daily or hourly updates, the annual production of surface
material maps can be beneficial for climate model analyses.
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Fig. 1.1 The simulated vegetation spectra from Landsat, Sentinel-2, and HySpex.

In particular, the spectral resolution of EO sensors affects the detection of surface
materials based on their diagnosed spectral features, thus compromising the efficiency
and accuracy of urban surface mapping. For example, Fig. 1.1 shows simulated vegetation
spectra acquired by Sentinel-2, Landsat, and HySpex with different spectral resolutions. In
general, the visual spectral characteristics, the "red edge", and the rough structure of cells
can be detected by all sensors. However, for the same vegetation, the spectra acquired by
multispectral sensors (Landsat and Sentinel-2) are much coarser in spectral dimension than
the imaging spectroscopy (IS) data acquired by HySpex. Vegetation biochemical information
is missed by both multispectral sensors because they do not have the detailed spectral
resolution in the 1400 nm to 2500 nm range. In addition, many urban surface materials are
spectrally indistinguishable in multispectral data. Different urban surface materials can have
similar colors and textures, so only very fine spectral resolution can identify their differences.
For instance, slates, as a widely used roof material, show great confusion in classification
with other materials such as asphalt, cobblestone, dark-shingle, and metal roofs (Franke
et al., 2009). More spectra examples are shown in Fig. 1.2, the broader spectral range and
fine spectral bands can greatly extend the identification capabilities of urban materials with
similar colors and textures. In this sense, the fine and continuous spectral resolution of optical
images is the essential factor for identifying and monitoring urban surface materials.
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Fig. 1.2 The spectra collection of some urban surface materials collected from airborne
HyMAP sensor (Heldens, 2010).

Spaceborne multispectral data have stable repeatability, relatively fine spatial and spectral
resolution, as well as global coverage, and thus have been broadly used for urban land
cover mapping (Kabisch et al., 2019). For example, Landsat sensors have been extensively
employed for urban surface mapping since the 1970s. A typical method of urban mapping
using Landsat data is spectral indices, including both vegetation indices (e.g. Normalized
Difference Vegetation Index, NDVI) (Masek et al., 2000) and built-up indices (e.g. Normal-
ized Difference Built-up Indicator, NDBI) (Zha et al., 2003), to seperate urban surfaces from
non-urban lands. Furthermore, Ridd (Ridd, 1995) proposed viewing urban pixels as being
composed of linear combinations of three generic land cover components, i.e. Vegetation,
Impervious surface and Soil (VIS model). Moreover, Landsat data have also been used to
study how urban surface has been changing for decades due to its long history and relatively
high spatial resolution. The time series analysis using Landsat data has been further revo-
lutionized the way of using Landsat data (Marconcini et al., 2020), and a majority of them
were focused on change detection (Zhu, 2017). In addition, the Sentinel-2 mission launched
in June 2015, with 13 spectral bands and up to 10 m spatial resolution, offers a great potential
for addressing the satellite data requirements for finer scale mapping of human settlements.
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Compared to Landsat sensors, Sentinel-2 offers higher spatial and spectral detail, as well
as better quality of the geospatial information layer for describing urban surfaces (Pesaresi
et al., 2016; Priem et al., 2019). However, these multispectral sensors are commonly used
for urban land cover mapping, but lack of material differentiation capability due to coarse
spectral resolution.

1.2.2 Surface materials identification using imaging spectroscopy (IS)
data

Airborne IS data possess high spatial and spectral resolution, and can therefore provide
details for urban surface mapping. For instance, the Digital Airborne Imaging Spectrometer
(DAIS 7915) could acquire 72 spectral bands covering VIS, NIR, and SWIR, and produced a
detailed surface material map including dark and red loose chippings, metal, asphalt, concrete,
and many more (Segl et al., 2003; Roessner et al., 2001). Plaza et al. (2005) subsequently
developed an Extended Morphological Transformation (EMT) method based on DAIS 7915
data to analyze spatial and spectral patterns simultaneously, and generated urban surface
maps with more details. Recently developed airborne imaging spectrometers such as APEX,
HyMAP, and HySpex (see Fig. 1.2), with hundreds of spectral bands, have extended the study
of urban surface materials to a higher level (Franke et al., 2009; Heiden et al., 2007; Heldens,
2010; Priem et al., 2021). However, airborne IS data have been limited with relatively small
coverage, expensive, time-consuming, and labor-intensive flight campaigns, so mapping of
urban surface materials can only be done locally and lacks repeatability.

Spaceborne IS data overcome the limitations in data availability of airborne IS data
and has considerable potential to become a promising data resource for the future. Several
spaceborne sensors have been delivering or will deliver their archives, including the Japanese
Hyperspectral Imager Suite (HISUI) (Matsunaga et al., 2019), Chinese HuanJing-1A (HJ-1A)
(Lu et al., 2011), GaoFen-5 (GF-5) (Su et al., 2021), Italian PRecursore IperSpettrale della
Missione Applicativa (PRISMA) (Cogliati et al., 2021), German DLR Earth Sensing Imaging
Spectrometer (DESIS) (Alonso et al., 2019), and the upcoming German Environmental
Mapping and Analysis Program (EnMAP) (Guanter et al., 2015; Bachmann et al., 2021),
ESA’s Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) (Rast et al.,
2021), and NASA’s Surface Biology and Geology (SBG) (Cawse-Nicholson et al., 2021)
missions. In particular, some sensors attempt to acquire and deliver data for specific targeted
areas (e.g. DESIS and EnMAP), and in the near future sensors will seek global coverage
of IS data (e.g. CHIME and SBG). In recent years, the development of these sensors has
promoted numerous applications owing to the high spectral and temporal resolution and
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regional or global coverage of these sensors. For example, some studies have attempted
to use DESIS data for water quality mapping (Pinnel et al., 2021), automatic mapping of
forests (Marshall et al., 2021), and detection of changes in solar panels (Ji et al., 2021b). The
simulated EnMAP data have been widely used for mapping cities (Segl et al., 2012; Okujeni
et al., 2015; Van der Linden et al., 2015; Jilge et al., 2019), forest (Cui et al., 2019; Cooper
et al., 2021), and soil detection (Castaldi et al., 2019; Ward et al., 2020).

However, the relatively coarse spatial resolution of spaceborne IS complicates data
implementation due to the lack of pure pixels or, in other words, full of mixed pixels (1.2.1
section). A number of studies have been working on tackling or bypassing this problem. For
example, Yokoya et al. (2017) concentrated on the image segmentation between EnMAP and
Sentinel-2 to improve the spatial resolution of the segmentation data. Okujeni et al. (2015)
implemented an extended VIS model on the data and pointed out that the simulated EnMAP
data can not fully overcome the spectral intraclass similarity and the spectral confusion
caused by the presence of shaded regions. And Jilge et al. (2019) developed urban material
gradients based on previous detailed material maps and generated fuzzy urban material
gradient maps by applying these gradients to EnMAP data.

In summary, airborne IS data are capable of identifying detailed spectral signatures
and providing spectrally pure pixels for surface materials classification, and most current
studies on urban surface material mapping employed airborne IS data. However, they are
limited by low spatial coverage, lack of availability, poor continuity, demanding workload,
and high cost. Spaceborne IS data are considered to have promising potential for future
urban surface material map because they have high repeatability and spectral resolution, but
currently lack high spatial resolution, e.g., 30 m spatial resolution for DESIS, PRISMA, and
EnMAP data. The resulting mixed pixel problem complicates the application of ongoing
and upcoming spaceborne IS data for urban areas since classical classification methods
(e.g. dimension reduction and regression methods) require spectrally pure pixels as input
endmembers. Therefore, current airborne IS data are able to be used for urban surface
material identification but are not a promising resource for a dynamic monitor of urban
surface materials. In addition, the mixed pixel problem with applying spaceborne IS data
should be solved to enable more efficient, accurate, and widespread application in the future.
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1.3 State-of-the-art in urban materials mapping using IS
data

In this section, the algorithms dealing with IS data are generally summarized and analyzed.
Subsection 1.3.1 elaborates the state-of-the-art methods. In subsection 1.3.2, the spectral
feature-based classification methods using IS data are thoroughly reviewed. Finally, sub-
section 1.3.3 presents studies on gradient mapping based on ordination methods using IS
data.

1.3.1 General overview

This subsection outlines the state-of-the-art IS data classifiers according to the different
spatial resolutions of data sources (e.g. airborne and spaceborne IS data), whether adding
additional information (e.g. height information, thermal data, SAR data, or LiDAR data),
classification unit (e.g. pixel-based, sub-pixel based, feature, or object-based classification
unit), the pattern of mapping results (e.g. hard classification, soft classification, and gradient
mapping), and a brief summary of their merits and weaknesses.

As aforementioned, the spatial resolution of airborne IS data is critical for urban surface
classification, because most classifiers require many spectrally pure pixels as input. Airborne
IS data commonly have a spatial resolution of 1 m to 10 m, making them well suited for
finding spectrally pure pixels to classify urban surfaces (Roessner et al., 2001; Herold et al.,
2003; Segl et al., 2003; Herold et al., 2004; Heiden et al., 2007, 2012; Degerickx et al., 2018;
Jiang et al., 2019; Ji et al., 2021a). For instance, linear or nonlinear unmixing methods and
endmember extraction are commonly applied with airborne IS data, which could provide
spectrally pure pixels required by classifiers (Bioucas-Dias et al., 2012; Broadwater and
Banerjee, 2009). When moving from airborne to spaceborne observations, a strong mixing of
spectral signals occurs on most pixels. Therefore, few spectrally pure pixels can be extracted,
making a hard classification at the urban material level unrealistic (Small, 2005).

Some classifiers seek better mapping accuracy by adding more information, which is also
referred to as multi-modality IS data analysis. Image fusion of IS data and multispectral data
can overcome the inconvenience of coarse spatial resolution of IS data. Due to sensor design
considerations, the wealth of spectral information in IS data is often not complemented by
extremely fine spatial resolution (Li et al., 2011). In particular, spaceborne IS data often have
a spatial resolution of 30 m, which complicates their use for urban surface classification.
Tremendous efforts have been made to fuse IS data with higher spatial resolution multispectral
data (Yokoya et al., 2017; Xie et al., 2019; Dian et al., 2020). Moreover, since some buildings
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and open spaces are covered with spectrally similar urban surface materials that hamper
clear discrimination between them, adding additional height information could also improve
the classification accuracy (Heiden et al., 2012). In addition, some studies incorporate
temperature information acquired from thermal bands of remote sensing data (Segl et al.,
2003; Eslami and Mohammadzadeh, 2015). These approaches could also enhance the
exploitation of the information potential of the IS data. Furthermore, high density LiDAR
data can also be involved and integrated as input data (Priem and Canters, 2016), in particular
in the extraction of tree information (Heumann, 2011).

An alternative perspective of the urban mapping using IS data is the classification unit,
ranging from sub-pixel-based and pixel-based to feature- or object-based. In sub-pixel
classifiers, the spectral value of each pixel is assumed to be a linear or nonlinear combination
of endmembers or pure pixels. Therefore, they are also referred to as spectral unmixing
methods using linear or nonlinear models. Linear regression is widely used in practice
because it is simple and generalizes well, while nonlinear regression is used for more complex
nonlinear relationships and its solution is usually obtained by solving an approximate linear
regression problem. Pixel-based classifier treats each pixel as the basic unit and then feeds
pixels to the classifier as inputs. Many classical classification methods are based on this
approach. For example, Franke et al. (2009) developed a pixel-based classifier that defines a
hierarchy that uses spatial information from one level to constrain model selection at a higher
complexity level. Then, three end-member selection procedures were used to identify the
most representative end-members for each complexity level separately, which was proven
to be particularly well suited for an urban environment. The object-based classifier is a
segmentation technique that assigns a label to each pixel in the image so that pixels with the
same label share certain visual features. In this case, classification is performed based on the
objects and not on a single pixel (Liang et al., 2013; Makantasis et al., 2015).

Regarding the belonging of classified pixels to specific clusters, the classifiers of urban
surface material mapping can be distinguished as hard classification, soft classification, and
gradient mapping based on ordination. Hard classification, also called crisp or Boolean
classification, is a common approach not only for urban surface mapping but also for
mapping vegetation species and other objects. Soft classification, also referred to as fuzzy
classification, considers the probability of pixels belonging to classes. Gradient mapping
based on ordination attempts to describe surface materials or plant species composition as a
continuum. Gradient mapping best preserves information of the original data and no prior
pure pixel is required. In soft classification, the continuity of objects is preserved and little
information is lost, but it is still based on a previous classification (Feilhauer et al., 2020).
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Theoretically, a soft classification or gradient map can be converted into a hard classification
map, but not vice versa.

1.3.2 Spectral feature-based material identification

Many studies have demonstrated that robust spectral features have the tremendous ability for
urban surface material mapping (Kuehn et al., 2004; Keshava, 2004; Heiden et al., 2007).
The absorption band positions, depths, and widths of spectra are correlated with diagnostic
physicochemical material properties such as composition and abundance (Cloutis, 1996).
In general, spectral feature-based detection using IS data has been developed primarily for
minerals and vegetation, and is now being applied with spectral indices to other objects,
including sea oil pollution detection and urban surface material identification(Kokaly, 2011;
Ji et al., 2021a).

Researchers have found that IS data can provide greater mineralogical details, enabling a
detailed geological, geochemical, and geothermometric survey of a target region (Ben-Dor
and Kruse, 1995; Cloutis, 1996). Many studies have compared the ability of multispectral
data and IS data in geological remote sensing and found that a smaller wavelength interval
is irreplaceable in diagnosing soil or rock characteristics (Rowan et al., 1977; Hunt and
Salisbury, 1978; Kruse, 1988; King and Clark, 1989; Clark et al., 1990). The spectral
parameters of an absorption feature such as band minimum position, band depths, bandwidths,
band areas, absolute reflectance, and ratios of these various parameters can be used to obtain
compositional information (Cloutis, 1996; Heiden et al., 2007). The spectral parameters can
be used to quantify, or at least rigorously constrain important physical and chemical properties,
such as major, and in some cases minor, element chemistry, end-member abundances, and
grain sizes (Cloutis, 1996).

In the last decades, more classification studies with IS data based on the spectral features
of surface materials have been done. Heiden et al. (2007) implemented the interactive
method to determine and evaluate diagnostic spectral features based on comprehensive
field and airborne image spectral libraries of more than 21,000 spectra of surface materials
widely distributed in German cities. The proposed feature functions describe the stand
deviation, ratio, area, absorption depth and position, reflectance height and position, as well
as the polynominal adaption 1st order of spectral features. Kuehn et al. (2004) proposed
the Hydrocarbon Index (HI) based on the absorption of hydrocarbon-bearing materials at
1.73 µm and 2.31 µm with airborne IS data. The HI has been applied in the detection of oil
spills (Kokaly et al., 2013; Leifer et al., 2012; Khanna et al., 2013; Garaba and Dierssen, 2018;
Pelta et al., 2019; Liu et al., 2019), plastics (Levin et al., 2007; Garaba and Dierssen, 2018;
Acuña-Ruz et al., 2018; Guo and Li, 2020), and other hydrocarbon-containing materials.
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Keshava (2004) et. al applied band add-on (BAO) on the spectral angle mapper (SAM)
classifier, and therefore increased the angular separability between two classes of spectra
and improve the discrimination of very similar targets using only a fraction of the available
spectral bands.

Therefore, material identification based on spectral features has been developed for a long
time, and became a classical method. It has been applied to the identification of geological
materials with even greater similarity and ease of confusion. Applying this technique to the
identification of urban surface materials using IS data shows that it has great potential to deal
with the complexity of surface materials. In particular, when the target material has identical
spectral characteristics, spectral feature-based classification can be a straightforward and
applicable method.

1.3.3 Gradient analysis based on ordination methods

Awareness has been growing among landscape ecologists that the gradient or continuous
model can provide an accurate representation of landscape heterogeneity (Feilhauer et al.,
2020). The gradient concept was introduced by Gleason (1926) for vegetation classification
based on the vegetation species continuum, which was called floristic gradient. Subsequently,
the floristic gradient was successfully applied to vegetation mapping using remote sensing
data (Schmidtlein and Sassin, 2004; Schmidtlein et al., 2007; Feilhauer et al., 2011, 2014,
2020; Neumann et al., 2016; Neumann, 2017). Gu et al. (2015) began applying gradients in
the urban environment to quantify tree species composition using IS data, but did not yet
perform gradient analysis in urban surface material mapping.

Recently, Jilge et al. (2019) proposed to implement the gradient concept in urban surface
material compositions, as it was assumed and tested that the co-occurrence of urban surface
materials within urban neighborhoods are similar to the floristic gradient in vegetation species.
The gradient concept based on the distribution patterns of urban materials was implemented
differently than the spectral mixture analysis based on pixel information. Since the gradient
technique assumes that all pixels are mixed and no spectrally pure pixels are required, it
becomes a practicable solution for the spectral mixture problem. These material distribution
patterns were summarized with a dimensionality reduction to describe the main gradual
changes in material compositions, which are called urban surface material gradients. Then,
the material gradients are extracted from a table that lists all material cover fractions for
a training sample comprising a variety of material mixtures. A set of numerical scores is
subsequently provided that indicates its position on the derived material gradients and which
can be treated as a proxy of its material composition.
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Since no prior determination of pure pixels is required, the urban material gradient could
be a promising and general technique for mapping urban material with spaceborne IS data.
However, there are many factors that need to be analyzed to determine whether this technique
is transferable. These include, for example, the robustness of the sampling, the transferability
to a specific area, the best method for dimensional reduction, and the uncertainty if there is a
time difference between the surface material map and the HSI data.

1.4 Research objectives and structure of the thesis

1.4.1 Research objectives

As stated, urban surface material maps are an indispensable input to various urban appli-
cations, serving to measure the degree of urbanization or being directly related to urban
environmental conditions. IS data is an applicable resource for the identification of discrete
urban surface materials or for detecting the co-occurrences of specific surface materials.
More research is needed to capture the diversity of surface materials and their spectral
behavior in spaceborne IS data so that more operational and standardized image analysis
techniques can be further developed. This would pave the ground for indicators that inform
the physical and chemical complexity of materials in urban areas and their impact on climatic
processes. Therefore, given the first proof of concept for the existence of urban gradients
(Jilge et al., 2019), this thesis further explores urban complexity measured with imaging
spectrometers and the general applicability of the gradient concept as a potentially globally
applicable technique. Since the urban material gradient is a data-intensive method, where
might the extensive training data come from? Since the gradient concept is a data-driven
technique, what impact does the sampling strategy have on the gradient results? And can
we transfer the developed gradient models to other areas? In this regard, three topics were
defined within the scope of this thesis:

Objective 1: Detection of solar photovoltaic module using laboratory and airborne IS
data.

The first objective focuses on the spatial-spectral complexity of imaging spectroscopy
measurements of urban areas across the lab, field, and airborne scale in order to develop
physical-based measures for the robust detection of a target material. Solar photovoltaic
(PV) modules can absorb and transfer solar energy and contribute to reducing greenhouse
gas emissions and thereby mitigating climate change. Due to its variety of available types
and implementation on rooftops and at large fields, EO assessments of solar PV modules are
characterized by a high spatial and spectral complexity. Information about the occurrence
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and the condition of solar PV is important for statistical purposes, management as well as
regional planning of sustainable energy consumption. Many studies have been focused on
the interpretation and detection of solar PV with color aerial image and visual interpretation.
Benefiting from the fine spectral resolution of IS data, it potentially becomes a promising
resource to detect PV modules based on the physics-based spectral characteristics of PV.
However, the enormous spectral variability makes it difficult to simply detect PV with
IS data, including spectral inter-class similarity and intra-class variability. PV module
consists of several material layers, commonly including EVA coatings. EVA, as a typical
hydrocarbon-bearing material, is spectrally similar to polyethylene-covered open surfaces,
roofing polyethylene, and synthetic turf on sports fields, which could cause the spectral
inter-class similarity. PV modules include different PV types and are characterized by a
high intra-class variability due to the different illumination and observation angles using
EO sensors. In PV detection, the spectral variability caused by different tilt angles of PV or
detection angles of sensors is common and has therefore attracted our attention. In order to
compensate for this, IS data acquired in the lab, field, and airborne should be considered to
detect spectral features that are robust across all scales and can lead to a widely applicable
method for PV identification. In this context, the first objective of this thesis is to solve the
inter-class variety and intra-class similarity related to solar PV modules and, in a broader
context, to deal with the complexity of urban surface materials using IS data.

Knowledge about the spatial-spectral complexity of urban areas and the ability of imaging
spectrometry techniques to decode it for the accurate detection of a target material is a pre-
requisite to understanding and exploring spaceborne IS data for surface material composition
mapping in the next chapter.

Objective 2: Analysis of the sampling robustness in gradient mapping of urban material
mixtures

Since IS data are proven to be more powerful in capturing the complexity of urban
surfaces, utilizing these data over larger coverage, with temporal replicates would be more
valuable for the dynamic climate models that study interactions within urban ecosystems.
Ongoing and upcoming spaceborne IS data can meet these needs but can lead to mixed pixel
problems due to the relatively coarse spatial resolution. The lack of spectrally pure pixels for
training classifiers poses a challenge. However, the distribution of urban surface materials is
not arbitrary. Theoretically, Tobler (1970) found that nearby things are more related than
distant ones. In reality, characteristic patterns of urban neighborhoods occur very frequently;
for example, industrial areas are often characterized by a co-occurrence of concrete, asphalt,
and metal roofing; residential areas often feature roofing tiles, trees, and lawns. EO sensors
would then measure typical mixtures of co-occurring urban surface materials for certain
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neighborhoods. In this context, Jilge et al. (2019) proposed the concept of urban gradient
and proved the existence of urban surface material gradients. As a promising technology,
surface urban material gradients could be a generic way to apply urban material mapping
using spaceborne IS data. However, the stability of this technique has yet to be evaluated as
it is determined in a data-driven manner. Therefore, the second objective of the dissertation
is to analyze the sampling robustness of the urban surface material gradients and to find or
evaluate a robust way for urban surface material mapping in a broader context.

Objective 3: Analysis of area transferability of urban material gradients
Gradient analysis appears to be a promising approach to address the problem of mixed

pixels occurring with spaceborne IS data. Since gradients are generally determined in a data-
driven manner, they may be only suitable locally, requiring additional field data collection
if the gradients are transferred to other unknown areas. Such data collection can be an
expensive and time-consuming task. After conducting the sampling robustness analysis of
urban material gradients, the influence of such minor movements of sampling strategies was
found to be marginal. In view of a broader application of the urban gradient technique, the
evaluation of its transferability is the next necessary step. Thus, the third objective of this
thesis is to analyze the area transferability of urban material gradients. Specifically, two
questions are raised: (i) Are urban material gradients transferable between two study sites?
(ii) What influences the transferability of urban material gradients? Although other factors,
such as sample size and distance between samples, as well as ordination method, could also
affect the physical significance of urban gradients, the most pressing questions are addressed
in this thesis. In this regard, gradient analysis seems to be an applicable solution for generic
mapping large coverage of urban surface materials to cope with the complexity of urban
surface materials.

1.4.2 Structure of the thesis

The thesis is structured as follows. Chapter 1 provides a general introduction to the topic of
urban material mapping using IS data. In addition, the motivation, as well as the objectives of
this dissertation, are outlined. In Chapter 2 to Chapter 4, the core research of the cumulative
thesis is included in terms of three stand-alone manuscripts that have been published in
international, peer-reviewed journals. Chapter 5 summarizes the main findings and the
contribution of the dissertation.
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Chapter 2 Solar photovoltaic module detection using laboratory and airborne imag-
ing spectroscopy data. Published in Remote Sensing of Environment
(2021), 266, 112692.

Chapter 3 Sampling robustness in gradient analysis of urban material mixtures. IEEE
Transactions on Geoscience and Remote Sensing (2020).

Chapter 4 Are urban material gradients transferable between areas? International
Journal of Applied Earth Observation and Geoinformation (2021), 100,
102332.

1.4.3 Authors’ contributions to the individual chapters

Chapter 2 Wieke Heldens, Uta Heiden and Marion Schroedter-Homscheidt conceived the
idea. Susanne Weyand and Maron Schroedter Homscheidt organized the airborne campaign
and collected validation data at Oldenburg test sites. Uta Heiden and Andreas Hueni or-
ganized the laboratory goniometer measurements and assisted in the post-processing and
interpretation. Wieke Heldens and Uta Heiden provided the HyMap spectral library. Chao-
nan Ji performed the algorithm development with the support of Wieke Heldens, Martin
Bachmann, and Uta Heiden. Martin Bachmann and Julian Zeidler support the technical
parts of the study. Tobia Lakes, Hannes Feilhauer, Wieke Heldens, Uta Heiden, Marion
Schroedter-Homscheidt and Martin Bachmann supervised the study. Susanne Weyand, An-
nekatrin Metz-Marconcini, and Marion Schroedter-Homscheidt clarified the background of
the study. Chaonan Ji and Susanne Weyand conducted the original draft preparation of the
manuscript. All authors contributed to the final review and editing of the manuscript.

Chapter 3 Chaonan Ji contributed to the literature review, development of the methods,
writing the manuscript, planning the experiments, data collection, data analysis, programming,
and argumentation. Marianne Jilge contributed to the development of the methods, review of
the manuscript, planning of the experiments, data collection, and visualization. Uta Heiden
assisted with data collection, review of the manuscript, review of results, argumentation,
and supervision. Marion Stellmes contributed to the development of the methods, data
analysis, and argumentation. Hannes Feilhauer provided assistance with development of the
methods, review of the manuscript, design of experiments, data analysis, review of results,
programming, and supervision.

Chapter 4 Chaonan Ji contributed to coding, writing, and funding. Uta Heiden assisted
with data curation, design, supervision, and writing. Tobia Lakes contributed with visualiza-
tion, writing, and supervision. Hannes Feilhauer provided support with conceptualization,
methodology, supervision, and writing.
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Abstract

Over the past decades, solar panels have been widely used to harvest solar energy owing to
the decreased cost of silicon-based photovoltaic (PV) modules, and therefore it is essential to
remotely map and monitor the presence of solar PV modules. Many studies have explored
on PV module detection based on color aerial photography and manual photo interpretation.
Imaging spectroscopy data are capable of providing detailed spectral information to identify
the spectral features of PV, and thus potentially become a promising resource for automated
and operational PV detection. However, PV detection with imaging spectroscopy data must
cope with the vast spectral diversity of surface materials, which is commonly divided into
spectral intra-class variability and inter-class similarity. We have developed an approach to
detect PV modules based on their physical absorption and reflection characteristics using
airborne imaging spectroscopy data. A large database was implemented for training and
validating the approach, including spectra-goniometric measurements of PV modules and
other materials, a HyMap image spectral library containing 31 materials with 5627 spectra,
and HySpex imaging spectroscopy data sets covering Oldenburg, Germany. By normalizing
the widely used Hydrocarbon Index (HI), we solved the intra-class variability caused by
different detection angles, and validated it against the spectra-goniometric measurements.
Knowing that PV modules are composed of materials with different transparencies, we used
a group of spectral indices and investigated their interdependencies for PV detection with
implementing the image spectral library. Finally, six well-trained spectral indices were
applied to HySpex data acquired in Oldenburg, Germany, yielding an overall PV map. Four
subsets were selected for validation and achieved overall accuracies, producer’s accuracies
and user’s accuracies, respectively. This physics-based approach was validated against a
large database collected from multiple platforms (laboratory measurements, airborne imaging
spectroscopy data), thus providing a robust, transferable and applicable way to detect PV
modules using imaging spectroscopy data. We aim to create greater awareness of the potential
importance and applicability of airborne and spaceborne imaging spectroscopy data for PV
modules identification.
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2.1 Introduction

Due to the increasing energy demand (Wolfram et al., 2012; Sorrell, 2015), the need of cutting
down greenhouse gas emissions (Zhang et al., 2019) and the ongoing energy transition process
with substantial subsidies (Markard, 2018), the number of solar photovoltaic (PV) modules
in operation has increased rapidly in recent years (Tao and Yu, 2015; Green, 2019). Several
stakeholders such as environmental authorities, grid operators, manufacturing industries or
energy system modelers are interested in monitoring PV system locations and areas, but
accurate and publicly accessible databases are not available. Furthermore, these databases
need continuous and regular updates. Although in-situ data can be collected through field
surveys or citizen science projects, they are costly and/or time-consuming.

In this context, Earth Observation (EO) data offer a suitable alternative. EO data can
provide the necessary spatial and temporal resolution to monitor PV modules on a large scale.
Promising results have been achieved using color aerial imagery (Malof et al., 2016a; Yu
et al., 2018; de Hoog et al., 2020). Malof et al. (2016a) investigated an approach based on
supervised random forest classification to automatically identify distributed PV arrays using
color aerial images with a spatial resolution of 0.3 m × 0.3 m, and achieved 72% precision
and 80% recall. Yu et al. (2018) developed DeepSolar, a deep learning framework that
analyzed color spaceborne imagery with a spatial resolution of 0.3 m × 0.3 m to identify the
locations and sizes of solar PV modules. The resulting precision was 93.1% and recall was
88.5% in residential areas, while precision was 93.7% and recall 90.5% in non-residential
areas. Leveraging its high accuracy and scalability, they constructed a comprehensive high-
fidelity solar deployment database for the US. However, identifying solar PV modules across
large regions remains challenging due to the requirement of high-resolution (typically 0.3
m/pixel or finer) imagery, difficult identification of solar PV modules in many situations (such
as dark PV modules on dark roofs), and confusion of many other types of structures (such as
solar hot water systems, roads, and even pools) to PV modules (de Hoog et al., 2020). This
is because PV modules are composed of materials that typically include fully transparent
glass covers for protection, highly transparent Ethylene Vinyl Acetate (EVA) films, and
the core PV cell. In addition to these reasons, these methods require large, elaborated and
pixel-accurate labeled data sets for training and validation (Malof et al., 2016a,b; Yuan et al.,
2016; Camilo et al., 2018).

Instead of providing only RGB broad band spectra as color aerial imagery, imaging
spectroscopy data can generally improve the separability of surface materials since its
near continuous spectral information, with hundreds of narrow spectral bands can map the
material-specific absorption characteristics (Herold et al., 2004; Heiden et al., 2007). Thus,
more detailed spectral properties of PV modules can be derived from imaging spectroscopy
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data. So far, very few studies focus on PV detection with imaging spectroscopy data.
Czirjak et.al (Czirjak, 2017) showed that PV modules have a unique spectral signature
that is consistent across multiple manufacturers and construction methods and is therefore
detectable in imaging spectroscopy data, i.e., using adaptive cosine estimator to detect PV
modules. In addition, Czirjak et.al (Czirjak, 2017) developed the Normalized Solar Panel
Index (NSPI) to mitigate false positives by eliminating pixels that do not exhibit key spectral
features of the reflectance spectrum of PV panels. The NSPI is designed to detect the steep
increase in reflectance that typically occurs in spectral signatures of solar PV modules around
1.00 µm. Karoui et al. (2019) attempted to use Non-negative Matrix Factorization (NMF)
algorithms to apply Linear Spectral Unmixing (LSU) on imaging spectroscopy data for
PV detection. Their study concludes that the proposed approaches (Grd-Part-NMF and
Multi-Part-NMF) are superior to the previous ones (Grd-NMF and Multi-NMF), which is
a promising progress. However, it is important to note that the previous NMF approaches
(Grd-NMF and Multi-NMF) are not PV detection approaches. Moreover, only one mean
spectrum of the ground-measured PV modules spectra was considered as the known spectrum
but different types of PV were not considered, which means a lack of variation of the PV
spectra in the training phase. In addition, Karoui et al. (2019) did not consider the spectral
variability caused by different inclination or detection angles, which is a limitation of the
linear unmixing methods in principle since these methods are generally considered when
the landscape of the observed scene is flat and the irradiance is homogeneous (Dobigeon
et al., 2013). Furthermore, Karoui et al. (2019) did not consider materials that have similar
spectra to PV panels, such as polyethylene materials and oil, which have similar double
absorption feature at 1.73 µm due to their hydrocarbon content, and water, which has similar
low reflectance in the VNIR region. For these reasons, Karoui et al. (2019) attempted the
creative and meaningful experiment on PV detection using imaging spectroscopy data with
LSU, but the detection of PV modules were not accurate enough, while a simple one-class
classification generally achieved better results.

Therefore, PV modules detection using imaging spectroscopy data should focus on the
physical characteristics and the spectral uniqueness of PV modules. PV modules commonly
consist of several layers, including fully transparent glass covers for protection, highly
transparent EVA films, and the core PV cell. EVA is a hydrocarbon-bearing material, so
regardless of how well EVA transmits solar energy, the hydrocarbon absorption exists at
1.73 µm. Crystalline silicon (C-Si), as a common PV cell material, has a strong absorption
in the visible (VIS) region, resulting in low reflectance of PV modules in the VIS region.
In addition, it has a decreasing absorption between 0.99 µm and 1.15 µm, resulting in a
steep reflectance increase in this spectral region. Moreover, like most hydrocarbon surface
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materials, PV modules have a strong absorption around 2.2 µm. However, PV detection
using imaging spectroscopy data must cope with the vast spectral diversity of urban materials
and related characteristics, commonly classified as intra-class variability and inter-class
similarity. Intra-class variability means the spectral variability within the material class, and
inter-class refers to the spectral similarity among different material classes (Zhang et al.,
2006; Somers et al., 2011). Intra-class variability can be caused by several factors, such
as color, coating, degradation of the material and illumination of the material as well as
preprocessing of the acquisition data (Heiden et al., 2007). In PV detection, the spectral
variability caused by different tilt angles of PV or detection angles of sensors is common and
has therefore attracted our attention. In addition, polyethylene covered open surfaces, roofing
polyethylene and synthetic turf on sports fields, which are hydrocarbon-bearing materials
similar to EVA in PV modules, could cause the spectral inter-class similarity, and therefore
are another problem to be addressed in PV modules detection.

The objective of this study is to detect PV modules using airborne imaging spectroscopy
data. Specifically, we aim to address 1) the spectral intra-class variability caused by different
viewing and illumination angles, which is always present in PV detection; 2) the spectral
inter-class similarity that occurs mainly between PV modules and other hydrocarbon-bearing
materials; 3) as well as to apply and validate the developed spectral indices on the city of
Oldenburg, Germany. To address these questions, we firstly identify specific spectral features
of PV in the optical spectral range and introduce spectral indices based on laboratory spectra-
goniometric measurements with different detection angles and a large labeled HyMAP image
spectral library. These indices are then applied to airborne HySpex images acquired over
Oldenburg, Germany.

2.2 Data and study area

2.2.1 Laboratory spectra-goniometric spectral library

Five materials were measured with the ASD spectrometer with a 3° field of view installed on
the LAGOS goniometer (Schopfer et al., 2008) (Fig. 2.1A), including two bitumen materials
for roof covers, a monocrystalline PV module, a polycrystalline PV module, and a hydrogen
carbonate (PVC) material normally applied on large flat roofs (Table 2.1). For each material,
a total of 61 measurements with different detection angles were collected (Fig. 2.1B) as
well as one measurement with the white reference. Specifically, the 61 measurements cover
zenith angles of 0° to 75° with an interval of 15° and the azimuth angles of 0° to 330° with
an interval of 30°. These measurements were labeled by alphabet for zenith angle (from
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Fig. 2.1 The measurement set-up with an ASD sensor in a goniometer. (A) The material was
placed on the gray platform and measured with fixed illumination light and a movable ASD
sensor. (B) the arrangement of the total 61 measurement positions and their labels. Detection
E07 was treated as an abandoned measurement because it was close to illumination light and
affected.

A to F) and by number for azimuth angle (from 1 to 12) except for zenith angle = 0°. The
measurement at E07 (zenith angle is 60°, and azimuth angle is 180°) was excluded, because
the illumination source (55° of zenith angle, and 171° of azimuth angle) was between the
sample and the optic of the spectrometer. Raw data were recorded as radiance and processed
to reflectance by normalizing the radiance with the white reference. Therefore, a total of 60
reflectance spectra were available for each material. Each spectrum covers the spectral range
from 350 to 2500 nm, with a spectral resolution of 1 nm.

2.2.2 HyMap image spectral library

An image spectral library extracted from airborne hyperspectral data was also included in
this study. The library was mainly derived from imaging spectroscopy data recorded over
Munich, Dresden, Potsdam, and Berlin, Germany in 1999, 2000, 2004, and 2007 (Segl et al.,
2003; Heiden, 2004; Bochow, 2010; Heldens, 2010). All data were acquired with the HyMap
sensor (Cocks et al., 1998). The radiometrically and atmospherically corrected HyMap
data have 128 bands, of which three bad bands were removed, which were the first band
of the visible (VIS) spectrometer, and the first and second band of the near-infrared (NIR)
spectrometer (Heldens, 2010). The spectral library was extracted based on the method of
Segl et al. (2003), developed by Heiden et al. (2012) and extended by Heldens (2010). It
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Table 2.1 Materials and spectra in the laboratory spectra-goniometric measurements and
HyMap image spectral library.

Laboratory spectra-goniometric measurements
Materials Spectra number Color Detail
Bitumen material A 60 red age∼2017
Bitumen material B 60 gray age∼2017
PV material A 60 black monocrystalline PV cell
PV material B 60 dark blue polycrystalline PV cell
PVC 60 black hydrogen carbonate
HyMap image spectral library
Materials Spectra Materials Spectra Materials Spectra
Roofing tiles 624 Roofing tar 15 Siliceous sand 31
Roofing concrete 352 Roofing glass 44 Humus soil 96
Aluminum 188 Vegetated roof 108 River 466
Copper 123 Concrete 157 Pond 183
Zinc 159 Asphalt 339 Pool 34
Polyvinyl chloride (PVC) 244 Concrete pavement 10 Coniferous trees 248
Roofing polyethylene 359 Cobblestone 10 Deciduous trees 277
Polyethylene surface 89 Loose chippings 184 Dry vegetation 19
Tartan 22 Railway tracks 65 Meadow 187
Synthetic turf 264 Vegetated railway tracks 28 Lawn 415
Roofing bitumen 287

contains 5627 labeled spectra of 31 material classes. Each spectrum in this library has 125
spectral bands ranging from 450 to 2500 nm. The HyMap spectral library includes several
polyethylene materials, i.e., roofing polyethylene, polyethylene surface, and synthetic turf,
which have a hydrocarbon absorption similar to PV modules. This allowed us to collect the
spectral features of these similar materials, and remove them in the PV detection.

2.2.3 HySpex images

Ten imaging spectroscopy data sets were collected from a flight campaign carried out in July
2018 covering Oldenburg with the HySpex sensor (see Fig. 2.2). The HySpex system has two
cameras covering the spectral ranges of visible near-infrared (VNIR) and short-wave infrared
(SWIR) region. The VNIR sensor records the spectral range from 416 to 992 nm with 160
channels at a spatial resolution of 0.6 m × 0.6 m. The SWIR sensor covers the spectral range
from 968 to 2498 nm in 256 channels at a spatial resolution of 1.2 m × 1.2 m. To work
with the same reference frame and the whole spectral range, the VNIR and SWIR images
were co-registered (Schwind et al., 2014) and resampled to the same spatial resolution of the
SWIR sensor, which is 1.2 m × 1.2 m. More details about the characteristics of the HySpex
system are provided in Köhler (2016).
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HySpex Level 2A data were provided for this campaign. After system correction, the
data were ortho-rectified, and the surface reflectance was calculated with the ATCOR4
atmospheric correction software (Richter et al., 2011) for each HySpex flight line. This
pre-processing was carried out by OpAIRS of the Remote Sensing Technology Institute
(IMF) of German Aerospace Center (DLR), and described in detail in Köhler (2016). It
should be noted that the uncertainty in the relative geolocation between two adjacent flight
lines can be up to 3 pixels, and that a further systematic/non-systematic displacement to the
validation data of 1-2 pixels exists. The effects are described in Section 2.3.4.

2.2.4 Study area
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Fig. 2.2 The study area - Oldenburg in the northwest of Germany, covered with ten HySpex
images.

The city of Oldenburg is located in the northwest of Germany (see Fig. 2.2), and covers
an area of 103 km2. The study area captured by the HySpex images includes a variety of
building types with different installations of PV modules. A large PV power plant is located
on the old airfield in northwestern Oldenburg. Slightly further south are two university
campuses, Haarentor and Wechloy, and the Institute for Networked Energy Systems of the
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DLR. The city center of Oldenburg is dominated by dense perimeter block developments
with varying roof materials and few open spaces. The south of Oldenburg is characterized
by several industrial areas with halls and warehouses, as well as large areas with many
semi-detached and detached houses, some of which are covered with PV modules.

2.3 Methods

To capture and describe the spectral characteristics of PV modules, we applied a set of
spectral indices using imaging spectroscopy data. The study workflow is shown in Fig. 2.3.
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Fig. 2.3 The study workflow.

2.3.1 Hydrocarbon index normalization

The diagnostic spectral characteristics of hydrocarbon in the SWIR were reported by Cloutis
(1989), which revealed the hydrocarbon absorption feature centered near 1.73 µm arising
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from the various C-H stretching overtones and combination bands. Since then, the basic
ability of hyperspectral systems was explored to detect hydrocarbon features in the SWIR.
Hörig et al. (2001) realized this capability using airborne HyMap imaging spectroscopy data
to map and delineate oil-contaminated soils based on the absorption feature. Based on this,
Kuehn et al. (2004) proposed the Hydrocarbon Index (HI) (see Fig. 2.4 and Equation 2.1)
that measures the depth of the spectral absorption at 1.73 µm to identify the presence of
hydrocarbon-bearing material. This HI converts multi-band data into a single band, which is
straightforward to use for detecting the presence of hydrocarbon-bearing materials.

1600              1700         1800 

Wavelength (nm)

R
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fl
e
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B’ 

HI
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RA RB’

Fig. 2.4 Demonstration of the spectral absorption in the reflectance of hydrocarbon-bearing
materials (modified from Kuehn et al. (2004)). A, B, and C are the points on the reflectance
line, and B’ is a point on the continuum line of points A and C. Accordingly, their reflectance
values are RA, RB and RC, and wavelengths are λA, λB and λC. The distance between points
B and B’ were defined as HI (Kuehn et al., 2004).

HI = RB′ −RB (2.1)

where
RB′ = (λB −λA)

RC −RA

λC −λA
+RA (2.2)

However, HI does not consider the spectral variation of hydrocarbon-bearing materials,
i.e., the spectral intra-class variability of PV modules due to color, coating, degradation of
the material and orientation of the material to the sensor etc. (Heiden et al., 2007; Clark and
Roush, 1984; Clark et al., 2003; Sahib, 2019). Clark and Roush (1984) proposed a consistent
band depth concept to reduce topographic and atmospheric effects by calculating band depth
with the support of spectral continuum. By combining the concepts of band depth and HI,
we performed a normalization procedure for the HI to minimize the influence of different
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detection angles. The normalized HI, called nHI, is calculated by dividing the HI by the RB′

(see Equation 2.3).

nHI =
HI
RB′

=
RB′ −RB

RB′
(2.3)

The HI was calculated by using 1705 nm, 1729 nm and 1741 nm as points A, B, and C
in Kuehn et al. (2004). Since nHI uses the concept of continuum-removed absorption band
and is calculated by dividing the band depth of each channel by the reflectance at the band
center, points A and C should be at the spectral shoulders. Therefore, we selected 1669 nm
and 1746 nm as the points A and C. The point B is still 1728 nm, which is the center of the
hydrocarbon absorption feature. Given the different spectral resolutions of sensors used in
this study, the exact wavelengths of points A, B, and C can be slightly modified and adjusted
to suit particular sensors.

2.3.2 Additional spectral indices

Instances of different material classes may exhibit highly similar spectral features, which is
referred to as inter-class similarity. The hydrocarbon absorption feature of PV modules at
1.73 µm is not unique, while other hydrocarbon-bearing materials also exhibit this feature.
Therefore, these polyethylene materials such as roofing polyethylene, polyethylene surface,
and synthetic turf, should be constrained by additional specific indices in case they are
misclassified as PV modules. Thus, four additional spectral indices are developed in this
study to accurately distinguish PV modules from other hydrocarbon-bearing materials.
Including the above-mentioned nHI, a total of six spectral indices based on the physical
characteristics and corresponding spectral features of PV modules are shown in Fig. 2.5, and
their equations are in Table 2.2.

NSPI exploits the rapid increase in the reflectance spectra of PV modules (see Fig. 2.5)
caused by C-Si absorption. C-Si PV modules include poly-C-Si and mono-C-Si. Both types
exhibit similarly decreasing energy absorption capabilities from 600 nm to 1150 nm (Schinke
et al., 2015; Deng et al., 2017), resulting in an increase in reflectance. As the market share of
silicon solar cells currently exceeds 90% (Silvestre et al., 2018), this feature can be treated as
another main spectral feature of PV modules.

The index of average reflectance in the VNIR (aVNIR) (see Fig. 2.5) targets strong
spectral absorption features in the VNIR region of PV materials. Common and traditional PV
modules have a low average reflectance between 500 nm and 1000 nm (Czirjak, 2017), which
is used to absorb more solar energy in this spectral range. For example, monocrystalline PV
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Fig. 2.5 Demonstration of six spectral indices. The PV spectrum is from laboratory spectra-
goniometric measurement (monocrystalline PV module, D10). The spectra of polyethylene
surface, roofing polyethylene, and synthetic turf are from the HyMap image spectral library.

cells are blackish, and polycrystalline PV cells are dark bluish. In this study, we specified an
experimental threshold for aVNIR (see Table 2.2) to primarily eliminate roofing polyethylene.

The index of reflectance drop around 2200 nm (REND) (see Fig. 2.5 and see Equation
2.7 in Table 2.2) addresses the typical hydrocarbon absorption properties, since the spectral
region from 2200 to 2500 nm is affected by numerous overlapping combination and overtone
bands. The sheer number of overtone bands causes reflectance to decrease substantially
around this region (Herold and Roberts, 2005). These overtone bands can be assigned to the
CH2 and CH3 stretch and bend, carbonyl-carboxyl C-O stretch, and aromatic carbon stretch
(Cloutis, 1989).

The aVNIR and REND (see Fig. 2.5) are physically meaningful spectral indices, but
cannot constrain polyethylene surface and synthetic turf misclassified as PV modules. For
this reason, the PolyEthylene Peak (PEP) index and the PolyEthylene Peak in Visible range
(VPEP) were proposed explicitly for polyethylene surface and synthetic turf, respectively. The
PEP feature of polyethylene surface is caused by strong spectral absorption of polyethylene
surface at 800 nm to 900 nm and results in a reflectance peak between 650 nm and 860 nm.
The VPEP feature is due to the fact that synthetic turfs often have visual colors, such as green
artificial playgrounds and red artificial running tracks.
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Table 2.2 Spectral indices developed and used in the study.

Details Expression (wavelength/nm) Threshold

normalized Hydrocarbon
Index (nHI)

nHI =
RB′ −RB

RB′
(2.4) >0.18

Normalized Solar Panel
Index (NSPI) (Czirjak,
2017)

NSPIHySpex =
R1153 −R991

R1153 +R991
(2.5) >0.15

average reflectance in Vis-
ible and Near Infrared
Range (aVNIR)

aV NIR = Mean

(
1000

∑
i=500

Ri

)
(2.6) <2000

Reflectance drop around
2200 nm (REND)

R2100 > R2200 > R2300 (2.7) - -

A reflectance peak be-
tween 0.6 and 0.8 µm,
to differentiate from
PolyEthylene surface
Peak (PEP)

PEP = R750 −R650 −
10
11

|R860 −R650|
(2.8)

<200

A reflectance peak in vis-
ible range (VPEP), to dif-
ferentiate from synthetic
turf

V PEP = R630 −R470 −
7

16
|R540 −R470|

(2.9)
<200

2.3.3 PV mapping on Oldenburg

The ten HySpex imaging spectroscopy flight lines were converted from uncompressed band
sequential (BSQ) binary files to LZW compressed interleaved geoTIFF, which reduced the
data size by a factor of 15 and allowed the data to be read efficiently in chunks for processing.
Six spectral indices were sequentially applied to the geoTIFFs, and the pixels that could pass
the criteria of all spectral indices were treated as PV module-covered pixels (see Table 2.2).
Some classification errors occurred at class boundaries due to spectral mixing within a pixel.
These misclassified areas are small compared to the correctly classified areas. Within a class,
there are anomalous pixels due to noise in the data. These areas are small compared to the
overall pattern. Since one pixel of PV modules is rare at a spatial resolution of 1.2 m × 1.2 m
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of airborne imagery, it was considered as a noisy pixel. Therefore, we applied morphological
filtering (clump classes) to remove these noisy pixels and maintain the border pixels.

2.3.4 Validation

Four subsets were selected to evaluate the accuracy of PV detection, as shown in Fig. 2.10.
Each subset covered 301.2 m × 199.2 m (251 × 166 pixels) in size and was co-registered to
the HySpex data. Subset A is dominated by a PV power plant, subset B is the area where
campus and institute are located, subset C is a residential area, and subset D covers an
industrial area. We manually collected validation data on these four subgroups on airborne
3K photos in combination with field checks. The 3K photos were collected at a similar time
as the HySpex data, and have a spatial resolution of 10 cm. Due to uncertainty in geolocation
between the 3K photos and the HySpex data sets, a manual shift of up to one pixel (1.2
m) was applied to the PV mapping images to better match the validation data. The Overall
Accuracy (OA), Producer’s Accuracy (PA), and User Accuracy (UA) were obtained with a
pixel-to-pixel comparison using the confusion matrix while treating PV and non-PV as two
classes.

2.4 Results

2.4.1 Dealing with the spectral intra-class variability

The HI and nHI values of the five materials at different detection angles were calculated,
interpolated, and shown in Fig. 2.6. Bitumen material A, B, and PVC material show a value
close to zero, because of the absence of a distinct hydrocarbon absorption feature at 1.73 µm,
and therefore result in HI and nHI values close to zero. Two PV materials have higher HI and
nHI values from their hydrocarbon features. For HI values, two PV materials show variation
among different detection angles. The closer the angle of reflection directly opposite to
the incident light (zenith angle 55°, and azimuth angle 171°), the higher the HI values are
acquired. However, their nHI values show a greatly minimized variation among the detection
angles.

To statistically compare HI and nHI, we show that both HI and nHI can separate PV
materials from three other materials of the spectra-goniometric data set, and we can define
threshold values of 0.015 and 0.18 for HI and nHI respectively, as depicted by Fig. 2.7.
However, nHI values show greater separability between PV materials and other materials. In
addition, Fig. 2.7 also shows that HI values of the two PV materials have larger variation
among different detection angles than nHI values of PV materials, which are relatively stable.
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Bitumen-material A Bitumen-material B PV - material BPV - material A PVC-PE

Fig. 2.6 The polar plots of HI and nHI for bitumen material A, bitumen material B, PV
material A, PV material B, and PVC with different detection positions. The HI and nHI
values were interpolated.

.

Fig. 2.7 The comparison of HI and nHI with their mean values, ± standard deviations, ±
standard errors and outliers.

The HyMap image spectral library was also used to calculate the HI and nHI values (see
Fig. 2.8). For the HI values, the spectra of half of the tartan, half of the roofing polyethylene,
a few roofing aluminum, roofing concrete as well some pond spectra failed the HI threshold
check, meaning that their values were above the thresholds and assumed to be PV. This would
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cause difficulties in the following PV detection since these materials could be recognized
as PV by HI check. As for nHI, some roofing polyethylene spectra have strong absorption
at 1.73 µm, and therefore failed nHI threshold check. In addition, some pond spectra also
failed this nHI check. Therefore, although nHI has better performance as it removes the
intra-class variability due to different detection angles, it is not good enough to independently
distinguish PV from the other surface materials, and some more spectral indices are required
to constrain the hydrocarbon-bearing materials.
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Fig. 2.8 The HI and nHI check of 31 materials in HyMap image spectral library. The ratio
between the number of passed spectra and the number of total spectra for each specific
material is also displayed.

2.4.2 Dealing with the spectral inter-class similarity

NSPI, nHI, aVNIR, REND were independently applied on the HyMap spectra library, as
they can specify different materials based on typical PV features (see Fig. 2.9). NSPI
performed quite well, only some spectra of roofing tiles and a few copper spectra failed in
this check. The aVNIR had a quite good performance with checking tartan (0 fail), most
roofing polyethylene (22/359 fail proportion). REND index independently did not perform
well on this check, because the addressed feature is present in most materials. We still keep
REND to eliminate false positives caused by image noise. The Sumindices gave sufficient
results for this large spectral library and no spectral fail occurred with the combination of
these four indices.

2.4.3 PV mapping result

The PV mapping results of the entire study area of Oldenburg were obtained. Fig. 2.10
shows the entire detected PV areas on the left side, about 170,000 pixels or 0.24 km2. On the
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Fig. 2.9 The independent check of four spectral indices (nHI, NSPI, aVNIR, REND) and
their combined check (SumIndices) with HyMap image spectral library. The number of
failed spectra/number of overall spectra for each specific material is also shown.

right side, four subsets were enlarged. In general, most PV modules were correctly detected
from four subsets. Either for the PV power plant of subset A, the campus roofs of subset B,
the residential roofs of subset C, the industrial area of subset D, both locations and shapes
were correctly detected. Further statistical results were obtained in the following validation
process.

2.4.4 Validation

To better compare the reference data and the detected PV areas, the OA, PA, and UA were
acquired for four subsets. Together with magnified inlay areas, the validation results were
presented in Fig. 2.11.

The Overall Accuracies (OAs) of the four subsets range between 92.8% and 99.3%,
indicating that the methodology developed for this study works well. As shown in Fig. 2.11,
each PV object was correctly detected except for several panels in subset D. Subset A covers
many PV objects, and the detected PV polygons matched well with the reference data under
the condition of 1.2 m spatial resolution of HySpex data. The same detection efficiency was
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Fig. 2.10 The overall and enlarged detection result in Oldenburg, as the detected PV areas
were colored black. Four selected subsets (A, B, C, and D) were marked as blue rectangles in
the overall map of Oldenburg, and the RGB and detected PV areas were enlarged on the right.
For better illustration, five evenly distributed areas (a, b, c, d, e) were additionally marked in
red in the overall map and enlarged at the bottom.

shown in Subset C. Subset B has a PA of 77.8% and a UA of 64.5% since the displacement
between the reference data and the HySpex data, as well as the distortion in the reference data
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subset A subset B

subset C subset D

OA = 92.8%

PA  = 78.7%

UA = 88.0%

OA = 98.6%

PA  = 86.7%

UA = 71.3%

OA = 98.0%

PA  = 52.2%

UA = 72.5%

OA = 99.3%

PA  = 77.8%

UA = 64.5%

(I)

(II)

(III)

Fig. 2.11 The PV mapping polygons compared with reference data in four subsets. Black
polygons show the PV mapping areas, and red polygons show the reference data. The blue
and green arrows in subset D show the omission error of the PV detection. To better illustrate
the detection accuracy, a region for each subset was selected and depicted within the enlarged
inlay figures. For each subset, Overall Accuracy (OA), Producer’s Accuracy (PA) and User’s
Accuracy (UA) were acquired and presented.

from the 3K camera orthorectification. Subset D yielded a PA of 52.2% and a UA of 72.5%,
mainly because areas (I) and (II) were omitted from classification as they are thin-film PV
modules rather than polycrystalline PV or monocrystalline PV. Furthermore, area (III) was
partly missed because the PV modules were too small to be the prevailant spectra at 1.2 m
resolution.

2.5 Discussion

2.5.1 PV spectral indices derivation

Our approach exploits the physical absorption and reflectance features of PV modules. Two
spectral features present in EVA film and C-Si in PV modules are particularly important
for PV detection: The hydrocarbon absorption feature at 1.73 µm is very indicative for
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hydrocarbon-bearing materials. Kokaly et al. (2013) discussed the advantage of using the
1.73 µm instead of the 2.3 µm absorption feature in oiled material detection, which holds
the same significance in PV detection. First, the 2.3 µm absorption feature can be confused
with carbonate absorption in soil, but highly saline soils found in salt marshes are acidic with
very low carbonate content. Second, the spectra of dry vegetation also exhibit the 2.3 µm
absorption feature (Kokaly and Skidmore, 2015), which are primarily derived from structural
biochemical constituents comprising plant cells. Therefore, using the hydrocarbon absorption
feature at 1.73 µm as the primary spectral feature to detect PV is a better choice. The second
feature is the steep increase in reflectance spectra of PV modules due to the rapid spectral
increase of C-Si from 600 nm to 1150 nm (Schinke et al., 2015; Deng et al., 2017). The NSPI
introduced by Czirjak (2017) addresses this feature. As Fig. 2.9 shows, implementing NSPI
only is not sufficient to constrain most roofing tiles and a few copper roofs in PV detection.
This would lead to confusion since most PV modules were installed on roofs with roofing
tiles.

The present approach is able to deal with different detection angles and PV installation
angles. The nHI, obtained by normalizing the existing HI, mitigates Bidirectional Reflectance
Distribution Function (BRDF) effects from the laboratory spectra-goniometric measurements
and shows higher robustness in experimental results. Fig. 2.6 shows the variation of HI values
among different detection angles, and nHI removed this variation. The nHI outperforms
HI in dealing with material spectral variability and thus offers a better separation. Fig. 2.7
presents the statistical results of HI and nHI values with five materials. Both HI and nHI can
easily distinguish two PV materials from two bitumen materials and a PVC sample. However,
using HI values to distinguish PV from other materials leads to misclassifications. The nHI
has higher separability between two PV materials and other materials. In addition, HI or nHI
alone can barely distinguish between monocrystalline PV and polycrystalline PV. Fig. 2.8
shows that nHI has a better performance on the HyMap image spectral library in comparison
to HI. HI failed in most hydrocarbon-bearing materials such as most roofing polyethylene,
almost all polyethylene surface, and part of synthetic turf, because these materials all have
the hydrocarbon absorption feature, and appropriate HI value range is difficult to define.
Other than that, HI also failed in checking some spectra of roofing aluminum, roofing tiles,
and synthetic turf. nHI only failed in some roofing polyethylene spectra and three pond
spectra, leading to more robust results.

A combination of spectral indices is necessary in PV detection because the PV modules
are composed of different materials. Using nHI only could cause confusion with hydrocarbon-
bearing materials. Still, nHI is a good baseline, and other indices capture additional spectral
features of PV or other similar polyethylene materials. Therefore, the combination of HI and
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other indices increases the detection accuracy by avoiding false positives. Fig. 2.9 shows
that either nHI or the NSPI works well for most surface materials, but not all. Applying nHI
alone would misclassify roofing polyethylene as PV modules, and applying NSPI only would
misclassify roofing tiles as PV modules.

The approach was trained and assessed with different data types to parameterize the
spectral indices, either with respect to different sensors (ASD, HyMap, and HySpex) or
different experimental conditions (laboratory spectra-goniometric measurements and airborne
imaging spectroscopy data). The large HyMap imaging spectral library was employed to
develop other spectral indices to constrain other materials for this study, including 31 surface
material classes in 5627 labeled spectra. Therefore, the approach is considered robust to
detect PV modules with imaging spectroscopy data from different sensors.

2.5.2 PV mapping results with airborne HySpex imaging spectroscopy
data

The approach could quickly and efficiently detect C-Si-based PV modules accurately. In
general, Fig. 11 shows the OA of subsets A, B, C and D exceed 90%. If we take a close look
at the subsets, only a small section on the east side of subset B was incorrectly classified as a
PV module. All other PV installations were correctly detected.

Specially, our approach is able to accurately detect PV modules in different arrangements
and within different environments, without the need for explicit training samples for each
setting, but purely based on their spectral characteristics. For example, each line of PV
modules in the ground-based PV power plant was correctly and accurately detected (see
subset A in Fig. 2.11). Had an object-segmentation-based machine learning approach been
employed instead, it would have been necessary to sample a sizeable number of labeled
training data of PV installations in various arrangements of ground-based settings in addition
to samples from residential and industrial rooftops. Hence, a clear advantage of the presented
approach is the ability to perform well even in the absence of large sets of labeled training
data.

The displacement between hyperspectral data and reference data as well as the distortion
in 3K data is the main reason for a UA of 64.5% in subset B, while UAs of other subsets are
relatively high. As shown in Fig. 2.11, the PV arrays in the magnified area of subset B were
shifted from line arrangement, resulting in the low validation values. This is because the 3K
camera is a framing system and therefore affected by relief displacements, which are only
partially corrected in the ortho-rectification process. But since a digital elevation model was
used, the height of objects above the Earth surface is not taken into account. Therefore, there
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are still relative geometric displacements that vary with respect to the building height relative
to the Earth surface and additionally increase radially from the perspective center of the 3K
image tiles.

Apart from the technical issue, the PA and UA values of four subsets show a limitation
of the study. The low spatial resolution of HySpex data of 1.2 m and the resulting over- or
under-classification at the edges of PV arrays is the main factor leading to the PA values in
the validation. There is a distinct comparison of PA values between subset A and subset C. As
can be seen in the enlarged inlay figure (Fig. 2.11), each PV module in subset A and subset
C were detected. However, subset C has a PA of 86.7%, while subset A has a PA of 78.7%.
This is because subset A contains more objects and therefore more edges were included. The
area (III) in subset D also shows the detection limits due to the spatial resolution of 1.2 m of
the HySpex data. Some small PV modules were ignored in this detection, since they were
too small and scattered distributed, and therefore only covered by spectrally mixed pixels.

Furthermore, the thin-film PV modules should be considered critically in the application
of the approach. Although silicon solar cells dominate the market with a share of more than
> 90%, and thin-film PV modules have a small share due to low efficiency (Silvestre et al.,
2018), it should be noted that thin-film PV modules could not be detected by our approach.
In subset D, areas (I) and (II) were not identified (Fig. 2.11) because their spectra are very
different from silicon PV modules. Thin-film PV modules are made of different layers
and exhibit non-specific characteristics in spectra. Clear identification and differentiation
from other materials would require measuring it in the laboratory to explore their spectral
reflectance characteristics. Since this PV module is quite rare, it was not available for this
study.

In summary, the quality of the PV panel identification is very high (high OA). The lower
PA and UA are mainly due to the low spatial resolution of the HySpex data as well as the
geometric displacement between the validation and HySpex data.

2.5.3 Future directions

Although the robust approach could be transferred and applied to data collected by different
sensors, the band selection of spectral indices would vary slightly. In particular, nHI and NSPI,
as the dominant and most efficient indices for PV detection, are quite sensitive to the spectral
bands of different sensors they are applied to with their thresholds. Our study developed and
combined these spectral indices for the first time, and trained their thresholds using laboratory
spectra-goniometric and HyMap spectral libraries, then applied these thresholds with HySpex
data on Oldenburg, and acquired accurate PV distributions. Therefore, it is demonstrated that
these thresholds are relatively robust for sensors with different spectral resolutions. However,
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when the given data is only from a single sensor, adjusting the thresholds of these spectral
indices, especially nHI and NSPI, could help to increase the detection accuracy. In particular,
nHI and NSPI, as the dominant and most efficient indices for PV detection, are quite sensitive
with their thresholds to the spectral bands of the different sensors to which they are applied.
Future research could apply machine learning methods to define the thresholds for each
spectral index based on training with massive pure spectra.

The physics-based approach presented in this study yields the potential to include new
PV materials such as the new thin-film PV modules that could not be detected, because
samples were absent in the used spectral libraries. In a first step, these characteristics need
to be investigated in a laboratory and tested in airborne or UAV-borne data to then derive
robust spectral features that can be parameterized for a broader application. A large amount
of training data across different regions is not necessary if the spectral variability can be
detected. This makes the physics-based approach a robust and practical method for PV
detection.

Detecting large PV modules regionally or nationwide with spaceborne imaging spec-
troscopy data is efficient and useful in energy system modeling. Currently, the ongoing
missions, such as the Italian PRISMA mission (Loizzo et al., 2019) and the upcoming
German EnMAP mission (Guanter et al., 2015) are promising data sources for large area
PV detection. However, since most spaceborne imaging spectroscopy data have a relatively
coarse spatial resolution of 30 m x 30 m, PV mapping in urban areas could be challenging. In
this context, a building mask would help improve the mapping accuracy when the detection
target is PV systems on roofs. However, results show that the detection of large PV power
plants outside urban areas works with high precision. Thus, future investigations could focus
on monitoring such sites with spaceborne imaging spectroscopy data. Since effects such
as PV soiling due to dust or pollen reduce the efficiency of PVs, this is of high importance
to PV power plant operators and owners. Moreover, adding texture, shape, or other visual
features from data with the high spatial resolution is a great potential for future studies.

Future studies could explore distinguishing different types of PV based on their unique
spectra such as the mono- and polycrystalline silicon, cadmium telluride (CdTe), copper
indium selenium (CIS), and copper indium gallium selenide (CIGS) modules (Visa et al.,
2016; Burduhos et al., 2018).

2.6 Conclusion

PV modules are not a pure material, but a combination of several materials. Therefore, their
detection with imaging spectroscopy data should consider a combination of spectral indices
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that are able to separate PV modules and spectrally similar materials. The applicable and
robust approach proposed in this study was validated on a large database (spectra-goniometric
data, HyMap spectra library, and the HySpex imagery for Oldenburg), and yielded accurate
PV areas. Furthermore, BRDF effects due to different detection angles in PV detection
were observed and addressed by normalizing the hydrocarbon index. Moreover, the spatial
resolution of the imaging spectroscopy data should be sufficient to detect PV material as pure
pixels.

This study aims to create greater awareness of the potential importance of imaging
spectroscopy data for PV identification. As a physics-based approach, it is robust, transferable,
and can provide data on PV coverage on a regional or global scale in a short time. The
highlighted analysis of the normalized hydrocarbon index could tackle the detection angle
problem in PV installations and data acquisition time, which evidently increases the PV
detection accuracy.

It should be noted that the present approach was developed to detect the Si-based PV
modules with EVA covers and needs to be further refined and updated to detect other PV
modules. Future studies that employ spaceborne imaging spectroscopy data to detect large
PV power plants modules should focus on monitoring in order to investigate the potential to
detect soiling effects that can decrease the efficiency of such PV modules. The robustness of
the developed and tested novel physics-based detection approach for PV power plants paves
the way for more refined investigations towards PV type differentiation and the analysis of
the efficiency of such modules.
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Abstract

Many studies analyzing spaceborne hyperspectral images (HSIs) have so far struggled to
deal with a lack of pure pixels due to complex mixtures of urban surface materials. Recently,
an alternative concept of gradients in urban surface material composition has been proposed
and successfully applied to map cities with spaceborne HSIs without the requirement for a
previous determination of pure pixels. The gradient concept treats all pixels as mixed and
aims to describe and quantify gradual transitions in the cover fractions of surface materials.
This concept presents a promising approach to tackle urban mapping using spaceborne
HSIs. However, since gradients are determined in a data-driven way, their transferability
within urban areas needs to be investigated. For this purpose, we analyze the robustness
of urban surface material gradients and their dependence across six systematic and three
simple random sampling schemes. The results show high similarity between nine sampling
schemes in the primary gradient feature space (Pspace) and individual gradient feature spaces
(Ispaces). In comparing the Pspace to the Ispaces, the Mantel statistics show the resemblance
of samples’ distribution in the Pspace, and each Ispace is rather strong with high credibility,
as the significance level is P < 0.01. Therefore, it can be concluded that material gradients
defined in the test area are independent of the specific sampling scheme. This study paves
the way for subsequent analysis of the stability of urban surface material gradients and the
interpretation of material gradients in other urban environments.

3.1 Introduction

The structure and patterns of urban developments have a large effect on urban ecosystem
functions (Alberti, 2005). Urban surface conditions strongly influence the climate within
cities on the micro scale as well as on the meso- and macro- scale (Oke, 1987). To better
understand the climatic interactions within the urban ecosystem, urban surface material
compositions are of great interest to climate modelers (Chen et al., 2012). By providing
global coverage of pixel-based spectral signatures, spaceborne HSIs can supply substantial
information about ecosystem characteristics (van der Linden et al., 2019). However, the
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spatial resolution of most operating and future spaceborne HSIs (e.g., EnMAP (Guanter et al.,
2015), PRISMA (Lopinto and Ananasso, 2013), DESIS (Alonso et al., 2019; Krutz et al.,
2019) and HISUI (Matsunaga et al., 2018)) leads to high spectral mixtures in urban areas
(Jilge et al., 2019; Mohanty et al., 2019). Therefore, urban mapping at this spatial scale is
still a challenge due to a lack of spectrally pure pixels to train classifiers(Li et al., 2019).

Nevertheless, the mixture within a pixel of urban materials is not arbitrary. In many cases,
the actual land use determines the dominant materials that are used for building structures and
their surroundings (Niemelä, 1999; Wittig et al., 1998). For example, industrial areas are often
characterized by a co-occurrence of concrete, asphalt, and metal roofing; residential areas
frequently feature roofing tiles, trees, and lawns. Historical city quarters in Germany such
as Wilhelminian style quarters commonly contain roofing tiles, cobblestones pavements for
streets, trees, and copper roofs (Heiden et al., 2007, 2012; Heldens, 2010). The distribution of
these urban neighborhoods thus leads to reoccurring combinations of material compositions
that show strongly inter-correlated distribution patterns (Jilge et al., 2019; Bochow et al.,
2007). (Heldens, 2010) The nature of co-occurring surface materials in urban neighborhoods
has been the underlying basis for a new technique to analyze urban surface material mixtures.
(Jilge et al., 2019) could successfully introduce the gradient concept for urban areas using
a test site in Munich, Germany, to relate the distribution patterns of urban surface material
compositions to urban neighborhoods. So far, the gradient concept has only been used by
vegetation ecologists to characterize floristic gradients for mapping continuous and discrete
patterns in plant species assemblages (Schmidtlein et al., 2007; Feilhauer et al., 2011, 2014;
Neumann et al., 2016). Treating the mixture of urban surface materials in analogy to the
species assemblages in natural vegetation stands, (Jilge et al., 2019) proofed the existence of
urban material gradients. The similarity of the surface material composition collected by 153
samples was explored by a feature reduction method (detrended correspondence analysis,
DCA). The resulting gradient scores have been regressed against simulated hyperspectral
EnMAP data that have a spatial resolution of 30 m x 30 m pixel size. The resulting gradient
maps showed pattern of similar urban surface material mixtures that could be linked to
specific urban neighborhoods such high density block developments (Wilhelminian style
quarter), industrial areas and detached house developments.

However, due to the data-driven property of the gradient analysis, the applicability of
this approach for other urban areas needs to be further analyzed. Important aspects of the
analyses are the impact of the developed training data on the gradient feature space, the
regression model stability and the gradient interpretation.

In this paper, we evaluate the impact of the design of the training data sampling on the
resulting gradient feature space. Mainly, we aim to answer the following three questions:
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(1) Does the slight movement of systematic sampling affect the material gradients? (2) Are
material gradients influenced by using random sampling schemes rather than systematic sam-
pling schemes? (3) To better derive surface material compositions for urban areas, what other
possible factors could influence the material gradients? Referring to the sampling scheme
of the proof-of-concept study (Jilge et al., 2019), we examine five additional systematical
sampling schemes with regular offsets and three random sampling schemes and analyze the
impact on the gradient feature space.

The paper is organized as follows. Section II provides a background of the study area
and the used data sets. Section III describes the methodology of the experiment, whose
experimental results follow in Section IV. A comprehensive discussion is presented in Section
V. Finally, Section VI concludes this paper.

3.2 Study Area and Data

3.2.1 Study Area

The study area (Fig. 1) is located in the city of Munich, Germany, the same test site as in
the study of Jilge et al. (Jilge et al., 2019). It covers 4.12 km2 from 48.106°N to 48.133°N
and from 11.565°E to 11.632°E. The Isar river divides the study area into two parts. The
northwestern part is mainly occupied by old buildings from the Wilhelmine era. In the
southeast part, a large vegetated cemetery is situated in the center, surrounded by the Munich
East Railway Station, industrial areas, and various residential and commercial areas. The
large variety of urban surface materials and their specific compositions are typical for large
German cities and provide ideal conditions for investigating the robustness of material
gradients among different sampling schemes.

3.2.2 Data

A detailed surface material map (Fig. 1) was used to sample the material composition as the
ground truth in order to define the material gradients. The surface material map was prepared
by Helden et al. (Heldens, 2010) based on airborne HSI with a spatial resolution of 4 m
x 4 m, recorded with the HyMap sensor (Cocks et al., 1998) in a flight campaign in June
2007, and pre-processed by (Richter and Schlaepfer, 2011; Mueller et al., 2005; Habermeyer
et al., 2008) . The surface material map initially contained 42 material classes. The modified
surface material map removed unlabeled pixels, shadow pixels, facade pixels, and materials
which were not covered by every sampling scheme. Finally, 27 urban surface material classes
were selected analogous to (Jilge et al., 2019). For more details about the pre-processing of
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Fig. 3.1 Detailed urban surface material map of the study area in Munich, Germany, deter-
mined from HyMap data. Each color represents an urban surface material.

the HSI data and the accuracy of the surface material map, interested readers are referred to
(Heldens, 2010; Heiden et al., 2012; Jilge et al., 2019) and the references therein.

3.3 Methodology

A schematic work flow of the proposed approach for sampling robustness analysis of material
gradient is shown in Fig. 3.2. In subsection A, six systematic and three simple random
sampling schemes are designed. For each sampling scheme, the surface material compositions
of each sample are acquired. Subsection B introduces why and how to define material
gradients via principle component analysis (PCA). In subsection C, the gradient feature
space generated by one sampling scheme (o4) is defined as the primary gradient feature
space (Pspace). For the visual comparison of the sample distribution in the feature space, all
samples from each sampling scheme are projected into the Pspace. The transformation matrix
from the original material composition matrix into the gradient score matrix of samples
is referred to as loadings. In subsection D, each sampling scheme generate its individual
gradient feature space (Ispace). Loadings from Ispaces are compared with each other, and
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the multiple linear regressions of material gradients and the corresponding urban surface
materials are analyzed for the similarity of Ispaces. In subsection E, the Pspace is further
compared with each Ispace by a Mantel test and a Procrustes analysis to check the similarity
between the Pspace and Ispaces.

Fig. 3.2 Schematic of the proposed process for sampling robustness of gradient analysis,
including (left dashed) data sets, (middle dashed) sampling, and (right dashed) similarity
check. o4, s1, s2, s3, s5, s6, r7, r8, and r9 represent 9 sampling schemes.

3.3.1 Sampling design

The sampling robustness of gradients is defined as the transferability and generalizability
of material gradients that are applicable to other sampling schemes. For this purpose, this
study attempts to assess the similarity of the material gradients generated from different
sampling schemes. To analyze the robustness of material gradients, different distributions
of samples across the study area are required, which are determined by systematic and
simple random sampling schemes. The systematic sampling scheme is intended to support
a transition of surface material compositions between neighboring systematic sampling
schemes (e.g., s1 and s2 in Fig. 3.2). The simple random sampling schemes do not follow
any regular permutations or center-to-center distance between samples. Therefore, these
sampling schemes are believed to more realistically represent the actual situation of the
ground truth distribution in many urban environments.

Fig. 3.3 shows the distributions of all sampling schemes, in which the surface material
map is displayed as a gray scale map of 27 surface material classes listed according to Table
3.1. Both samples of systematic sampling schemes and simple random sampling schemes
have a diameter of 100 m. A total of 153 sampling polygons per sampling scheme are
generated.
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The systematic sampling schemes are evenly distributed over the entire test area, with a
center-to-center distance of 300 m between samples (Fig. 3.3a). The systematic sampling
scheme used in Jilge et al. (Jilge et al., 2019) is named as o4 and marked by purple color.
Six systematically chosen sampling schemes are referred to as s1, s2, s3, o4, s5, and s6,
respectively. The six sampling schemes are equidistantly spaced by 25 m in both N-S and
W-E directions, i.e., about 35.36 m in NW-SE direction (Fig. 3.4), which is close to the
spatial resolution (30 m x 30 m) of most spaceborne HSIs (e.g., EnMAP).

Samples of three simple random sampling schemes are randomly distributed in the test
area (Fig. 3.3b). Similarly, these three randomly chosen sampling schemes are named r7, r8,
and r9, respectively.

3.3.2 Derivation of material gradients with PCA

The extraction of material gradients is basically a dimensionality reduction of a sample-
by-material matrix, and thus, can be performed by many methods (Kruskal, 1964; Green
et al., 1988; Tenenbaum et al., 2000). Although the resulting material gradients show
generally similar characteristics, the available methods differ in their principles, performance,
and the fine details of the extracted material gradients. In Jilge et al. (Jilge et al., 2019),
material gradients were defined by DCA from the ground sample in the city of Munich,
Germany. DCA is often used for gradient analysis in ecology, where studies have analyzed
and mapped gradual transitions in the composition of plant species (Schmidtlein and Sassin,
2004; Feilhauer and Schmidtlein, 2009; Feilhauer et al., 2011). It assumes that materials
have a unimodal distribution along the extracted gradients and is therefore well suited for
gradients with a pronounced turnover in material composition (Hill and Gauch, 1980). With
DCA, however, it is difficult to compare resulting gradients with any other gradient feature
space, because new observations can not simply be projected into an existing gradient space
(Jilge et al., 2019; Knox, 1989). In addition, the study (Jilge et al., 2019) has shown that the
Munich area does not feature a full material turnover and thus, the unimodal distribution
model is not required to describe the material gradients in this area.

In this study we chose PCA to extract material gradients, as it is based on a linear
distribution model and allows for a better comparability of different material gradients
(Hotelling, 1933). PCA is a widely used dimensionality reduction technique (F.R.S, 1901;
Jing Wang and Chein-I Chang, 2006; Li et al., 2012b), which reduces the dimensionality of
data and at the same time retains most of the variations presented in the data set (Hotelling,
1933; Jolliffe, 2011). It achieves the reduction by transforming the data into a new set of
variables called principal components (PCs). The PCs are linear combinations of the original
variables and are referred to as gradients in terms of their physical significance. The gradients



3.3 Methodology 51

(a) Six systematic sampling schemes (s1, s2, s3, o4, s5, and s6)

(b) Three simple random sampling schemes (r7, r8, and r9)

Fig. 3.3 Distributions of systematic and simple random sampling schemes. Each sampling
scheme is displayed in one color, and circles represent the size and position of samples. Area
I is not covered by the r7 sampling scheme, and Area II is not covered by the r8 sampling
scheme. The enlarged systematic sampling schemes are shown in Fig. 3.4

.

are uncorrelated and hierarchically ordered, so that the first few gradients retain most of the
variation presented in all original variables (Plaza et al., 2005). The number of meaningful
gradients is determined according to the broken-stick model, which is considered a stable
approach to determining the number of PCs (Frontier, 1976; Jackson, 1993).

Subsequently, samples can be projected on the PCs according to their material composi-
tions and the PC loadings to visually assess the similarities and differences among samples.
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Fig. 3.4 Enlarged systematic sampling schemes. White circles represent samples from o4
sampling scheme, and gray circles show samples from s3 sampling scheme. The spacing
between adjacent schemes and adjacent samples is shown as a dashed line and a double arrow
line between circle centers.

Based on this analysis we may determine whether the samples can be grouped (Ringnér,
2008). As the input data here are fractional numbers of material classes, they are fully
comparable and for PCA no scaling or centering is needed.

3.3.3 Projection of all samples into the Pspace

To get a first impression of the similarity of all sampling schemes, the samples from each
sampling scheme were projected into the Pspace. This projection was made with the loadings
generated from o4 samples (Ringnér, 2008). The o4 samples were selected to generate the
Pspace to be consistent with the sampling scheme used by (Jilge et al., 2019), and because
they are ordinary and systematically chosen samples. At first, the Pspace is generated by
o4 samples with PCA, and includes the first and the second gradients (PCs) according to
the broken-stick model. The o4 loadings are then extracted by the transformation from the
original material composition matrix into the gradient score matrix. Finally, all samples from
other sampling schemes are converted into the Pspace by applying the o4 loadings.

3.3.4 Sample distribution in the Ispaces

The specific Ispace is the regular gradient space created with PCA by the samples for each
individual sampling scheme. Similar to the Pspace, the first and the second material gradients
are considered to define each Ispace.

The equation of the PCA is given as follows:

Ap ×Bp =Cp (3.1)
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where Ap is the material matrix of pth sampling scheme; Bp is the loadings generated by
pth sampling scheme; and Cp is the gradient scores of samples in pth sampling scheme. The
equation (3.1) expands as follows: a1,1 · · · a1,27

... . . . ...
a153,1 · · · a153,27

×
 b1,1 · · · b1,27

... . . . ...
b27,1 · · · b27,27

=
 c1,1 · · · c1,27

... . . . ...
c153,1 · · · c153,27

 (3.2)

where ai, j represents the ith sample containing ai, j pixels of material class j; bm,n is
the element in loadings; and ci,n represents the gradient score of the ith sample in the nth
gradient.

This study only takes the first two gradients C[i,1] and C[i,2] in formula (3.1) into account,
hence only B[m,1] and B[m,2] are considered here.

Two analyses (Pearson correlation and multiple linear regression) are applied to depict
the consistency of material gradients and materials among the Ispaces. Pearson correlation
analysis is performed by comparing correlated loadings for each sampling scheme, and eval-
uated using Pearson correlation coefficient. Multiple linear regression analysis is performed
in two steps. First, multiple linear regression is applied between material gradient and all
material compositions to acquire the weight of each material. Second, the relevance between
the material gradient and highly weighted materials (weight > 0.1) is evaluated by adjusted
R2 from further multiple linear regression.

3.3.5 Comparison of Pspace and Ispace

Pspace and Ispaces are compared with a Mantel test and a Procrustes analysis (Legendre
and Legendre, 2012; Mardia et al., 1979; Peres-Neto and Jackson, 2001). Both techniques
can be used to compare the mutual sample arrangement in the gradient feature space and
check whether two neighboring samples in the Pspace are likewise located adjacently in the
Ispace. The Mantel test gives an overall estimate of whether the sample distributions in the
Pspace and the Ispace match. The Procrustes analysis provides a more detailed assessment
and identifies local distortions by quantifying a residual for each data point. In particular, the
Mantel test is based on a Pearson correlation between dissimilarity matrices of samples in the
Pspace and Ispaces. The dissimilarity matrix of the samples is derived from the Euclidean
distances (Legendre and Legendre, 2012). The significance of the correlations is evaluated
by means of permuting rows and columns of the first dissimilarity matrix while a total of 999
permutations are used (Dixon, 2003).
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Table 3.1 Material table and abbreviations of 27 material classes, the material coverage of the
entire surface material map (Fig. 3.1), and the material coverage in samples of each sampling
scheme.

Total material Material coverage in one sampling scheme/
Abbreviation Surface material coverage in Material coverage in surface material map [%]

material map [pixel] s1 s2 s3 o4 s5 s6 r7 r8 r9
rtil roofing tiles 66886 8 8 8 9 9 9 8 8 8
rcon roofing concrete 27440 9 9 8 7 7 8 8 7 10
ralu roofing aluminum 10466 10 9 8 8 9 10 8 8 9
rcop roofing copper 13366 7 7 7 8 8 9 8 9 8
rzin roofing zinc 7607 8 9 8 8 7 5 9 9 8
rpvc roofing PVC 13434 7 8 7 8 8 7 8 9 8
rpol roofing polyethylene 8625 10 12 11 9 8 9 7 10 7
rbit roofing bitumen 14883 10 10 10 8 6 7 9 9 7
rtar roofing tar 29249 8 8 8 8 8 8 9 8 8
rveg vegetated roof 18879 8 9 8 8 8 8 9 8 7
rgra roofing gravel 8206 10 9 9 11 13 13 7 7 8
f con concrete 42104 8 8 9 10 10 8 8 8 8
f asp asphalt 84854 9 8 8 8 8 8 10 8 8
f kun synthetic turf 3209 10 5 6 9 11 15 5 22 4
pcob cobblestone 47358 9 9 8 8 9 8 8 7 7
prlc loose chippings 20546 7 8 10 10 9 9 7 7 7
pcon concrete slabs 11015 9 9 8 8 8 9 8 7 7
prail railway tracks 10811 8 9 8 7 7 7 9 10 5
praiv vegetated railway tracks 11546 10 10 8 8 7 7 7 9 7
bsan siliceous sand 11765 8 8 8 9 9 9 8 9 11
bsoi humus soil 2978 4 5 5 6 10 11 5 8 14
wriv river 4518 10 10 11 10 7 5 8 9 5
wpon pond 4691 7 8 9 8 9 8 9 9 8
vdec deciduous trees 172784 9 8 8 8 8 8 9 8 8
vlaw lawn 16983 7 8 9 8 8 7 8 7 9
vmea meadow 87525 7 8 8 9 8 8 8 9 9
vdry dry vegetation 35690 9 8 9 9 8 8 8 8 10

total 787418

3.4 Results

3.4.1 Sampling

Table 3.1 lists the coverage of surface materials per specified sampling scheme. As shown in
Table 3.1, each sampling scheme covers all occurring material classes. The cover fractions
of common material classes (e.g., rtil, rcon, f con, pcob, rtar, f asp, vdec, vmea, and vdry)
are uniform, mainly varying between 7% and 11%. Nevertheless, cover fractions of several
material classes vary substantially among sampling schemes. For instance, r9 samples
contain only 4% while r8 samples contain 22% of synthetic turf in the study area.
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3.4.2 Distribution of projected Samples in the Pspace

In a first step, all samples from the nine sampling schemes were projected into the Pspace.
Fig. 3.5a shows the distribution of o4 samples according to their scores on the first and
second material gradients. Along the first material gradient axis, most samples are located at
the negative end whereas the number of samples decreases towards the positive direction.
The sample distribution ranges between -150 and 250 for the first material gradient, where
these values correspond to relative values of the gradient scores. On the second material
gradient axis, samples are concentrated around zero, and disperse towards the positive end
(about 200) and negative end (about -300). Combining the observations for both material
gradients, the samples form a triangular field, with most samples concentrated at the lower
left corner, i.e. at the coordinate (-150, 0) and the number of samples gradually decreases
towards the other two corners.

Based on the distribution of o4 samples, the samples of all other sampling schemes were
projected into the Pspace as shown in Fig. 3.5. The diagrams (Fig. 3.5b-i) show that all
samples are distributed within almost similar triangle field in the Pspace in terms of range
and density.

3.4.3 Correlation of the Ispaces

The Pearson correlation coefficient (F.R.S, 1901) was calculated to compare the loadings
of all sampling schemes. The coefficients are listed in Table 3.2. In general, the sampling
schemes are characterized by high correlations between their loadings. For the loadings on
the first material gradient, the Pearson correlation coefficients range between 0.87 (s1 and
o4, s1 and r9, and s2 and r9) to 1 (s1 and s2) and for the loadings on the second material
gradient between 0.72 (s1 and o4, and s1 and r8) to 0.99 (o4 and r9), respectively.

Table 3.2 Pearson correlation coefficient of loadings for the first and the second material
gradients.

First gradient Second gradient
s1 s2 s3 o4 s5 s6 r7 r8 r9 s1 s2 s3 o4 s5 s6 r7 r8 r9

s1 1 0.97 0.87 0.93 0.97 0.95 0.92 0.87 s1 -0.87 -0.81 -0.72 -0.77 -0.8 -0.81 -0.72 -0.73
s2 0.98 0.88 0.93 0.97 0.94 0.92 0.87 s2 0.97 0.85 0.91 0.95 0.93 0.9 0.86
s3 0.96 0.98 0.99 0.98 0.98 0.95 s3 0.95 0.97 0.98 0.98 0.98 0.95
o4 0.99 0.96 0.95 0.99 0.99 o4 0.97 0.94 0.97 0.98 0.99
s5 0.99 0.98 0.99 0.98 s5 0.98 0.97 0.98 0.97
s6 0.99 0.98 0.96 s6 0.98 0.97 0.95
r7 0.98 0.96 r7 0.98 0.96
r8 0.99 r8 0.98
r9 r9
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Fig. 3.5 Similar distribution of samples from six sampling schemes in the Pspace. The X axis
represents the first material gradient (PC1) in the inverted direction (*(-1)), and the Y axis
represents the second material gradient (PC2). The material gradient axes (PC1 and PC2)
have no requirements on the direction. PC1 was inverted for a more intuitive interpretation
as in (Jilge et al., 2019), where the negative side presents the artificial materials and the
positive side shows more vegetated samples. Each sampling scheme is shown in a specific
color which corresponds to the distribution of samples in the surface material map (Fig. 3.1).
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The regression parameters represent the multivariate weights of the corresponding ma-
terials in the derived material gradients in the Ispaces. The higher the absolute regression
parameter, the closer the relationship between the material gradient and the corresponding
material. The threshold of highly weighted materials is set as 0.1 since it returns the highest
adjusted R2. For instance, vdec, f asp, vmea, rtil, and f con are highly relevant with the first
material gradient in the s1 Ispace (Table 3.3). As expected, all Ispaces are similar in terms of
the most relevant material classes to the first material gradient. It can be concluded that the
first material gradient from different Ispaces are dominated by these five material classes,
though they are produced from different samples. In addition, the second material gradient
in s1 and also other Ispaces mainly represents vmea, f asp, vdec, vdry, and rtil, which were
the most frequent material class in Table 3.3.

To verify these findings, the regression model was rebuilt between the material gradients
and their driving material classes. The resultant adjusted R2 = 0.92 confirms the high
relevance between the first material gradient and dominant classes (vdec, f asp, vmea, rtil,
and f con). Similarly, the second material gradient was regressed with the corresponding five
classes (vmea, f asp, vdec, vdry, and rtil) and an adjusted R2 = 0.98 was returned.

Table 3.3 Multiple linear regressions between the two material gradients and highly weighted
urban surface materials for nine sampling schemes.

s1 s2 s3 o4 s5 s6 r7 r8 r9

Fi
rs

tg
ra

di
en

t

vdec -0.93 vdec -0.93 vdec -0.84 vdec -0.68 vdec -0.77 vdec -0.83 vdec -0.79 vdec -0.76 vdec -0.69
f asp 0.23 f asp 0.19 vmea -0.35 vmea -0.57 vmea -0.44 vmea -0.34 f asp 0.4 vmea -0.49 vmea -0.58
vmea -0.15 vmea -0.17 f asp 0.23 rtil 0.26 f asp 0.28 f asp 0.3 vmea -0.37 f asp 0.27 f asp 0.31
rtil 0.13 f con 0.15 rtil 0.19 f asp 0.26 rtil 0.26 rtil 0.22 rtil 0.18 rtil 0.21 rtil 0.2
f con 0.12 rtil 0.14 f con 0.18 f con 0.19 f con 0.19 f con 0.15 f con 0.11 f con 0.14 f con 0.13

rtar 0.1 rtar 0.11 pcob 0.11 rtar 0.1 rtar 0.1 rtar 0.1
rtar 0.1

Se
co

nd
gr

ad
ie

nt vmea 0.68 vmea -0.88 vmea -0.86 vmea -0.75 vmea -0.78 vmea -0.83 vmea -0.85 vmea -0.81 vmea -0.72
f asp -0.62 vdec 0.26 vdec 0.44 vdec 0.64 vdec 0.54 vdec 0.45 vdec 0.48 vdec 0.56 vdec 0.66
vdec -0.26 f asp 0.24 rtil 0.13 rtil 0.23 rtil 0.23 f asp 0.13 rtil 0.13 vdry -0.14
vdry 0.24 vdry -0.19 vdry -0.12 vdry -0.14 vdry -0.15

rtil 0.15 f asp 0.11 f con -0.12 f asp 0.12
wriv -0.14

3.4.4 Comparison of the Pspace and Ispaces

The Procrustes test, the comparison of sample distributions in the Pspace and Ispaces, is
shown in Fig. 3.6. Since the Pspace is the Ispace of the o4 samples, the distribution of o4
samples is congruent in both gradient spaces with a Mantel r statistic of 1. Whereas the
sample distributions of s5, r8, and r9 sampling schemes only show slight differences, the
sample distributions of s1 and s2 exhibit evident variations (Fig. 3.6) in the transformation
from Ispace to Pspace. In general, all transformations from each Ispace to Pspace can be
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traced back, and all transformations are not significant. Whereas the sample distributions of
s5, r8, and r9 show only minor differences in the transformation from Ispace to Pspace, the
sample distributions of s1 and s2 show a more pronounced dissimilarities (Fig. 3.6). Overall,
the samples show a similar distribution in the Ispaces and Pspace, and the transformations do
not lead to major distortions. In another perspective, the Mantel r statistic of 0.97 between s1
Ispace and the Pspace, 0.99 between r7 Ispace and the Pspace, and 1 between other Ispaces
and the Pspace indicate that there are relatively strong correlations between Ispaces and
the Pspace. The p-values of 0.001 acquired by all Mantel test indicate that our results are
statistically significant at an alpha of 0.05, representing the high credibility of the results.

3.5 Discussion

The present study aims to investigate whether material gradients are robust among different
sampling schemes. In this section, the hypothesis is determined step by step through
answering the three research questions.

3.5.1 Are material gradients affected by the slight movement of system-
atically chosen sampling locations?

The similar distributions of samples from six systematic sampling schemes (Fig. 3.5) provide
the impression that the material gradients are robust among slight movement of sample
locations in our urban test site.

The high Pearson correlation coefficients (Table 3.2), ranging from 0.87 to 1 between
loadings of six systematic sampling schemes for the first material gradient, and from 0.72
to 0.99 for the second material gradient, intuitively demonstrate that the material-to-sample
relations from these systematic sampling schemes are similar. Since the loadings enable to
project samples from the material composition matrix to the gradient score matrix in the
Ispace, the result demonstrates that all Ispaces formed by material gradients generated from
the six systematic sampling schemes are consistent. Regarding the multiple linear regressions
between the material gradients and urban surface materials (Table 3.3), it is important to
point out that the listed materials only indicate the high-weighted materials on the material
gradients, which are considered as dominant materials in this study. vdec dominates the
first material gradient at the first place, while vmea dominates the second material gradient
for all systematic sampling schemes at the first place. The second and the third dominant
materials of the first material gradient are f asp and vmea for all sampling schemes except
o4. Although the second material gradients represent vdec, f asp, vdry, and rtil in different
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Fig. 3.6 The comparison of the Pspace and Ispaces in Mantel test and Procrustes test. Each
sub-figure shows the path of each sample from Ispaces to Pspace (the Procrustes result) and
the statistical result (r) of the Mantel test. The Procrustes test finds the configuration change
of each sample in each sampling scheme from Ispace to Pspace. Dashed axes represent the
gradient axes of Pspace, and solid axes represent the gradient axes of each Ispace. For s1
Ispace, the second material gradient is inverted to show the shortest rotation of s1 samples
from Ispace to Pspace.
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weights, the aforementioned results still show that the material gradients generated from
different sampling schemes similarly represent 5 materials out of 27 material classes in total.

The results of the Procrustes analysis in Fig. 3.6a-f show that the arrangement of samples
in the Pspace is very similar to the distribution of samples in the Ispaces for all six systematic
sampling schemes. The results of the Procrustes test show that the Pspace and Ispaces can
be matched by rotating the axes. Consequently, the comparison of the Pspace to the Ispaces
demonstrates the robustness of material gradients among the systematic sampling schemes.

One reason for the observed gradient robustness is that the material gradients are dom-
inated by the material classes which cover high fractions in the samples, and the changes
of materials covering low fractions are ignored. The dominant material classes (vdec, vmea,
f asp, rtil, f con, and vdry) cover both large parts of the study area (Table 3.1) and are dis-
tributed evenly. For example, although cobblestone (pcob) covers a larger area than concrete
( f con) in the study area, concrete dominates the material gradients compared to cobblestone
as concrete is distributed more uniformly than cobblestone. Therefore, the slight movement
of systematic sampling has no obvious influence on the material gradients.

3.5.2 Are material gradients affected by using random sampling schemes
rather than systematic sampling schemes?

The presence of non-stationarity and anisotropy in the spatial data could have a severe impact
on the efficiency of systematic sampling (Dunn and Harrison, 1993). Therefore, the simple
random sampling scheme was considered to increase the uncertainty of the material cover
fraction in the samples, and thus obtain a broader test scope for the robustness of gradient
concept.

As discussed in subsection A, all samples including simple randomly chosen samples are
similarly distributed in the Pspace. The samples with low values on the negative side of the
second material gradient shown in o4, r7, and r8 by visual interpretation are dominated by
deciduous trees (vdec). Samples with high values on the positive side of the second material
gradient shown in s1 are dominated by meadow (vmea).

The results for first material gradient in Table 3.2 show that the Pearson correlation of
loadings between s1 and o4, s1 and r9, and s2 and r9 are lower than others. The results
of the second material gradient in Table 3.2 show loadings between s1 and other sampling
schemes, between s2 and o4, between s2 and r9 have Pearson correlation values lower than
0.9. Thus, the findings give no systematic differences between the loadings of systematic
and simple random sampling schemes.
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Also, as mentioned above, the multiple linear regressions between the two material
gradients and urban surface materials are similar for both the systematic sampling schemes
and the random sampling schemes. The Mantel statistical r is high for each sampling scheme,
for example 0.97 for s1, 0.99 for r7 and 1 for other sampling schemes. The Procrustes
test reveals no differences between systematical sampling schemes and random sampling
schemes. It implies that the material gradients are not severely affected by sampling strategies.
This can be explained by the variance of each material within the sampling schemes that
have been used to generate the material gradients (Table 3.1). The material gradient is
thereby as mentioned in subsection A largely determined by materials that cover large parts
of the study area and at the same time are distributed homogeneously across the study area.
For example, Table 3.1 shows varying cover fractions of synthetic turf ( f kun) between the
sampling schemes from 4% (r9) to 11% (s5) to 22% (r8). However, since f kun covers just a
few urban areas (only 3209 pixels), it has negligible influence on the material gradient.

Another reason for the robustness of the material gradients is linked to the fact that the
samples seem to represent the entire study area. Thus, small local differences in the sampling
locations do not influence the integral generation and the physical significance of the material
gradients. For example, as shown in Fig. 3.3, Area I is not covered by r7 sampling and Area
II is not covered by r8 samples. However, their statistical results shown in Table 3.3 show no
significant difference.

These observations indicate that Tobler’s first law of geography ’everything is related
to everything else, but near things are more related than distant things’ (Tobler, 1970) also
applies to the urban material distribution. This distribution shows consequently a positive
spatial autocorrelation that characterizes the clustered distribution of the materials. As long
as the sampling schemes represent this clustered distribution sufficiently, the exact location
of the samples has no severe influence. Obviously, the spatial scale of this autocorrelation
matters. Further testing is needed to analyze these scale dependency of spatial autocorrelation
in material distributions across urban areas.

3.5.3 What other possible factors could influence the material gradi-
ents?

There are several factors influencing the material gradients that need to be discussed. First,
we used PCA to define material gradients because it allows for an easy comparability of
material gradients derived by different sampling schemes (see section III). In comparison to
non-metric multidimensional scaling (NMDS) (Kruskal, 1964), isometric feature mapping
(IsoMap) (Tenenbaum et al., 2000), and other unsupervised data reduction methods, PCA
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provides loadings, which can be used to easily and repeatably transform samples from a
material composition matrix to a gradient score matrix. Thus, all samples were projected into
one gradient feature space (Pspace) for assessing the robustness of gradients determined by
different sampling schemes. One drawback of PCA is that it assumes the class-conditional
distributions are Gaussian. The distribution in the real observational data are often not
Gaussian but strongly multimodal in some cases (Li et al., 2012b). Therefore, PCA might
not obtain the best suited material gradients existing in a study area and should only be used
for the robustness analysis of material gradients. The PCA-gradient-feature-space generated
in this study is not comparable to the DCA-space derived by (Jilge et al., 2019) in scale
and number. However, using the same samples, the first material gradient obtained from
PCA in this study and DCA in (Jilge et al., 2019) contain similar information on vegetation
and artificial material compositions. The second material gradient is different for PCA and
DCA. While PCA gradient represents the variety of broad vegetation classes, the gradient
obtained by DCA was considered to distinguish urban structures containing different artificial
materials.

Second, to map urban material compositions using material gradients, detailed and com-
plete ground truth data are needed that represent the complete variety of material occurrence
in the study area. If there is a material not covered by the samples, it cannot be detected or
considered in the gradient analysis. If the ground truth data inevitably contains areal errors
(also referred to as label noise), the classification accuracy is affected (Jiang et al., 2019).
As the material gradient takes a large amount of input data into account, we consider that a
significant amount of label noise is acceptable. Nevertheless, the question of how label noise
affects the derived material gradient needs to be investigated in future analyses.

Third, the robustness of material gradient may be weaker in specific urban areas due to a
more complex or heterogeneous distribution of urban surface materials. If all samples are
distributed in a small part of the investigation area, it is difficult to determine the material
gradient to represent the whole variety of surface materials in the investigation area. In other
words, the samples should sufficiently cover the whole variety of surface materials in the
study area (Plourde and Congalton, 2003). Thus, this study suggests that the samples should
be evenly distributed over the entire study area.

3.6 Conclusion

In order to obtain the potential strength of material gradient applied in fuzzy pattern de-
scription of urban material compositions using spaceborne HSIs, this paper analyzes the
robustness of material gradients in an urban area among different sampling schemes, based
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on the loadings provided by PCA. The results of this study demonstrate that neither a slight
movement of systematic sampling schemes nor simple random sampling schemes largely
affect the extracted material gradients. The gradient concept has been proven to be robust
for different sampling schemes with the same amount and same size of samples. However,
samples shall be well distributed across the study area and need to represent the complete
variety of material occurrence in the study area. Future studies should investigate the influ-
ence of the size of samples as well as the distance between samples that can also influence
the representation of urban surface materials in the gradient space (Jilge et al., 2019). We
suggest to use PCA, if different feature spaces need to be compared to test the transferability
of the gradient concept. However, if the objective is to best explore the material composition
of a specific urban area, other feature reduction methods seems to be more suitable such as
DCA or NMDS.

From the methodical point of view, this study proposes a holistic approach to compare
the data transferability of dimensionality reduction methods. The shown experiments and
measures can be used not only for testing the transferability of the gradient concept, but
might also be useful for other data-driven pattern description approaches.

This study provides a first step towards the transferability of the gradient approach to
other urban areas despite their data-driven character. This is very important for the further ex-
ploration of spaceborne HSI covering urban areas to characterize urban spaces quantitatively
without the need for discrete classification and pure material training information.
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Abstract

Urban areas contain a complex mixture of surface materials resulting in mixed pixels that are
challenging to handle with conventional mapping approaches. In particular, for spaceborne
hyperspectral images (HSIs) with sufficient spectral resolution to differentiate urban surface
materials, the spatial resolution of 30 m (e.g., EnMAP HSIs) makes it difficult to find the
spectrally pure pixels required for detailed mapping of urban surface materials. Gradient
analysis, which is commonly used in ecology to map natural vegetation consisting of a
complex mixture of species, is therefore a promising and practical tool for pattern recognition
of urban surface material mixtures. However, the gradients are determined in a data-driven
manner, so analysis of their spatial transferability is urgently required. We selected two
areas—the Ostbahnhof (Ost) area and the Nymphenburg (Nym) area in Munich, Germany—
with simulated EnMAP HSIs and material maps, treating the Ost area as the target area and
the Nym area as the well-known area. Three gradient analysis approaches were subsequently
proposed for pattern recognition in the Ost area for the cases of (i) sufficient samples collected
in the Ost area; (ii) some samples in the Ost area; and (iii) no samples in the Ost area. The
Ost samples were used to generate an ordination space in case (i), while the Nym samples
were used to create the ordination space to support the pattern recognition of the Ost area in
cases (ii) and (iii). The Mantel statistical results show that the sample distributions in the
two ordination spaces are similar, with high confidence (the Mantel statistics are 0.995 and
0.990, with a significance of 0.001 in 999 free permutations of the Ost and Nym samples).
The results of the partial least square regression models and 10-fold cross-validation show
a strong relationship (the calculation-validation R2 values on the first gradient among the
three approaches are 0.898, 0.892; 0.760, 0.743; and 0.860, 0.836, and those on the second
gradient are 0.433, 0.351; 0.698, 0.648; and 0.736, 0.646) between the ordination scores
of the samples and their reflectance values. The mapping results of the Ost area from three
approaches also show similar patterns (e.g., the distribution of vegetation, artificial materials,
water, ceremony area) and characteristics of urban structures (the intensity of buildings).
Therefore, our findings can help assess the transferability of urban material gradients between
similar urban areas.
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4.1 Introduction

The majority of the world population lives in urban areas, and the number of urban residents
is increasing as more regions are rapidly becoming urbanized (DESA, 2018). Accurate
and up-to-date maps are important for modelers to study meteorology (Auer Jr, 1978),
climatology (Seto and Shepherd, 2009), and ecology (Lakes and Kim, 2012) and for local
authorities to understand the growth dynamics and rapid spatial development of their cities
(Cao et al., 2020). However, detailed mapping of urban surfaces is challenging because urban
surface materials feature complex spatial patterns, i.e., spatially and spectrally heterogeneous
natural and artificial land covers (Chen et al., 2018).

Hyperspectral remote sensing has become an important tool in Earth observation. It
extends the number of spectral bands from several or dozens to hundreds, providing a
continuous spectrum to identify the materials based on their specific reflectance features
(Herold et al., 2004; Heiden et al., 2007). Hyperspectral images (HSIs) that contain a
considerable amount of detailed information on land cover and the state of the environment
can be used for various applications such as urban modelling (van der Linden et al., 2019),
ecological surveys (Degerickx et al., 2018; Skowronek et al., 2018), and geological analyses
(Kruse et al., 2003). Spaceborne HSIs can provide global coverage with high temporal
resolution to support operational product generation and commercial exploitation of the data,
for example, to support economic growth as planned for the Copernicus CHIME mission
(Nieke and Rast, 2019) and to support climate-related research, which is one of the goals of
NASA’s SBG mission (Lee et al., 2015) and the upcoming German EnMAP mission (Guanter
et al., 2015). The currently operating missions, such as the Italian PRISMA mission (Loizzo
et al., 2019) and the German/US mission DESIS (Alonso et al., 2019), are already delivering
data on an operational basis for the development of techniques and scientific data products.

However, the acquisition of spaceborne HSIs with sufficient spectral and spatial resolu-
tion, good signal-to-noise ratios (SNRs) and high revisit times is still challenging. Due to
sensor design considerations, the rich spectral information in hyperspectral data is often not
complemented by extremely fine spatial resolution (Li et al., 2012a). For HSIs with 30 m
× 30 m spatial resolution (e.g., recorded by EnMAP), a large number of surface materials
on the measurement scale can be mixed. The resulting mixed pixels reflect the composite
spectral response of the contained materials, so the application of per-pixel classifiers to
images dominated by mixed pixels may result in inaccurate classification (Plaza et al., 2009).

Gradient analysis appears to be a promising approach for addressing the problem of mixed
pixels. Gradient analysis is commonly used in ecology to describe and map natural vegetation
by treating all pixels as mixed and to describe and quantify the gradual transitions in the cover
fractions of the different species (Schmidtlein and Sassin, 2004; Feilhauer et al., 2011, 2014,
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2020; Neumann, 2017). Urban environments contain districts with similar structural and
compositional characteristics and thus display the co-occurrences of certain urban surface
materials. For example, industrial areas often consist of large low- to medium-rise buildings
and predominantly impervious open surfaces, whereas residential areas such as detached
housing settlements are likely composed of small low-rise buildings and pervious surfaces
such as lawns, meadows and trees (Heldens, 2010). When applying the gradient concept to
an urban area, urban material gradients were proposed, and it was then confirmed that such
gradients exist in urban space and can be linked to spectral mixtures (Jilge et al., 2019).

However, gradients are generally determined in a data-driven manner. Hence, gradients
may be only locally suitable so that additional field data collection will be required, if the
gradients are transferred to other unknown areas. Such data collection can be an expensive
and time-consuming task. Consequently, an analysis and assessment of the transferability
of gradients is crucial for their broader application. As a first step in this direction, Ji et al.
(2020) investigated the sampling robustness of gradient analysis with slight movement of the
sampling location and different sampling schemes. The influence of such slight movements
was marginal, and therefore the next step will be to study the transferability of urban material
gradients to unknown areas.

Therefore, the objective of this study is to analyze the area transferability of urban
material gradients over two subsets of Munich, Germany. We aim to address the following
two questions: (i) Are the urban material gradients transferable between the two study sites?
(ii) What affects the transferability of urban material gradients? Our results will provide
insights regarding the general feasibility of gradient transfer to urban areas, where either
limited or no information on surface material composition is available. As a first step to
address this problem, we have chosen two areas in Munich city, which are composed of
similar urban neighborhoods with expected similar surface material compositions. Based on
the findings, we discussed the potential applications of the transferable urban gradients.

4.2 Study area and data

4.2.1 Study site

The present study was conducted on two subsets of Munich, Germany (Fig. 4.1). The first is
located in the south-east of Munich city (48.106°N to 48.133°N, 11.565°E to 11.632°E) and
is referred to as the Ostbahnhof (Ost) area in this study because it covers the Munich east train
station. The Ost area is considered a perfect urban study area because it consists of complex
and typical German urban structures (Heiden et al., 2012), i.e. it represents an inner-city,
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densely built-up area with residential and commercial buildings from different epochs. The
second study area covers the Nymphenburg Palace and is hence called the Nymphenburg
(Nym) area; by contrast, this area is characterized by larger vegetation-covered areas (e.g.,
Nymphenburg Palace Park, Hirschgarten, and Olympia Park). The Nym area was chosen
for the transferability analysis of urban gradients because, on the one hand, it has material
classes similar to those of the Ost area, while, on the other hand, it contains a unique set of
materials in the palace area.

Ostbahnhof Nymphenburg 

 

 

 

 

Fused  

EnMAP  

HSIs 

 

 

 

 

Material 

Maps 

Munich 

Fig. 4.1 Two study areas: the Ostbahnhof (Ost) area and the Nymphenburg (Nym) area. The
simulated HSIs are shown in true colour. The material maps include 27 valid material classes
shown in their respective colours and unclassified/shadow/ignored material classes shown in
black. The circles show the location and size of the collected samples.
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4.2.2 Simulated EnMAP HSIs

The simulated EnMAP HSIs are modelled from the HyMap data acquired by the German
Aerospace Center in June 2007 during the HyEurope mission. The HyMap data cover the Ost
and Nym areas with two north-south-oriented flight lines. The HyMap imagery includes 128
spectral bands in the range from 450 nm to 2500 nm with a ground sampling distance (GSD)
of 4 m. The data were pre-processed and are reported with an average root mean square
error (RMSE) of 0.8 pixels (Heldens, 2010; Heiden et al., 2012). The simulated EnMAP
images are characterized by a GSD of 30 m and 242 bands ranging from 423 nm to 2439
nm (Segl et al., 2012; Guanter et al., 2015). The SWIR data of the EnMAP imagery were
taken into account in the overlapping of the VNIR and SWIR sensors. Additional spectral
bands ranging from 1358 nm to 1418 nm and 1814 nm to 1951 nm were eliminated due to
atmospheric water absorption. Therefore, 210 bands of simulated EnMAP HSIs were used in
this study.

4.2.3 Material map

The material maps of these two subsets were obtained from a previous study of HyMap HSIs
by (Heldens, 2010). The Ost material map was pre-processed by (Jilge et al., 2019) omitting
the invalid materials (e.g. shadow, unclassified pixels) that play minor and or no roles in the
study area, and thus, 27 material classes were considered. Correspondingly, three additional
material classes (lake, pool, coniferous tree) included in the Nym area were omitted because
the transferability approach requires the same material classes among different study areas.

4.3 Methods

To test the transferability of the urban gradients, we systematically defined three different
conditions, developed the corresponding approaches, and compared the findings for the
derived model outcomes and prediction maps. The three conditions were as follows: (i)
sufficient Ost samples to produce urban material gradients; (ii) some Ost samples but not
enough to perform a gradient analysis; (iii) no Ost samples and therefore no possibility
of extraction of the local gradients. We sought to interpret the Ost area under these three
conditions, with the assumption that the Nym area provides sufficient samples to generate
the urban material gradients. Based on these assumptions, three gradient analysis approaches
were constructed as shown in Fig. 4.2. The first approach was used as the control approach
(approach-OstOst), and the other approaches are experimental approaches (approach-OstNym
and approach-NymNym).
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Ordination Space-Ost Ordination Space-Nym 

Prediction Map 

OstOst 

PLSR model-OstOst 

Prediction Map 

OstNym 

Prediction Map 

NymNym 

Ost samples’ HSI Nym samples’ HSI 

Ost HSI 

Ost samples’ 

material table 

Nym samples’ 

material table 

PLSR model-OstNym PLSR model-NymNym 

Approach-OstOst Approach-OstNym Approach-NymNym 

sufficient Ost samples insufficient Ost samples no Ost samples 

Fig. 4.2 Study workflow: overview of three approaches. Three approaches are proposed to
deal with different situations: sufficient, insufficient, and no Ost samples. Ost samples are
used in approach-OstOst and approach-OstNym to produce the PLSR models, while Nym
samples are used in approach-NymNym. Ost ordination space is used in approach-OstOst,
while Nym ordination space is used in approach-OstNym and approach-NymNym.

All analyses were carried out using R Statistical Software 4.4.0 (R Core Team, 2013) and
QGIS 3 (QGIS Development Team, 2020). We mainly used the r-packages raster (Hijmans
et al., 2013), vegan (Oksanen et al., 2013), autopls (Schmidtlein et al., 2015), and rgdal
(Bivand et al., 2015).

4.3.1 Sampling

A total of 153 sampling circles were selected and evenly distributed over each study area,
with a diameter of 100 m and a step size of 300 m (Fig. 4.1). The diameter of 100 m was
designed to ensure that the sample is large enough to cover material mixtures and to be
covered by several spaceborne HSI pixels. The step size of 300 m was used to reduce the
effects of spatial autocorrelation in the data (Griffith, 2005; Wang et al., 2012; Jilge et al.,
2019). Consequently, the samples fully cover the diverse urban structures dominating the
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study site. In addition, each sample was numbered to enable better analysis and discussion
later. Table 4.1 presents the material statistics of the samples in the two study areas.

Table 4.1 Statistics of the material map and sampling coverage in the Ost and Nym areas. The
abbreviation of materials, total number of pixels for each material class and its proportion in
the material map, and sampling coverage pixels for each material class and its proportion in
total pixels per class.

Surface Material Ost area Nym area
Abbre- Total class pixels/ Sampling pixels in samples/ Total class pixels/ Sampling pixels in samples/
viation Pixels total valid pixels Coverage total valid pixels Pixels total valid pixels Coverage total valid pixels

(%) per class(%) (%) per class(%)
roofing tiles rtil 66886 8.494 6138 9.177 74176 10.371 6929 9.341
roofing concrete rcon 27440 3.485 2021 7.365 32908 4.601 2802 8.515
aluminum ralu 10466 1.329 890 8.504 19538 2.732 2002 10.247
copper rcop 13366 1.697 1149 8.596 6942 0.971 790 11.380
zinc rzin 7607 0.966 611 8.032 10589 1.481 881 8.320
PVC rpvc 13434 1.706 1107 8.240 12148 1.699 844 6.948
polyethylene rpol 8625 1.095 793 9.194 5882 0.822 263 4.471
roofing bitumen rbit 14883 1.890 1229 8.258 17931 2.507 1186 6.614
roofing tar rtar 29249 3.715 2585 8.838 7236 1.012 569 7.863
vegetation roof rveg 18879 2.398 1516 8.030 91709 12.823 7715 8.412
roofing gravel rgra 8206 1.042 910 11.089 5176 0.724 398 7.689
concrete fcon 42104 5.347 4275 10.153 37165 5.197 3065 8.247
asphalt fasp 84854 10.776 6915 8.149 67080 9.379 6082 9.067
synthetic turf fkun 3209 0.408 291 9.068 675 0.094 32 4.741
cobblestone pcob 47358 6.014 4046 8.543 37754 5.279 3111 8.240
loose chippings prlc 20546 2.609 2199 10.703 6733 0.941 588 8.733
concrete slabs pcon 11015 1.399 954 8.661 1578 0.221 120 7.605
railway tracks prail 10811 1.373 780 7.215 55175 7.715 4179 7.574
vegetated railway tracks prailveg 11546 1.466 937 8.115 2280 0.319 123 5.395
siliceous sand bsan 11765 1.494 1050 8.925 14558 2.036 1550 10.647
humous soil bsoi 2978 0.378 180 6.044 1528 0.214 95 6.217
river wriv 4518 0.574 484 10.713 2518 0.352 224 8.896
pond wpon 4691 0.596 401 8.548 430 0.060 5 1.163
deciduous trees vdec 172784 21.943 14053 8.133 115810 16.193 9682 8.360
lawn vlaw 16983 2.157 1471 8.662 37133 5.192 3632 9.781
meadow vmea 87525 11.115 7774 8.882 43176 6.037 3578 8.287
dry vegetation vdry 35690 4.533 3165 8.868 7364 1.030 687 9.329
Total Valid Pixels 787418 100 715192 100
Deleted Pixels 75994 148220
Total Pixels 863412 863412

4.3.2 Approach-OstOst

Approach-OstOst applies a gradient analysis following (Jilge et al., 2019) to analyse the Ost
area (Fig. 4.2), i.e., the samples collected in the Ost area generated the local urban material
gradients using ordination methods and then form the Ost ordination space. Principal
component analysis (PCA) was chosen as the ordination method in this study because it
achieves the reduction by linear transformation of the data into principal components (PCs,
treated as gradients given their physical meaning) and thus allows better comparability of
different urban gradients. The first two PCs were selected according to the broken-stick
model (Frontier, 1976; Jackson, 1993) in this study. A detailed discussion on the selection
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of the PCs in the transferability analysis of gradient and the determination of the number of
PCs is found in (Ji et al., 2020). Partial least square regression (PLSR) was used to regress
the ordination scores of the samples against their reflectance values retrieved from Ost HSI
to train the OstOst PLSR model. Finally, the PLSR model was applied on the Ost HSI to
generate the OstOst prediction maps.

Approach-OstOst is a control approach and is expected to produce the most accurate
prediction map. In this approach, both samples and ordination space were obtained from the
Ost study area, leading to optimized model calibration. This approach serves as a reference
in this study and therefore is used to evaluate the other approaches.

4.3.3 Approach-OstNym

Approach-OstNym deals with the situation in which the Ost area provides some samples but
the number of these samples is insufficient to perform an urban material gradient analysis,
while the samples collected in the Nym area allow a gradient analysis to be performed. In
this case, the Ost samples were projected to the Nym ordination space and thus acquired their
ordination scores in this ordination space (Fig. 4.2). The OstNym PLSR model was trained
by PLS regressing the new ordination scores of the Ost samples against the reflectance values
of samples. The prediction maps were obtained by applying the OstNym PLSR model on
Ost HSI and are referred to as OstNym prediction maps.

4.3.4 Approach-NymNym

Approach-NymNym deals with the situation in which no Ost samples could be collected, and
thus, information from the Nym area was used to interpret the Ost area. In this approach, the
ordination scores of the Nym samples in Nym ordination space were PLS-regressed against
their reflectance values to generate a NymNym PLSR model (Fig. 4.2). Applying this PLSR
model on Ost HSI, the Ost area was interpreted without in situ information.

4.3.5 Comparison of approaches

The three approaches were compared based on the intermediate results obtained from each
step. First, the sample distributions in the two ordination spaces were compared visually
and statistically using the Mantel test (Peres-Neto and Jackson, 2001) to acquire an overall
estimate of whether the sample distributions in the two ordination spaces match. The Mantel
test was based on a Pearson correlation in this study between two dissimilarity matrices
of the samples’ material tables. The Mantel test adopts a permutation test with randomly
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permuting rows and columns of the dissimilarity matrix of samples’ scores on two PCs
999 times (Legendre and Legendre, 2012) and then recalculates the correlation after each
permutation to assess the significance of the observed correlation which is the proportion
of permutations that lead to a higher correlation coefficient. In addition to overcoming the
problems arising from the statistical dependence of the elements within each of the two
matrices, the use of the permutation test means that there is no reliance on assumptions about
the statistical distributions of the elements in the matrices.

PLSR models were subsequently generated from the ordination scores of the samples and
the sample-averaged reflectance values. It should be noted that the OstNym and NymNym
PLSR models were based on the same ordination space—Nym ordination space—with a
corresponding set of samples (Ost samples and Nym samples).

Third, the resulting prediction maps obtained from three approaches were visually as-
sessed. When applying the PLSR models to the Ost HSI, three groups of prediction maps
were obtained from the three approaches.

In the last step, four groups of samples were selected to demonstrate that a closer location
in the ordination space corresponds to more similar material compositions. In addition, the
reflectance values were also compared to prove the difference between reflectance values of
the Ost area and the Nym area and to prove that the NymNym PLSR model can be applied
on the Ost area.

4.4 Results

4.4.1 Ordination spaces

The Ost ordination space and Nym ordination space are shown in Fig. 4.3. Fig. 4.3a presents
the ordination space generated from Ost samples that is used for approach-OstOst. Fig. 4.3b
shows the ordination space generated from Nym samples that is used in approach-OstNym
and approach-NymNym with the assumption that insufficient or no Ost samples generate the
ordination space. All of the samples are projected into both ordination spaces, with material
vectors representing the directions of increase in the respective material cover fractions.

The distributions of the samples between Ost ordination space and Nym ordination space
are similar. Generally, both sample cloud distributions have a triangular shape. A detailed
examination shows that most representative material classes are similar. For example, most
vegetation types, such as deciduous trees(vdec), meadow(vmea), and lawn(vlaw) are on
one side and other materials (mostly artificial materials) on the other. The vector length
of vegetation types are longer because they cover more pixels. Furthermore, the distances
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(a) ordination space acquired by Ost samples

Fig. 4.3 Ordination spaces generated from the samples of the Ost and Nym areas. (a) is used
in approach-OstOst, and (b) is used in approach-OstNym and approach-NymNym. Ost and
Nym samples are presented, and the potential material vector and their length are also given.
The full names of the materials are given in Table 4.1. In addition, the green circles highlight
four groups of samples with closely spaced positions.

between the samples are relatively constant. For example, the distances are consistent within
the group of Nym-sample-86, Nym-sample-103 and Nym-sample-108, as well as for the
group of Ost-sample-37, Nym-sample-37, and Nym-sample-54.

Mantel statistics also show the consistent configuration of the distribution of the samples
in two ordination spaces. The Mantel statistical result of the Ost samples is 0.995 with a
significance of 0.001 in 999 free permutations, while that of the Nym samples is 0.990, with
a significance of 0.001 in 999 free permutations.

4.4.2 PLSR models

We generated six PLSR models by regressing the ordination scores in each gradient and
the samples’ averaged reflectance values. The best PLSR model for PC1 resulted in R2=
0.898 for calibration and R2= 0.892 in 10-fold cross-validation (Fig. 4.4a). Accordingly, the
PLSR models of PC1 from approach-OstNym and approach-NymNym also acquire relatively
high R2 (0.760, 0.743; 0.860; 0.836) (Fig. 4.4b, 4.4c). For the PC2, the PLSR models
resulted in R2= 0.433 for calibration and R2= 0.351 (Fig. 4.4d) in 10-fold cross-validation
for approach-OstOst, and for approach-OstNym and approach-NymNym are 0.698, 0.648,
0.736, and 0.646 (Fig. 4.4e, 4.4f).
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The distribution of samples in Fig. 4.4 corresponds to the distribution of samples in Fig.
4.3. The approach-OstOst evaluates the ordination scores in the Ost ordination space, and
therefore, the distribution of the samples in PC1 is dense and ranges from -200 to 200 in
PC2. The approach-OstNym and approach-NymNym apply the ordination scores of the Nym
ordination space, and therefore, the distribution in PC1 is loose and ranges from -200 to 100
in PC2.

For approach-OstOst, PC1 (Fig. 4.4a) contains the largest variance, and PC2 (Fig. 4.4d)
represents less information and consequently shows a relation to the reflectance values
modelled with relatively low R2. The approach-OstNym and approach-NymNym acquired
reasonable PLSR models and performed well with 10-fold cross validation, indicating that
the reflectance values of the Ost samples and their ordination scores in the Nym ordination
space can reasonably build a PLSR model. In particular, the higher values of calibration
and validation of PC2 in approach-OstNym (Fig. 4.4e) indicate that the PC2 in approach-
OstNym provides more accurate information than the PC2 in approach-OstOst. Similarly, the
relatively high value of calculation R2 and validation R2 of the PLSR models of two PCs in
approach-NymNym prove that the ordination scores of the Nym samples in Nym ordination
space and their reflectance values established an accurate PLSR model.

4.4.3 Prediction maps

Prediction maps were acquired by applying the corresponding PLSR models to the Ost HSI.
The prediction map obtained from the PC1 PLSR model of approach-OstOst (Fig. 4.5a)
presents the pattern of vegetation in blue and artificial materials in red, and the PC2 prediction
map (Fig. 4.5d) presents the different vegetation species with rather low accuracy. The
prediction maps generated from approach-OstNym provide similar information: the resulting
PC1 prediction map (Fig. 4.5b) vividly displays vegetation coverage, and the structures of
artificial materials are similarly indicated; the PC2 prediction map (Fig. 4.5e) also shows
the vegetation information. While the prediction maps produced from approach-NymNym
appear to lose some detailed information, the major features are provided: the PC1 prediction
map (Fig. 4.5c) presents the information of vegetation and artificial materials, while the PC2
prediction map (Fig. 4.5f) shows the vegetation coverage of the study area.

Two interesting phenomena are observed in the prediction maps. The trapezoidal area
(A) in Fig. 4.5a, called the Ostfriedhof area, shows variable intensity of the blue colour. The
left side is light blue, and the right side is dark blue. In the historical image review by Google
at the time closest to the acquisition time of the HyMap data, the area was divided into two
sub-areas, with the left side including more graves, i.e., more impervious surfaces, while the
right side containing less graves. The trapezoidal area (B) (Fig. 4.5b) shows two types of
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Fig. 4.4 The performance of PLSR models in three approaches. R2 cal: R2 in calibration,
R2 val: R2 in 10-fold validation. Each approach has two PLSR models of PC1-reflectance
and PC2-reflectance. Circles or points represent samples. The x-axis represents the input
ordination scores of the samples used to build the PLSR model, and the y-axis represents the
output ordination scores, while the calculated scores of the PLSR model are represented by
red circles and the predicted scores of the 10-fold cross-validation of the PLSR model are
represented by blue points. Their fit lines and R2 are provided and displayed in corresponding
colours. y = x represented the best possible fit with either calculated or validated ordination
scores of the samples matching the input ordination scores and therefore the best possible
calculation or validation R2 is 1.

patterns with red on the left and blue on the right. Google Earth historical imagery check
reveals that the left block contained row houses and the right block contained semi-detached
houses. The semi-detached houses had much more vegetation than the row houses and are
therefore coloured blue, while the the row houses block is coloured red in the prediction map.

4.4.4 Comparison of material compositions and reflectance values of
sample groups

Four groups of samples were selected in the ordination spaces within green circles (Fig. 4.3)
for which the reflectance values and material compositions are provided in Fig. 4.6. The first
group includes Ost-sample-74 and Nym-sample-18 that have similar material compositions.
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(a) OstOst-PC1

(f) NymNym-PC2(e) OstNym-PC2(d) OstOst-PC2

(c) NymNym-PC1(b) OstNym-PC1
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A

Fig. 4.5 Prediction maps for each PC. Subfigures (a) - (f) show the prediction maps for each
PC obtained directly from the PLSR models. For better visual interpretation, PC1 is inverted
so that the vegetation pattern is shown in blue and artificial materials in red. On the one hand,
three pairs of prediction maps show similar patterns including vegetation coverage and urban
structures. On the other hand, detailed information is gradually lost from the prediction maps
of approach-OstOst, approach-OstNym, and approach-NymNym.

Since lawn (vlaw) and meadow (vmea) have similar reflectance values, the difference between
these two samples is that Ost-sample-74 covers a small amount of asphalt (fasp). Given that
the vegetation species have stronger spectral features, their reflectance should not vary much.
However, their reflectance values do vary considerably (Fig. 4.6a). The Ost-sample-76 and
Nym-sample-14 in the second group are distantly close in the ordination space, and have
similar material and same reflectance values, which fits very well with the application of
transferable urban material gradients. The other two groups comprise three samples, and
show the difference between the reflectance values of Ost and Nym HSIs. Fig. 4.6c displays
the material portions and reflectance of Ost-sample-148, Nym-sample-81, and Nym-sample-
91. Nym-sample-81 and Nym-sample-91 are closer in the ordination space (Fig. 4.3), and
have similar materials (meadow, deciduous trees, roofing vegetation, and cobblestone) with
similar proportions, and this is reflected in their spectra. The last group includes Ost-sample-
37, Nym-sample-37, and Nym-sample-54 (Fig. 4.6d). The Ost-sample-37 is located in the
middle of two Nym samples, but the reflectance values of Ost-sample-37 are the lowest, and
the other spectra of the Nym samples are characterized to be more similar. While Fig. 4.6b
and 4.6c demonstrate the similarity of the reflectance values of the Ost and Nym areas, Fig.
4.6a and 4.6d show the differences between the reflectance values of these two areas.



80 Are urban material gradients transferable between areas?

500 1000 1500 2000 2500

1
0
0
0

3
0
0
0

5
0
0
0

Wavelength (nm)

R
e
fl
e
c
ta

n
c
e
 (

%
*1

0
0
)

500 1000 1500 2000 2500

1
0
0
0

3
0
0
0

5
0
0
0

500 1000 1500 2000 2500

1
0
0
0

3
0
0
0

5
0
0
0

Ost-sample-37

Nym-sample-37

Nym-sample-54

500 1000 1500 2000 2500

1
0
0
0

3
0
0
0

5
0
0
0

Wavelength (nm)

R
e
fl
e
c
ta

n
c
e
 (

%
*1

0
0
)

500 1000 1500 2000 2500

1
0
0
0

3
0
0
0

5
0
0
0

500 1000 1500 2000 2500

1
0
0
0

3
0
0
0

5
0
0
0

Ost-sample-148

Nym-sample-81

Nym-sample-91

500 1000 1500 2000 2500
1
0
0
0

3
0
0
0

5
0
0
0

Wavelength (nm)

R
e
fl
e
c
ta

n
c
e
 (

%
*1

0
0
)

500 1000 1500 2000 2500
1
0
0
0

3
0
0
0

5
0
0
0

Ost-sample-76

Nym-sample-14

500 1000 1500 2000 2500

1
0
0
0

3
0
0
0

5
0
0
0

Wavelength (nm)

R
e
fl
e
c
ta

n
c
e
 (

%
*1

0
0
)

500 1000 1500 2000 2500

1
0
0
0

3
0
0
0

5
0
0
0

Ost-sample-74

Nym-sample-18

(b)(a)

(c)

vdec

vlaw

vmea

Nym-sample-18

faspvdec
vmea

Ost-sample-74

rveg
vdec

vlaw
vmea

Nym-sample-14

rcop
bsan

vdec

vlaw
vmea

vdry

Ost-sample-76

rveg

pcob
vdec

vmea

vdry

Nym-sample-91
(d)

copper(rcob)

roofing bitumen(rbit)

vegetation roof(rveg)

asphalt(fasp)

cobblestone(pcob)

loose chippings(prlc)

siliceous sand(bsan)

river(wriv)

deciduous trees(vdec)

lawn(vlaw)

meadow(vmea)

dry vegetation(vdry)

copper(rcob)

roofing bitumen(rbit)

vegetation roof(rveg)

asphalt(fasp)

cobblestone(pcob)

loose chippings(prlc)

siliceous sand(bsan)

river(wriv)

deciduous trees(vdec)

lawn(vlaw)

meadow(vmea)

dry vegetation(vdry)

copper(rcob)

roofing bitumen(rbit)

vegetation roof(rveg)

asphalt(fasp)

cobblestone(pcob)

loose chippings(prlc)

siliceous sand(bsan)

river(wriv)

deciduous trees(vdec)

lawn(vlaw)

meadow(vmea)

dry vegetation(vdry)

Legend of material 
proportion

rbit

rveg
pcob

vdec

vmea

Nym-sample-81

prlcvdec

vlaw

vmea

Ost-sample-148

fasp
vmea

Nym-sample-54

rveg
pcob

vlaw

vmea

Nym-sample-37

wriv
vdec

vmea

Ost-sample-37

fasp
vmea

Nym-sample-54
fasp

vmea

Nym-sample-54

fasp
vmea

Nym-sample-54

Fig. 4.6 Comparison of reflectance values. Four sets of samples are selected from the
ordination space (refer to Fig. 4.3 for detailed discussion. The material compositions of the
samples are provided. The material covering less than 15 pixels are neglected in this figure
that represents approximately 3% of the total covering pixels of a sample. The color of the
material is consistent with Fig. 4.1.

4.5 Discussion

4.5.1 Are the urban material gradients transferable between two study
sites?

Theoretically, the transferability of urban material gradients means that the gradients acquired
from one area are suitable for the interpretation of another area, i.e., the approach-OstNym,
using Nym gradients to interpret Ost area, performs as well as approach-OstOst. The
difference between these two approaches is the gradients, i.e. approach-OstOst uses the Ost
gradients and approach-OstNym uses the Nym gradients. Other factors, such as the material
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composition of the samples and their reflectance values, are fully controlled because the
samples used are always Ost samples. As shown in section 4.4, for the sample distribution
in the ordination spaces, the performance of PLSR models, and the prediction maps, the
approach-OstOst and approach-OstNym exhibit very similar results. Therefore, the urban
material gradients are transferable between the Ost and Nym areas.

This means that the material gradients acquired from the Nym area can be used to success-
fully interpret the Ost area. This is investigated by approach-NymNym and demonstrated the
quality of the results through the comparison of approach-OstOst and approach-NymNym.
The intermediate results indicate that their ordination spaces are similar and PLSR models
performs quite well. However, although the prediction maps of the approach-NymNym retain
the main characteristics of the Ost area, they still loses some detailed information.

The comparison of approach-OstOst and approach-NymNym shows that the good perfor-
mance of the PLSR models does not always mean that both approaches can achieve good
interpretation results on the Ost area. The OstOst PLSR model is based on the ordination
scores of the Ost samples and reflectance values of the Ost area, whereas the NymNym PLSR
model describes the relation between the ordination scores of the Nym samples and the Nym
reflectance values. In both ordination spaces (Fig. 4.3), the samples in close proximity to
each other have similar material compositions, and thus we can assume that either the Ost
sample or the Nym sample can be treated as equivalent. In another words, the samples in
close proximity in the ordination space should have qualitatively similar reflectance values. If
this is in fact the case, approach-NymNym should display similar information to that obtained
by approach-OstOst, i.e. the urban material gradients are transferable under application from
the Nym area to the Ost area.

To determine whether the reflectance values vary between Ost and Nym HSIs, four groups
of samples were selected in the ordination spaces within the green circles (Fig. 4.3) for which
the reflectance values and material compositions are provided in Fig. 4.6. The second and
third groups of the samples show the consistent reflectance values between the Ost and Nym
samples, while the first and last groups demonstrate that some samples from the Ost and Nym
areas do not show consistent reflectance values. Therefore, the PLSR models acquired in
approach-NymNym cannot be simply applied to interpret the Ost area, as they are calculated
for Nym HSIs, and there is a difference between the reflectance of Ost and Nym HSIs. This
phenomenon is discussed further in the next section.

4.5.2 What affects the transferability of urban material gradients?

The gradient concept is based on the assumption that similar material compositions in the
gradient space result in similar spectral reflectance mixture characteristics. Therefore, the
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consistency of reflectance values from HSIs between the areas are relevant as mentioned
above. The neighboring samples in the ordination space (Fig. 4.3a) have similar material
composition, and therefore, the difference between the resulting OstNym and NymNym
prediction maps shown in Fig. 4.3a is related to the difference of the reflectance values
between the Ost and Nym areas. A possible reason for this observation is the underlying data
source for the simulated EnMAP data as described in Section 4.2.2. Several airborne HyMap
flight lines are combined to generate the EnMAP simulated data set. These flight lines show
that differences in the brightness level that still remain can be traced back to the remaining
BRDF effects that are then also present in the simulated EnMAP data. It can be expected
that real spaceborne HSI data will not show these local brightness differences. However, for
this study, real spaceborne HSI data that matches the used surface material map of Munich
were not available. Future studies with real spaceborne HSI information such as that from
PRISMA or DESIS data are expected to obtain prediction maps with higher accuracy.

Another aspect that affect the transferability of urban material gradients is the material
composition of the two areas. Since the PLSR model is trained with a specific set of materials
of the first area, new materials in the second area cannot be considered in the PSLR model
and therefore, will most likely result in lower model performance. In other words, the new
material in the unknown area will not be recognized due to the lack of appropriate input
in the training of the PLSR model. Therefore, the detected materials from the gradients
acquired in the known area are detectable in the unknown area. In the case of the Ost and
Nym areas, we can expect almost the same material composition. This should be also the
case for different cities in Germany that consist of similar urban neighborhoods. Future
studies shall be dedicated to test the transferability of gradients from one city to a similar but
different city. To build a more robust model for several cities, gradients can also be derived
from test areas of different cities with varying surface material compositions.

Although the results confirm that urban material gradients are transferable between two
study sites, the physical significance of the gradients produced by PCA changed slightly
between the Ost to Nym ordination spaces. In the Ost ordination space, the negative end
of PC1 represents vegetation classes (including deciduous tree, lawn, and meadow), and
the positive end of PC1 represents an abundance of artificial materials (e.g., cobblestone,
asphalt, roofing tar, and concrete). Thus, the negative end of PC2 can be used to discriminate
deciduous trees and meadow. In the Nym ordination space, PC1 can still differentiate the
vegetation species and artificial materials but in a less distinctive manner; e.g., meadow is
not clearly separated by PC1 any more. In addition, PC2 cannot be used to quantitatively
distinguish deciduous trees and lawn. However, it should be noted here that PCA is not
the optimal method for the interpretation of physical significance of urban gradients (see Ji
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et al., 2020) but rather is designed to test the transferability that was the main objective of
this paper. Therefore, we suggest that other ordination methods should be used to obtain
the most meaningful urban gradients such as shown in (Jilge et al., 2019). However, PCA
is still considered as one of the most appropriate methods for the transferablity analysis of
urban gradients across different areas because it can easily transfer gradients with loadings
between different study areas. Moreover, the resulting urban material gradients obtained from
different ordination methods usually have similar properties. Thus, since we demonstrate
the transferability of the gradients determined by PCA, the gradients determined by other
ordination methods are transferable in the same situation.

The prediction maps are comparable to those acquired by (Jilge et al., 2019). Although
(Jilge et al., 2019) applied detrended correspondence analysis (DCA), the prediction maps
obtained in their study contain similar information to that obtained in this work, in particular
for PC1. Considering these results together with the above discussion suggests that ordination
methods can affect the prediction results, but will not change them completely. (Skowronek
et al., 2018) et al. evaluated the transferability of HSI-based distribution models for the
detection of an invasive alien bryophyte. (Skowronek et al., 2018) concluded that the success
of transfer models calibrated in one site to another site depend strongly on the respective
study sites. Two or more ordination methods are suggested to be used in parallel to enhance
the detection of artefacts in the results, because each ordination methods with the different
weightings of the elements in the species abundance matrix, and thus may explain the
observed variation in the analysed ordination results. It will be interesting to examine these
approaches in future studies in order to enhance our understanding of the functionality,
robustness and feasibility of the methods for deriving urban gradients.

4.5.3 Potential applications of transferable urban gradients

Transferable urban material gradients can be used for time- and cost-efficient large-scale
mapping of urban materials. The potential use of remote sensing images for urban mapping
has studied extensively over the past decade (Ridd, 1995; Weng, 2012). Since spaceborne
HSIs cover large geographical areas in high geometric detail and with a short revisiting
time, their capabilities were demonstrated. However, some of the urgently needed detailed
information cannot be obtained from HSIs and must be derived from other sources. To create
classification maps that are useful for urban planners, supervised classification methods are
commonly implemented on HSIs. These rules lead to results with an accuracy that is strongly
influenced by the amount of training data. Obtaining appropriate ground truth data for
implementation and validation purposes requires intense efforts in terms of time consumption
and economic resources. For most areas, in situ data are either completely absent or are
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outdated and unreliable. Therefore, the limited availability of in situ data is a challenge for
classification problems, particularly with regard to the model transferability. The transferred
urban gradients provides a possible approach for avoiding training data collection in the area
that has an known area in close proximity and fits the transferable urban gradients.

Transferable urban gradients provide a practical method to obtain a fuzzy map of an
unknown area with limited information and therefore can be used to improve the results
of other urban mapping models. First, the transfer of urban gradients can be an useful
approach for mapping urban materials when limited resources are available to carry out
fieldwork and remote sensing data are available for a larger area. With a limited training
set, classification accuracy tends to decrease as the number of features increases which is
known as the Hughes effect (Hughes, 1968). As an increasing number of mathematical or
machine learning methods are proposed with the requirement of sufficient prior knowledge,
transferable urban material gradients can provide more knowledge-based information for
use in these algorithms. The prior knowledge including spatial relationships and patterns
of urban structures can be used to improve the characterization of not only single pixels but
also of the whole image (Plaza et al., 2009).

4.6 Conclusion

Gradient analysis has the potential to be applicable to images from the ongoing and future
spaceborne imaging spectroscopy missions. Although the spatial resolution of these data is
considered to be coarse for urban applications and urban object-related information cannot
be directly detected, it enables the derivation of surface material compositions of large areas,
which is important information for continental to global urban climate related analyses.

In this paper, we addressed the question of whether gradient analysis can be a robust and
transferable technique despite its data-driven nature. For this purpose, we designed three
tests for simulating the transferability of urban material gradients to the Ostbahnhof area in
Munich, Germany.

In the first step, we evaluated the similarity of the sample distributions in two ordination
spaces, one built by the samples of the Ostbahnhof area and the other generated by the
samples of the Nymphenburg area. Both gradient spaces are highly comparable, providing
an initial indication of the robustness of the urban gradients in the case where the overall
surface material composition is similar. It can be assumed that these gradients are applicable
to other cities with similar urban structures and thus surface material compositions, so that
this method will be valid for a wide range of mid-European cities. However, if new and
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region-specific materials are dominating the surface material composition such as for cities
with other urban structures, the gradients may differ.

We expanded the transferability test to regress the gradient scores against the surface
material reflectances using PLSR and applied the resulting models to predict the surface
material compositions of Ostbahnhof area using imaging spectroscopy data. The comparison
of the prediction results of approach-OstOst and approach-OstNym demonstrates that the
material gradients acquired from the Nym area can successfully interpret the Ost area, while
the comparison of approach-OstOst and approach-NymNym show that the PLSR model
retrieved from Nym area cannot be simply transferred to the Ost area.

Since this contradicts the results of the gradient space analyses, we found that the
reflectance data of the two investigated areas have significant differences in the albedo
despite their similar surface material compositions. This can be related to the different flight
lines of the source airborne data from HyMap used for the simulation of spaceborne EnMAP
data. Although we cannot fully prove the transferability of the PLSR models to different
areas, the results indicate the transferability potential if well-calibrated spaceborne imaging
spectroscopy data are used. Moreover, these results reveal the importance of calibrated
spaceborne imaging spectroscopy data and data cross-calibration, if different spaceborne
sensor data are combined.

Transferable urban material gradients can be used effectively in time-consuming and
costly large-scale mapping of urban material compositions. Furthermore, they can provide a
fuzzy map of an unknown area with limited information and therefore can be used to enhance
the results of other urban mapping models. Although the gradient concept works well in
ecology for mixed vegetation, the ability of this approach should be further tested in the field
of urban material composition. Exploration of urban material gradients, focusing not only
on its transferability but also on pattern recognition capability, will provide us with a more
accurate and definite answer to this question.
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Chapter 5

Synthesis

This work focuses on mapping urban surface materials using imaging spectroscopy (IS) data
at different spatial scales. In particular, this study attempts to explore the information of
these data to identify the chemical and physical properties of surface materials and solve the
mixed pixel problem. In the following sections, the findings are summarized (subsection
5.1.1) and discussed (subsection 5.1.2) with respect to the research objectives and in the
broader context. Section 5.2 highlights further investigations and experimentation that can
be performed from both technical and application perspectives. Finally, Section 5.3 then
presents the conclusions.

5.1 Summary and discussion

5.1.1 Summary

Mapping urban surface material is not straightforward due to the complexity of surface
materials themselves and the heterogeneity of their distribution. IS data provides narrow and
continuous inspection in the spectral dimension, and can therefore be beneficial in urban
surface material mapping. This work begins with the detection of solar photovoltaic (PV)
using airborne IS data (Chapter 2). Six spectral indices were proposed and combined, the
spectral variance due to different detection angles and installation angles of solar PV systems
was solved. The validation of the proposed spectral feature-based approach using the large
airborne spectral library proved the ability of this approach to identify PV material among
other complex urban surface materials. And the final validation in Oldenburg, Germany,
demonstrates that both large PV systems on solar power plants and small PV modules on
rooftops are accurately detected, further highlighting the applicability of the approach.
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Due to the limitations of airborne IS data, such as low coverage, lack of time contiguity,
and high cost, the thesis then focuses on urban surface material mapping with spaceborne IS
data, i.e. simulated EnMAP data. The EnMAP data overcomes the limitations of airborne data
but suffers from the mixed pixel problem resulting from the 30 m spatial resolution. Based
on the urban gradient concept proposed by Jilge et al. (2019), the mixed pixel problem can
be avoided by treating all pixels as mixed and without the requirement of pure pixels as input.
However, the urban surface material gradients were generated using a data-driven method,
i.e., dimension reduction, and therefore the sampling robustness and area transferability of
this technique need to be analyzed before the wide usage. In this case, Chapter 3 describes
how six systematic sampling schemes and three random sampling schemes were established
to generate urban surface material gradients. Results show that the gradients generated from
six slightly shifted systematic sampling schemes and three random sampling schemes are
very similar to each other, and the distributions of the samples in the gradient spaces are also
similar, as evidenced by Mantel statistical test. Therefore, the study proved the sampling
robustness of urban surface material gradients.

In Chapter 4, two subsets in Munich city were employed, referred to as Ost and Nym areas.
Three gradient analysis approaches were designed to prove the transferability of urban surface
material gradients between Ost and Nym areas for the cases where (i) sufficient samples
were collected in the Ost area; (ii) some samples were collected in the Ost area; and (iii) no
samples were collected in the Ost area. The Ost samples were used to generate a gradient
ordination space in case (i), while the Nym samples were used to create the ordination space
to support the pattern recognition of the Ost area in cases (ii) and (iii). The findings show
that the area transferability between similar urban areas was valid. Furthermore, this study
proposes a complete chain to compare the data transferability of the reduction approach. It
can be used not only for the applications for the transferability of gradient concept but also
for other data-driven pattern description approaches in general.

5.1.2 Discussion

The thesis firstly explores the physical absorption and reflectance features of PV modules and
developed a robust approach for PV modules detection. The included image spectral library
takes into account all other common urban surface materials, builds the basic ground for
eliminating the confusion of PV and non-PV materials. The laboratory goniometer was also
considered, which monitors the condition with different illumination angles and detection
angles that could happen in different PV installed rooftops and solar irradiation angles
within days and years. The HySpex airborne data presents the detection noise in a real case.
Considering all noise integrated enables this spectral feature-based approach a robust and
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transferable approach, can serve as highly accurate PV detection in different regions. Since
the thresholds of the spectral indices were empirically derived through a manual selection
based on spectral libraries, the transferability of the approach may be limited in different
contexts, e.g., with different sensors or different urban environments. The employed spectral
libraries include goniometer data, HyMap spectral libraries, and HySpex imagery. In this
way, thresholds are more generalized and not only optimized to one dataset, thereby reducing
the transferability limitation. Another restriction of this approach is that thin-film panels
cannot be detected because they use different materials than EVA-coated C-Si PV modules.
As aforementioned, the thin-film panels are very rarely present, so this would not significantly
affect the efficiency of our approach. If this PV panel material becomes more dominant, the
approach needs to be extended to consider the characteristic spectral features of the material.
In addition, very small PV modules also may be missed due to the relatively coarse spatial
resolution of HySpex data (1.2 m) compared to the spatial occurrence of these PV panels.
Therefore, other data sources that could improve the spatial resolution should be taken into
account in the future.

The analysis of sampling robustness of urban gradients aims to address the effectiveness
of different locations of samples to urban material gradients, and the proposed experiments
have sufficiently demonstrated this in a reliable way. Because with similar configuration
settings and same test sites, the size and number of samples can be copied, but the location of
samples may vary from different experts’ operations. We chose principle component analysis
(PCA) to extract material gradients, as it is based on a linear distribution model and allows
for better comparability of different material gradients. However, the PCA is not the most
appropriate ordination method regarding its physical significance. It is used to focus on the
first important information to address the sampling robustness problem. The extraction of
material gradients is basically a dimensionality reduction of a sample-by-material matrix, and
thus, can be performed by many methods. Although the resulting material gradients show
generally similar characteristics, the available methods differ in their principles, performance,
and fine details of the extracted material gradients. This study aims to prove the sampling
robustness of urban gradient analysis. Thus, we used PCA because it is the most commonly
used ordination method, and PCA provides loadings that can be used to easily and repeatedly
transform samples from a material composition matrix to a gradient score matrix. Therefore,
PCA is good enough for this study, and testing of other ordination methods can be pursued
in the future. Another limitation is that a possible time difference between the acquisition
time of the material map and IS data may occur, which could affect the gradient mapping
results. In this case, there should be an uncertainty assessment with the final gradient maps.
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In the analysis of the transferability of urban gradients to other areas, the generic technique
of gradients is further investigated. It evaluates the direct effect, similarity, and difference in
terms of transferability of the gradient approach to other urban areas despite their data-driven
nature. This is very important for the future application of spaceborne IS data covering
urban areas to quantitatively characterize urban spaces. Theoretically, the transferability
of gradients from East to Nym is successful because it reveals the most important gradient
changes. However, the three approaches also show that although the PLSR value is high, the
actual application cannot describe the detailed gradual change. It is suggested to use two or
more ordination methods in parallel to improve the detection of artifacts in the results since
each ordination method has different weights of the elements in the species abundance matrix
and thus can explain the observed variation in the analyzed ordination results. Therefore, the
success of transfer models calibrated from one site to another is highly dependent on the
particular study sites. The cities with similar structures and material compositions can be
treated as a similar city class and therefore the transferable gradients generated by a city or
cities within that city class can be readily applied. This leads to the general conclusion that
the general trend can be retrieved from multiple locations, regionally or globally. In addition,
in situ data is also required as a dependent input or complementary information for a detailed
and comprehensive understanding or study of a city/area.

5.2 Outlook

Overall, this thesis provides very promising results, showing that IS data can contribute
greatly to urban surface materials mapping. Future work can build on these results and
can enhance the developed and applied methods. Two aspects, including PV detection and
gradient analysis using IS data, are presented in subsection 5.2.1 and subsection 5.2.2 with
their future directions.

5.2.1 Solar panel detection

From the technical perspective, in order to further improve the thresholds towards general
use, advanced techniques such as machine learning can be applied, and additional datasets
can also be included. The use of machine learning methods to define the thresholds for each
spectral index based on training with massive pure spectra can be further developed in the
next step. In addition, adding the texture, shape or other visual features from high spatial
resolution data is of great potential for future studies. This study focuses on exploring the
full spectral potential of IS data, which is shown to achieve very good quality with a high
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potential for wider applicability due to its physics-based principles. Other studies of PV
detection using machine learning methods proved that the texture or shape information with
high spatial resolution color images could be independently used for PV detection. Combined
with shape- and texture-based methods would greatly expand the possibility to identify PV
panels and additionally reconstruct their spatial shape given that very high spatial resolution
data is used. Including the texture or shape information or other visual features apart from
spectral features theoretically could be helpful for the overall detection accuracy, especially
for the shapes of the panels. From the application perspective, although thin-film panels are
rarely used today if this PV panel material becomes more dominant, the approach shall be
expanded to find characteristic spectral features of the material.

5.2.2 Urban surface material gradients

The two gradient analyses within this thesis prove the robustness and transferability of this
technique for determining urban surface material compositions using upcoming spaceborne
IS data. Since the mixed pixel problem complicates the use of these data for urban object
detection, urban surface material gradients provide an alternative way to circumvent this
problem. This new technique can be further improved or analyzed before widespread
application.

Future technical work on the robustness and transferability of urban material gradients
can be further analyzed. Regarding the sampling robustness, both the size of samples and the
distance between samples may affect the material gradient and need to be further investigated.
For the area transferability of urban surface material gradients, other potential factors may
impact, such as ordination methods, detailed ground truth data, and the heterogeneity of
urban areas, which need to be investigated in future work.

From the application perspective, we can use the results of the urban surface material
gradient for the analysis of spatial autocorrelation in an urban environment. Tobler’s law
provides the theoretical basis for urban neighborhoods, which is called spatial autocorrelation
but has not been proven with urban surface materials. Spatial autocorrelation, i.e., spatial
association, or spatial dependence, results primarily from community processes in urban areas
or from the physical forcing of environmental variables in vegetation ecology (Legendre,
1993). Finding out whether spatial autocorrelation occurs in urban surface materials, and if
so, how it affects the materials, would be of great importance for urban model study. The
information on the spatial patterns of surface materials would strongly support the urban
neighborhood and provide the reference scale for urban functional units.
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5.3 Conclusion

From a general perspective, the overarching goal of this thesis was to develop, apply, and
evaluate tailored methods and approaches that implement urban surface material mapping
based on IS data. This thesis provides very promising results, which show that IS data
has a high capability to contribute to detailed and specific urban surface material detection
on a local or regional scale, and global scale with upcoming spaceborne spectrometers.
The first novelty of this work presented in Chapter 2 is developing and combining spectral
indices based on large spectral libraries, which can account for inter- and intra- class spectral
variability for PV modules detection. This work on the one side creates greater awareness of
the potential importance and applicability of IS data for PV modules identification, on the
other side advances the use of IS data-based application on general material identification.
Secondly, when turning to regional or global material detection, employed spaceborne IS
data meet critical mixed pixel problems, and therefore the urban surface material gradient
analysis was established based on the existence of urban neighborhoods. The sampling
robustness evaluation of the gradients (presented in Chapter 3) not only strengthens the
gradient approach from the sampling strategies but also creates a generic way to evaluate the
sampling robustness in similar circumstances. The third novelty of this work (presented in
Chapter 4) is the area transferability analysis of urban surface material gradients, which is
the most concerned question in the application of new methods. The analyses of sampling
robustness and area transferability pave the way for subsequent analysis of the stability of
urban surface material gradients and the interpretation of material gradients in other urban
environments.

Therefore, the proposed methods in this thesis contribute to a more detailed understand-
ing of urban surface material mapping. This comprehensive understanding is essential for
urban climate models and related urban planning by local authorities. In addition, this thesis
attempts to step back and understand the key factors in urban surface mapping using IS
data from the perspective of source data characteristics. Among three essential factors, i.e.
spectral resolution, spatial resolution, and detection repeatability, spectral resolution should
be considered primarily, which is why IS data is the most suitable choice for urban surface
mapping. Depending on the objectives, the high spatial resolution and high repeatability are
trade-offs which differ between airborne IS data and spaceborne IS data. From the method-
ological perspective, this thesis attempted to categorize various state-of-the-art methods that
benefit from multiple data sources, classification units, and mapping patterns.

As Big Data and global mapping are popular and point to the future, space-based IS data
is potentially more promising on mapping urban surfaces. Since the spatial resolution of
space-based IS data is relatively coarse, pixels are often heavily mixed with a combination
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of materials. In this context, assigning spectra from pixels on IS data to fixed classes of
surface materials is not accurate enough, and information could easily be lost. In this context,
gradient mapping could best preserve the information in the original data and does not require
a prior determination of pure pixels, which most pixel unmixing methods have problems
with space-based IS data. Therefore, it would be beneficial to combine hard classification
and gradient mapping to improve the classification capability in urban mapping in the future.
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