
An Energy Stable Discontinuous Galerkin

Discretization Approach for the

Geometrically Exact Intrinsic Beam Model

Christian Bleffert

Master’s Thesis Mathematics

Universität zu Köln

Department Mathematik/Informatik

November 10, 2022

Advisors: Prof. Dr. Gregor Gassner,
Lukas Dreyer





Contents

1 Introduction 2

2 Intrinsic Beam Model 4
2.1 Classical Formulation of the Equations . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Constitutive Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Theory of Linear Hyperbolic Balance Laws . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Transfer to a Linear Hyperbolic Balance Law . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Formulation in Advection Form . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Hyperbolicity of the Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Formulation for Characteristic Variables . . . . . . . . . . . . . . . . . . . . 12
2.4.4 Formulation in Capacity Form . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Energy Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.2 Energy Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Discretization 28
3.1 Theoretical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 A Discontinuous Galerkin Approach for Discretization in Space . . . . . . . . . . . 30
3.3 The Numerical Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Implementation of Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Discrete Energy Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Discrete Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 Discrete Energy Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Formulation as Ordinary Differential Equation in Time . . . . . . . . . . . . . . . . 46
3.7 Remarks on Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Numerical Results 53
4.1 Implementation with Trixi.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Energy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Determination of the Position Line . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusion and Outlook 69
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A Appendices 71
A.1 Computation of Boundary Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2 Computation of the Matrix Γ|A| . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.3 Convergence Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

List of Figures 79

List of Tables 79

Nomenclature 80

References 81





2

1 Introduction

In this thesis we are concerned with the Geometrically Exact, Intrinsic Model for Dynamics of
Curved and Twisted Anisotropic Beams which was derived by Hodges [20]. Particular emphasis is
placed on its discretization in space using an Energy Stable Discontinuous Galerkin Approach.

Attempts at modelling flexible beams have been made for over 500 years. As early as the 16th
century, already Leonardo da Vinci was interested in this field [4]. Since then, several theories have
been developed, extended and improved. Very well known representatives are the Euler-Bernoulli
model and the Timoschenko model. The Euler-Bernoulli model was developed in the mid 18th
century while the works founding the Timoschenko beam theory were published over 150 years
later in 1916 [13]. Both models assume that the underlying beam follows linear elastic behaviour.
As a consequence, they are only valid for small deformations [6, 32].

The Geometrically Exact, Intrinsic Model for Dynamics of Curved and Twisted Anisotropic
Beams as it is considered here was developed in 2003 by Hodges [20]. It will in the following be
referred to as Intrinsic Beam Model, or Intrinsic Beam Equations, which we use synonymously.
Unlike the Euler-Bernoulli and the Timoschenko model, it is geometrically exact, which means that
it contains non-linearities. Moreover, it considers intrinsic variables only, meaning that neither
displacement nor rotation variables appear in the corresponding governing equations.

Geometrically exact formulations allow us to model beams undergoing large deformations,
making them particularly interesting for applications regarding highly flexible structures. Modern
applications include for example highly flexible wings of aircraft [1, 36], robotic arms [48] or wind
turbine blades [33, 53].

This thesis was written in cooperation with the German Aerospace Center (DLR). Their soft-
ware framework VAST (Versatile Aeromechanic Simulation Tool) [52] is used to simulate the
dynamics of flying helicopters. In order to increase the accuracy of the simulation, the helicopter
rotor blades and their dynamical behaviour have to be simulated as precisely as possible. The
intrinsic beam model is a promising candidate for this purpose. With this application in mind, we
focus ourselves on general beams that are clamped at one end and free swinging at the other.

The governing equations that represent the intrinsic beam model are a system of partial dif-
ferential equations (PDEs). Modelled beams are idealized by a one dimensional reference line,
leading to a problem in one space dimension and a time dimension. For a well posed problem,
we need to provide boundary conditions at the boundaries of the spatial domain and an initial
condition at the start time. Our first goal will be to formulate a problem with suitable boundary,
and initial conditions that describes the setup of the clamped beam. Considerations regarding
boundary conditions that describe clamped beams have been made for example in [37, 49] from a
more physical or engineering point of view. We want to verify the admissibility of such boundary
conditions in a mathematical point of view. Similar investigations of mathematical appropriate
boundary conditions for the intrinsic beam model, concerning networks of beams, have been made
in [42, 43].

As it is often the case for complex partial differential equations modelling physical phenomenons,
an analytical solution of the intrinsic beam equation is not known in general. Nonetheless, in
order to simulate flexible beams modelled by the intrinsic beam model, a solution, or at least an
approximation to a solution, has to be found. Several methods to solve PDEs numerically are
available. Each of them does have different properties. Therefore, different numerical approaches
can be more or less suitable to solve certain types of equations. Before choosing a numerical
approach that suits the problem well, the considered PDE has to be investigated regarding its
properties. We will show that the governing system of equations of the intrinsic beam model can
be classified as a system of linear hyperbolic balance laws. This has also been shown in [42, 43].

Numerical approaches, that are widely used to determine approximate solutions of hyperbolic
balance laws are the so called Discontinuous Galerkin (DG) Approaches. They are used to discretize
the considered problem. The discretized problem can then be solved numerically to obtain an
approximate solution of the original problem. DG discretization approaches for hyperbolic balance
laws are for example used in [18, 26, 27, 54].

The basic idea behind the theory of DG discretization is to approximate the solution by piece
wise high order polynomials. That is, while the resulting numerical solution is continuous locally,
it is not from a global perspective. As a result, there occur jumps in the global numerical solution
that have to be dealt with in the discretization process. To do so, the concept of so called numerical
fluxes is used which will also be described in this thesis.



3

When it comes to the derivation of DG discretization schemes for certain problems, one aspect is
of special interest: the stability (cf. for example [18, 26]). Therefore, to prepare the discretization,
the potential solution of the original problem is analyzed regarding its energy. Often, the energy
is either the squared Lebesgue norm or the square of a so called energy norm of the solution that
is induced by an inner product on the base of a positive definite matrix.

In the case of the intrinsic beam equation, the latter definition of energy will be used, and we will
see that this is not only an abstract mathematical energy but also a measure of actual mechanical
energy of the modelled beam. A necessary condition for the mathematical well-posedness of a
problem is, that if there exists a solution of the problem, its energy growth can be bounded
by a ”nicely” behaving function. That is, the energy cannot increase at an arbitrary rate in
time. A solution of the problem whose growth of energy can be bounded, is called energy stable.
This property can be transferred to the numerical solution resulting from the DG discretization
approach. In particular, a bound for the rate at which the discrete energy of the resulting numerical
solution increases has to be found, analogously to the investigations into the energy of the original
problem. If such a bound for the numerical solution can be found a priori, the DG discretization
scheme is called energy stable as well.

The main goal of this thesis is to derive an energy stable Discontinuous Galerkin scheme to
discretize the governing equations of the intrinsic beam model with respect to the spatial variable.
Energy stability statements for the solution of the original problem have been made by other
authors, assuming that the modelled beam is not exposed to any external forces and moments, for
instance in [44]. Although we will make some restrictions on external forces and moments, too,
we will show that energy stability can be obtained even for non-zero external forces and moments.
To the best of our knowledge, such a statement has not been proven yet. Furthermore, it will be
shown that this statement can be transferred to the discrete energy of the numerical solution.

In the literature, different numerical approaches have been used for the discretization of the
intrinsic beam model. In [20] for instance, Hodges himself suggests a finite difference scheme. In
[37], a discontinuous finite element discretization with penalty terms is presented to numerically
solve the intrinsic beam equations. However, to the best of the author’s knowledge, the here derived
DG scheme in its generality is new.

Beyond the above described theoretical aspects, we want to implement the developed discretiza-
tion scheme using the simulation framework Trixi.jl [46]. The implementation will be used to
simulate different configurations of the intrinsic beam model and to analyze the resulting numerical
solutions. In particular, the simulation results will be investigated with regard to their discrete
energy to verify the theoretical stability statements we derive.

The structure of the following sections is as follows: In section 2, we will examine the analytical
aspects of the intrinsic beam model. We will introduce the original formulation derived by Hodges
and then reformulate it as a linear hyperbolic balance law. Afterwards, mathematically appropriate
boundary conditions will be derived and used to describe the clamped beam. The resulting initial
boundary value problem will then be analyzed regarding its energy stability.

The initial boundary value problem will further be discretized in space, using a DG approach
in section 3. We will derive a weak formulation of the original problem, which will then be
discretized, resulting in a semi discrete formulation. This includes deriving a stable numerical flux
and consistently implement the derived boundary conditions into the discretization scheme. The
semi discrete formulation will then be analyzed regarding its energy, analogously to the energy
analysis in section 2. Eventually, an ordinary differential equation in time, resulting from the
discretization in space, will be derived. Section 3 will be completed by some remarks on how the
ordinary differential equation can be solved numerically.

In section 4, the theoretical considerations from the previous sections are implemented into the
simulation framework Trixi.jl. We will describe the most important steps that are necessary
for the implementations and afterwards solve different configurations of the intrinsic beam model.
In particular, we will perform a convergence analysis using the method of manufactured solutions,
analyze the discrete energy of different simulations and complete the section by demonstrating how
the simulation results can be post processed to determine and visualize the beam’s position and
deformation.



4

2 Intrinsic Beam Model

In this section, we will consider the theoretical aspects regarding the intrinsic beam model. We
will start by introducing the governing equations in their classical formulation as they are derived
in [20]. Afterwards, we will give an overview about the theory of linear hyperbolic balance laws.
On the base of this, we will show that the governing equations of the intrinsic beam model can,
in fact, be interpreted as a linear hyperbolic balance law. This reformulation is followed by the
derivation of appropriate boundary conditions, which eventually leads to the formulation of an
initial boundary value problem. Potential solutions of the initial boundary value problem are
afterwards investigated with regard to their energy to complete this section.

2.1 Classical Formulation of the Equations

In the course of this section, we want to present the classical formulation of the intrinsic beam
equations as they are derived in [19, 20]. We refrain from a derivation of the equations and refer
to the mentioned works of Hodges, where a derivation can be read up. The fundamental details
that are necessary to describe and understand the equations, especially the remarks on the body
attached variables and the different coordinate systems, are taken from [42], where the results of
[20] are prepared in detail.

First of all, the considerations we do in this thesis are in general with regard to an initially
curved and twisted anisotropic beam of length ℓ that is clamped at one end and free swinging at
the other, and we want to model it in a specific time interval [0, T ]. The intrinsic beam model is a
geometrically exact model, which means that it contains non-linearities, so that the model is able
to represent large motions including large displacements of the centerline and large deformations of
the beam’s cross sections. Intrinsic means that neither displacement nor rotation variables appear
in the governing system. Instead, only intrinsic variables, namely internal forces and moments and
linear and angular velocities are considered.

The beam in its undeformed state is idealized by a reference line, also called centerline, that
goes through the centroids of all cross sections of the beam and is denoted by r : [0, ℓ] → R3. The
space variable x is the running length coordinate along r. The orientation of the cross sections
of the undeformed beam is described by S : [0, ℓ] → R3×3, in the sense that for x ∈ [0, ℓ], the
matrix S(x) is a rotation matrix with columns {Sj(x)}j=1,2,3, that form an orthogonal basis of
the beam’s cross section at the point x in space, where S1(x) is chosen to be tangent to r.

Similarly, the a priori unknown position of the centerline of the beam in its deformed state is
denoted by r : [0, ℓ]× [0, T ] → R3. Because we want to model a dynamic beam, the position of the
deformed beam’s centerline necessarily depends on the time. The orientation of the cross sections
of the deformed beam is given by S : [0, ℓ] × [0, T ] → R3×3, in the sense that for x ∈ [0, ℓ] and
t ∈ [0, T ], the columns {Sj(x, t)}j=1,2,3 of the rotation matrix S(x, t) form an orthogonal basis of
the cross sections of the deformed beam at the point (x, t) in space time.

Throughout this thesis, we will consider two different types of coordinate systems in R3. One is
the global coordinate system, also called reference frame. It refers to the standard basis {ej}j=1,2,3

that is fixed in space and time. The other is the so called body attached coordinate system, that
refers to the basis {Sj}j=1,2,3, that moves together with the deformation of the beam and therefore
depends on both, the space variable x and the time variable t. A vector z = (z1, z2, z3)

T ∈ R3 in
the global coordinate system has the representation

z =

3∑
j=1

zjej .

Let z = (z1, z2, z3)
T ∈ R3 be the representation of z in the body attached coordinate system.

Vectors that are given with respect to the body attached basis, i.e. in the body attached coordinate
system, are referred to as body attached variables. As z and z represent the same vector in different
coordinate systems, z can be represented by

z =

3∑
j=1

zjSj = Sz.

That is, a vector that is known with respect to the body attached basis, can be transformed to a
vector in the reference frame, by a multiplication with S.



2.2 Constitutive Laws 5

Let now Θ(x, t) denote the internal forces of the beam, Ξ(x, t) the internal moments, V (x, t)
the linear velocities, Ω(x, t) the angular velocities, k(x) the initial curvature of the beam, κ(x, t)
the curvature of the beam relative to k (which can also be interpreted as the angular strains),
γ(x, t) the linear strains, P (x, t) the linear momentum, H(x, t) the angular momentum, fext(x, t)
external forces acting along the beam and mext(x, t) external moments. All defined quantities in
this paragraph have values in R3 and are body attached variables. Most of the time, at least when
misunderstandings are ruled out, we omit the dependencies on x and t, writing for example Θ
instead of Θ(x, t).

To stress that the considered quantities are body attached, is very important for the under-
standing and application of the upcoming equations. If, for example, we want to model a beam
under the effect of gravitational force, we would have to consider this force as external and there-
fore insert it into the vector fext. While in the global coordinate system, gravitation results in a
constant force in one direction, this is not necessarily the case in the body attached coordinate
system. There, the acting forces depend on the position and the deformation of the considered
beam. Hence, assuming a deforming beam, gravitation does not act as a constant force from the
fext point of view. Effects of this fact will be considered also in section 2.6.

Before we specify the equations of the intrinsic beam model, we introduce a notation for the
cross product matrix. Let w = (w1, w2, w3)

T , z = (z1, z2, z3)
T be two vectors in R3. Then the cross

product of the two vectors is defined as

w × z =

w2z3 − w3z2
w3z1 − w1z3
w1z2 − w2z1

 .

The cross product matrix, w̃, of the vector w is defined by

w̃ :=

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (1)

and with this notation, we can write the cross product of w and z equivalently as

w × z = w̃z.

An important property of the cross product matrix, which we will use multiple times in the course
of this thesis, is that it is skew symmetric. This can be derived directly from its above definition,
as w̃T = −w̃. Some more useful properties of the cross product and the cross product matrix will
be derived in section 2.6.

The governing system of equations of the intrinsic beam model that is derived in [20] can now
be formulated as

Θ′ + (k̃ + κ̃)Θ + fext = Ṗ + Ω̃P

Ξ′ + (k̃ + κ̃)Ξ + (ẽ1 + γ̃)Θ +mext = Ḣ + Ω̃H + Ṽ P

V ′ + (k̃ + κ̃)V + (ẽ1 + γ̃)Ω = γ̇

Ω′ + (k̃ + κ̃)Ω = κ̇

(2)

for x ∈ (0, ℓ) and t ∈ (0, T ], where with (·)′, we denote the (partial) derivative with respect to the

spatial variable x and with ˙(·) the (partial) derivative with respect to the time variable t. The first
two equations are referred to as the dynamic equations while the last two describe the kinematics
of the beam. Together, these four equations are a system of partial differential equations (PDEs).

In order to have a well posed problem, that can be solved (numerically), it is essential to have
appropriate boundary conditions at x = 0 and x = ℓ and an initial condition at t = 0. We will
look into the derivation of such conditions in section 2.5 and for now consider (2) isolated from
boundary and initial conditions.

2.2 Constitutive Laws

With (2), we have a system of PDEs, describing the evolution of internal forces Θ, internal moments
Ξ and linear and angular velocities V and Ω. However, there appear more unknowns in the system,



2.2 Constitutive Laws 6

including the generalized momenta P and H and linear and angular strains γ and κ. In this section,
we present two constitutive laws. One of them creates a linear connection between the variables
Θ,Ξ and γ, κ and the other creates a generalized momentum-velocity relation between V,Ω and
P,H. These linear connections build on the definition of two matrices: the mass matrix and the
flexibility matrix, that are very important for the rest of the thesis.

The constitutive laws as used for example in [20, 36, 42] read as follows:(
P
H

)
= M

(
V
Ω

)
, (3)

(
γ
κ

)
= F

(
Θ
Ξ

)
, (4)

where M = M(x) is called mass matrix and F = F(x) is called flexibility matrix. Both matrices
have values in R6×6 and depend on the material properties of the considered beam. In general,
i.e. for an anisotropic beam, the material properties are not constant along the beam. For an
isotropic beam on the other hand, the material properties are constant and therefore, M and F do
not depend on x in this special case.

The first constitutive law, (3), is derived by Hodges in [19], while the second one, (4), builds
on Hooke’s generalized law for elastic solids. A more detailed look into the latter constitutive law
is given for example in [29, ch. 5].

Although, we will not go into detail regarding the derivation of the two matrices, we want to
give a brief overview about their structure. Afterwards, we will make some important assumptions
about both, the flexibility and the mass matrix, that will hold for the rest of this thesis. For the
following considerations about the two matrices, we are guided by [20] and especially section 2.1.2
in [42].

At some points, it will be useful to subdivide M into four block matrices of the size 3×3. More
specifically, the mass matrix can be written as

M =

(
M1 M2

MT
2 M3

)
=

(
µI3,3 −µζ̃

µζ̃ I

)
. (5)

Here and in the rest of this thesis, Ii,j denotes the identity in Ri×j . Similarly 0i,j and 0i will
denote the zero in Ri×j and Ri, respectively. Furthermore, µ = µ(x) ∈ R is the beam’s mass per
unit length, ζ = ζ(x) ∈ R3 is the mass center offset and by I = I(x) ∈ R3×3, we denote the cross
sectional inertia matrix, having the form

I =

I22 + I23 0 0
0 I22 I23
0 I23 I33

 .

Taking advantage of the skew symmetry of the cross product matrix, we see that, without further
assumptions, it holds MT = M and, hence, the mass matrix is symmetric. If for example the
considered beam is prismatic and isotropic, the mass center offset ζ is zero and the off diagonal
entries of the inertia matrix, I23, are zero as well, meaning that in this specific case, the mass
matrix is not only symmetric but diagonal.

Similar to the mass matrix, the flexibility matrix can also be subdivided into four 3× 3 blocks.
The notation is as follows:

F =

(
F1 F2

FT
2 F3

)
, (6)

where F1 = F1(x), F2 = F2(x), F3 = F3(x) are the cross sectional flexibilities of the beam, going
back to the generalized law of Hook. The matrices F1 and F3 are symmetric, meaning that the
flexibility matrix is symmetric as well. In the above mentioned case of a prismatic and isotropic
beam, we have F2 = 03,3 and the matrices F1 and F3 reduce to diagonal matrices, so that F is
also diagonal in this case. In particular, the flexibility matrix for a prismatic and isotropic beam
takes the form

F = diag

(
1

aE
,

1

aK2G
,

1

aK3G
,

1

K1(I22 + I33)G
,

1

I22E
,

1

I33E

)
.



2.3 Theory of Linear Hyperbolic Balance Laws 7

In the above matrix, a > 0 is the beam’s cross section area, G > 0 is its shear modulus, E > 0 is
its Young modulus, K2,K3 > 0 are shear correction factors and K1 > 0 corrects the polar moment
of area. For a more detailed look into the flexibility matrix from a mechanical point of view we
refer to [15, 23, 29].

For the rest of this thesis, we will assume that the mass matrix and the flexibility matrix are
symmetric positive definite. Because this assumption is essential for the following sections, we
want to give an overview if other authors use the same assumption. Rodriguez et al. make the
same assumptions about the flexibility and mass matrix as we do in [42, 43, 44]. In fact, these
are the sources we were guided by, making these assumptions. Nevertheless, in all of these three
works, it is mentioned that the mass matrix may only be positive semi definite. In [2, 3], Artola et
al. state that the flexibility matrix has values in the set of positive semi definite matrices while the
mass matrix is always strictly positive definite. In [7, 15] and especially [9], on the other hand, the
flexibility matrix is assumed to be strictly positive definite. In the latter one, the same mechanical
assumptions as here are made as the authors consider an initially curved and twisted anisotropic
beam.

While all authors seem to agree that the mass and flexibility matrices are at least positive semi
definite, there are different statements about their strict definiteness. Nevertheless, we orientate
ourselves on [42, 43, 44] and assume that both, the flexibility and the mass matrix are positive
definite. Note that the assumptions regarding these two matrices are implicit assumptions about
the material properties of the underlying beam. Therefore, in applications for real beams, one
might want to check the validity of this assumption and if this is a restriction for the beam’s shape
or material properties.

2.3 Theory of Linear Hyperbolic Balance Laws

The goal in the next sections will be to reformulate the governing equations of the intrinsic beam
model as a system of linear hyperbolic balance laws. Beforehand, we would like to give an overview
about the fundamental ideas behind the theory of this class of equations. Hyperbolic balance laws
in general are the extension of hyperbolic conservation laws. To get a better understanding of the
ideas behind the theory of conservation laws, we will briefly derive a scalar hyperbolic conservation
law based on an example, irrespective of the intrinsic beam model. Afterwards, we will build up
the concept of scalar balance laws based on conservation laws. Eventually, we will extend these
considerations to non scalar equations, i.e. systems of hyperbolic balance laws. This section is
guided by Chapter 2 in [31].

Hyperbolic conservation laws are widely used in the field of fluid dynamics. Although the
intrinsic beam model is not a part of this field, it makes sense to consider an example of fluid
dynamics to illustratively derive the prototype of a hyperbolic conservation law and get a better
understanding of the basic ideas behind it. Let us therefore consider a liquid flowing through a
one dimensional pipe. The scalar u = u(x, t) denotes the density of the fluid, depending on the
position in space x and time t. The mass within a section of the pipe at a specific point in time t
can now be expressed as

xb∫
xa

u(x, t) dx

for any points xa ≤ xb that are located inside the pipe. Assuming that, within the pipe, the fluid
is neither created nor destroyed, the total mass can only change due to flow through the endpoints
of the section, xa and xb. Let f = f(x, t) denote the rate at which the liquid flows past a point x
at time t, where if f(x, t) > 0, we say that the flow is to the right and if f(x, t) < 0, we say the
flow is to the left. The function f is called the flux function. The change of mass in time within
the section [xa, xb] is then given by the difference of flows through the boundaries. In other words:

d

dt

xb∫
xa

u(x, t) dx = f(xa, t)− f(xb, t).

For the class of equations that we want to consider, the flux function f actually does not only
depend on x and t, but also on u itself. Therefore, we write f = f(u(x, t)). Thus, the above



2.3 Theory of Linear Hyperbolic Balance Laws 8

equation, describing the change of mass, can be represented by

d

dt

xb∫
xa

u(x, t) dx = −f(u(x, t))
∣∣∣xb

xa

, (7)

which, if we assume that u and f are sufficiently smooth, can be transformed to

d

dt

xb∫
xa

u(x, t) = −
xb∫

xa

∂

∂x
f(u(x, t)) dx

or equivalently

xb∫
xa

(
∂

∂t
u(x, t) +

∂

∂x
f(u(x, t))

)
dx = 0.

Recall that the above equality does hold for arbitrary xa ≤ xb within the pipe. To fulfill this, the
integrand of the above integral on the left hand side has to be zero, which leads to

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0. (8)

Equation (8) is the prototype of a scalar hyperbolic conservation law. The flux function f can
take many shapes. Let us for example suppose that the fluid flows through the pipe at a constant
velocity A ∈ R. Then the flux function f , that describes this flow, reads

f(u(x, t)) = Au(x, t).

This can be extended to a more general form, where the coefficient A is not constant, but depends
on the position x. The function f then reads

f(x, u) = A(x)u(x, t). (9)

An equation of type (8) with a flux of the form (9) is in general called a linear scalar hyperbolic
conservation law, or a linear advection equation.

A linear advection equation as defined above describes the evolution of a conservative variable
u. However, there are many use cases that are generally similar to the above considerations but
include an additional source or sink. In the above example of the fluid flowing through a pipe, this
would mean that the mass within a section of the pipe would not only change due to flows through
the section’s boundaries, but also due to the source or sink. Mathematically, such a setup can be
modelled by extending the conservation law by a source term Qcons, that can function as a source
as well as a sink depending on its sign. For now, we assume that Qcons = Qcons(x, t, u) can be an
arbitrary function. The solution u of a conservation law that is extended by such a source term
is no longer a conservative variable. Therefore, the resulting equation is not longer a conservation
law but is called a hyperbolic balance law and formally reads as follows:

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = Qcons(x, t, u).

With the linear flux function, defined above, the balance law reads

∂

∂t
u(x, t) +

∂

∂x
(A(x)u(x, t)) = Qcons(x, t, u) (10)

and is called linear hyperbolic balance law.
The above considerations can be transferred from scalar quantities to vector valued quantities.

The scalar equation then becomes a system of equations, where u and Qcons(x, t, u) are vectors, and
A is a matrix. In this case, A is called the advection matrix. For the rest of the thesis, we interpret
equation (10) as a system of linear balance laws, to which we refer as linear advection equation with
source term or simply linear advection equation. Furthermore, we use a more convenient notation
for the partial derivatives, and omit the dependencies on x and t, writing

ut + (Au)x = Qcons(u). (11)



2.4 Transfer to a Linear Hyperbolic Balance Law 9

The system (11) is called hyperbolic, if the advection matrix A is diagonalizable and its eigen-
values are real. Note, that the advection matrix may depend on x and therefore A has to be
diagonalizable at every point in space x.

A linear advection equation may have a different representation that is equivalent to (11). All of
the following formulations can be found in the literature, namely for example [31, 50]. If we assume
for example, that the advection matrix A is differentiable with respect to the spatial variable x,
we can write (11) equivalently as

ut +Aux = Qcons(u)−Axu. (12)

Equation (11) is called the conservation form, while equation (12) is called the advection form of
the linear advection equation. In the latter formulation, the term −Axu can be interpreted as an
additional source term. If we further define Qadv(u) := Qcons(u)−Axu, the advection form reads

ut +Aux = Qadv(u). (13)

Another equivalent representation of the same equation is obtained by inserting the diagonal-
ization of the matrix A with the corresponding diagonal matrix Λ into the conservation form.
Remember that by definition, the matrix A, belonging to a hyperbolic balance law, is diagonaliz-
able. It can be shown that an equivalent formulation can be found and reads

wt + (Λw)x = Qchar(w) (14)

for so called characteristic variables, w. In section 2.4.3, we will describe the process to obtain the
last representation in detail, including the definition of w and the derivation of Qchar.

The last representation of the linear advection equation, we want to consider, is obtained by
multiplying both sides of the equation in advection form, (13), by a matrix Γ = Γ(x). Assuming
that Γ is an invertible matrix at every point x in space, the formulation

Γut +Πux = Qcap(u) (15)

with Π = ΓA and Qcap(u) := ΓQadv(u), is also an equivalent representation of the linear advection
equation. For the rest of this thesis, we refer to an equation of the form (15) as capacity form of
the linear advection equation. This is not a term that is used in the literature but – inspired by
the name capacity function in front of the time derivative that is used in the literature [31] – we
use the term capacity form to have a clear name for this formulation. This completes the general
considerations on the theory of linear hyperbolic balance laws. In the next sections, we will resume
investigating the intrinsic beam model.

2.4 Transfer to a Linear Hyperbolic Balance Law

In this section, we will transfer the governing equations of the intrinsic beam model to a hyperbolic
system of balance laws, namely a linear advection equation with source term. In the previous
section, we have seen that there are different representations of such a linear advection equation.
In the following subsections, we will derive some of these representations for the intrinsic beam
equation, namely the advection form, the capacity form and the formulation for characteristic
variables with a diagonal advection matrix. Furthermore, we will show that the intrinsic beam
equation is a hyperbolic equation in the sense that the advection matrix can be diagonalized and
has real eigenvalues, only.

2.4.1 Formulation in Advection Form

In the following, we will reformulate the governing equations of the intrinsic beam model into a
linear advection equation in advection form. First, we will write the system of PDEs (2) in matrix
vector notation and afterwards use the constitutive laws to close the formulation of the intrinsic
beam equation in its advection form. A similar presentation of the intrinsic beam equations is
presented in the work of Rodriguez et al. [42, 43, 44].



2.4 Transfer to a Linear Hyperbolic Balance Law 10

We start with the classical form of the intrinsic beam equations that was presented in section
2.1 and is given by

Θ′ + (k̃ + κ̃)Θ + fext = Ṗ + Ω̃P

Ξ′ + (k̃ + κ̃)Ξ + (ẽ1 + γ̃)Θ +mext = Ḣ + Ω̃H + Ṽ P

V ′ + (k̃ + κ̃)V + (ẽ1 + γ̃)Ω = γ̇

Ω′ + (k̃ + κ̃)Ω = κ̇.

First, we rewrite this system of equations into a matrix-vector formulation:
Θ
Ξ
V
Ω


x

+


k̃ + κ̃ 03,3 03,3 03,3

ẽ1 + γ̃ k̃ + κ̃ 03,3 03,3

03,3 03,3 k̃ + κ̃ ẽ1 + γ̃

03,3 03,3 03,3 k̃ + κ̃



Θ
Ξ
V
Ω



−


P
H
γ
κ


t

−


Ω̃ 03,3 03,3 03,3

Ṽ Ω̃ 03,3 03,3

03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3



P
H
γ
κ

+


fext
mext

03

03

 = 012.

(16)

Next, we make use of the constitutive laws that can equivalently to equations (3) and (4) be written
as 

P
H
γ
κ

 =

(
06,6 M
F 06,6

)
Θ
Ξ
V
Ω

 .

By inserting the constitutive laws in the above form into the equation in its matrix-vector formu-
lation, (16), rearranging terms and setting u := (ΘT ,ΞT , V T ,ΩT )T , we obtain

−
(
06,6 M
F 06,6

)
ut + ux+




k̃ + κ̃ 03,3 03,3 03,3

ẽ1 + γ̃ k̃ + κ̃ 03,3 03,3

03,3 03,3 k̃ + κ̃ ẽ1 + γ̃

03,3 03,3 03,3 k̃ + κ̃



−


Ω̃ 03,3 03,3 03,3

Ṽ Ω̃ 03,3 03,3

03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

(06,6 M
F 06,6

)u+


fext
mext

03

03

 = 012.

Defining the matrix A = A(x) with values in R12×12 as

A = −
(
06,6 M
F 06,6

)−1

= −
(
06,6 F−1

M−1 06,6

)
, (17)

and multiplying the last equation by A from the left, yields

ut +Aux +A




k̃ + κ̃ 03,3 03,3 03,3

ẽ1 + γ̃ k̃ + κ̃ 03,3 03,3

03,3 03,3 k̃ + κ̃ ẽ1 + γ̃

03,3 03,3 03,3 k̃ + κ̃



+


Ω̃ 03,3 03,3 03,3

Ṽ Ω̃ 03,3 03,3

03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

A−1

u+A


fext
mext

03

03

 = 012.

(18)

Note that the matrix A is well defined because by assumption, the flexibility and mass matrix are
positive definite and therefore invertible. To point out the analogy to a linear advection equation



2.4 Transfer to a Linear Hyperbolic Balance Law 11

with source term, as it was presented in the previous section, we define the source term Qadv as
follows:

Qadv(u) := −A




k̃ + κ̃ 03,3 03,3 03,3

ẽ1 + γ̃ k̃ + κ̃ 03,3 03,3

03,3 03,3 k̃ + κ̃ ẽ1 + γ̃

03,3 03,3 03,3 k̃ + κ̃



+


Ω̃ 03,3 03,3 03,3

Ṽ Ω̃ 03,3 03,3

03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

A−1

u−A


fext
mext

03

03


Then, equation (18) can be written compactly as

ut +Aux = Qadv(u), (19)

which is the advection form of a linear advection equation just as we defined it in (13).

2.4.2 Hyperbolicity of the Equation

In the following section, we will show that the linear advection equation representing the intrinsic
beam equations is hyperbolic. Recall, that a linear advection equation of the form we are consid-
ering here is hyperbolic, if the advection matrix A can be diagonalized and has real eigenvalues
only. We will constructively derive a transformation matrix, that diagonalizes the matrix A, and
will show that the corresponding eigenvalues are real. The diagonalization is inspired by [44] and
adjusted to the notation in this thesis.

We start by introducing a notation for the square root of a matrix. First, we note that for
every positive definite matrix Â, there exists a positive definite matrix B̂ with B̂2 = Â (cf. for
example [21]). Analogous to real numbers, we call B̂ the square root of the matrix Â and denote
this by Â

1/2 = B̂. Note that the square root of a matrix is invertible because, by definition it is
positive definite. We denote the inverse of a square root matrix by (Â

1/2)−1 = Â−1/2. Now recall
that the matrix F is positive definite by assumption and therefore has a square root. Using the
above notation, we define the matrix Ψ = Ψ(x) with values in R6×6 as follows:

Ψ := F−1/2 M−1 F−1/2. (20)

One can easily check, that Ψ is symmetric. Furthermore, as a consequence of the positive definite-
ness of F and M, the matrix Ψ is positive definite itself. This is because for any non-zero z ∈ R6,
we have

zTΨz = zTF−1/2 M−1 F−1/2z = (F−1/2z)TM−1(F−1/2z) > 0.

Let us denote the eigenvalues of Ψ by λi = λi(x) for i = 1, . . . , 6. Moreover, we define the diagonal
matrix Λ = Λ(x) by

Λ = diag
(
λ

1/2
1 , . . . , λ

1/2
6

)
.

As Ψ is positive definite, all of its eigenvalues are positive, meaning that Λ is in fact a real diagonal
matrix. The positive definiteness of Ψ also implicates that it can be diagonalized. More precisely,
there exists an orthogonal matrix X = X (x) with values in R6×6, such that

Ψ = X TΛ2 X (21)

holds.
Based on these considerations regarding the matrix Ψ and its eigenvalues, we will now specify

a transformation matrix T and its inverse, from which we will show, it diagonalizes the matrix A.
In particular, the matrices T = T (x), T−1 = T−1(x) with values in R12×12 are given by

T :=
1

2

(
F−1/2χT F−1/2X T

F
1/2X TΛ −F

1/2X TΛ

)
, T−1 =

(
XF

1/2 Λ−1XF−1/2

XF
1/2 −Λ−1XF−1/2

)
.



2.4 Transfer to a Linear Hyperbolic Balance Law 12

Let us additionally define a 12× 12 diagonal matrix, Λ = Λ(x), in block form, consisting of Λ and
−Λ on its diagonal:

Λ :=

(
−Λ 06,6

06,6 Λ

)
.

All in all, this results in the following transformation:

TΛT−1 =
1

2

(
06,6 −2F−1

−2F
1/2X TΛ2XF

1/2 06,6

)
.

Here, we use that the matrix Ψ is diagoanlized by a transformation with X as in (21) to obtain

TΛT−1 =

(
06,6 −F−1

−F
1/2ΨF

1/2 06,6

)
.

Finally, we use the definition of Ψ in (20) and solve it for M−1 to see that

TΛT−1 =

(
06,6 −F−1

−M−1 06,6

)
= A. (22)

We thereby showed that the matrix A is diagonalized by a transformation with T . In particular,
the diagonalization reads

Λ = T−1AT. (23)

Note that due to the definition of Λ this implicates that the eigenvalues of A are the square
roots of the eigenvalues of Ψ and their negatives, as these are the entries on the diagonal of Λ.
The matrix A, therefore, has real eigenvalues only, meaning that the linear advection equation we
derived in the previous section is hyperbolic, indeed.

Moreover, Ψ and (FM)−1 have the same eigenvalues as they are similar matrices. The latter
statement holds because we have that

(FM)−1 = F
1/2ΨF−1/2.

In general both, the flexibility and the mass matrix depend on the spatial variable x and, thus,
also the eigenvalues of Ψ and therefore the ones of A depend on x. Nevertheless, the above
considerations show that this does not have an impact on the sign of the eigenvalues. The first
six eigenvalues of A will be negative for any x, while the last six eigenvalues will be positive. The
realization of this property will be very important for the derivation of boundary conditions in
section 2.5.

Remark 1 As mentioned in the previous section, if an isotropic prismatic beam is considered, the
flexibility and the mass matrix are diagonal. In that case, the matrix X is the identity matrix,
which results in the following simplification of the transformation matrix and its inverse:

T =
1

2

(
F−1/2 F−1/2

M−1/2 −M−1/2

)
, T−1 =

(
F

1/2 M
1/2

F
1/2 −M

1/2

)
.

2.4.3 Formulation for Characteristic Variables

Regarding some parts of the analysis of linear advection equations, especially the derivation of
boundary conditions, it is often useful to consider an equivalent formulation that includes the
diagonal advection matrix Λ. To find such a formulation, we define the so called characteristic
variables

w := T−1u.

In contrast to that, we call u physical variables in the following as it contains the physical quantities
Θ,Ξ, V and Ω. Now, inserting u = Tw into the original advection form of the intrinsic beam
equation, namely (19), gives us the equivalent equation

Twt +A(Tw)x = Qadv(Tw).



2.4 Transfer to a Linear Hyperbolic Balance Law 13

In the previous section, we learned about the transformation (22) of the matrix A with T , that
leads to the diagonal matrix Λ. This particular transformation is now used to represent A in the
above equation leading us to

Twt + TΛT−1(Tw)x = Qadv(Tw).

The derivative in the second summand of the above expression can be calculated by applying the
product rule to it. Explicitly, this results in

Twt + TΛwx + TΛT−1Txw = Qadv(Tw).

Multiplying the last result with the inverse transformation matrix, T−1, from the left, then results
in

wt +Λwx = Qchar(w),

where we define the source term

Qchar(w) := T−1Qadv(Tw)−ΛT−1Txw.

The advantage of this representation is that the so called characteristic speeds explicitly appear
on the diagonal of the matrix Λ. As we mentioned initially in this section, this is especially helpful
when deriving appropriate boundary conditions for the system. In section 2.5, we will give a more
detailed description of the concept of characteristic speeds. Beforehand we will derive another
equivalent representation of the intrinsic beam equation in the next section.

2.4.4 Formulation in Capacity Form

In this section, we would like to deduce a capacity form of the considered linear advection equation
as we introduced it in section 2.3. Let therefore Γ = Γ(x) be the matrix with values in R12×12

defined by

Γ :=

(
F 06,6

06,6 M

)
and Π ∈ R12×12 be the matrix defined by the matrix product of Γ and A, that reads

Π := ΓA = −
(

F 06,6

06,6 M

)(
06,6 F−1

M−1 06,6

)
= −

(
06,6 I6,6
I6,6 I6,6

)
.

Note that, as an implication of the symmetry and positive definiteness of the flexibility and the
mass matrix, the matrix Γ is likewise symmetric, positive definite. Furthermore, the matrix Π is
constant and symmetric. These properties of the two matrices Γ and Π will be very helpful when
deriving energy stability, as we will see in section 2.6.

Similar to the definition of Π, we define the source term Qcap as the product of the source term
Qadv with the matrix Γ from the left:

Qcap(u) := ΓQadv(u) = −ΓA




k̃ + κ̃ 03,3 03,3 03,3

ẽ1 + γ̃ k̃ + κ̃ 03,3 03,3

03,3 03,3 k̃ + κ̃ ẽ1 + γ̃

03,3 03,3 03,3 k̃ + κ̃



+


Ω̃ 03,3 03,3 03,3

Ṽ Ω̃ 03,3 03,3

03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

A−1

u− ΓA


fext
mext

03

03

 .

In the above term, we again find the matrix product of Γ and A, which we defined as Π earlier, so



2.4 Transfer to a Linear Hyperbolic Balance Law 14

that the term Qcap can be written as

Qcap(u) = −Π




k̃ + κ̃ 03,3 03,3 03,3

ẽ1 + γ̃ k̃ + κ̃ 03,3 03,3

03,3 03,3 k̃ + κ̃ ẽ1 + γ̃

03,3 03,3 03,3 k̃ + κ̃



+


Ω̃ 03,3 03,3 03,3

Ṽ Ω̃ 03,3 03,3

03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

A−1

u−Π


fext
mext

03

03

 .

By multiplying the advection form of the equation, (19), with Γ from the left and using the above
definitions of Π and Qcap, we obtain the capacity form of the linear advection equation:

Γut +Πux = Qcap(u). (24)

Comparing (24) to the definition (15) of general capacity forms for linear advection equations, we
indeed have a capacity form of the linear advection equation for the intrinsic beam model. The
positive definite matrix Γ represents the capacity function.

In the analysis of the solution’s energy in section 2.6, the source termQcap will play an important
role. To prepare this analysis, we take a more detailed look at the source term and bring it in a
certain form, which will be helpful. Due to its special shape, the multiplications with the matrix
Π in Qcap can be seen as a rearrangement of 6× 6 blocks, which in particular yields

Qcap(u) =




03,3 03,3 k̃ + κ̃ ẽ1 + γ̃

03,3 03,3 03,3 k̃ + κ̃

k̃ + κ̃ 03,3 03,3 03,3

ẽ1 + γ̃ k̃ + κ̃ 03,3 03,3



+


03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

Ω̃ 03,3 03,3 03,3

Ṽ Ω̃ 03,3 03,3

A−1

u+


03

03

fext
mext

 .

The first matrix in the above expression can be split up into the sum of two matrices. One con-
taining the cross product matrices of the initial curvature k and the vector e1, the other containing
the cross product matrices of the strains κ and γ. This results in

Qcap(u) =


03,3 03,3 k̃ ẽ1
03,3 03,3 03,3 k̃

k̃ 03,3 03,3 03,3

ẽ1 k̃ 03,3 03,3

u+



03,3 03,3 κ̃ γ̃
03,3 03,3 03,3 κ̃
κ̃ 03,3 03,3 03,3

γ̃ κ̃ 03,3 03,3



+


03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

Ω̃ 03,3 03,3 03,3

Ṽ Ω̃ 03,3 03,3

A−1

u+


03

03

fext
mext

 .

(25)

We recall that κ and γ can be represented in terms of Θ and Ξ by applying the constitutive law(
γ
κ

)
=

(
F1 F2

FT
2 F3

)(
Θ
Ξ

)
. (26)

As u = (ΘT ,ΞT , V T ,ΩT ), there occur non-linearities of u in Qcap. The degree of non-linearity is
in fact two, as it is already pointed out in [20] for the classical formulation of the intrinsic beam
equations. The definition of the source term in (25) can, thus, be subdivided into a term that is
linear in u, namely the first summand on the right hand side of (25), a term that is quadratic in
u, namely the product of the expression in big brackets and u, and a term that does not depend
on u but only on external forces and moments.



2.4 Transfer to a Linear Hyperbolic Balance Law 15

According to that separation depending on the degree in u, we write the source term as follows

Qcap(u) = Bu+ J(u)u+ qext,

where we define B = B(x), J(u) = J(u, x) and qext = qext(x, t) as

B :=


03,3 03,3 k̃ ẽ1
03,3 03,3 03,3 k̃

k̃ 03,3 03,3 03,3

ẽ1 k̃ 03,3 03,3

 ,

J(u) :=


03,3 03,3 κ̃ γ̃
03,3 03,3 03,3 κ̃
κ̃ 03,3 03,3 03,3

γ̃ κ̃ 03,3 03,3

+


03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

Ω̃ 03,3 03,3 03,3

Ṽ Ω̃ 03,3 03,3

A−1,

qext :=


03

03

fext
mext

 .

The matrix B can be brought into a more compact representation that will also be useful for the
energy analysis. Therefore, we define the matrix B = B(x) as

B :=

(
k̃ ẽ1

03,3 k̃

)
.

As an implication of the skew symmetry of the cross product matrices, the matrix B can then be
represented by

B :=

(
06,6 B

−BT 06,6

)
.

Recall, that the matrix A−1, in terms of 6× 6 blocks, can be written as

A−1 =

(
06,6 M
F 06,6

)
(cf. (17)) and that the flexibility and mass matrix can each be subdivided into four 3× 3 blocks.
The representation of A−1 in terms of 3× 3 blocks, therefore becomes

A−1 =


03,3 03,3 M1 M2

03,3 03,3 MT
2 M3

F1 F2 03,3 03,3

FT
2 F3 03,3 03,3

 .

Inserting this into the definition of J(u) yields

J(u) =


03,3 03,3 κ̃ γ̃
03,3 03,3 03,3 κ̃
κ̃ 03,3 03,3 03,3

γ̃ κ̃ 03,3 03,3

−


03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

Ω̃ 03,3 03,3 03,3

Ṽ Ω̃ 03,3 03,3



03,3 03,3 M1 M2

03,3 03,3 MT
2 M3

F1 F2 03,3 03,3

FT
2 F3 03,3 03,3

 .

After executing the matrix multiplication in the above second summand, this term reads

J(u) =


03,3 03,3 κ̃ γ̃
03,3 03,3 03,3 κ̃
κ̃ 03,3 03,3 03,3

γ̃ κ̃ 03,3 03,3

−


03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

03,3 03,3 Ω̃M1 Ω̃M2

03,3 03,3 Ṽ M1 + Ω̃MT
2 Ṽ M2 + Ω̃M3





2.5 Boundary Conditions 16

To consistently operate in the variables Θ,Ξ, V and Ω, we make again use of the constitutive law
(26), to replace κ and γ. The final representation of the term J(u) then reads

J(u) =


03,3 03,3

˜FT
2 Θ+ F3Ξ ˜F1Θ+ F2Ξ

03,3 03,3 03,3
˜FT

2 Θ+ F3Ξ

˜FT
2 Θ+ F3Ξ 03,3 03,3 03,3

˜F1Θ+ F2Ξ
˜FT

2 Θ+ F3Ξ 03,3 03,3



−


03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

03,3 03,3 Ω̃M1 Ω̃M2

03,3 03,3 Ṽ M1 + Ω̃MT
2 Ṽ M2 + Ω̃M3

 .

2.5 Boundary Conditions

In the course of this section, we will derive and discuss boundary conditions for the intrinsic beam
model. In the literature, namely for example [36, 49], a beam that is clamped at one end and free
swinging at the other, is modeled by prescribing boundary values for internal forces and moments
at the free swinging end and for linear and angular velocities at the clamped end. According to
[49], boundary values at both ends can be zero or non-zero. A follower force at the tip of the beam
is for example modeled by prescribing non-zero internal forces at the free swinging end. A rotating
beam could be modeled by prescribing angular velocities at its clamped end.

Nevertheless, it is not necessarily ensured that these type of boundary conditions lead to a
mathematically well posed problem. We will derive mathematically appropriate boundary condi-
tions for the intrinsic beam equation. This will be done by transferring the results of Nordström
in [34], Nordström and Wahlsten in [35] and Russell in chapter 3 of [45], concerning boundary con-
ditions for general linear hyperbolic systems, to the intrinsic beam equation. Afterwards, we will
show that this general class of boundary conditions can be used to obtain the boundary conditions
that describe a clamped beam.

Before we start discussing the boundary conditions, we would like to give a brief overview about
the concept of characteristic curves. Detailed information about the corresponding theory can be
read up in [31, 50]. Roughly spoken, characteristic curves are curves in the x-t-plane on which
the solution of a conservation law takes constant values. Thus, characteristic curves are a way
of describing how the information of the initial condition of the problem propagates through the
considered domain [0, ℓ] in time. Characteristic speeds are the gradients of characteristic curves
and can therefore be interpreted as the speeds at which information is transported through the
domain.

To illustrate this concept, in figure 1 two simple examples of characteristic curves for a scalar
conservation law, irrespective of the intrinsic beam equation, are given. Figure 1a shows a straight
line characteristic curve with a negative slope, i.e. a negative characteristic speed. Figure 1b shows
a straight line characteristic curve with a positive slope. For any two points on the characteristic
curve with the negative slope, (xa, ta), (xb, tb), with ta > tb, one has xa < xb, meaning that the
more time passes, the further to the left of the domain the value of the corresponding PDE solution
is transported. For the characteristic curve with a positive slope on the other hand, for any two
points (xa, ta), (xb, tb), with ta > tb, one has xa > xb, meaning that in this case, the value of the
corresponding PDE solution is transported to the right of the domain as time passes.

To summarize the above considerations: the sign of the slope of the characteristic curves and
thus, the sign of the characteristic speed, indicates whether information of the solution propagates
from left to right or from right to left within the domain [0, ℓ]. Consequently, boundary conditions
for the solution of such a PDE have to be specified at the right boundary in case of a negative
characteristic speed and at the left boundary in case of a positive characteristic speed.

This can be transferred to non scalar linear balance laws, such as the intrinsic beam equation.
In this case, the characteristic speeds are the eigenvalues of the advection matrix A, i.e. the
diagonal entries of the matrix Λ. In the formulation for characteristic variables, this means that
the sign of the i-th entry in Λ, namely Λii, indicates whether information in the i-th component
of characteristic variables, w, is transported leftwards or rightwards. Hence, boundary conditions
for characteristic variables associated with negative diagonal entries in Λ, have to be specified
at x = ℓ. For characteristic variables associated with positive diagonal entries in Λ, boundary



2.5 Boundary Conditions 17

conditions have to be specified at x = 0. At the respective boundary, the components of w for
which we need to specify boundary conditions, are also called ingoing variables. The components
for which we do not need to specify boundary conditions, are called outgoing variables at the
respective boundary.

(a) Characteristic curve with negative characteristic
speed.

(b) Characteristic curve with positive characteristic
speed.

Figure 1: Examples for characteristic curves of a scalar conservation law (cf. [50, Fig. 2.1.]).

The matrix Λ, derived in section 2.4.2, containing the characteristic speeds for the intrinsic
beam model, has the form

Λ =

(
−Λ 06,6

06,6 Λ

)
,

with exclusively negative values in the upper six entries of its diagonal and positive ones in the
lower six diagonal entries. According to that, we introduce a new notation to point out which
components of w are associated with negative characteristic speeds and which ones are associated
with positive characteristic speeds. The twelve dimensional vector of characteristic variables, w,
is therefore subdivided into two six dimensional vectors w− and w+, where the subscript indicates
the sign of the associated characteristic speed. The characteristic variables according to the entries
of Λ are then

w =

(
w−
w+

)
.

At x = 0, this means that w+ are the ingoing variables while w− are the outgoing variables. At
x = ℓ, w− are the ingoing variables and w+ are the outgoing ones. Guided by [34, 35], we first
choose a general class of boundary conditions, allowing the ingoing variables to depend linearly
on the respective outgoing ones and some external data. Following the above argumentation, we
have to specify boundary values for w+(0, t) and for w−(ℓ, t). The general formulation of boundary
conditions then reads

w+(0, t) = R0w−(0, t) + g0(t),

w−(ℓ, t) = Rℓw+(ℓ, t) + gℓ(t),
(27)

for functions g0, gℓ and matrices R0, Rℓ ∈ R6×6. Given (27), we now have a general class of
boundary conditions, that lead to a sensible problem from a mathematical point of view. We now
want to trace back these boundary conditions for characteristic variables to boundary conditions
for physical variables, u. Furthermore, we want to find out, if the resulting boundary conditions
for physical variables are suitable to describe actual physical problems. More precisely, we wish
to use (27) to represent the initially in this section described boundary conditions for a clamped
beam.

For better readability, we omit the solution’s dependency on t in the notation for the rest of
the section, writing for example w+(0) instead of w+(0, t). Furthermore we define s := (ΘT ,ΞT )T



2.5 Boundary Conditions 18

and y := (V T ,ΩT )T and use this notation to subdivide the state vector u in the following way:

u =


Θ
Ξ
V
Ω

 =

(
s
y

)
.

That is, s is the compound of inner forces and moments and y the compound of linear and angular
velocities. Then by definition (cf. section 2.4.3 ), w can be written as

w =

(
w−
w+

)
= T−1u =

(
XF

1/2 Λ−1XF−1/2

XF
1/2 −Λ−1XF−1/2

)(
s
y

)

=

(
XF

1/2s+ Λ−1XF−1/2y
XF

1/2s− Λ−1XF−1/2y

)
.

(28)

If we choose R0 = I6,6, the boundary condition at x = 0 becomes

w+(0) = w−(0) + g0.

To trace this back to physical variables at x = 0, we have to multiply w(0) by the transformation
matrix, as u = Tw. In particular, this yields

u(0) = Tw
∣∣
x=0

= T

(
w−
w+

)∣∣∣∣
x=0

.

Inserting the definition of T as well as the boundary condition for w+, and the relation between w
and s and y, derived in (28), we obtain

u(0) =
1

2

(
F−1/2χT F−1/2X T

F
1/2X TΛ −F

1/2X TΛ

)(
XF

1/2s+ Λ−1XF−1/2y
XF

1/2s+ Λ−1XF−1/2y + g0

)∣∣∣∣
x=0

=
1

2

(
2s+ 2F−1/2X TΛ−1XF−1/2y + F−1/2X T g0

−F
1/2X TΛg0

)∣∣∣∣
x=0

. (29)

Now, suppose that the desired velocities at the clamped end, i.e. at x = 0, are denoted by

y0(t) :=

(
V0(t)
Ω0(t)

)
.

Then setting the external boundary data g0 to

g0 := −2Λ−1XF−1/2y0
∣∣
x=0

and inserting this into (29) yields

u(0) =

(
s+ F−1/2X TΛ−1XF−1/2(y − y0)

y0

)∣∣∣∣
x=0

. (30)

Remember that by definition, u = (sT , yT ), so that the above result implicates y(0) = y0. This
can be inserted into the first row of the above vector, so that all in all, we have

u(0) =

(
s(0)
y0

)
.

Thus, we showed that for the particular choice of R0 and g0, the boundary conditions for
characteristic variables at x = 0 are equivalent to Dirichlet boundary conditions for the linear and
angular velocities at x = 0, while for s(0) we do not need to specify any boundary conditions.

The same procedure can be done for the right boundary, x = ℓ. First, we set Rℓ = −I6,6, so
that the boundary condition for w− at x = ℓ reads

w−(ℓ) = −w+(ℓ) + gℓ.



2.6 Energy Considerations 19

We want to trace this condition back again to physical variables, using the transformation

u(ℓ) = Tw
∣∣
x=ℓ

= T

(
w−
w+

)∣∣∣∣
x=ℓ

.

Together with the definition of T , the boundary condition for w− and the relation (28), we have

u(ℓ) =
1

2

(
F−1/2χT F−1/2X T

F
1/2X TΛ −F

1/2X TΛ

)(
−XF

1/2s+ Λ−1XF−1/2y + gℓ
XF

1/2s− Λ−1XF−1/2y

)∣∣∣∣
x=ℓ

=
1

2

(
F−1/2X T gℓ

2y − 2F
1/2X TΛXF

1/2s+ F
1/2X TΛgℓ

)∣∣∣∣
x=ℓ

. (31)

Suppose that the desired internal forces and moments at the free swinging end are denoted by

sℓ(t) :=

(
Θℓ(t)
Ξℓ(t)

)
. (32)

Then the external boundary data, gℓ, can be chosen accordingly again. More precisely, we set

gℓ = 2XF
1/2sℓ

∣∣
x=ℓ

and insert this into (31), which yields

u(ℓ) =

(
sℓ

y − F
1/2X TΛXF

1/2(s− sℓ)

)∣∣∣∣
x=ℓ

. (33)

By using u = (sT , yT )T , we can follow s(0) = sℓ. Inserting this into the second entry of the vector
on the above right hand side, we obtain

u(ℓ) =

(
sℓ
y(ℓ)

)
.

Similar to the boundary x = 0, we can thereby follow that for the particular choices of Rℓ and gℓ,
the boundary conditions for characteristic variables at x = ℓ are equivalent to Dirichlet boundary
conditions for the internal forces and moments at x = ℓ, while for the velocities no boundary
conditions are needed at this boundary.

Choosing an initial condition u0 = u0(x) for t = 0, that fulfills the boundary conditions, we
can now formulate the problem that we want to analyze and solve numerically. It is an initial
boundary value problem and reads as follows: find u = u(x, t) = (s(x, t)T , y(x, t)T )T , such that

Γut +Πux = Qcap(u) for (x, t) ∈ (0, ℓ)× (0, T ],

y(0, t) = y0(t) for t ∈ (0, T ],

s(ℓ, t) = sℓ(t) for t ∈ (0, T ],

u(x, 0) = u0(x) for x ∈ [0, ℓ].

(34)

After deriving the initial boundary value problem with appropriate boundary conditions, we are
now able to investigate the energy of a potential solution to this problem in the next section.

2.6 Energy Considerations

In the following section, we will analyze the energy of a potential solution of the initial boundary
value problem (34), we derived in the previous sections. In the course of that, we well define a
so called energy norm, induced by an inner product on the base of the positive definite matrix Γ.
The squared energy norm of the solution will be referred to as the energy of the solution.

In order to obtain a statement about the energy, we will use the so called energy method,
multiplying the capacity form of the linear advection equation with the transposed of the solution
and thereby obtaining an equation describing the change of energy in time. The energy method
for hyperbolic balance laws is for instance used in [26, 34, 35], which is also the literature, we are
guided by for this section. We separate the section into two subsections because we want to derive
two different statements about the energy.



2.6 Energy Considerations 20

First, we will show that the solution of the initial boundary value problem is energy conserving.
That means, that in a modelled beam, there is no energy created or annihilated out of nothing.
If there is an increasement or decreasement in energy, this can always be traced back to external
influences: either through the ends of the beam and therefore the boundaries of the considered
interval or through external sources like external forces and moments. This is an interesting
property of the intrinsic beam model, which one may expect from a physical point of view, but
from a mathematical point of view this is not clear at all because of the source term, which may
mathematically very well be a source of energy along the beam. However, we will see that this
source term has – up to the external forces and moments – no influence on the solution’s energy.

In the second part of this section, we will use the result from the first part to go on and derive
energy stability with some restrictions to boundary conditions and external sources. The difference
between the two statements is that energy conservation is telling us where energy comes from
and that it cannot be created or annihilated in an unphysical way along the beam. Nonetheless,
through boundary conditions and external sources, the energy might increase at an arbitrary rate.
In this case, we still have energy conservation but no energy stability because the norm of the
solution cannot be controlled. To derive a stable numerical approach to solve the problem, we
first need a problem that has a stable solution itself. Therefore, we want to bound the change of
energy in the first place and then estimate the maximal rate of change in energy. We will see, that
different boundary conditions lead to different statements about energy stability.

2.6.1 Energy Conservation

In this subsection, we want to use the energy method, that is also used e.g. in [26, 34, 35], to
derive an equation that describes the change of energy of the solution. In order to do so, we first
define an inner product and the induced norm. Let g, h ∈ L2 be two square integrable functions
on [0, ℓ]. Then the inner product, denoted by ⟨·, ·⟩Γ and defined by

⟨g, h⟩Γ :=

ℓ∫
0

gTΓhdx,

induces a norm ∥·∥Γ in the following way:

∥g∥Γ := ⟨g, g⟩1/2Γ =

 ℓ∫
0

gTΓg dx

1/2

.

Note that the positive definiteness of Γ is essential for the definition of the inner product and the
norm. The above defined norm is in the following referred to as energy norm and the squared energy
norm of a function will be called the energy of that function. This is an abstract mathematical
definition of energy, but we will see later in this section that in the case of the intrinsic beam
model, this abstract norm does have a physical interpretation.

We now consider the linear advection equation in its capacity form and multiply both sides of
the equation by the transposed of the solution, uT , to obtain the following equation:

uTΓut + uTΠux = uTQcap(u).

Integrating this last equation over the domain [0, ℓ] gives us

ℓ∫
0

uTΓut dx+

ℓ∫
0

uTΠux dx =

ℓ∫
0

uTQcap(u) dx. (35)

Next, we use the definition of the energy norm to see that with the above equation, we already
have an equation that gives a statement about the time derivative of the solution’s energy. The
first term on the left hand side of (35) can be represented by

ℓ∫
0

uTΓut dx =
1

2

d

dt

ℓ∫
0

uTΓudx =
1

2

d

dt
∥u∥2Γ .



2.6 Energy Considerations 21

More precisely, equation (35) can now be written as

1

2

d

dt
∥u∥2Γ = −

ℓ∫
0

uTΠux dx+

ℓ∫
0

uTQcap(u) dx. (36)

To get a better understanding of the energy’s time evolution, we take a detailed look at the right
hand side of (36). We treat the two integrals separately, beginning with the second one, that gives
a measure of the source term’s contribution to the energy. Let us therefore consider the integrand
of the second integral. By definition, this is

uTQcap(u) = uTBu+ uTJ(u)u+ uT qext.

First, we show that the matrix B is skew symmetric. When we derived the representation of the
source term Qcap in section 2.4.4, we defined B as

B =

(
06,6 B

−BT 06,6

)
.

Now the advantage of this notation becomes clear as it allows to directly follow that B is skew
symmetric:

BT =

(
06,6 −B

BT 06,6

)
= −B.

As an implication of the skew symmetry of the matrix B, we have that

uTBu = −(Bu)Tu = −uTBu,

which is equivalent to uTBu = 0. In other words: the contribution of the linear part of the source
term to the solution’s energy equals zero.

We proceed, by investigating the contribution of the quadratic source term, uTJ(u)u, to the
energy. In section 2.4.4, the term J(u) was defined as

J(u) =


03,3 03,3

˜FT
2 Θ+ F3Ξ ˜F1Θ+ F2Ξ

03,3 03,3 03,3
˜FT

2 Θ+ F3Ξ

˜FT
2 Θ+ F3Ξ 03,3 03,3 03,3

˜F1Θ+ F2Ξ
˜FT

2 Θ+ F3Ξ 03,3 03,3



−


03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

03,3 03,3 Ω̃M1 Ω̃M2

03,3 03,3 Ṽ M1 + Ω̃MT
2 Ṽ M2 + Ω̃M3

 .

Note that, again, because the cross product matrices are skew symmetric, the first summand of
J(u) is skew symmetric as well. This means that with the same argumentation as for the matrix
B above, the contribution of this first summand of J(u) to the energy is zero. Therefore, we have

uTJ(u)u = −


Θ
Ξ
V
Ω


T 

03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3

03,3 03,3 Ω̃M1 Ω̃M2

03,3 03,3 Ṽ M1 + Ω̃MT
2 Ṽ M2 + Ω̃M3



Θ
Ξ
V
Ω

 .

Multiplying the above terms, the contribution of the quadratic source term to the energy becomes

uTJ(u)u = −V T Ω̃M1V − ΩT
(
Ṽ M1 + Ω̃MT

2

)
V − V T Ω̃M2Ω− ΩT

(
Ṽ M2 + Ω̃M3

)
Ω. (37)

In order to handle this last term, we first show some properties of the cross product matrix. Let
therefore v, y, z ∈ R3 be arbitrary vectors. We already mentioned, that the cross product matrix
is skew symmetric, i.e.

ṽT = −ṽ. (i)



2.6 Energy Considerations 22

Another property that directly follows from the anticommutativity of the cross product itself and
can also be shown easily, is that it holds

ỹz = −z̃y. (ii)

Furthermore, a vector multiplied with itself in the cross product is zero. Together with statement
(i), we can thereby follow

yT ỹz = (−ỹy)T z = 03. (iii)

Properties (i) and (ii) let us derive one more symmetry property, that reads as follows:

vT ỹz = (−ỹv)
T
z = (ṽy)

T
z = −yT ṽz. (iv)

Coming back now to the energy contribution of the quadratic source term (37), we use the prop-
erties (iii)-(iv) to simplify the expression. Taking advantage of (iv), it holds

−V T Ω̃M1V − ΩT Ṽ M1V = −V T Ω̃M2Ω− ΩT Ṽ M2Ω = 0.

And using (iii), we obtain

−ΩT Ω̃MT
2 V = −ΩT Ω̃M3Ω = 0,

meaning that the contribution of the second summand of the quadratic source term is zero as well
and that, in total, we have

uTJ(u)u = 0.

Putting this result together with the result for the contribution of the linear part of the source
term, the total contribution of the source term to the energy becomes

ℓ∫
0

uTQcap(u) dx =

ℓ∫
0

uT qext dx. (38)

Note that the above statement is independent of u being an exact solution to the intrinsic beam
equation. Due to the skew symmetry of the linear source term and the first part of the quadratic
source term and the special symmetry properties of the cross product matrices, u in (38) can be
replaced by any vector in R12 and the equality will still hold. This is an important observation,
we will take advantage of in the analysis of the discrete energy in section 3.5.

The result (38) for the contribution of the source term is completely in line with the expectations
from a physical point of view, because it states that if we neglect external forces and moments, the
source term has no impact on the solution’s energy. That is because, except for external forces and
moments, the source term in the linear advection formulation does not emerge from any actual
sources that create or annihilate physical quantities along the beam out of nothing. It rather
comes from a coupling that transforms some of the considered physical quantities into others and
therefore should be balanced in terms of the energy. Thus, we can update the energy equation
(36), to get

1

2

d

dt
∥u∥2Γ = −

ℓ∫
0

uTΠux dx+

ℓ∫
0

uT qext dx. (39)

After looking into the energy contribution of the source term, we now consider the remaining part
of the right hand side in the updated energy equation (39), namely the first integral. Integration
by parts for that term yields

−
ℓ∫

0

uTΠux dx =

ℓ∫
0

uTΠux dx− uTΠu
∣∣∣ℓ
0
,



2.6 Energy Considerations 23

where the integrand of the first term on the right hand side is actually (uTΠ)xu, but due to the
constancy and symmetry of the matrix Π, this is the same as uTΠux. Rearranging terms now
equivalently results in

−
ℓ∫

0

uTΠux dx = −1

2
uTΠu

∣∣∣ℓ
0
,

meaning that this part of the energy equation can be traced back to boundary terms. The energy
equation now reads

1

2

d

dt
∥u∥2Γ = −1

2
uTΠu

∣∣∣ℓ
0
+

ℓ∫
0

uT qext dx. (40)

The above result for the change of energy can already be interpreted as energy conservation. We
observe that the energy changes only due to external influences: either through the boundaries,
i.e. the ends of the beam, or through the presence of external forces and moments along the
beam. Before we come to the energy stability in the next section, we want to give a more physical
interpretation of the derived energy conservation statement (40).

First, we execute the matrix vector multiplication in the boundary term in equation (40) to
obtain

−1

2
uTΠu

∣∣∣ℓ
0
=

1

2
uT

(
06,6 I6,6
I6,6 06,6

)
u

∣∣∣∣ℓ
0

=
(
V TΘ+ΩTΞ

) ∣∣∣ℓ
0
. (41)

Moreover, by definition of the external source term qext, the second part on the right hand side of
the energy equation (40) can be represented by

ℓ∫
0

uT qext dx =

ℓ∫
0

(
V T fext +ΩTmext

)
dx. (42)

And if we insert the results (41) and (42) into the energy equation (40), it becomes

1

2

d

dt
∥u∥2Γ =

(
V TΘ+ΩTΞ

) ∣∣∣ℓ
0
+

ℓ∫
0

(
V T fext +ΩTmext

)
dx. (43)

The last result is therefore just another representation of (40), but it allows a physical interpretation
of the derived energy conservation. In fact, equation (43) is a result, Hodges already showed in [20]
using a slightly different approach. According to that, the left hand side of (43) is the temporal
change of total mechanical energy of the beam. As we already suggested earlier in this section,
this means that the abstract energy we defined, is not only a mathematical energy but also gives a
measure of the beam’s actual mechanical energy. The right hand side of (43) on the other hand, is
according to [20] the sum of the work done at the beam’s ends (boundary term on the right hand
side) and the work done along the beam (external sources term on the right hand side).

Thus, what we showed, using mathematical techniques and what Hodges already showed in his
work, is that the total mechanical energy of a modelled beam changes only due to work done at
its ends or along the beam, which is just the physical definition of energy conservation.

2.6.2 Energy Stability

The goal in this section, is to find a bound for the right hand side of the energy equation

1

2

d

dt
∥u∥2Γ = −1

2
uTΠu

∣∣∣ℓ
0
+

ℓ∫
0

uT qext dx, (44)

we derived in the previous section. In the case where the energy can be bounded and cannot
increase at an arbitrary rate, the solution of the problem is called energy stable. In order to find



2.6 Energy Considerations 24

such a bound, we have to estimate both, the boundary term and the term that emerges from
external sources, which we do separately.

Estimating the boundary term is usually realized by applying the boundary conditions for u
and then finding a bound for example by completing the square. Before we explicitly insert the
boundary conditions, we would like to mention a result from the literature, namely [34, 35]. Let
us therefore take the general boundary conditions

w+(0, t) = R0w−(0, t) + g0(t),

w−(ℓ, t) = Rℓw+(ℓ, t) + gℓ(t),

for characteristic variables and the matrices R0 and Rℓ from section 2.5 into account again. Nord-
ström showed in [34] that a sufficient condition to find an appropriate estimation for the boundary
terms regarding characteristic variables is that the matrix

RiΛRi − Λ

is negative definite for i = 0, ℓ, where we transferred the general results of [34] for initial boundary
value problems to our specific problem. Remember that the diagonal matrices ±Λ were defined
in section 2.4.2 as the blocks, forming the matrix Λ. From a mathematical point of view, this
is already a result worth mentioning: For the intrinsic beam equation with general boundary
conditions fulfilling this requirement, we can bound the boundary terms and have energy stability
if we assume that we find an appropriate bound for the external sources as well. Nevertheless,
for our application of a clamped beam, we would like to set R0 = I6,6 and Rℓ = −I6,6. For this
particular choice, the above sufficient condition is not fulfilled, but we have

RiΛRi − Λ = 06,6

instead. The statement in [34, 35] for this special case is that energy stability can be obtained
for zero external boundary data, i.e. g0 = gℓ = 06. For non-zero boundary data, there is not a
statement made. That is why we take a detailed look into this case ourselves in the following.

The considerations in [34, 35] are for characteristic variables. The energy equation, we derived,
concerns physical variables, but as u = Tw, we can switch between physical and characteristic
variables equivalently. To be able to apply the argumentation of [34, 35], we will therefore represent
the boundary term in (44) in terms of characteristic variables. In particular, by inserting u = Tw
into the boundary term, we obtain

−1

2
uTΠu

∣∣∣ℓ
0
= −1

2
wTTTΠTw

∣∣∣ℓ
0
.

The matrix product can be calculated straight forward using the definitions of T and Π from
section 2.4.2 so that the above term becomes

−1

2
uTΠu

∣∣∣ℓ
0
= −1

4
wTΛw

∣∣∣ℓ
0
. (45)

Remember that Λ can be represented in block form

Λ =

(
−Λ 06,6

06,6 Λ

)
and that the vector of characteristic variables can be subdivided into w = (wT

−, w
T
+)

T . Therefore,
the right hand side of (45) can be rewritten, so that we have

−1

2
uTΠu

∣∣∣ℓ
0
= −1

4

(
−wT

−Λw− + wT
+Λw+

) ∣∣∣ℓ
0
.

Evaluating the right hand side at x = 0 and x = ℓ gives

−1

2
uTΠu

∣∣∣ℓ
0
=

1

4

(
wT

−Λw−
∣∣
ℓ
− wT

+Λw+

∣∣
ℓ
− wT

−Λw−
∣∣
0
+ wT

+Λw+

∣∣
0

)
.



2.6 Energy Considerations 25

We proceed by inserting the boundary conditions for characteristic variables with R0 = I6,6 and
Rℓ = −I6,6:

−1

2
uTΠu

∣∣∣ℓ
0
=

1

4

(
(gℓ − w+)

TΛ(gℓ − w+)
∣∣
ℓ
− wT

+Λw+

∣∣
ℓ
− wT

−Λw−
∣∣
0

+ (g0 + w−)
TΛ(g0 + w−)

∣∣
0

)
and by gathering terms, we get

−1

2
uTΠu

∣∣∣ℓ
0
=

1

4

(
gTℓ Λgℓ

∣∣
ℓ
− 2gTℓ Λw+

∣∣
ℓ
+ gT0 Λg0

∣∣
0
+ 2gT0 Λw−

∣∣
0

)
. (46)

To obtain energy stability, a bound for the right hand side of the last result has to be found.
To the best of our knowledge, there is no literature that makes a general statement about a bound
for this term for non-zero external boundary data. The appearance of mixed terms containing the
external boundary data g0 and gℓ and the evaluations of w+ and w− makes it difficult to find a
bound because a priori, a statement about their respective sign cannot be made. Neither did we
find an appropriate way of completing the squares or any other procedure to obtain an estimation.
In the argumentation of Nordström, this difficulty arises from the circumstance that

RiΛRi − Λ = 06,6. (47)

At this point, we want to emphasize that neither the authors of [34, 35], nor us do state that
there is no bound for the terms in (46). The argumentation used in [34, 35] can simply not be
used to derive general statements for boundary conditions of linear advection equations with the
property (47). This means that boundary conditions of this type have to be considered individually
from case to case. In the future, there might well be found another argumentation that can be
used to find an estimation for boundary conditions with non-zero external boundary data and the
particular choices of R0 and Rℓ for the intrinsic beam model.

For zero external boundary data on the other hand, i.e. g0 = gℓ = 06, we get a bound easily
because the right hand side of (46) vanishes in this case and thus, the contribution of the boundary
terms to the energy is zero. The rate of change in the energy then becomes

1

2

d

dt
∥u∥2Γ =

ℓ∫
0

uT qext dx. (48)

For zero external forces and moments, the above right hand side is zero. This is the first important
stability result. If we assume zero external boundary data and zero external forces and moments,
the energy of the solution is constant in time. This is also a direct implication of the energy
conservation statement, we derived in the previous section. For the rest of the thesis, if not stated
otherwise, the external boundary data g0 and gℓ is assumed to be zero. Remember that, in order
to transfer the boundary conditions from characteristic variables to physical variables, in section
2.5, g0 and gℓ were set to

g0 = −2Λ−1XF−1/2y0
∣∣
x=0

,

gℓ = 2XF
1/2sℓ

∣∣
x=ℓ

,

where y0 and sℓ were the velocities and internal forces and moments, we want to prescribe at the
respective boundary to describe the clamped beam. Allowing g0, gℓ = 06 only, means that in terms
of boundary conditions for physical variables, we only allow zero velocities at the clamped end and
zero internal forces and moments at the free swinging end.

Aside from the resulting energy stability for zero external forces and moments, we would like
to show, that even for non-zero external forces and moments, the corresponding term in (48) can
be bounded. At first glance, the handling of this term seems easy, because for bounded external
forces and moments in the sense that ∥qext∥L2 ≤ c1, for every point in time, the corresponding
term can be estimated by

ℓ∫
0

uT qext dx ≤ c1∥u∥L2 , (49)



2.6 Energy Considerations 26

where we used the Cauchy-Schwarz inequality for the L2 inner product. In reality, to find an
estimation for that term is a lot harder because of the body attached variables. As explained
in section 2.1, external forces act on the beam not in a fixed coordinate system, but in a body
attached coordinate system that deforms together with the beam’s deformation. This means that
even a constant external force (as seen from the global coordinate system) does not result in a
constant norm of qext but somehow depends on the beam’s deformation and therefore on the time.
Finding an a priori estimation for the norm of qext that does not depend on the time variable is
therefore difficult.

To the best of our knowledge, there is no energy estimation for the solution of the intrinsic
beam equation that considers realistic external forces and moments. Rodriguez et al. for example
neglect external forces and moments in [42, 43, 44]. In this thesis, we will only allow constant
(in time) external forces and moments (as seen from the body attached coordinate system), i.e.
fext(x, t) = fext(x) and mext(x, t) = mext(x).

Although, these constant external forces and moments can hardly be transferred to realistic
physical applications, we do take this choice instead of neglecting external sources completely
because we are interested in deriving an energy stability statement for the most general case.

With the above assumptions, inequality (49) holds and we would like to trace the L2-norm of
u on the right hand side, back to the energy norm of u. To do so, we use Rayleigh’s min-max
principle. The theorem and a proof is for example to find in [21, pp. 235f.]. It states that for the
symmetric matrix Γ(x) with minimal eigenvalue µmin(x) and maximal eigenvalue µmax(x), it holds

µmin(x) ≤
zTΓ(x)z

zT z
≤ µmax(x)

for any non-zero vector z ∈ R12. A direct implication of this is that

zT z ≤ 1

µmin(x)
zTΓ(x)z

for any z ∈ R12. Due to the positive definiteness of Γ, its minimal eigenvalue, µmin(x), is always
positive so that its reciprocal is well defined. Now, defining c2 := maxx∈[0,ℓ]

1/µmin(x), we can follow

ℓ∫
0

uTudx ≤ c2

ℓ∫
0

uTΓudx,

which is the same as

∥u∥L2 ≤
√
c2 ∥u∥Γ .

Inserting the last result into (49), respective (48), we obtain

1

2

d

dt
∥u∥2Γ ≤ c3 ∥u∥Γ , (50)

where c3 := c1
√
c2. The above result is an ordinary differential inequality that can be solved using

the Theorem of Petrovitsch, originating from [38]. We set z(t) = 1
2 ∥u(·, t)∥

2
Γ, which results in

d

dt
z(t) ≤ c3

√
2z(t). (51)

To apply Petrovitsch’s theorem, we first need to find a solution of the following initial value
problem: {

d
dt ẑ(t) = c3

√
2ẑ(t),

ẑ(0) = 1
2 ∥u0∥2Γ ,

(52)

where u0 is the initial condition of the initial boundary value problem, i.e. u(x, 0) = u0(x). One
can easily check that the function

ẑ(t) =
1

2
(∥u0∥Γ + c3t)

2



2.6 Energy Considerations 27

is the solution of the initial value problem (52) and according to Petrovitsch’s theorem, we can
now follow that

z(t) ≤ ẑ(t) for t > 0,

which is equivalent to

∥u(·, t)∥2Γ ≤ (∥u0∥Γ + c3t)
2
.

That is, the energy can be bounded by the quadratic term on the right hand side. Thus, we
showed that the energy of the solution cannot increase faster than quadratically in time. A direct
implication for the energy norm of the solution is that

∥u(·, t)∥Γ ≤ ∥u0∥Γ + c3t,

meaning that for constant (in time) and bounded external forces and moments, the energy norm of
the solution increases at maximum linearly in t. That is, under the assumption that the external
boundary data g0 and gℓ is zero and external forces and moments are constant in time and bounded
in terms of their L2-norm, the solution of the intrinsic beam equation is energy stable.

After finding the desired bound and deriving energy stability for the solution of the initial
boundary value problem, we are now able to proceed by discretizing the problem and derive a
similar statement for the approximate solution in the next section.



28

3 Discretization

In the course of this section, we will discretize the initial boundary value problem, that resulted from
the considerations in the previous sections. Special attention is thereby paid to the discretization in
space, for which we will use a Discontinuous Galerkin approach. We will derive a weak formulation
of the linear advection equation in capacity form and, afterwards, discretize the solution space
of that weak formulation in space, resulting in a semi discrete formulation that still continuously
depends on the time variable. Furthermore, we will introduce the concept of numerical fluxes and
derive such a numerical flux for the discretization of the intrinsic beam equation. The spatial
discretization is completed by discussing how the boundary conditions can be implemented into
the scheme via the numerical flux.

The semi discretization will be investigated regarding its energy. We will find a definition
of discrete energy of the numerical solution analogous to the energy from section 2. Using this
measure of energy in the discrete context, we will then show that the numerical solution inherits
the energy properties of the exact solution. This means, that we will analogously to the energy
considerations in the previous section, derive statements about both, energy conservation and
energy stability of the numerical solution. The semi discrete formulation will then be formulated
as an ordinary differential equation in time and some remarks on the discretization in time will be
made to complete the section.

3.1 Theoretical Preliminaries

In the following section, the most important theoretical basics are defined, which are needed
for the discretization approach in the subsequent sections. This includes the definition of the
Legendre polynomials, the Legendre-Gauß-Lobatto quadrature method to approximate integrals,
the definition of the Lagrange polynomials as well as the introduction of an interpolation operator.
Aside from the definition of the interpolation operator, the definitions in this section can also be
found in [18, 24].

We will proceed as follows: first, we will define the Legendre polynomials. On the basis of
this, we will define the Legendre-Gauß-Lobatto quadrature method whose quadrature points are
the roots of the Legendre polynomials. Afterwards, we define the Lagrange polynomials and an
interpolation operator that is based on the latter polynomials.

The Legendre polynomials are L2-orthogonal polynomials {Pj}j=0,...,N on the interval [−1, 1].
For the purpose of this thesis, it is sufficient to define the polynomials by their recursion formula
as done in the following definition.

Definition 1 Let N ∈ N. The Legendre polynomials {Pj}j=0,...,N are defined by the following
recursion:

P0(ξ) = 1, P1(ξ) = ξ

and

Pj+1(ξ) =
2j + 1

j + 1
ξPj(ξ)−

j

j + 1
Pj−1(ξ)

for j = 1, . . . , N − 1.

On the basis of this last definition, we are now able to specify a formula for the Legendre-Gauß-
Lobatto quadrature.

Definition 2 Let N ∈ N. We define the quadrature nodes {ξj}j=0,...,N , as follows: we set

ξ0 = −1, ξN = +1

and ξj as the zeros of the Legendre polynomial PN−1 for j = 1, . . . , N − 1. Further, we define the
quadrature weights {ωj}j=0,...,N as

ωj =
2

(N + 1)N(PN (ξj))2
, for j = 0, . . . , N.



3.1 Theoretical Preliminaries 29

For a function z = z(ξ), the Legendre-Gauß-Lobatto quadrature formula (or short LGL quadra-
ture) to approximate the integral of z over the interval [−1, 1] then reads as follows:

1∫
−1

z(ξ) dξ ≈
N∑
j=0

z(ξj)ωj .

An integral that is approximated by the LGL quadrature method will for the rest of the thesis also
be denoted by

1∫
−1,N

z(ξ) dξ.

Note that the defined quadrature is exact for polynomials up to a degree of 2N − 1.

Before we proceed with the discretization, we define another set of polynomials, namely the La-
grange polynomials:

Definition 3 Let N ∈ N and consider the points {ξj}j=0,...,N from Definition 2. The Lagrange
polynomials Lj for j = 0, . . . , N are defined defined as the following polynomials:

Lj(ξ) =

N∏
i=0,i̸=j

(ξ − ξi)

(ξj − ξi)
.

Lagrange polynomials have the really useful property Lj(ξi) = δij with the Kronecker delta δij.

Note, that the N + 1 Lagrange polynomials, as defined above, form a basis for the space of
polynomials of degree N on the interval [−1, 1]. Note also, that the points {ξj}j=0,...,N in the
above definition can be replaced by any set of N + 1 disjoint points in [−1, 1], that include the
boundaries ±1. However, in the following sections, the Lagrange polynomials will be used just as
they are defined above.

In the following sections, with PN ([−1, 1]), we will denote the space of multivariate polynomials
that map from the interval [−1, 1] onto the twelve dimensional space R12. Given definition 3, we
have that the set

L :=
{
Lm
j

}m=1,...,12

j=0,...,N
:= {emLj}m=1,...,12

j=0,...,N

forms a basis of PN ([−1, 1]), where em is the m-th element of the standard basis of R12. To
complete this section, we define an interpolation operator:

Definition 4 Let N , {ξj}j=0,...,N be defined as before and let z = z(ξ) be a vector valued or
matrix valued function on [−1, 1]. The interpolation operator IN (·) maps every component of z
onto its unique interpolation polynomial of degree N at the interpolation points {ξj}j=0,...,N . Let
for example z : [−1, 1] → R12 with

z(ξ) = (z1(ξ), . . . , z12(ξ))
T .

Then IN (z) ∈ PN ([−1, 1]) is defined as

(
IN (z)

)
(ξ) =

12∑
m=1

N∑
j=0

amj Lm
j (ξ),

or in the component wise representation

(
IN (z)

)
(ξ) =

 N∑
j=0

a1jLj(ξ), . . . ,

N∑
j=0

a12j Lj(ξ)

T

,

for appropriate coefficients amj and the Lagrange basis functions Lj from definition 3.

With these definitions, we now have the essential mathematical tools to derive a semi discrete
formulation of the intrinsic beam equation in its linear advection formulation from section 2.



3.2 A Discontinuous Galerkin Approach for Discretization in Space 30

3.2 A Discontinuous Galerkin Approach for Discretization in Space

In this section the semi discrete formulation will be derived. The procedure is guided by [26]. We
will subdivide the domain [0, ℓ] into cells and derive a cell wise weak formulation of the considered
equation, which will then be discretized in space. The starting point for the discretization is the
capacity form of the linear advection equation, we derived in section 2.4.4. It reads

Γut +Πux = Qcap(u). (53)

As mentioned initially, the considered interval [0, ℓ] is subdivided into non overlapping elements or
cells {Ck}k=1...,Nc

, defined by

Ck :=

[
xk −

∆xk

2
, xk +

∆xk

2

]
⊂ [0, ℓ],

meaning that for k = 1, . . . , Nc, the point xk is the center and ∆xk is the width of the cell Ck.
Since the solution of equation (53) fulfills the equation on (0, ℓ), it fulfills it on every cell Ck and the
equation can be considered cell wise. To save computational operations and memory requirement,
we transform every cell Ck to the same reference element R with

R := [−1, 1].

In particular, for every cell Ck, the transformation is a linear map. A point x ∈ Ck is mapped onto
a point ξ = ξ(x) ∈ R by

ξ(x) =
2

∆xk
(x− xk). (54)

Inversely, a point ξ ∈ R is mapped onto a point x = x(ξ) ∈ Ck by

x(ξ) = xk +
∆xk

2
ξ.

Using this transformation between the physical cells Ck, and the reference element R, the depen-
dencies of the considered quantities on the space variable x can be interpreted as dependencies on
ξ, as it holds for example u(x, t)|Ck

= u(x(ξ), t)|R for every cell Ck. Thus, equation (53) can also
be transformed from each cell to the reference element. Therefore, the derivatives with respect to
x, that appear in (53) have to be transformed. In particular, we have

Πux = Πuξ
dξ

dx
=

2

∆xk
Πuξ (55)

for every cell Ck. Inserting the transformation of the derivative with respect to x into equation
(53) and multiplying both sides by ∆xk/2 afterwards, yields that on every cell Ck, it holds

∆xk

2
Γut +Πuξ =

∆xk

2
Qcap(u). (56)

On the basis of equation (56), we now want to derive the weak formulation of the linear advection
equation for each cell Ck. We start by multiplying the equation by the transposed of an arbitrary
test function φ that is smooth on the reference element R and integrating both sides over R:

∆xk

2

1∫
−1

φTΓut dξ +

1∫
−1

φTΠuξ dξ −
∆xk

2

1∫
−1

φTQcap(u) dξ = 0.

The second summand on the left hand side of the above expression can be integrated by parts.
Additionally, we exploit the symmetry and constancy of the matrix Π, which results in

∆xk

2

1∫
−1

φTΓut dξ −
1∫

−1

(Πφ)Tξ udξ −
∆xk

2

1∫
−1

φTQcap(u) dξ = −φT f
∣∣∣1
−1

, (57)



3.2 A Discontinuous Galerkin Approach for Discretization in Space 31

with the flux function f(u) = Πu. The test function φ was left arbitrary, so that (57) holds for
every test function that is smooth in R.

The goal is now, to discretize the cell wise weak formulation of the intrinsic beam equation with
respect to the spatial variable x, respectively ξ. Hence, we have to specify a finite dimensional
function space from which we choose a numerical solution to approximate the exact solution of the
problem. Likewise, the space of test functions has to be discretized and therefore restricted to a
finite dimensional space of test functions. We will approximate both, the local solution in the cells
and the test functions, by polynomials of degree Np.

Because the polynomials of adjacent cells do not have to coincide, the numerical solution is
a piecewise polynomial in a global point of view, i.e. on [0, ℓ]. Thus, the discrete space of test
functions and the global discrete solution space can be specified as

VNp
:=
{
W ∈ L2([0, ℓ])

∣∣ W |Ck
∈ PNp

(Ck)
}
.

Consequently, there usually occur discontinuities in the numerical solution at the interfaces between
the cells. This special property of the discretization approach results in its name Discontinuous
Galerkin Approach. The global numerical solution and the test functions from the discrete set
of test functions are denoted by U, ϕ ∈ VNp

, respectively. For the local numerical solution in a

specific cell Ck, we write U (k) = U |Ck
. Moreover, whenever we write U (k)(ξ, t), in the following

we mean U (k)(x(ξ), t) with x(ξ) ∈ Ck. Formally, U (k) is the interpolation polynomial of the exact
solution u in the cell Ck. As interpolation points we choose the Np + 1 LGL points {ξj}j=0,...,Np

on R = [−1, 1] (cf. definition 2). Using the basis L of the polynomial space PNp
, we defined in the

previous section, the numerical solution in the cell Ck can therefore be specified as

U (k)(ξ, t) =

12∑
m=1

Np∑
j=0

a
m,(k)
j (t)Lm

j (ξ)

for appropriate coefficients a
m,(k)
j depending on the time variable. A more detailed look into these

coefficients and how they can be determined will be given in section 3.6.
When we want to approximate equation (57) with the discretized quantities we defined above,

the discontinuities at the interfaces have to be minded especially regarding the right hand side
of the equation. There, the evaluations of the flux function f(u) = Πu at the cell boundaries
have to be approximated. The cell boundaries are just the points, where the numerical solution is
discontinuous and therefore not unambiguously defined. The idea of the Discontinuous Galerkin
approach is now to approximate these evaluations by a so called numerical flux function F∗. This
idea comes from the Finite Volume Methods, which can be interpreted as Discontinuous Galerkin
methods with Np = 0. A more detailed look into the ideas of the numerical flux is given in section
3.3. For now we just take it as an abstract concept and assume that F∗ is an approximation of the
flux function at the cell boundaries.

Summarizing the considerations on the discretization of the function spaces and on the numer-
ical flux, we can specify an approximation of equation (57):

∆xk

2

1∫
−1

ϕTΓU
(k)
t dξ −

1∫
−1

(Πϕ)Tξ U
(k) dξ +

∆xk

2

1∫
−1

ϕTQcap(U
(k)) dξ = −ϕTF∗

∣∣∣1
−1

. (58)

Further, we approximate the matrix Γ and the source term Qcap(U
(k)) using the interpolating

operator, we defined in definition 4 and denote the approximations by

Γ(k) := INp

(
Γ
∣∣
Ck

)
,

Q(k)
cap := INp

(
Qcap(U

(k))
)
.

Another approximation of equation (58) is therefore given by

∆xk

2

1∫
−1

ϕTΓ(k)U
(k)
t dξ −

1∫
−1

(Πϕ)Tξ U
(k) dξ +

∆xk

2

1∫
−1

ϕTQ(k)
cap dξ = −ϕTF∗

∣∣∣1
−1

. (59)



3.3 The Numerical Flux 32

To obtain a formulation that is fully discrete with regard to the space variable, we need to
replace the integrals in (59) by a numerical quadrature. In particular, we use the Legendre-
Gauß-Lobatto quadrature method with nodes {ξj}j=0,...,Np

and weights {ωj}j=0,...,Np
as defined

in definition 2. Note that the quadrature nodes {ξj}j=0,...,Np
coincide with the interpolation nodes

of the operator INp . This accordance is called co-location of quadrature and interpolation nodes,
and we will see later that it leads to a very efficient method and brings some other advantages
with it. The approximation of (59) with the integrals replaced by LGL quadratures reads

∆xk

2

1∫
−1,Np

ϕTΓ(k)U
(k)
t dξ −

1∫
−1,Np

(Πϕ)Tξ U
(k) dξ +

∆xk

2

1∫
−1,Np

ϕTQ(k)
cap dξ = −ϕTF∗

∣∣∣1
−1

. (60)

Let us, on the basis of the LGL quadrature, define a discrete inner product and the discrete norm
that is induced by this inner product. Therefore, consider two polynomials W,Z ∈ PNp

([−1, 1]).
The discrete inner product is defined by

〈
W,Z

〉
Np

:=

1∫
−1,Np

WTZ dξ.

The norm that is induced by that inner product will be denoted by

∥W∥Np
:=
〈
W,W

〉1/2
Np

.

It is the discrete analogue to the L2-norm. The semi discrete approximation of the weak formulation
(60) of the intrinsic beam equation on the cell Ck finally reads:

∆xk

2

〈
ϕ,Γ(k)U

(k)
t

〉
Np

−
〈
Πϕξ, U

(k)
〉
Np

− ∆xk

2

〈
ϕ,Q(k)

cap

〉
Np

= −ϕTF∗
∣∣∣1
−1

. (61)

Remark 2 Note that even though we formally approximate Γ and Qcap(U
(k)) by their respective

interpolant, in the context of the LGL quadrature, Γ(k) can be replaced by Γ. The same holds for
Qcap and its interpolant. This is because of the co-location of interpolation nodes and quadrature
nodes that has the effect that evaluations only take place at interpolation nodes, where the interpo-

lation is exact. In the following, we will therefore write Γ and Qcap(U
(k)) instead of Γ(k) and Q

(k)
cap

in the context of discrete scalar products and norms.

3.3 The Numerical Flux

In the following section, we want to give an overview about the principle idea that underlies the
approximations of the surface flux, i.e. the evaluation of the flux function at the cell boundaries, by
a numerical flux and, subsequently, specify the numerical flux that is used in the rest of this thesis.
The part regarding the overview about the idea behind the numerical flux and the associated
Riemann Problems is guided by [31, 50] while the choice of the numerical flux is inspired by [26].

To appropriately define the numerical flux later in this section, we will need some new notations,
that are also guided by [26]. We start by introducing the notation for the absolute value of a
diagonal matrix. Let therefore D be an arbitrary real diagonal matrix. Then its absolute value
|D| is determined by taking the absolute value of every diagonal entry, i.e.

|D| := diag(|d11|, |d22|, . . .),

where dii are the diagonal entries of D. Furthermore, we define the matrices D+ and D− as follows:

D+ :=
1

2
(D + |D|),

D− :=
1

2
(D − |D|).

This results in D+ containing the positive entries of D on its diagonal and negative ones being
replaced by zero. Likewise, D− contains the negative values of D and the positive ones are replaced
by zero. Consequently, we have

D = D+ +D−,



3.3 The Numerical Flux 33

which can also be checked easily using the definition of D+ and D−.
These definitions can be extended to non diagonal but diagonalizable matrices. In particular, let

Â be a real matrix that is diagonalized by a transformation with T̂ and let D be the corresponding
diagonal matrix containing the eigenvalues of Â. Then by |Â|, we denote the matrix

|Â| := T̂−1|D|T̂ ,

which can be interpreted as the matrix that results from replacing all eigenvalues of Â by their
absolute value. The matrices Â+ and Â− can then be defined analogously to the diagonal case,
meaning

Â+ :=
1

2
(Â+ |Â|),

Â− :=
1

2
(Â− |Â|).

Note that the relations

Â = Â+ + Â−

Â± = T̂−1D±T̂

hold.
Having completed these preparatory considerations, we can now come to the actual derivation

of the numerical flux. As mentioned in the discretization procedure in the previous section, for a
numerical solution that is discontinuous at the cell boundaries, the evaluation of the flux function
f at these points is not defined. Hence, an appropriate approximation is needed in order to realize
the discretization scheme as it was introduced in section 3.2. The numerical flux is used to obtain
such an approximation. Similar to Finite Volume Methods, the idea is to interpret the two values
at each side of an interface as initial condition of a local Riemann Problem. This idea goes back
to Godunov [16].

A Riemann problem is an initial value problem with an initial condition that has a jump at
one point. Since the derived partial differential equation holds in every cell, and the numerical
solution usually jumps at an interface, in the form we defined it in the previous section, there
emerges a local Riemann problem at every interface. To be precise, we have to distinguish between
Riemann problems and generalized Riemann problems. The former consider initial conditions that
are constant apart from the jump, while the latter also consider non-constant initial conditions with
a jump. Because the numerical solution is non-constant in the cells, the local Riemann problems
that emerge at the interfaces are generalized Riemann problems. Nevertheless, in the following we
refer to them simply as Riemann problems.

Thus, to approximate the flux value at the interfaces, the local Riemann problem can be solved
numerically to insert the solution into the flux function afterwards. This is why the numerical
flux is often called Riemann Solver or more precisely approximate Riemann Solver. Theoretical
considerations on how a Riemann problem can be solved (numerically) are for example given in
[50]. In this thesis we will not look into the details on solving the Riemann problem itself but limit
ourselves to specifying a widely used Riemann solver as numerical flux.

Therefore, we introduce another notation. Let us consider one arbitrary but fixed interface
between the cells Ck and Ck+1 for some k ∈ {1, . . . , Nc − 1}. Then the numerical solution’s value
at this interface is U (k)(ξ = 1) as seen from the cell Ck and U (k+1)(ξ = −1) as seen from the cell
Ck+1 (omitting the dependency on the time). As long as we are operating at one fixed interface,
in the following we will denote the value of the numerical solution left, respectively right to the
interface as

UL := U (k)(ξ = 1),

UR := U (k+1)(ξ = −1).

The evaluation of a function at the respective interface is furthermore denoted by the superscript
(·)∗, meaning that we write for instance A∗ for the evaluation of A at the interface. This notation
will only be used for smooth functions, so that the value at the interface is always well defined. A
simplified illustration of the definition of UL, UR and A∗ is given in figure 2.



3.3 The Numerical Flux 34

Figure 2: Simplified illustration of the definition of UL and UR. Here, for illustration purposes, U
is an one dimensional quantity whereas the actual U is twelve dimensional. The matrix A∗ is the
evaluation of A at the interface between Ck and Ck+1.

Although we are guided by [26] in choosing the numerical flux, we have to slightly adjust the
numerical flux that is chosen there. The reason for this is, that in this thesis, we discretize the ca-
pacity form of the advection equation while in [26] the advection form1 is discretized. Nevertheless,
the procedures can be adapted.

In [26], Gassner and Kopriva choose the so called Lax-Friedrichs Flux that originates from Lax’s
work [30] in 1954 and is still a widely used numerical flux for Discontinuous Galerkin discretization
methods (cf. for example [8, 11, 14, 18, 26]). The discretized problem in [26] is the advection
form1 of a linear hyperbolic balance law with a symmetric advection matrix and a linear source
term. Apart from the source term, the intrinsic beam equation for characteristic variables derived
in section 2.4.3, is such an equation. For this formulation, we can thus specify the Lax-Friedrichs
flux analogously to [26]. Adapted to our notation, it reads

F̄∗(WL,WR) :=
1

2
Λ∗(WL +WR)−

σ

2
|Λ∗|(WR −WL),

where σ ≥ 0 is a so called upwind parameter and WL and WR are the values of the numerical
solution at the respective interface when discretizing the formulation for characteristic variables.
For σ = 0 the flux is also called central flux as it computes the average of the flux for the two
states left and right to an interface. For σ = 1 on the other hand, we have

F̄∗(WL,WR) := Λ∗
+WL +Λ∗

−WR,

meaning that in this case, only values from the left that are associated with positive characteristic
speeds and only values from the right that are associated with negative characteristic speeds, are
taken into account. The numerical flux resulting from σ = 1 is therefore called upwind flux.

In [26] it is shown that the Discontinuous Galerkin discretization for the problem, considered
there, is energy stable using the Lax-Friedrichs flux with σ ≥ 0. After deriving this energy stable
numerical flux for the symmetric system, Gassner and Kopriva also show that it can be transferred
to a non symmetric system if the corresponding advection matrix is symmetrizable. This is done
by transforming the numerical flux function just in the inverse way, the non symmetric system
is transformed into the equivalent symmetric system (remember that the advection matrix was
assumed to be symmetrizable).

The symmetrization process in [26] is the same as the diagonalization process in this thesis in
section 2.4.3. There, we found a transformation matrix T , that diagonalizes (symmetrizes) the
advection matrix, inserted u = Tw into the non diagonal (non symmetric) system and multiplied
both sides of the equation by T−1. Applying the inverse transformation to the above Lax-Friedrich
flux for the diagonal (symmetric) system, means inserting WL = (T−1)∗UL respectively WR =

1Actually a split form, i.e. a weighted average of the advection form and the conservation form is discretized in
[26]. Nevertheless, the weight can be chosen in such a way that only the advection form is used.



3.3 The Numerical Flux 35

(T−1)∗UR and multiplying by T ∗ from the left. In particular, this yields

F̂∗(UL, UR) := T ∗F̄∗((T−1)∗UL, (T
−1)∗UR)

=
1

2
(TΛT−1)∗(UL + UR)−

σ

2
(T |Λ|T−1)∗(UR − UL)

=
1

2
A∗(UL + UR)−

σ

2
|A|∗(UR − UL).

Eventually, in [26] it is shown that the discretization scheme for the non symmetric system and

the transformed numerical flux F̂∗ is still energy stable.
Up to this point the proceedings are completely analogue to the ones in [26]. The additional

step is now to transform the numerical flux for the non symmetric system in advection form
to a numerical flux for the discretization of the system in capacity form. Just as in the first
transformation, the same steps that are done to transfer the system from the advection form to
the capacity form are done to the numerical flux. In particular this is the multiplication by the
matrix Γ∗ from the left, meaning that we set

F∗(UL, UR) := Γ∗F̂∗(UL, UR)

=
1

2
Γ∗A∗(UL + UR)−

σ

2
Γ∗|A|∗(UR − UL)

=
1

2
Π(UL + UR)−

σ

2
(Γ|A|)∗(UR − UL).

Note that F∗(U,U) = ΠU = f(U), so that the numerical flux is consistent, which is the minimum
requirement to a numerical flux. In section 3.5.2, we will show that the discretization scheme from
the last section together with the above numerical flux leads to an energy stable numerical solution.

Analogous to the considerations on the upwind parameter in the numerical flux for the system
for characteristic variables, earlier in this section, we refer to the numerical flux F∗ with σ = 0, i.e.

F∗(UL, UR) =
1

2
Π(UL + UR)

as central flux while the numerical flux that results from choosing σ = 1, i.e.

F∗(UL, UR) =
1

2
Π(UL + UR)−

1

2
(Γ|A|)∗(UR − UL),

will be called upwind flux. Another representation of the upwind flux is obtained by inserting
Π = (ΓA)∗ again and gathering terms. In particular, the upwind flux can be written as

F∗(UL, UR) = (ΓA+)
∗UL + (ΓA−)

∗UR.

While the numerical results in section 4 will be computed by using either of these two special
cases, for the theoretical considerations that follow, we will leave σ as a parameter. The only
limitation we set ourselves is that at the boundaries, we always set σ = 1, i.e. take the upwind
flux. This is analogue to the literature, e.g. [26].

The treatment of the boundaries is not only special with regard to the upwind parameter but
also because the cells adjacent to the boundaries do not have two neighbours like the inner cells
do. More precisely, the first cell does not have a left neighbour cell, whereas the last cell does
not have a right neighbour cell. Nevertheless, the numerical flux does need a value from the left
and from the right at the boundaries. The implementation of the boundary conditions into the
discretization scheme will be discussed in the next section.

To complete this section, we introduce another notation, that emerges from the notation in the
previous section. The right hand side of the semi discrete formulation, we derived there, reads

−ϕTF∗
∣∣∣1
−1

,

which is always in the context of a cell Ck. The evaluations of F∗ at ξ = ±1 have therefore to
be interpreted as the evaluations of the numerical flux function at the respective interface. In
particular, at ξ = −1, we have

F∗∣∣
−1

= F∗
(
U (k−1)(1), U (k)(−1)

)
(62)



3.4 Implementation of Boundary Conditions 36

as in the notation UL and UR, at this particular interface, it holds

UL = U (k−1)(1),

UR = U (k)(−1).

At ξ = +1 on the other hand, the evaluation has to be interpreted as

F∗∣∣
+1

= F∗
(
U (k)(1), U (k+1)(−1)

)
(63)

because UL and UR at this interface are defined as

UL = U (k)(1),

UR = U (k+1)(−1).

3.4 Implementation of Boundary Conditions

In this section, we will discuss how the boundary conditions for the intrinsic beam model, we derived
in section 2.5, can be implemented into the discretization approach. Therefore, the procedures in
[18, 31, 50] for dealing with the boundary conditions are adapted.

In Discontinuous Galerkin discretizations, boundary conditions are typically implemented, us-
ing the numerical flux. This means that we will not set the coefficients of the numerical solution
directly and reduce the degrees of freedom so that the boundary conditions are fulfilled exactly.
Instead, we will define an outer value at the boundaries according to the boundary conditions, that
can then be used to evaluate the numerical flux at the boundaries. This approach is also called
weak imposition of boundary conditions.

The idea can be described as follows: At each interface (respectively boundary) the numerical
flux we defined in the previous subsection, depends on a value from the left adjoined cell and from
the right adjoined cell. At the boundaries, one of the values is not naturally given as for example
the first cell C1 does not have a neighbour to its left. Hence, the value on the respective outside
of the domain, that is inserted into the numerical flux has to be set according to the boundary
conditions. This procedure can be illustrated by introducing two fictitious cells C0 and CNc+1 that
are attached to the domain [0, ℓ], as it is illustrated in figure 3.

Figure 3: Illustration of the fictitious cells C0 and CNc+1 outside the interval [0, ℓ] inspired by Fig.
7.1. in [31].

The boundaries can now be interpreted as interfaces between the cells C0 and C1 or CNc
and

CNc+1, respectively. At the left boundary, i.e. x = 0, to evaluate the numerical flux we need the
value UR = U (1)(−1). Furthermore, a value, UL from the left cell of the interface, namely the
fictitious cell C0 is needed. This is the value we need to set according to the boundary condition
at x = 0. Analogously, at the right boundary, i.e. at x = ℓ an inner value UL = U (Nc)(1) and an
outer value, UR, from the fictitious cell CNc+1 is needed. The latter one is the one we have to set
according to the boundary condition at x = ℓ.

We have to set the outer values to be consistent on the one hand, meaning that if the numerical
solution converges, the boundary values converge to the specified boundary values from section
2.5. On the other hand, the resulting boundary terms, i.e. the evaluation of the numerical flux at
the boundaries must have a dissipative effect on the discrete energy. In this section we will focus
on deriving consistent outer values. When deriving a discrete energy estimation for the numerical
solution in section 3.5.2, we will then go into detail regarding the dissipative effect of the resulting
boundary terms.

Although by assumption, the external boundary data y0 and sℓ is zero, we will derive the
discrete boundary conditions for the general case of non-zero boundary data and will then reduce



3.4 Implementation of Boundary Conditions 37

this general case to zero boundary data. Recall, that the boundary conditions for physical variables
in general were derived as

u(0) =

(
s(0)
y0

)
, u(ℓ) =

(
sℓ
y(ℓ)

)
.

To have a consistent notation, we adopt the subdivision of the exact solution u into s and y for
the numerical solution. In particular, we set

U (k) =

(
S(k)

Y (k)

)
.

To impose the boundary conditions at x = 0, we set the outer value UL in the fictitious cell C0 as
follows:

UL =

(
SR + (F−1/2X TΛ−1XF−1/2)∗(YR − y0)

y0

)
, (64)

where we take on the notation of the previous section, meaning that ( · )∗ indicates the evaluation
at the considered interface, which is the boundary x = 0 in this case. Note, that if we replace
SR by s(0) and YR by y(0), this term already appeared in the derivation of the original boundary
conditions in section 2.5 (cf. (30)). To ease the notation, we recall the definition of the matrix
Ψ = F−1/2M−1F−1/2 from section 2.4.2 and especially the fact that it is diagonalized by the
orthogonal matrix X , as

Ψ = X TΛ2X

holds. Because Ψ was shown to be positive definite, it has a square root. In particular, this square
root can be specified as

Ψ
1/2 = X TΛX ,

which can be checked easily by multiplying Ψ
1/2 by itself. Moreover, the inverse of Ψ

1/2 is given by

Ψ−1/2 = X TΛ−1X ,

which can also be checked easily. Using these considerations on the matrix Ψ, the vector UL in
(64) can be written as

UL =

(
SR + (F−1/2Ψ−1/2F−1/2)∗(YR − y0)

y0

)
.

This choice of the outer value at the left boundary is consistent because, as the numerical solution
converges to the exact solution of the problem, we have SR = s(0) and YR = y(0) = y0 and, thus

UL =

(
s(0)
y0

)
,

which is just the boundary condition, we derived in section 2.5 for the boundary x = 0. Note that
for y0 = 06, this reduces to

UL =

(
s(0)
06

)
.

Analogously, to impose the boundary conditions at the boundary where x = ℓ, we set the outer
value at this boundary, UR, i.e. the value in the fictitious cell CNc+1, as

UR =

(
sℓ

YL − (F
1/2X TΛXF

1/2)∗(SL − sℓ)

)
.

By using the considerations on the matrix Ψ and its square root, UR can be represented by

UR =

(
sℓ

YL − (F
1/2Ψ

1/2F
1/2)∗(SL − sℓ)

)
. (65)



3.5 Discrete Energy Considerations 38

This choice for the outer value at the right boundary is also consistent. For a converging numerical
solution, we have SL = s(ℓ) = sℓ and YL = y(ℓ), which if we insert it into (65), results in

UR =

(
sℓ
y(ℓ)

)
.

This is again just the boundary condition for the original problem at x = ℓ. For the special case
sℓ = 06, the outer state UR reduces to

UR =

(
06

y(ℓ)

)
.

After deriving a possibility to impose the boundary conditions by using the numerical flux,
with consistent choices of the outer values in the respective fictitious cells C0 and CNc+1, we have
now everything that is needed to analyze the discrete energy of the numerical solution. This will
also include the verification that the boundary conditions, in the way we implemented them into
the scheme, have a dissipative effect.

3.5 Discrete Energy Considerations

After deriving the semi discrete formulation of the equation, choosing a numerical flux and im-
plementing the boundary conditions into the discretization scheme in the previous sections, we
are now able to analyze the discrete energy of the numerical solution. We will proceed mostly
analogous to the considerations on the energy of the solution of the continuous problem. In the
first part of the section we will therefore derive a statement about energy conservation for the
discrete solution. Afterwards, we will use the assumptions, we made to obtain energy stability in
the continuous case, to derive an analogous statement about discrete energy stability.

3.5.1 Discrete Energy Conservation

Analogous to the considerations in the continuous case we define the discrete inner product of two
polynomials W,Z within the cell Ck as

⟨W,Z⟩Np,Γ := ⟨W,ΓZ⟩Np
=

1∫
−1,Np

WTΓZ dξ

and the induced discrete energy norm

∥W∥Np,Γ := ⟨W,W ⟩1/2Np,Γ
.

In the following, we will analyze the energy cell wise and therefore consider an arbitrary fixed cell
Ck. The superscript (k) is omitted for a better readability and we will write U = U (k) for example.
The semi discrete formulation of the intrinsic beam equation in the considered cell then reads

∆xk

2

〈
ϕ,ΓUt

〉
Np

−
〈
Πϕξ, U

〉
Np

− ∆xk

2

〈
ϕ,Qcap(U)

〉
Np

= −ϕTF∗
∣∣∣1
−1

. (66)

Equation (66) holds for every test function ϕ in the discrete space of test functions VNp , which
especially includes ϕ = U . We can therefore insert ϕ = U into equation (66) to obtain

∆xk

2

〈
U,ΓUt

〉
Np

−
〈
ΠUξ, U

〉
Np

− ∆xk

2

〈
U,Qcap(U)

〉
Np

= −UTF∗
∣∣∣1
−1

. (67)

Analogous to the continuous energy analysis, the first term on the above left hand side can be
represented in terms of the discrete energy of U :

〈
U,ΓUt

〉
Np

=

1∫
−1,Np

UTΓUt dξ =
1

2

d

dt

1∫
−1,Np

UTΓU dξ =
1

2

d

dt
∥U∥2Np,Γ. (68)



3.5 Discrete Energy Considerations 39

Furthermore we take advantage of the so called summation by parts (SBP) property of the LGL
quadrature [25, 26]. It mimics integration by parts in the discrete context. Hence, the second
summand in (67) can be written as

−
〈
ΠUξ, U

〉
Np

= −UTΠU
∣∣∣1
−1

+
〈
ΠU,Uξ

〉
Np

. (69)

Remember that Π is symmetric, which especially implicates that〈
ΠU,Uξ

〉
Np

=
〈
ΠUξ, U

〉
Np

.

Thus, equation (69) can be equivalently transformed to

−
〈
ΠUξ, U

〉
Np

= −1

2
UTΠU

∣∣∣1
−1

.

Inserting the representation of the first summand by the discrete energy, (68), and the discrete
integration by parts for the second summand, (69), into (67) and rearranging terms yields

∆xk

4

d

dt
∥U∥2Np,Γ =

∆xk

2

〈
U,Qcap(U)

〉
Np

−
(
UTF∗ − 1

2
UTΠU

)∣∣∣∣1
−1

, (70)

which is an equation that describes the change of the discrete energy of the numerical solution in
one cell. Analogous to the continuous case, we will now show that the term, emerging from the
source term Qcap, vanishes right down to external sources. The quadrature for this term reads

〈
U,Qcap(U)

〉
Np

=

Np∑
j=0

UTQcap(U)
∣∣
ξj
ωj .

Note that the above sum actually contains the evaluations of the interpolant of Qcap(U) but they
are the same as the evaluations of the exact Qcap(U) at the interpolation nodes (cf. remark 2). In
section 2.6, we showed that for any z ∈ R12, it holds

zTQcap(z) = zT qext.

An implication of this is that especially

UTQcap(U)
∣∣∣
ξj

= UT qext

∣∣∣
ξj

for all j ∈ {0, . . . , Np} and therefore〈
U,Qcap(U)

〉
Np

=
〈
U, qext

〉
Np

holds. Thus, equation (70) reduces to

∆xk

4

d

dt
∥U∥2Np,Γ =

∆xk

2

〈
U, qext

〉
Np

−
(
UTF∗ − 1

2
UTΠU

)∣∣∣∣1
−1

. (71)

This is the cell wise and discrete analogue to the energy conservation statement, we derived in
section 2.6.1 for the solution of the continuous problem. It states that energy in each cell only
changes through the cell boundaries or due to the presence of external forces and moments, acting
on the beam within the cell. In the next section the discrete energy considerations are extended
to the global domain [0, ℓ], and a statement about discrete energy stability is derived.

3.5.2 Discrete Energy Stability

In the following section we want to derive energy stability for the numerical solution in the discrete
energy norm. To obtain a result that is analogous to the considerations in the continuous case, we
assume the external sources to be constant in time and bounded in the L2-norm. Furthermore, we
consider zero external boundary data only.



3.5 Discrete Energy Considerations 40

The discrete energy conservation statement (71) from the previous section reads

∆xk

4

d

dt
∥U (k)∥2Np,Γ =

∆xk

2

〈
U (k), qext

〉
Np

−
(
(U (k))TF∗ − 1

2
(U (k))TΠU (k)

)∣∣∣∣1
−1

, (72)

where we added the superscript (k) again to stress that the above equation holds within one cell.
This means that each cell has a contribution to the total discrete energy on the interval [0, ℓ] of
the form (72). Consequently, we have to sum up the contributions of each cell in order to measure
the total discrete energy. The summation reads

1

2

d

dt

Nc∑
k=1

∆xk

2
∥U (k)∥2Np,Γ =

Nc∑
k=1

∆xk

2

〈
U (k), qext

〉
Np

−
Nc∑
k=1

(
(U (k))TF∗ − 1

2
(U (k))TΠU (k)

)∣∣∣∣1
−1

.

(73)

We define the total discrete energy norm of the global numerical solution U as

∥U∥Np,Γ :=

(
Nc∑
k=1

∆xk

2
∥U (k)∥2Np,Γ

)1/2

.

Consequently, the total discrete energy of the global numerical solution is defined as

∥U∥2Np,Γ =

Nc∑
k=1

∆xk

2
∥U (k)∥2Np,Γ,

so that (73) can be interpreted as

1

2

d

dt
∥U∥2Np,Γ =

Nc∑
k=1

∆xk

2

〈
U (k), qext

〉
Np

−
Nc∑
k=1

(
(U (k))TF∗ − 1

2
(U (k))TΠU (k)

)∣∣∣∣1
−1

. (74)

Before we analyze the total discrete energy, we take a more detailed look at the term

Nc∑
k=1

(
(U (k))TF∗ − 1

2
(U (k))TΠU (k)

)∣∣∣∣1
−1

, (75)

that occurs on the right hand side of (74). Note that the evaluation of the k-th summand at
ξ = +1 refers to the interface between the cells Ck and Ck+1 and so does the evaluation of the
(k + 1)-st summand at ξ = −1. The evaluations of the numerical flux in these summands are
therefore equal (cf. definition of the evaluations of F∗ at the interfaces in (62), (63)). This means
that, if we arrange the sum in such a way that summands referring to the same interface follow
each other, terms of the following form result:(

U (k)(1)− U (k+1)(−1)
)T

F∗(UL, UR)

− 1

2

((
U (k)(1)

)T
ΠU (k)(1)− (U (k+1)(−1))TΠU (k+1)(−1)

)
,

(76)

where UL, UR represent the values of the numerical solution left and right to the respective interface.
To ease the notation, we define the jump of the solution at the interface between the cells Ck and
Ck+1 as [

U (k)
]
:= U (k)(1)− U (k+1)(−1).

As long as it is clear, which interface we refer to, in the notation of section 3.3 this can also be
written as [

U (k)
]
= UL − UR.

This notation can analogously be transferred to [(U (k))TΠU (k)]. The terms in (76) can then be
written as [

U (k)
]T

F∗(UL, UR)−
1

2

[
(U (k))TΠU (k)

]
.



3.5 Discrete Energy Considerations 41

If we sum these terms up over all k = 1, . . . , Nc − 1, every summand from (75) can be found in the
resulting sum except the two terms

bL := −
(
(U (1))TF∗ − 1

2
(U (1))TΠU (1)

)∣∣∣∣
−1

,

bR :=

(
(U (Nc))TF∗ − 1

2
(U (Nc))TΠU (Nc)

)∣∣∣∣
1

,

which refer to the boundaries. In particular, bL refers to the left boundary and bR to the right
one. Putting everything together, the sum (75) can be represented by

Nc∑
k=1

(
(U (k))TF∗ − 1

2
(U (k))TΠU (k)

)∣∣∣∣1
−1

=

Nc−1∑
k=1

([
U (k)

]T
F∗(UL, UR)−

1

2

[
(U (k))TΠU (k)

])
+ bL + bR.

This is now inserted into equation (72), so that the change of total discrete energy becomes

1

2

d

dt
∥U∥2Np,Γ =

Nc∑
k=1

∆xk

2

〈
U (k), qext

〉
Np

−
Nc−1∑
k=1

([
U (k)

]T
F∗(UL, UR)−

1

2

[
(U (k))TΠU (k)

])
− bL − bR.

(77)

The above right hand side can be interpreted as follows: The first sum is the contribution of the
external source term to the discrete energy, the second sum represents the energy contribution at
the interfaces between the cells within the domain (0, ℓ) and the last two terms, namely bL and
bR are the contribution of the boundary terms to the total discrete energy. Every change in total
discrete energy can be traced back to one of these terms. Similar to the continuous case, to obtain
energy stability, we consider the right hand side of (77) term by term and try to find a bound for
each, which we do in the following paragraphs.

Contribution of the interface terms First, we consider the contribution of the interface terms.
In particular, we start with the term [

U (k)
]T

F∗(UL, UR)

for a fixed k. According to the definition of the general numerical flux with upwind parameter σ,
this can be expressed as[

U (k)
]T

F∗(UL, UR) =
1

2
(UL − UR)

TΠ(UL + UR)−
σ

2
(UL − UR)

T (Γ|A|)∗(UR − UL),

where we use the notation UL = U (k)(1) and UR = U (k+1)(−1) again. Now, out multiplying the
brackets in the first summand while using the symmetry of Π and changing the sign of the second
summand by switching UL and UR in the last brackets yields[

U (k)
]T

F∗(UL, UR) =
1

2
UT
LΠUL − UT

RΠUR +
σ

2
(UL − UR)

T (Γ|A|)∗(UL − UR).

The notation for the jump at an interface, [ · ], that we defined earlier in this section can be used
to represented the last result by[

U (k)
]T

F∗(UL, UR) =
1

2

[
(U (k))TΠU (k)

]
+

σ

2

[
U (k)

]T
(Γ|A|)∗

[
U (k)

]
.

The contribution of one interface, i.e. the k-th summand of the corresponding sum in (77), is
therefore [

U (k)
]T

F∗(UL, UR)−
1

2

[
(U (k))TΠU (k)

]
=

σ

2

[
U (k)

]T
(Γ|A|)∗

[
U (k)

]
.



3.5 Discrete Energy Considerations 42

The matrix Γ|A| can be determined in terms of 6× 6 blocks, which is done in detail in Appendix
A.2. The result of this is

Γ|A| =
(
F

1/2Ψ
1/2F

1/2 06,6

06,6 F−1/2Ψ−1/2F−1/2

)
.

Remember that F±1/2 and Ψ±1/2 are positive definite (cf. section 2.4.2) and, thus, the diagonal
blocks of Γ|A|, are positive definite, which can be checked easily and is also shown Appendix A.2.
This holds for the evaluation of F±1/2Ψ±1/2F±1/2 at any x. This means, that especially (Γ|A|)∗
is positive definite at every interface. Moreover, by definition σ ≥ 0, so every summand of the
interface contribution is non negative:

σ

2

[
U (k)

]T
(Γ|A|)∗

[
U (k)

]
≥ 0. (78)

Inserting this into the total contribution of the interfaces in (77) yields

−
Nc−1∑
k=1

([
U (k)

]T
F∗(UL, UR)−

1

2

[
(U (k))TΠU (k)

])
≤ 0.

The change of total discrete energy (77) can, thus, be updated by bounding the interface terms by
zero, so that it becomes

1

2

d

dt
∥U∥2Np,Γ ≤

Nc∑
k=1

∆xk

2

〈
U (k), qext

〉
Np

− bL − bR. (79)

That is, while on a local basis, i.e. in the cells, the energy conservation still holds in the discrete
context, on a global basis, we have additional numerical dissipation at the interfaces. The amount
of numerical dissipation, (78), depends on the choice of the numerical flux. The bigger the upwind
parameter σ is chosen, the more numerical dissipation is generated at the interfaces. Note that
for the central flux, i.e. σ = 0, the left hand side of (78) is exactly zero, which is why in this
specific case, no numerical dissipation at the interfaces is generated and the inequality (79) actually
becomes an equality.

Contribution of the boundary terms For the estimation of the contribution of the discrete
boundary terms bL and bR, we start with the term bL, referring to the left boundary. Note that
this term occurs as −bL in (79), which is why we actually consider −bL. In the course of this, we
use the notation UL, UR from section 3.4 again. More precisely, UL will denote the outer value in
the fictitious cell C0, given by the discrete boundary conditions and UR = U (1)(−1). By definition,
−bL can then be written as

−bL = UT
R

(
F∗(UL, UR)−

1

2
ΠUR

)
.

As mentioned in section 3.3, at the boundaries of the domain, we always use the upwind flux with
the upwind parameter σ = 1. By inserting the definition of the upwind flux, we obtain

−bL = UT
R

(
(ΓA+)

∗UL + (ΓA−)
∗UR − 1

2
ΠUR

)
.

The matrices ΓA+ and ΓA− can be determined in terms of 6× 6 blocks. In particular, they read

ΓA+ =
1

2

(
F

1/2Ψ
1/2F

1/2 −I6,6
−I6,6 F−1/2Ψ−1/2F−1/2

)
,

ΓA− =
1

2

(
−F

1/2Ψ
1/2F

1/2 −I6,6
−I6,6 −F−1/2Ψ−1/2F−1/2

)
.

(80)

The derivation of the matrices can be read up in detail in Appendix A.1. Using this result and
inserting the inner value

UR =

(
SR

YR

)



3.5 Discrete Energy Considerations 43

as well as the outer value

UL =

(
SR + (F−1/2Ψ−1/2F−1/2)∗YR

06

)
into the boundary term −bL, finally yields

−bL = −Y T
R (F−1/2Ψ−1/2F−1/2)∗YR, (81)

or in the global notation

−bL = −
(
Y (1)

)T
F−1/2Ψ−1/2F−1/2Y (1)

∣∣∣
ξ=−1

.

A detailed derivation of the above right hand side is also given in Appendix A.1. The matrix
F−1/2Ψ−1/2F−1/2 is already known from the previous paragraph. There, it was mentioned that at
any x, the matrix is positive definite, so especially at x = 0, which is why the expression on the
right hand side of (81) is at maximum zero and we have

−bL ≤ 0.

The term bR, referring to the right boundary, can be treated analogously. In (79) it appears
with a negative sign as well, which is why we consider −bR. First, we use again the notation UL

and UR to represent −bR as

−bR = −UT
L

(
(ΓA+)

∗UL + (ΓA−)∗UR − 1

2
Π∗UL

)
,

where we already inserted the definition of the upwind numerical flux. The matrices ΓA+ and
ΓA− are given in (80) and additionally inserting the inner value

UL =

(
SL

YL

)
as well as the outer value for the right boundary,

UR =

(
06

YL − (F
1/2Ψ

1/2F
1/2)∗SL

)
,

yields

−bR = −ST
L (F

1/2Ψ
1/2F

1/2)∗SL,

or in the global notation

−bR = −
(
S(Nc)

)T
F

1/2Ψ
1/2F

1/2S(Nc)
∣∣∣
ξ=1

.

The detailed derivation of the last result can also be read up in Appendix A.1. With the same
argumentation as above, the matrix (F

1/2Ψ
1/2F

1/2)∗ is positive definite, which leads to the bound

−bR ≤ 0.

Hence, both boundary terms, or more precisely their negatives in (79) can be bounded by zero,
which we use to bound the change of total discrete energy by

1

2

d

dt
∥U∥2Np,Γ ≤

Nc∑
k=1

∆xk

2

〈
U (k), qext

〉
Np

. (82)

Recall, that when we derived the outer states in the fictitious cells in section 3.4 to implement the
boundary conditions, we required that they are consistent on the one hand and have a dissipative
effect on the energy on the other hand. While the consistence property was shown immediately,
the proof of the dissipation effect was postponed to this section. In fact, this second property has



3.5 Discrete Energy Considerations 44

now been shown by showing that the boundary terms −bL and −bR that appear in the discrete
energy estimation, can be bounded by zero.

The inequality (82) implicates that for zero external forces and moments, we have that the total
discrete energy of the numerical solution is decreasing in time. This statement will be validated
by numerical experiments in section 4.3.

Moreover, inequality (82) is the discrete analogue to the energy equation (49) in the continuous
energy analysis. There, we had an actual equality of the time derivative of the energy and the
contribution of the external source term. Here, the inequality results because of the numerical
dissipation at the interfaces and at the boundaries. While in the previous paragraph, we showed
that the numerical dissipation at the interfaces can be controlled by the choice of the upwind
parameter σ, the boundary terms are in general negative, meaning that at the boundaries, there is
always numerical dissipation generated. However, with the determination of the boundary terms
in this paragraph, the amount of numerical dissipation at the boundaries can be specified.

Contribution of external sources We proceed now by estimating the right hand side of (82).
Most parts are analogue to the considerations on the contribution of the external source term
in the continuous energy analysis in section 2.6.2. We will use the same theorems but have to
slightly adjust the constants that were used to bound the contribution. We start by applying the
Cauchy-Schwarz inequality to the discrete inner product

〈
·, ·
〉
Np

to obtain

Nc∑
k=1

∆xk

2

〈
U (k), qext

〉
Np

≤
Nc∑
k=1

∆xk

2
∥U (k)∥Np∥qext∥Np .

Remember that the external sources were assumed to be constant in time and that ∥qext∥Np =
∥INp(qext)∥Np , can be bounded by a constant in every cell. If we further take the maximum of all
these bounds in the cells and denote it by ĉ1, we can estimate the above term by

Nc∑
k=1

∆xk

2

〈
U (k), qext

〉
Np

≤ ĉ1

Nc∑
k=1

∆xk

2
∥U (k)∥Np . (83)

Similar to the continuous energy analysis, we would like to trace back the discrete Np-norm of U (k)

to the discrete energy norm. This is realized by applying Rayleigh’s min-max principle again. In
particular, by definition of the discrete Np-norm, we have

∥U (k)∥2Np
=

Np∑
j=0

ωj(U
(k))TU (k)

∣∣∣
ξj
.

Every summand can be estimated by Raleigh’s min-max principle, similar to section 2.6.2, as

(U (k))TU (k)
∣∣∣
ξj

≤ 1

µmin(ξj)
(U (k))TΓU (k)

∣∣∣
ξj

holds for the minimal eigenvalue µmin(ξj) of Γ(ξj). Now defining ĉ2 := maxj=0,...,Np
1/µmin(ξj) lets

us estimate the squared Np-norm of U (k) by

∥U (k)∥2Np
≤ ĉ2

Np∑
j=0

ωj(U
(k))TΓU (k)

∣∣∣
ξj

= ĉ2∥U (k)∥2Np,Γ.

Taking the square root on both sides of the above inequality yields just the estimation of the
Np-norm of U in terms of the discrete energy norm of U , we were aiming for, namely

∥U (k)∥Np ≤
√
ĉ2 ∥U (k)∥Np,Γ.

Note that ĉ2 actually depends on the respective cell. If we additionally define the following constant
ĉ3 := maxk=1,...,Nc

ĉ1
√
ĉ2, and insert this last result into (83) , we obtain

1

2

d

dt
∥U∥2Np,Γ ≤ ĉ3

Nc∑
k=1

∆xk

2
∥U (k)∥Np,Γ. (84)



3.5 Discrete Energy Considerations 45

Due to the equivalence of p-norms, there exists another constant ĉ4, such that the sum on the
above right hand side can be bounded by

Nc∑
k=1

∆xk

2
∥U (k)∥Np,Γ ≤ ĉ4

(
Nc∑
k=1

(
∆xk

2
∥U (k)∥Np,Γ

)2
)1/2

.

With ĉ5 := maxk=1,...,Nc

∆xk

2 , this can again be estimated by

ĉ4

(
Nc∑
k=1

(
∆xk

2
∥U (k)∥Np,Γ

)2
)1/2

≤ ĉ4
√

ĉ5

(
Nc∑
k=1

∆xk

2
∥U (k)∥2Np,Γ

)1/2

= ĉ4
√

ĉ5∥U∥Np,Γ,

where the last equality holds by definition of the discrete total energy norm. Putting these con-
siderations together by inserting the last result into the inequality (84), we obtain

1

2

d

dt
∥U∥2Np,Γ ≤ ĉ6∥U∥Np,Γ,

where we define ĉ6 = ĉ3ĉ4
√
ĉ5. From here on, the proceedings are completely analogous to the ones

in section 2.6.2 from inequality (50) on. Using Petrovitsch’s theorem, the solution of the above
ordinary differential inequality is

∥U(·, t)∥2Np,Γ ≤
(
∥U0∥Np,Γ + ĉ6t

)2
, (85)

where U0 is the interpolation of the initial condition u0. That is, with the assumption we made
about the boundary conditions and external forces, we have a growth of total discrete energy that is
quadratic in time at maximum, analogous to the statement we derived about the total continuous
energy in section 2.6.2. This can again be transferred to the discrete energy norm of the numerical
solution, as

∥U(·, t)∥Np,Γ ≤ ∥U0∥Np,Γ + ĉ6t (86)

holds. The equivalent estimations (85) and (86) are the main results of this thesis. For zero bound-
ary data and in time constant, bounded external forces and moments, we derived an energy stable
Discontinuous Galerkin discretization approach to discretize the intrinsic beam model in space.

Before we complete this section, we will have a more detailed look into one specific case of the
derived results that we want to validate numerically in section 4. Recall that for the central flux,
we found (cf. (79))

1

2

d

dt
∥U∥2Np,Γ =

Nc∑
k=1

∆xk

2

〈
U (k), qext

〉
Np

− bL − bR.

If we assume zero external forces and moments, the corresponding terms on the above right hand
side vanish, and we have

1

2

d

dt
∥U∥2Np,Γ = −bL − bR. (87)

The boundary terms were computed exactly in the previous paragraph. So instead of estimating
−bL − bR by zero, we could also integrate both sides of (87) over the time interval [0, t] to obtain

∥U(·, t)∥2Np,Γ = ∥U0∥2Np,Γ − 2

t∫
0

(
bL(τ) + bR(τ)

)
dτ.

Recall that with the above assumptions, the energy of the exact solution was shown to be constant
in time. Therefore, with the above equation, we have a formula to compute the amount of numerical
dissipation explicitly for this special case. Namely, this is the integral value of

2

t∫
0

(
bL(τ) + bR(τ)

)
dτ.

This result will be validated in section 4.3.



3.6 Formulation as Ordinary Differential Equation in Time 46

3.6 Formulation as Ordinary Differential Equation in Time

Up to this point, we described the steps that are necessary to discretize the intrinsic beam equation
in space, using a Discontinuous Galerkin approach in general, but did not go into detail regarding
the process of numerically solving the resulting semi discrete problem. In this section, we will
explicitly derive an ordinary differential equation for the unknowns of the numerical solution,

namely the time dependent coefficients a
m,(k)
j (t) from the representation

U (k)(ξ, t) =

12∑
m=1

Np∑
j=0

a
m,(k)
j (t)Lm

j (ξ)

of the numerical solution for every cell Ck. As long as it is clear, that we consider the numerical
solution in the fixed cell Ck, we omit the superscript (k) again, writing for example U = U (k) to
ease the notation.

Due to the special property Lj(ξi) = δij of the Lagrange polynomials, we have that Lm
j (ξi) =

δijem at an arbitrary interpolation node ξi. The evaluation of the solution at an interpolation node
therefore becomes

U(ξi, t) =

12∑
m=1

ami (t)em,

meaning that ami (t) = Um(ξi, t). Hence, the unknown coefficients that have to be determined are
the evaluations of the numerical solution at the interpolation nodes.

To have a notation that lets us distinguish between indices and partial derivatives easily, we
switch from the notation Ut to U̇ for the time derivative and from Uξ to U ′ for the derivative with
respect to ξ. The semi discrete weak formulation (66) from section 3.2 then reads

∆xk

2

〈
ϕ,ΓU̇

〉
Np

−
〈
Πϕ′, U

〉
Np

− ∆xk

2

〈
ϕ,Qcap(U)

〉
Np

= −ϕTF∗
∣∣∣1
−1

, (88)

where ϕ was an arbitrary function in the discrete space of test functions VNp
. Within the cell Ck,

ϕ can therefore be interpreted as a polynomial of degree Np. The equation is therefore fulfilled for
every test function, if and only if it is fulfilled for every basis function of a basis for the polynomial
space PNp

(R). That basis can again be L, meaning that the semi discrete weak formulation is
fulfilled if and only if

∆xk

2

〈
Lm
i ,ΓU̇

〉
Np

−
〈
Π
(
Lm
i

)′
, U
〉
Np

− ∆xk

2

〈
Lm
i , Qcap(U)

〉
Np

= − (Lm
i )

T
F∗
∣∣∣1
−1

, (89)

for every i = 0, . . . , Np and m = 1, . . . , 12. The goal is now, to reformulate (89) as a linear equation

system that can be solved for U̇ , resulting in a system of ODEs for U in time.
We derive the linear equation system, treating the above semi discrete formulation term by

term. First, we write down the quadrature of the first term explicitly:

〈
Lm
i ,ΓU̇

〉
Np

=

Np∑
j=0

ωj (Lm
i )

T
ΓU̇
∣∣∣
ξj
.

Note that Lm
i only has one non-zero entry in its m-th component, which is why the summands of

the above quadrature simplify to

〈
Lm
i ,ΓU̇

〉
Np

=

N∑
j=0

ωjLi(ΓU̇)m

∣∣∣
ξj
.

Again, taking advantage of the properties of the Lagrange polynomials, all summands of the sum
are zero except the i-th one, resulting in〈

Lm
i ,ΓU̇

〉
Np

= ωi(ΓU̇)m

∣∣∣
ξi
.

The last result is a direct consequence of the co-location. Only because the quadrature nodes
coincide with the interpolation nodes, the evaluation of the Lagrange polynomials takes place at



3.6 Formulation as Ordinary Differential Equation in Time 47

the interpolation nodes. If we proceed like this for every basis function Lm
i , we obtain a vector

whose entries can be determined as follows(〈
Lm
i ,ΓU̇

〉
Np

)m=1,...,12

i=0,...,Np

=


ω0I12,12

ω1I12,12
. . .

ωNpI12,12



Γ(ξ0)

Γ(ξ1)
. . .

Γ(ξNp)




U̇(ξ0, t)

U̇(ξ1, t)
...

U̇(ξNp , t)

 ,

(90)

where the order of the entries is chosen such that for every i, we run through the values of the
index m before we increment i by one, i.e.(〈

Lm
i ,ΓU̇

〉
Np

)m=1,...,12

i=0,...,Np

=(〈
L1
1,ΓU̇

〉
Np

,
〈
L2
1,ΓU̇

〉
Np

, . . . ,
〈
L12
1 ,ΓU̇

〉
Np

,
〈
L1
2,ΓU̇

〉
Np

, . . .
〈
L12
Np

,ΓU̇
〉
Np

)T
.

(91)

Let us denote the vector with the same entries as above but in an order where m and i are swapped
as (〈

Lm
i ,ΓU̇

〉
Np

)i=0,...,Np

m=1,...,12
=(〈

L1
1,ΓU̇

〉
Np

,
〈
L1
2,ΓU̇

〉
Np

, . . . ,
〈
L1
Np

,ΓU̇
〉
Np

,
〈
L2
1,ΓU̇

〉
Np

, . . .
〈
L12
Np

,ΓU̇
〉
Np

)T
.

(92)

Although it is convenient to derive the matrix vector formulation for the first term, ordered as in
(91), for the remaining terms it will be a lot easier to use an order like in (92). This is why we
introduce the permutation matrix P ∈ R12(Np+1)×12(Np+1) with the following entries:

Pij =

{
1, if j = ⌈i/(Np + 1)⌉+ 12 ((i− 1) mod (Np + 1))

0, else.

It rearranges the entries of a vector in the sense that a multiplication of (91) by P results in (92),
i.e.

P
(〈

Lm
i ,ΓU̇

〉
Np

)m=1,...,12

i=0,...,Np

=
(〈

Lm
i ,ΓU̇

〉
Np

)i=0,...,Np

m=1,...,12
.

Applying this to the derived matrix vector notation of the first term of the semi discrete formula-
tion, (90), we obtain

P
(〈

Lm
i ,ΓU̇

〉
Np

)m=1,...,12

i=0,...,Np

=

P


ω0I12,12

ω1I12,12
. . .

ωNp
I12,12



Γ(ξ0)

Γ(ξ1)
. . .

Γ(ξNp
)




U̇(ξ0, t)

U̇(ξ1, t)
...

U̇(ξNp
, t)

 .

A more compact notation of the above expression is(〈
Lm
i ,ΓU̇

〉
Np

)i=0,...,Np

m=1,...,12
= MΓU̇



3.6 Formulation as Ordinary Differential Equation in Time 48

where we define M,Γ ∈ R12(Np+1)×12(Np+1) and U ∈ R12(Np+1) as

M := P


ω0I12,12

ω1I12,12
. . .

ωNp
I12,12

P−1 = diag(ω0, . . . , ω12, ω0, . . . , ω12),

Γ := P


Γ(ξ0)

Γ(ξ1)
. . .

Γ(ξNp)

P−1,

U = U(t) = P
(
U(ξ0, t), U(ξ1, t), . . . , U(ξNp , t)

)T
=
(
Um(ξi, t)

)i=0,...,Np

m=1,...,12
.

We proceed by deriving the matrix vector notation for the second summand of the semi discrete
formulation, namely 〈

Π
(
Lm
i

)′
, U
〉
Np

.

Remember that Π is a symmetric and constant matrix. The quadrature of the above term can
therefore be written as

〈
Π
(
Lm
i

)′
, U
〉
Np

=

Np∑
j=0

ωj((Lm
i )

′)TΠU
∣∣∣
ξj
.

Because (Lm
i )

′ has again only one entry in its m-th component, we can write

〈
Π
(
Lm
i

)′
, U
〉
Np

=

Np∑
j=0

ωjL
′
i(ΠU)m

∣∣∣
ξj
.

Another representation of this expression in matrix vector notation is

〈
Π
(
Lm
i

)′
, U
〉
Np

=
(
L′
i(ξ0), . . . , L

′
i(ξNp

)
)ω0

. . .

ωNp


 (ΠU)m(ξ0, t)

...
(ΠU)m(ξNp , t)

 . (93)

Now, fixing the index m and running through the i yields the vector

(〈
Π
(
Lm
i

)′
, U
〉
Np

)i=0,...,Np

=

 L′
0(ξ0) . . . L′

0(ξNp)
...

. . .
...

L′
Np

(ξ0) . . . L′
Np

(ξNp)


ω0

. . .

ωNp


 (ΠU)m(ξ0, t)

...
(ΠU)m(ξNp , t)

 .

(94)

Let us further define the discrete differentiation matrix D ∈ R(Np+1)×(Np+1) as

D :=

 L′
0(ξ0) . . . L′

Np
(ξ0)

...
. . .

...
L′
0(ξNp

) . . . L′
Np

(ξNp
)


and the resulting block diagonal matrix D ∈ R12(Np+1)×12(Np+1) with D on its diagonal, i.e.

D :=

D
. . .

D

 .



3.6 Formulation as Ordinary Differential Equation in Time 49

Additionally, by F ∈ R12(Np+1), we denote the discrete flux vector

F := F(t) =
(
(ΠU)m(ξi, t)

)i=0,...,Np

m=1,...,12
.

Setting up the vector (94) for every m = 1, . . . , 12, then results in the following expression(〈
Π
(
Lm
i

)′
, U
〉
Np

)i=0,...,Np

m=1,...,12
= DTMF.

The next step is to bring the term, emerging from the source term, namely

−∆xk

2

〈
Lm
i , Qcap(U)

〉
Np

into a similar matrix vector form. In order to do so, we write down the corresponding quadrature
formula explicitly again:

〈
Lm
i , Qcap(U)

〉
Np

=

Np∑
j=0

ωj(Lm
i )

TQcap(U)
∣∣∣
ξj
.

As before, we take advantage of the fact that Lm
i has only one non-zero entry and then use the

Kronecker delta property of the Lagrange polynomials to simplify the quadrature to〈
Lm
i , Qcap(U)

〉
Np

= ωi(Qcap(U))m
∣∣
ξi
.

We run through the indices in the same way as we did before. This means for a fixed m we first
run through all the i, resulting in

(〈
Lm
i , Qcap(U)

〉
Np

)i=0,...,Np

=

ω0

. . .

ωNp




Qcap(U)m
∣∣
ξ0

...
Qcap(U)m

∣∣
ξNp

 .

Following this procedure for every m, we can then write(〈
Lm
i , Qcap(U)

〉
Np

)i=0,...,Np

m=1,...,12
= MQ,

where we define the vector Q ∈ R12(Np+1) similar to F by

Q := Q(t) =
(
Qcap(U)m

∣∣
ξi

)i=0,...,Np

m=1,...,12
.

Note, that the dependency of Q on t emerges from the dependency of U on t. What is now left to
complete the matrix vector formulation of the semi discrete equation, is the cell boundary term

− (Lm
i )

T
F∗
∣∣∣1
−1

= −LiF
∗
m

∣∣∣1
−1

.

Note that ±1 are in fact the first, respective last LGL nodes, i.e. ξ0 = −1 and ξNp = 1. This is
why the above term is only non-zero, if i = 0 or i = Np. In other words, if we run through all i for
a fixed m, we have

−
(
(Lm

i )
T
F∗
∣∣∣1
−1

)i=0,...,Np

= −


−1 0 . . . 0
0 0 . . . 0
...

. . .
. . .

...
0 . . . 0 0
0 . . . 0 1




F∗
m|−1

0
...
0

F∗
m|1

 .

If we additionally define the above matrix as β ∈ R(Np+1)×(Np+1), meaning

β :=


−1 0 . . . 0
0 0 . . . 0
...

. . .
. . .

...
0 . . . 0 0
0 . . . 0 1





3.7 Remarks on Time Discretization 50

and introduce the block diagonal matrix β ∈ R12(Np+1)×12(Np+1) and the vector F∗ ∈ R12(Np+1)

as

β :=

β
. . .

β

 ,

F∗ :=
(
F∗
1

∣∣
−1

, 0 . . . , 0,F∗
1

∣∣
1
,F∗

2

∣∣
−1

, . . . ,F∗
12

∣∣
1

)T
,

we have that

−
(
(Lm

i )
T
F∗
∣∣∣1
−1

)i=0,...,Np

m=1,...,12

= −βF∗.

Now putting the matrix vector formulation of all the terms together again, the semi discrete
equation reads

∆xk

2
MΓU̇ = DTMF+

∆xk

2
MQ− βF∗.

This expression can be solved for the vector U̇ . More precisely, we have

U̇ =
2

∆xk
Γ−1M−1

(
DTMF+

∆xk

2
MQ− βF∗

)
. (95)

The above equation is a system of ODEs in time, whose solution consists of the unknown coefficients
that define the polynomial representing the numerical solution of the intrinsic beam equation.
Remember that we omitted the superscript (k) when we derived this equation, meaning that the
solution vector U actually only represents the coefficients of the local solution in the cell Ck and
has therefore to be denoted by U (k), to be precise. This holds true for all the matrices and vectors
in (95) and is also indicated by the factor ∆xk/2. Thus, in order to complete the global ODE
formulation, one has to put together the equations (95) for k = 1, . . . , Nc into one global system,
with solution vector

U :=

 U (1)

...
U (Nc)

 .

The derivation of the global system on the basis of equation (95) is straight forward, which is why
we will not explicitly show it here and instead just denote the right hand side by R. The global
system of ODEs that arises from that, thus, reads

U̇ = R(U, t). (96)

The number of unknowns and thus the degrees of freedom (DOF) equals the number of entries in
U, which is 12(Np + 1)Nc.

This ODE system can now be solved numerically by applying a numerical time integration
scheme in order to obtain the coefficients in U at certain points in time. We continue with some
remarks about the discretization in time in the next section.

3.7 Remarks on Time Discretization

In the previous section, we showed that the discretization approach in space eventually leads us to
a system of ordinary differential equations for the unknown coefficients of the numerical solution
that still continuously depend on the time variable t. In order to find a numerical solution to the
problem, this ODE has to be solved. Although we will not go into detail regarding the solution of
the ODE in this thesis, we would like to mention the most important ideas behind it and give an
example of a scheme that is suitable to numerically solve the ODE.

A class of numerical schemes that are commonly used to obtain a solution of the ODE emerging
from the DG discretization of time dependent PDEs are Runge-Kutta methods (cf. for example [14,



3.7 Remarks on Time Discretization 51

18, 27]). A special Runge-Kutta method that will also be used to obtain numerical results in section
4 is the low-storage five-stage fourth-order explicit Runge-Kutta method (LSERK), originating from
[10] and recommended for the time integration following a spatial DG discretization for example
in [18].

To apply the LSERK to our problem, first the time interval, [0, T ], is discretized by subdividing
it into Nt+1 points 0 =: t0 < t1 < . . . < tNt

:= T and defining timesteps ∆tn for n = 1, . . . , Nt by

∆tn := tn − tn−1 > 0.

For the LSERK, we assume the timestep to be constant, i.e. ∆t := ∆tn for all n, meaning that

tn = n∆t

for n = 0, . . . , Nt. Some more detailed remarks on the timestep and especially how it has to
be chosen in order to obtain a stable numerical approximation scheme will be made later in this
section.

Let us now denote the numerical solution of (96) at the n-th timestep as Un, i.e.

Un ≈ U(tn).

Then the five stages of one step of the LSERK are given in algorithm 1, for which the coefficients
ai, bi and ci for i = 1, . . . , 5 can be read up in table 1.

Algorithm 1 LSERK [18].

1: Set p(0) = Un

2:

3: for i = 1 to 5 do
4: k(i) = aik

(i−1) +∆tR(p(i−1), tn + ci∆t)
5: p(i) = p(i−1) + bik

(i)

6: end for
7:

8: Un+1 = p(5)

The stability considerations we did up to this point have been made under the assumption that
time integration is exact. Now, that the solution is no longer semi discrete but fully discrete, the
numerical time integration can also affect the stability. This has to be minded when choosing
the timestep ∆t. More precisely, there is a sufficient condition for the timestep in order to have
a stable time integration scheme. It relates the size of the timestep to the size of the grid size
from the spatial discretization and is called the CFL-condition going back to [12] and its authors
Courant, Friedrichs and Lewy. Adapted to the notations in this thesis, the CFL condition for a
stable timepstep reads

∆t ≤ CFL
1

max |Λii|
min∆x. (97)

In the simplified notation above, max |Λii| represents the maximal diagonal entry of the matrix
|Λ|, which is in fact the maximum of the absolute value of the matrix’s A eigenvalues. Note that A
and therefore also its maximal absolute eigenvalue depends on the spatial variable x. Furthermore,
min∆x represents the minimum of all distances between spatial nodes. To determine this minimal
distance, one has to mind that the cells Ck may be of different width (∆xk), and that the LGL
nodes are not equidistant. Finally, the CFL-number can be derived by determining the stability
region of the chosen time integration scheme. A more detailed view on the stability of the time
discretization and the CFL-number within the context of DG discretizations is for example given
in [18].

For our purposes, it suffices to assume that CFL ≤ 1. Later, in section 4, when we actually
determine a numerical solution, the CFL-number will be a tool to control the timestep. The
smaller we choose CFL, the smaller the timestep and the more accurate the time integration will
be, provided that the time integration scheme is convergent. This is espacially useful if we want
to analyze the numerical solution with regard to the spatial discretization approach, because we
can minimize the effects of the time discretization by choosing CFL << 1.



3.7 Remarks on Time Discretization 52

i ai bi ci

1 0
1432997174477

9575080441755
0

2 − 567301805773

1357537059087

5161836677717

13612068292357

1432997174477

9575080441755

3 −2404267990393

2016746695238

1720146321549

2090206949498
−2526269341429

6820363962896

4 −3550918686646

2091501179385

3134564353537

4481467310338

2006345519317

3224310063776

5 −1275806237668

842570457699

2277821191437

14882151754819

2802321613138

2924317926251

Table 1: LSERK coefficitents.



53

4 Numerical Results

In the following section we will numerically validate the theoretical results from the previous
sections. To this end, we will use the numerical simulation framework Trixi.jl. We will start
with a summary of the most important steps regarding an implementation of the intrinsic beam
model into Trixi.jl. Subsequently, we will validate the correctness of our implementations by
performing a convergence test using the method of manufactured solutions. Afterwards, we will
pick an example configuration of the intrinsic beam model with zero external sources and moments,
to show that the discrete energy that results from the corresponding simulation with Trixi.jl is
non increasing, indeed. Finally, we will show how the solution resulting from a Trixi.jl simulation
can be post processed to obtain and visualize the position line of the dynamic beam.

Throughout this section, we make some more assumptions in addition to the assumptions of
the previous sections. Firstly, our implementations at the moment consider constant flexibility and
mass matrices only, which is why we assume

F,M = const.

in the following investigations. As a consequence, for the matrices A,Γ and Ψ it also holds

A,Γ,Ψ = const.

Furthermore, as time integration scheme, we will use the LSERK, defined in section 3.7, throughout
the whole section.

4.1 Implementation with Trixi.jl

In this section, we will describe the most important implementations that are needed in order to
be able to use Trixi.jl for simulations of the intrinsic beam model. Trixi.jl is a numerical
simulation framework for hyperbolic conservation laws. Detailed information about Trixi.jl

can be read up in [40, 46, 47] and in the documentation [51]. Moreover, information about the
underlying programming language, Julia, is to find in [22]. In this thesis, we will use Trixi.jl to
numerically solve the intrinsic beam equation using a Discontinuous Galerkin approach as it was
derived in the previous sections.

First of all, we need Trixi.jl to get to know the intrinsic beam equation. Different types of
equations in Trixi.jl are represented by different composite data types, each of them being a
subtype of an abstract data type AbstractEquations{NDIMS, NVARS}, where NDIMS specifies the
number of spatial dimensions and NVARS specifies the number of primary variables. In the case of
the intrinsic beam model, we have a spatial dimension of one, meaning NDIMS = 1 and the state
variable u consists of twelve unknowns, i.e. NVARS = 12.

The data types representing the equations can contain optional fields, helping us to specify the
parameters in specific setups. For the intrinsic beam equation, we create a new data type

IntrinsicBeamEquation <: AbstractEquations{1, 12}

containing the following fields: the matrix A, the matrices A+ and A−, the matrix Ψ, the matrix
Π, the matrix Γ and its inverse Γ−1, the flexibility matrix F and the mass matrix M, the initial
curvature k as a function of x and the external forces fext and moments mext as functions of x and
t. In the above definition, <: is the Julia syntax for IntrinsicBeamEquation being a subtype of
AbstractEquations{1, 12}.

Further, we need a constructor function, also named IntrinsicBeamEquation, which creates
an object of the type IntrinsicBeamEquation for given flexibility and mass matrices and given
initial curvatures and external forces and moments. Note that every other field of IntrinsicBeam
Equation can be determined out of these.

To implement the new data type for the intrinsic beam equation is the most important part of
the implementations. For the rest, we can mostly use the existing Trixi.jl functions or extend
them to solve specific setups. This is because Trixi.jl takes advantage of the multiple dispatch
functionality in Julia. Generally spoken, this means that when a function is applied in Julia, the
dispatch process chooses, which method has to be called based on the number of arguments given
to that function and on all their types.

In the following, we will explain the implementation of a function that evaluates the flux
function of the intrinsic beam equation in capacity form. In the course of this, the usage of



4.1 Implementation with Trixi.jl 54

multiple dispatch will be explained, too. All conservation laws, respectively balance laws, have in
common that they have a flux function. Whenever the flux needs to be computed in Trixi.jl,
the function flux(u, equations) is applied. The argument equations is an object representing
the conservation/balance law and u is a vector at which the flux function should be evaluated, e.g.
the solution at a specific node.

Suppose now that we define a method, flux(u, equations::IntrinsicBeamEquation), where
the symbol :: is the Julia syntax to specify the type of an argument. Then, whenever the flux

function is called in Trixi.jl, the multiple dispatch process chooses just this method provided
that the input argument equations is of the type IntrinsicBeamEquation. Explicitly, the flux
function can be implemented as follows:

flux(u,equations::IntrinsicBeamEquation) = equations.Pi * u,

where the field equations.Pi contains the matrix Π.
Now that we have implemented a function computing the flux of the intrinsic beam equation,

there are three remaining essentials, that need to be implemented: the numerical flux, derived in
section 3.3, the source term as it was specified in section 2.4.4 and the discrete boundary conditions
from section 3.4.

For the numerical flux, we write a function flux upwind. From the sections before, we know
that the numerical flux is always evaluated at interfaces (or at the boundaries). The arguments of
the flux upwind function therefore are a value of the solution left and right to the interface, u L

and u R. Moreover, an input argument equations that is of the type IntrinsicBeamEquation is
needed again. The latter argument contains fields, in which the matrices Γ, A+ and A− are stored.
These can be used to straight forward implement the formula of the upwind numerical flux and
return its evaluation at u L and u R.

The source term is implemented as a function source term intrinsic beam with input argu-
ments u, x, t, equations. The implementation is straight forward, inserting the state vector, u,
and the point in space, x, as well as the point in time, t, into the source term Qcap, as it is specified
in section 2.4.4. The needed matrices and external forces and moments can be retrieved from the
corresponding fields in equations. The product of cross product matrices and vectors that appear
in the source term’s definition are interpreted as cross products of vectors and computed by using
the cross function of the Julia package LinearAlgebra.jl. The variable that is returned is a
vector containing the value of the source term for the given input variables.

Another function, named boundary conditions intrinsic beam, is needed to implement the
boundary conditions. Its input arguments are u inner, direction, equations. This function
sets up the outer values at the respective boundary as we specified them in section 3.4, using
the inner state of the current solution u inner. The information about the location, i.e. which
boundary has to be considered, is received in the argument direction. A value of 1 means that
the left boundary is considered while a value of 2 indicates that the right boundary is considered.
Afterwards, the numerical flux at the respective boundary is computed by inserting the outer value
and the inner state of the solution into the formula of the upwind flux. Again, the quantities that
are needed to set up the outer states and to evaluate the numerical flux are stored in the fields of
the input argument equations. The output value is the evaluation of the boundary flux at the
respective boundary.

Before we can actually solve a configuration of the intrinsic beam equation with Trixi.jl, we
need to consider the following: The above functions assume that we discretize the capacity form
of the linear advection equation in space. However, Trixi.jl expects that the discretization is for
an equation without a factor in front of the time derivative, i.e. for an equation of the form

ut +Aux = Q(u).

This means that we have to slightly adjust the source code. The adjustment takes place in the
function rhs! that sets up the right hand side of the ODE in time. For the Runge-Kutta dis-
cretization in time, the right hand side has to be evaluated at discrete points in time (cf. for
example algorithm 1). The function rhs! performs all discretization steps we described when we
derived the ODE in time, including for example the computation of the source term at the nodes
and the numerical flux at the interfaces etc. This is done step by step, eventually leading to the
evaluation of the right hand side of the ODE which is needed for the Runge-Kutta stages. For
our purpose there is an additional step when setting up the right hand side. Namely, this is the



4.1 Implementation with Trixi.jl 55

multiplication with the matrix Γ−1. This means we need to extend the function rhs! by adding
a step at the end that multiplies the whole right hand side that is set up to that point by the
matrix Γ−1. To do so, we define a new function apply gamma inverse and call it at the end of the
rhs! function. Its input arguments include an object equations again. This means, that we can
once more take advantage of the multiple dispatch, defining apply gamma inverse for equation
of type IntrinsicBeamEquation and for equation of type AbstractEquations. The former does
multiply the right hand side by the matrix Γ−1, while the latter does nothing, meaning that for
any other equation type than IntrinsicBeamEquation, the right hand side is not affected. This
ensures that our adjustment does not have an influence on the functionality of Trixi.jl for other
equation types.

Now that we have implemented the essentials of the intrinsic beam equation, we can create
different configurations of the intrinsic beam model and use Trixi.jl to solve them numerically.
We follow the convention of the existing examples in Trixi.jl and name example scripts, that
solve specific setups, elixirs. In the following, we want to give an overview of how an elixir for the
intrinsic beam equation looks like in general. The Trixi.jl components that are mentioned in
these explanations and their interaction are also shown schematically in figure 4.

First, we need to specify everything that is needed for the discretization of the considered
spatial domain. This includes the interval boundaries 0 and ℓ and the number of cells in which
the domain should be subdivided. With these information, an object mesh can be created that
stores information about the discretization of the domain. In Trixi.jl, we have the possibility
to create different types of meshes. For our purposes, we will only need the TreeMesh that simply
subdivides the interval [0, ℓ] into a fixed number of cells of the same width. An implication of this
is that the value of ∆xk/2 that emerged from the transformation to the reference element, is the
same for every cell Ck, i.e.

∆xk

2
= const.

Furthermore, we create an object called solver, using the Trixi.jl constructor function DGSEM,
in which the spatial discretization approach, namely the DG approach, is specified. As input argu-
ments, DGSEM requires the numerical flux function and the polynomial degree that should be used
for the semi discretization. The numerical flux will either be flux upwind, whose implementation
is described above, or flux central, which is already implemented in Trixi.jl and can also be
used for our purposes. The resulting object solver stores for example the polynomial basis and
the quadrature nodes and weights.

Afterwards, we create an object equations that is of the type IntrinsicBeamEquation using
the constructor function of the same name. To do so, we first need to define a flexibility matrix, a
mass matrix and functions for the initial curvature as well as for the external forces and moments.
The object equation can then simply be created by calling the constructor function with these
matrices and functions as input arguments.

Given the above objects, we can now use the Trixi.jl constructor Semidiscretization

Hyperbolic to create a semi discretization according to the derivations in the previous sections.
As input arguments, SemidiscretizationHyperbolic receives mesh, equations, solver as well
as an initial condition (IC), the boundary conditions (BCs) and the source term. The implemen-
tation of the latter two is described earlier in this section and the initial condition is a simple
function with input arguments x and t that evaluates the desired initial condition at the point
x in space and the point t in time and returns the corresponding value. Note that actually, an
initial condition does not depend on the time. Nevertheless, if an exact solution of the considered
problem is known, it can be handed over as initial condition depending on the time. This can later
for example be used to analyze the error of the numerical solution. If no exact solution is known,
the input argument t in the initial condition simply remains unused.

Now, a time interval on which the numerical solution should be computed has to be specified.
The time interval together with the semi discretization is given to the function ode, that creates
an object of the type ODEProblem, containing the ordinary differential equation in time that arises
from the above semi discretization.

Finally, the object of type ODEProblem, together with a specification of a time discretization
scheme included in the package OrdinaryDiffEq.jl is handed over to the solve function, that
computes the solution of the ODE in time using the specified time discretization scheme and, thus,
returns the numerical solution of the intrinsic beam equation with the desired setup.



4.2 Convergence Tests 56

mesh equations

solver ICs/BCs/sources

semidiscretization

ODE problem

time
integrator

solution

independent
functional entity

data & algorithms for
spatial discretization

external functionality time integration
scheme

Legend

Figure 4: Schematic overview of the basic components of Trixi.jl and how they interact. This
figure is a cutout of Fig. 4 in [40].

4.2 Convergence Tests

The purpose of this section is to check the correctness of the implementations in Trixi.jl we
described in the previous section. The optimal convergence rate, i.e. the optimal rate at which
the error of the numerical solution converges to zero as the spatial grid size converges to zero, is
the order of the piecewise polynomials, Np+1. We will numerically solve a test problem using the
method of manufactured solutions to determine the experimental order of convergence (EOC) and
verify whether the optimal convergence rate is reached.

For a detailed derivation of the method of manufactured solutions and how it is used to verify
code in general, we refer to [41]. The idea behind the method is the following: Usually, for a con-
vergence analysis one would determine the numerical solution of a problem for different refinement
levels in the discretization and compare this numerical solution to the exact solution of the problem
to determine for example an L2-error. Afterwards the rate, at which the error is getting smaller
when the refinement level is raised, can be computed. This results in an empirical order of conver-
gence that can be compared to the theoretical order of convergence of the considered discretization
approach. Regarding the problem that is considered in this thesis, the above procedure can not be
implemented without further ado because, in general, an analytical solution of the intrinsic beam
equation is not known. Instead, defining a function u and inserting it into the left hand side of the
linear balance law will result in a residuum like term, r = r(x, t). In particular, this is

Γut +Πux = r(x, t). (98)

Now remember that in the original problem, the right hand side of the balance law consists of
the source term Qcap(u). To bring this into account, we add a zero on the right hand side of the
above definition of the residuum, to obtain

Γut +Πux = Qcap(u) + r(x, t)−Qcap(u). (99)

That is, the function u satisfies the original balance law with an additional source term on its right
hand side. Namely, the additional source term is

r(x, t)−Qcap(u). (100)



4.2 Convergence Tests 57

While analytically there is no difference in solving equation (98) or equation (99), for the Trixi.jl
simulation it does make a difference. To solve (99), we can use the implementations described in the
previous section and only need to implement the additional source term. If the additional source
term is implemented in such a way, that it evaluates the term Qcap(u) for the exact function
u, the two Qcap terms on the right hand side will not cancel each other out exactly, but for a
converging numerical solution, the simulated source term should also converge to the exact one.
Thus, performing the convergence test for the version (99) of the equation can also be seen as a
verification of the source term’s correctness in the original implementation.

As we know from the previous section, in Trixi.jl a source term can be implemented easily.
Therefore, a function st manufactured solution, that evaluates the additional source term (100)
for specific values of x and t needs to be implemented. More precisely, the input arguments of
the new function are x, t, equations, solution, solution dot, solution prime, where the
latter three ones represent the function u and its derivatives with respect to t and x in that
order. The input variables x and t represent the values of x and t, at which the additional source
term should be evaluated and equations is again an object of the type IntrinsicBeamEquation.
The residuum can then be evaluated at every x and t. Moreover, the evaluation of Qcap at the
exact u can be implemented straight forward, using the definition of Qcap. This is similar to the
implementation of the original source term source term intrinsic beam in the previous section.
The only difference is that now the evaluation of the exact u is determined within the function and
inserted into the source term instead of the current state of the solution, handed over by Trixi.jl

as in source term intrinsic beam.
When setting up a Trixi.jl simulation, the source term that is handed over to the constructor

of the semi discretization has then to be defined as the sum of the above introduced function and
the function that evaluates the original source term. The result of the Trixi.jl simulation should
then be the numerical solution of equation (99), of which we know the exact solution. In [41],
Roache summarizes the idea of defining the desired solution first and then solving the resulting
problem by citing the counsel ”Only a fool starts at the beginning; the wise one starts at the end”
which is originally formulated by Polya in [39].

Let us now implement this for a specific configuration of the intrinsic beam model. First we
choose the flexibility and mass matrix as

F =


13 6 5 7 8 5
6 6 4 3 5 4
5 4 5 3 5 4
7 3 3 7 4 3
8 5 5 4 9 5
5 4 4 3 5 5

 , M =


12 4 5 5 10 3
4 4 2 3 4 1
5 2 8 6 6 2
5 3 6 8 7 3
10 4 6 7 13 5
3 1 2 3 5 4

 . (101)

They are chosen randomly and suffice the positive definiteness requirement for the mass and the
flexibility matrix but do not take realistic values that describe the material properties of any
beam. For the simulations in this section, realistic values are not needed, because the results, we
are aiming for are purely mathematical. The initial curvature k as well as the external forces fext
and moments mext are set to zero, i.e.

k(x) ≡ fext(x, t) ≡ mext(x, t) ≡ 03.

Moreover, we define the function u(x, t) = (um(x, t))m=1,...,12 as

um(x, t) =

t sin
(
π
2 (1− x)

)
for m = 1, . . . , 6,

t sin
(
π
2x
)

for m = 7, . . . , 12.
(102)

The derivative of u with respect to x is then

(ux)m(x, t) =

−π
2 t cos

(
π
2 (1− x)

)
for m = 1, . . . , 6,

π
2 t cos

(
π
2x
)

for m = 7, . . . , 12,

while the derivative of u with respect to t can be calculated as

(ut)m(x, t) =

sin
(
π
2 (1− x)

)
for m = 1, . . . , 6,

sin
(
π
2x
)

for m = 7, . . . , 12.



4.2 Convergence Tests 58

(a) First six components of the solution. (b) Last six components of the solution.

Figure 5: Plot of the exact solution of the problem (103).

This function can then be used to determine the residuum function

r(x, t) = Γut +Πux

and the resulting additional source term (100). The problem we will consider for the rest of this
section can now be specified as

Γut +Πux = Qcap(u) + r(x, t)−Qcap(u) for (x, t) ∈ (0, 1)× (0, 1],

um(0, t) = 0 for t ∈ [0, 1], m = 1 . . . , 6,

um(ℓ, t) = 0 for t ∈ [0, 1], m = 7, . . . , 12,

um(x, 0) = 0 for x ∈ [0, ℓ], m = 1 . . . , 12.

(103)

Note that the function u indeed fulfills the above initial and boundary conditions. This means
that by construction the exact solution of the problem (103) is the function u, defined in (102). In
figure 5, we can see a plot of the solution u at the time t = T = 1.

Having implemented the additional source term and what is needed for that implementation,
the convergence analysis can now be performed easily taking advantage of the Trixi.jl function
convergence test. As input argument, this function expects a file path and an integer. The path is
the location of an elixir that returns the solution of a Trixi.jl simulation. The convergence test

function then compares the resulting solution of the elixir to the initial condition that is defined
within the elixir. In particular, it computes the L2-error. Note that for this to work, the initial
condition has to be implemented as a function depending on t, i.e. as the exact solution. For the
simulation itself Trixi.jl then uses this function evaluated at t = 0 as initial condition. For the
convergence test, the solution is compared to this initial condition evaluated at the end time, i.e.
at t = 1. This comparison is performed as many times as it is specified in the second argument of
the convergence test function, while in every iteration, the number of cells is increased by the
factor of two. To minimize the impact of the time integrator, we choose a small CFL number of
0.1 in the following considerations.

For the resulting errors on different refinement levels of the spatial mesh, the EOC can now be
determined. Let Ec1 be the L2-error of the numerical solution associated with a number of cells of
Nc1 and let Ec2 be defined analogously with Nc1 < Nc2 . Then the EOC concerning the refinement
levels c1 and c2 is defined as

EOC =

log

(
Ec1
Ec2

)
log

(
Nc2

Nc1

) .

As the convergence test function doubles the refinement level in every iteration, we have that
Nc2 = 2Nc1 and, thus

EOC =

log

(
Ec1
Ec2

)
log(2)

.



4.2 Convergence Tests 59

In table 2, the resulting L2-error, and the corresponding EOC for a polynomial degree of Np = 3
are listed. More precisely, the average L2-error of the first six components of the solution and the
average for the last six components is specified for simulations with the upwind flux and with the
central flux. In Appendix A.3, the individual errors and EOCs of each component can be looked
up. The values do only differ on a small scale, which is why we only list the two averages in this
section.

The optimal convergence rate for the spatial discretization approach isNp+1 = 4. The results in
table 2 show that this rate is approximately reached by the experiments using the upwind numerical
flux. We observe that the average EOC in the first six as well as in the last six components is
nearly 4. For the first two iterations (Nc = 8 → 16 and Nc = 16 → 32), the EOC is a bit lower
than for the last two iterations (Nc = 32 → 64 and Nc = 64 → 128). Nevertheless, the EOC is
constantly clear above a level of 3.5. At maximum it reaches a value of approximately 3.97 in the
first six components and 3.96 in the last six components.

For the central flux, the optimal convergence rate is not reached. Overall, the EOC for these
simulations is approximately 3, i.e. corresponds to the polynomial degree, Np and not to Np + 1.
This is a well known phenomenon [18]. Numerical solutions that result from simulations, using
the central numerical flux, usually converge at a rate of Np for odd Np and at a rate of Np +1 for
even Np. This will also be validated by our experiments for Np = 4, later in this section.

The L2-error takes values from a magnitude of 10−7 to 10−11 for the upwind flux and of 10−7

to 10−10 for the central flux. Although the level of the error for the central flux is above the level
of the error for the upwind flux all the time, in both cases, the exact solution is approximated well
by the numerical solution even for the smallest refinement level of Nc = 8.

Nc Num. flux
Avg. L2-error Avg. EOC Avg. L2-error Avg. EOC
(m = 1, . . . , 6) (m = 1, . . . , 6) (m = 7, . . . , 12) (m = 7, . . . , 12)

8
upwind 5.31 · 10−7 - 4.80 · 10−7 -
central 9.20 · 10−7 - 7.00 · 10−7 -

16
upwind 3.70 · 10−8 3.84 3.94 · 10−8 3.65
central 9.92 · 10−8 3.32 7.66 · 10−8 3.27

32
upwind 2.58 · 10−9 3.83 2.68 · 10−9 3.86
central 1.19 · 10−8 3.12 9.13 · 10−9 3.11

64
upwind 1.64 · 10−10 3.97 1.73 · 10−10 3.94
central 1.47 · 10−9 3.03 1.13 · 10−9 3.04

128
upwind 1.04 · 10−11 3.97 1.11 · 10−11 3.96
central 1.83 · 10−10 3.01 1.40 · 10−10 3.01

Table 2: Average L2-error, computed by the Trixi.jl convergence test for the numerical solution
of (103) with Np = 3,CFL = 0.1, compared to the exact solution (102) and corresponding average
EOCs. Both measures are rounded to three significant figures.

Table 3 shows the L2-error of the Trixi.jl convergence test and the corresponding EOC,
averaged analogously to the values in table 2 but for a polynomial degree of Np = 4. Hence, the
optimal convergence rate, one would expect is 5. Again, this is generally reached by the results.
Apart from the last iteration, the EOCs constantly stay above a level of 4.7. This time the optimal
convergence rate is reached for both, the upwind and the central numerical flux.

The L2-error takes values on a level of 10−9 for a polynomial degree of 4 and the lowest refine-
ment level, Nc = 8. The smallest errors are reached for the maximal refinement level, Nc = 128,
and take values on a level of 10−14. In the last iteration the finite machine precision limits the
convergence of the solution beyond a level of 10−14, which is why the EOCs drop massively.

In figures 6 and 7, the results of tables 2 and 3 are visualized in convergence plots. They show
the average L2-errors dependent on the respective refinement level for the different polynomial
degrees and different numerical fluxes. The axes are scaled logarithmic, which is why the errors
approximately appear linear with a slope corresponding to the respective EOC. The different
convergence rates for the upwind and the central flux manifest in different slopes for Np = 3,
which can be well observed in figures 6. Figure 7 shows that for a polynomial degree of Np = 4,
the central flux performs slightly better than the upwind flux. Furthermore, in figure 7, the drop



4.3 Energy Simulation 60

Nc Num. flux
Avg. L2-error Avg. EOC Avg. L2-error Avg. EOC
(m = 1, . . . , 6) (m = 1, . . . , 6) (m = 7, . . . , 12) (m = 7, . . . , 12)

8
upwind 4.95 · 10−9 - 4.92 · 10−9 -
central 5.28 · 10−9 - 4.84 · 10−9 -

16
upwind 1.77 · 10−10 4.82 1.85 · 10−10 4.73
central 1.50 · 10−10 5.14 1.46 · 10−10 5.03

32
upwind 5.88 · 10−12 4.91 6.26 · 10−12 4.89
central 4.07 · 10−12 5.19 3.92 · 10−12 5.22

64
upwind 1.95 · 10−13 4.91 2.06 · 10−13 4.92
central 1.37 · 10−13 4.89 1.30 · 10−13 4.92

128
upwind 9.54 · 10−14 1.03 8.55 · 10−14 1.30
central 9.02 · 10−14 0.63 8.06 · 10−14 0.76

Table 3: Average L2-error, computed by the Trixi.jl convergence test for the numerical solution
of (103) with Np = 4,CFL = 0.1, compared to the exact solution (102) and corresponding average
EOCs. Both measures are rounded to three significant figures.

of the EOC in the last iteration, i.e. for the highest refinement level is clearly visible, as the slope
drops from a value of approximately 5 to a a value below 1.

(a) Average L2-error in the first six components (b) Average L2-error in the last six components

Figure 6: Plot of the average L2-error from tables 2 and 3 for different number of cells and Np = 3
.

The results verify the correctness of the implementations as the observed EOCs nearly reach the
optimal convergence rate that could be expected for the approach. The lower convergence rates
for the central flux and a polynomial degree of Np = 3 are explained in the literature [18].

4.3 Energy Simulation

Our main result in section 3 was that the spatial discretization approach leads to an energy stable
numerical solution. For zero boundary data and absent external forces and moments, it could be
shown that the discrete energy is non increasing. Furthermore, we showed that in comparison to
the central numerical flux, the upwind numerical flux has additional dissipation at the interfaces.
In this section, we will validate the general statements about non increasing energy for zero external
forces and moments. Additionally, we will investigate whether the additional dissipation of the
upwind flux can be observed, when determining the discrete energy of two solutions whose setups
differ only in the choice of the numerical flux.

In order to be able to perform the energy analysis, we need a method to actually compute the
discrete energy of the solution that results from a Trixi.jl simulation. This is realized by writing
a function compute energy. In the following we will describe the idea behind the implementation



4.3 Energy Simulation 61

(a) Average of L2-error in the first six components. (b) Average of L2-error in the last six components.

Figure 7: Plot of the average L2-error from tables 2 and 3 for different number of cells and Np = 4.

of this function. First, we recall the definition of the total discrete energy of the solution, which
reads

∥U∥2Np,Γ =

Nc∑
k=1

∆xk

2
∥U (k)∥2Np,Γ.

Suppose now that the solution Trixi.jl returns, is brought into the shape of a three dimensional
array, U, of the size 12 × Nx × Nt, where Nx is the total number of spatial nodes and Nt is the
total number of timesteps executed by the ODE solver. Moreover, let the quadrature weights of
the LGL quadrature in the different cells be ordered consecutively in an one dimensional array
weights of size Nx. The term ∆xk/2 is still constant for all cells, because we use a uniform mesh.

In algorithm 2, the simplified code of the implementation of a function that computes the total
discrete energy, given the above variables, is shown. In lines 3-7, the integrand that is defined by
the discrete energy norm, is initialized and computed. In particular the two dimensional array
integrand contains the integrand, evaluated at every LGL node in every cell and at every discrete
time. Afterwards, in lines 10-15, the discrete energy is initialized and computed at every discrete
point in time, using the LGL quadrature formula scaled by ∆xk/2. Finally, the total discrete energy
is returned as an one dimensional array of size Nt.

Algorithm 2 Pseudo code of function to compute discrete energy.

1: function compute energy(U, weights, equations::IntrinsicBeamEquation)

2:

3: integrand = zeros(Nx, Nt)

4: for j = 1 to Nt do
5: for i = 1 to Nx do
6: integrand[i,j] = U[:,i,j]T * equations.Gamma * U[:,i,j]

7: end for
8: end for
9:

10: energy = zeros(Nt)

11: for j = 1 to Nt do
12: for i = 1 to Nx do
13: energy[j] += ∆xk

2 * weights[i] * integrand[i,j]

14: end for
15: end for
16:

17: return energy

To analyze the discrete energy, we can now write an elixir, that solves an arbitrary configuration
of the intrinsic beam equation and afterwards computes the solution’s energy using the above



4.3 Energy Simulation 62

Parameter Value

ℓ 1.0
Np 3
Nc 8, 16
T 4.0

CFL 0.1
IC (m = 1, . . . , 6) sin

(
π
2 (1− x)

)
IC (m = 7, . . . , 12) sin

(
π
2x
)

k(x) 03

mext(x, t) 03

fext(x, t) 03

Table 4: Setup used to generate the plots in figure 8. IC stands for initial condition and is meant
component wise.

defined function. This energy can then be visualized by plotting it at the timesteps. We will
use the same positive definite flexibility and mass matrices as in the convergence analysis, (101).
As mentioned earlier, they should not be interpreted as values of flexibility and mass matrices
describing the material properties of a realistic beam. The statement about energy stability holds
for arbitrary flexibility and mass matrices as long as they are positive definite, and the purpose of
the investigations in this section is to validate this statement numerically.

Figure 8 shows the total discrete energy of different numerical solutions associated with the
setup given in table 4 at the discrete points in time. For figure 8a, the spatial domain was
subdivided into 8 cells, i.e. Nc = 8 and for figure 8b we have Nc = 16. For each spatial refinement
level, the numerical solution and the corresponding energy was determined for the central flux and
for the upwind flux.

First of all, we can observe that the discrete energy is indeed decreasing in time. This holds
for the upwind flux as well as for the central flux. As expected, the level of energy corresponding
to the solution for the central flux is above the level of energy of the solution for the upwind flux
all the time. This is due to the additional dissipation the upwind flux generates at the interfaces
(cf. section 3.5.2). As we showed, the central flux does not have that dissipational effect but
the corresponding solution still has a decreasing and not constant energy. This is caused by the
boundary flux. At the boundaries, the numerical flux is always chosen as the upwind flux. As a
consequence of that, there is always dissipation at the boundaries, which results in a decreasing
energy even for the solution corresponding to the central flux.

What we also observe, comparing figure 8a to figure 8b, is that both, the energy of the solution
for the upwind flux and the energy of the solution for the central flux, show less dissipation for a
higher refinement level in space. This is associated with the convergence of the numerical solution.
A better approximation of the exact solution means, that the energy of the exact solution is better
approximated as well and for the energy of the exact solution, it was shown that it is constant for
zero external forces and moments.

Before completing this section, we take one closer look at the energy that results from the
simulation using the central numerical flux. Remember that for zero external forces and moments
and the central flux, our result for the total discrete energy in section 3.5.2, was

∥U(·, t)∥2Np,Γ = ∥U0∥2Np,Γ − 2

t∫
0

(
bL(τ) + bR(τ)

)
dτ. (104)

Moreover, for the boundary terms, we found

−bL = −
(
Y (1)

)T
F−1/2Ψ−1/2F−1/2Y (1)

∣∣∣
ξ=−1

,

−bR = −
(
S(Nc)

)T
F

1/2Ψ
1/2F

1/2S(Nc)
∣∣∣
ξ=1

.

After a simulation, Y (1) and S(Nc) are known approximately at every discrete point in time, tn.
Note that these are not the exact Y (1) and S(Nc), because the ODE in time representing the semi



4.3 Energy Simulation 63

(a) Energy for 8 cells. (b) Energy for 16 cells.

Figure 8: Total discrete energy of the solution with setup of table 4 and flexibility and mass matrix
defined in (101).

discretization was solved numerically. Nevertheless, the boundary terms bL, bR can therefore be
determined approximately and also the integral value on the right hand side of (104).

In particular, the integral values at the discrete points in time tn can for example be approxi-
mated by

2

tn∫
0

(
bL(τ) + bR(τ)

)
dτ ≈

n∑
i=1

(ti − ti−1)
(
bL(ti) + bR(ti)

)
=: dn (105)

for n = 1, . . . Nt and d0 = 0. In figure 9, the approximated integral values dn are visualized as bars
together with the total discrete energy of the simulations with the central flux, which have already
been plotted in figure 8. The origins of the bars are attached to the value of the energy at t = 0
and their length represents the value of the dn and therefore the amount of dissipation, generated
at the boundaries. For the simulation with 8 cells, there is a bar plotted at every 20-th timestep
and for the simulation for 16 cells, the bars are plotted at every 40-th timestep.

(a) Energy and boundary dissipation for 8 cells. (b) Energy and boundary dissipation for 16 cells.

Figure 9: Total discrete energy for the central numerical flux of figure 8 and value of the dissipative
boundary terms. (Note that the axes are scaled differently.)

It can be observed that the amount of dissipation at the boundaries matches the amount by
which the discrete energy of the simulations with the central flux decreases. This validates the
statement (104). In theory, there should be no difference between the left hand side of (104) and
the right hand side. However, this is only the case if time integration is exact. In practice, the
difference should be approximately zero. A measure for the difference of the two terms can be
found via

Ediss(tn) :=
∣∣∣∥U(·, tn)∥2Np,Γ − ∥U0∥Np,Γ − dn

∣∣∣



4.4 Determination of the Position Line 64

at every discrete point in time. For the simulation with 8 cells, the maximal difference is

max
n=0,...,Nt

Ediss(tn) ≈ 1.33 · 10−3,

while for the simulation with 16 cells, it amounts to

max
n=0,...,Nt

Ediss(tn) ≈ 3.02 · 10−4.

Note that not only the time discretization of the semi discrete formulation, but also the approxi-
mation of the integral values with dn in (105), has an impact on that difference. As the number of
cells is increased, also the timesteps become smaller because of the CFL condition (cf. section 3.7).
Therefore both, the numerical integration of the semi discrete formulation and the approximation
dn gets better and Ediss(tn) is getting smaller for a higher number of cells.

Taking these considerations into account, the values of Ediss(tn) for the two different simulations
are sufficiently close to zero to validate the statement (104).

4.4 Determination of the Position Line

In this section, we want to demonstrate how the numerical solution of the intrinsic beam equation
resulting from a Trixi.jl simulation can be used to visualize the corresponding beam. In particu-
lar, we will simulate a set up with realistic material parameters and constant external forces acting
along the beam. The position line of the corresponding beam will be plotted and we will interpret
the results. Note that the purpose of this section is not to obtain a physically exact solution but
to show the post processing that is needed to determine the position line of the underlying beam
out of the intrinsic variables.

Because the intrinsic beam model as it is considered here, does not include any damping
mechanisms, it is difficult to simulate a setup in which a steady state solution is reached in finite
time that could be compared to an exact steady state solution. Further, we did not find simulation
results of other authors, that consider the same mechanical setup with the same assumptions as
we do. In [5, 17, 48], there are numerical experiments for the intrinsic beam model and other
geometrical exact models but they either do not consider ”clamped-free” beams or use non-zero
boundary conditions. We therefore limit ourselves to demonstrating how a modelled beam can be
visualized and evaluating the sensibleness of the results in general.

The easiest way to obtain a setup for a dynamically behaving beam is to prescribe constant
external forces, fext(x, t) ≡ const., that act along the beam. As discussed in section 2.6.2, this
cannot particularly be seen as a constant force acting along the beam as seen from the global
coordinate system, because external forces are represented in the body attached coordinate system
and therefore depend on the beam’s deformation. Nevertheless, for deformations that are not too
large, these external forces will at least be an approximation to a constant force in the global
system. For the rest of this section, we consider a constant external force of

fext(x, t) ≡ (0, 0,−10)T .

Remember that the solution of the intrinsic beam model contains intrinsic variables only, i.e.
internal forces and moments and linear and angular velocities. In order to obtain a visualization
of the simulation, we therefore need some post processing to determine the deformation of the
beam based on the numerical solution. We will see that the steps needed to determine the beam’s
deformation, include solving two ODEs.

First, we recall that the position of the deformed beam at any point x in [0, ℓ] and t in time,
is denoted as r(x, t) ∈ R3. Moreover, S(x, t) was defined as the rotation matrix, that transforms
vectors in the body attached coordinate system into their representation in the global coordinate
system. According to [36], the position line of the deformed beam can be determined by solving
the following ordinary differential equation

r′ = S(γ + e1). (106)

In order to find a solution of the above ODE, we first need to determine the matrix S, that is
again obtained by solving an ODE, namely

(S−1)′ = −(κ̃+ k̃)S−1. (107)



4.4 Determination of the Position Line 65

We will numerically solve these two ODEs, using the trapeze rule for the approximation of integrals,
which eventually leads to a recursion formula for the beam’s position at the discrete space time
points (xj , tn). The idea behind this is the following: Let xj and xj+1 be two adjacent spatial
nodes. For the rest of the section, this is interpreted globally, meaning that x0 is the first LGL
node in the first cell, xNp

is the last LGL node in the first cell, xNp+1 is the first LGL node in the
second cell and so on. Then, if we integrate (107) over the interval [xj , xj+1], we get

S−1(xj+1, t)−S−1(xj , t) = −
xj+1∫
xj

(κ̃+ k̃)S−1 dx.

Both sides of the above equation are now evaluated at an arbitrary discrete point in time tn and
the integral on the right hand side is approximated by applying the trapeze rule. This results in

S−1(xj+1, tn)−S−1(xj ,tn) ≈

−(xj+1 − xj)
(k̃ + κ̃)S−1

∣∣
(xj ,tn)

+ (k̃ + κ̃)S−1
∣∣
(xj+1,tn)

2
.

The equation can be solved for S−1(xj+1, tn). In particular, we have

S−1(xj+1, tn) ≈(
I3,3 +

xj+1 − xj

2
(k̃(xj+1) + κ̃(xj+1, tn))

)−1(
I3,3 −

xj+1 − xj

2
(k̃(xj) + κ̃(xj , tn))

)
S−1(xj , tn).

(108)

The numerical solution of the intrinsic beam equation is known at every LGL node and every
discrete point in time after a Trixi.jl simulation. By applying the constitutive law (4), we can
therefore determine the corresponding discrete values of κ. That is, we can interpret (108) as a
recursive formula to determine the values of S−1 at the LGL nodes for every timestep tn. What
is left to complete the recursion, is an initial value for the first node x0 for every time tn.

For our purposes, the initial value will simply be the identity matrix in R3×3, i.e.

S−1(x0, tn) = I3,3

for every discrete time tn. This is because we consider a clamped beam with zero velocities at the
clamped end and therefore the origin of the beam does not rotate and is represented by the same
point, no matter in which coordinate system we express it. For non-zero angular velocities, one
would have to integrate the velocities at the first spatial node in [0, tn] in order to determine the
angle the origin has rotated by. Then S−1(x0, tn) can be set as a rotation matrix for every point
in time accordingly.

Inverting the discrete values of S−1 from the recursion (108) gives us the values of S. These
can then be used to determine the discrete values of the beam’s position line r as approximate
solution of the ODE (106). Therefore, the same approach as before is used, i.e. integrating the
equation on both sides over [xj , xj+1], approximating the right hand side at a discrete point in
time tn by the trapeze rule and then solving for r(xj+1, tn). This leads to the following recursion
formula:

r(xj+1, tn) ≈

r(xj , tn) +
xj+1 − xj

2

(
S(xj+1, tn)(γ(xj+1, tn) + e1) +S(xj , tn)(γ(xj , tn) + e1)

)
.

Again, to complete the recursion, an initial value for r at the first node x0 is needed. For this,
we choose a point in R3, where we want the beam’s origin to be located in space at the beginning
of the simulation. This will be the point (0, 0, 0). Because the beam is clamped and the external
boundary data is assumed to be zero, the linear velocities are zero at the clamped end and the
origin of the beam does not move. This means that the initial value of the iteration is (0, 0, 0) for
every tn. In the case of non-zero linear velocities at the boundary, one would have to integrate the
linear velocities at x0 in [0, tn] and set the initial value of r(x0, tn) accordingly.

With the above recursion formulas, we are now able to determine the approximate position of
the beam for every spatial node and every discrete point in time on the base of the discrete values



4.4 Determination of the Position Line 66

Parameter Value

ℓ 4.0
Np 3
Nc 16
CFL 1.0
IC 012

k(x) 03

mext(x, t) 03

fext(x, t) (0, 0,−10)T

NF upwind

Table 5: Setup used to generate the plots in figures 10 - 12. IC stands for initial condition, NF for
numerical flux.

of the intrinsic variables. After implementing the recursions, the deformation of a simulated beam
can be plotted, which will be done in the following.

The flexibility and mass matrix, that were used to obtain the results in the following investi-
gations are chosen as follows:

F = diag
(
104, 104, 104, 500, 500, 500

)−1
,

M = diag(1, 1, 1, 20, 10, 10).

These values are for example used for simulations of flexible beams in [17, 48]. The setup that was
used to obtain the numerical results of this section, is given in table 5.

To demonstrate the dynamic behaviour of the beam, we show some snap shots of its position
line at certain points in time in figure 10. Figure 10a shows the beam’s position line at five points
in time in the time interval [0, 1.28], whereas in figure 10b, we can see the position line at five
points in time within the interval [1.28, 2.56].

Although the results cannot be seen as simulation of a real application, we want to discuss
whether they are generally reasonable in the considered context. First of all, note that because
the external force we prescribe acts only in x3-direction, deformations only take place in the x1-
x3-plane and it suffices to plot the beam’s position line in this plane. This has also been validated
by investigating the x2-component of the discrete values of r. They are constantly zero.

We observe that the negative external force acting in x3-direction leads to a beam deforming in
negative x3-direction as one would expect. For t ∈ [0, 1.28], the beam’s deflection is successively
increasing until it reaches its maximum at t = 1.28. After that, for t ∈ [1.28, 2.56], the deflection
decreases until the position line seemingly reaches its initial position again at t = 2.56. In figure 11
the position of the beam’s tip is shown in the time interval [0, 2.56] (figure 11a) but also for a longer
simulation in the time interval [0, 36] (figure 11b). In particular, the plots show the x3-coordinate
of the tip position in time. It can be observed that the beam swings periodically. Nevertheless, the
initial position is not quite reached after the first period of swinging. In particular, the amplitude
at which the beam swings, is becoming smaller in the first half of the longer simulation, before it
increases again in the second half.

Figure 12 shows the energy of the beam for the shorter simulation as well as for the longer
simulation. The results are in line with the observations for the deflection. The short term
behaviour of the energy in figure 12a shows that the energy increases until the maximum deflection
is reached at t ≈ 1.28. Afterwards, we observe a decreasing energy until the beam returns to the
minimal deflection state at t ≈ 2.56. In the long term (figure 12b), the energy periodically increases
and decreases with an amplitude that is getting smaller in the first half of the simulation and then
getting bigger again in the second half.

In a realistic simulation with constant external forces (as seen from the global coordinate
system), one would expect that the amplitude of the deflection decreases in time, whereas in our
simulation, we observe a periodical swinging with an amplitude that slightly decreases for some
time but then increases until the initial amplitude is reached again.

This unphysical behaviour might on the one hand be caused by the external forces, we chose.
It was discussed earlier that they cannot particularly be interpreted as constant forces as seen from



4.4 Determination of the Position Line 67

(a) Deformation in [0, 1.28].

(b) Deformation in [1.28, 2.56].

Figure 10: Deformation of a beam undergoing constant external forces.

the global coordinate system. On the other hand, we do not consider any physical damping mech-
anisms, that would simulate the decreasing amplitude which one would expect from a realistically
swinging beam.

Under the circumstances considered here, we classify the results as sensible and we showed
that the intrinsic variables can be post processed to determine the position line of the simulated
beam. However, the results of this section do not allow us to evaluate the applicability of the
DG approach in combination with the intrinsic beam model with regard to simulations of realistic
beams. This will be discussed more detailed in the outlook in section 5.2.



4.4 Determination of the Position Line 68

(a) Tip position in time interval [0, 2.56]. (b) Tip position in time interval [0, 36].

Figure 11: x3-coordinate of the position of the deforming beam’s tip.

(a) Energy in the time interval [0, 2.56]. (b) Energy in the time interval [0, 36].

Figure 12: Discrete energy of the deforming beam.



69

5 Conclusion and Outlook

In the following two subsections we want to recapitulate the investigations that were made in this
thesis. In the conclusion, we will summarize our results from the previous sections and evaluate
them with regard to the objectives we formulated initially. In the outlook, we want to suggest
some further investigations for the future.

5.1 Conclusion

The main objective we formulated at the beginning of the thesis was to derive an energy stable
Discontinuous Galerkin approach for the discretization of the intrinsic beam model in space. In
order to obtain such a discretization scheme, the intrinsic beam model was reformulated and
classified as a system of linear hyperbolic balance laws. Different equivalent formulations were
derived. The formulation for characteristic variables enabled us to provide the governing equations
with mathematically appropriate boundary conditions and an initial condition. These were then
brought into a form that suits the modelling of a clamped beam that is free swinging at one side.
Moreover, we derived a capacity form of the intrinsic beam equation. Together with the initial and
boundary conditions, this resulted in the formulation of an initial boundary value problem which
could be investigated with regard to the energy of a potential solution.

We were able to show that the energy of a solution of the initial boundary value problem
behaves in an expected way from a physical point of view, in the sense that the total mechanical
energy of the modelled beam is conserved. Moreover, we showed that even for non-zero external
forces and moments the solution of the problem is energy stable. To this end, we had to make
some additional assumptions. In particular, we derived energy stability for zero external boundary
data and in time constant and bounded external forces and moments and showed that with these
assumptions the energy norm of the solution can increase linearly in time at maximum.

Having completed the analytical considerations, we used the techniques of DG methods to
derive a discretization scheme for the spatial discretization of the initial boundary value problem.
This included introducing a stable numerical flux and implementing the boundary conditions into
the discretization scheme. The result was a semi discrete formulation of the initial boundary value
problem, that still continuously depended on the time. Energy statements, analogous to the energy
statements for the solution of the continuous problem, could be made for the numerical solution
of the semi discrete formulation. More precisely, it was shown that energy conservation does hold
cell wise in the discrete context. On a global point of view, the discrete energy has additional
numerical dissipation that is generated at the interfaces between the cells and by the boundary
terms. The dissipation at the interfaces can be controlled by the choice of the numerical flux,
whereas the boundary terms always generate numerical dissipation. Together with a bound for
the contribution of external sources and moments that was analogue to the corresponding bound
in the continuous analysis, this led to energy stability of the numerical solution. Similar to the
result in the continuous energy analysis, it could be shown that the discrete energy norm of the
numerical solution does not grow faster than linearly. The latter result was, in fact, the property
we were aiming for: we showed that the Discontinuous Galerkin approach we used is indeed energy
stable.

Our theoretical results have been validated by numerical experiments. We simulated different
configurations and investigated the results with regard to their discrete energy. The investigations
have shown that the theoretical predictions for the discrete energy are fulfilled. However, the
numerical experiments have not been made for the most general case. We looked into constant
flexibility and mass matrices only. This will also be addressed in the outlook.

All in all, the DG discretization for the intrinsic beam model yields excellent mathematical
results. The convergence tests showed that an optimal convergence rate can be reached for test
problems and the theoretical investigations as well as the numerical experiments confirm the sta-
bility of the approach.

5.2 Outlook

The results of this thesis indicate that, from a mathematical point of view, the derived DG approach
suits the discretization of the intrinsic beam model very well. What remains to complete the
validation of our theoretical results, is to extend the implementations in order to be able to simulate
configurations with non-constant flexibility and mass matrices. The numerical experiments can



5.2 Outlook 70

then be repeated for non-constant matrices. It will be interesting to see if the experimental order
of convergence is influenced by this or if the optimal convergence rate is still approximately reached
for such simulations. Aside from that, the energy statements that were derived theoretically should
also be validated numerically for non-constant matrices.

Another point that will be investigated on the theoretical side, is a generalization of the energy
stability statement for non-zero external boundary data – in the continuous context as well as in the
discrete context. Such an extension is particularly interesting for the application on helicopter rotor
blades as they naturally rotate and move in space. It is not ensured that such a generalization
is possible, but future investigations could either look into an extension of the statement for
more general external data, or even prove that energy stability cannot be obtained if the external
boundary data is not zero. Either way, we suppose that a more detailed look into this field could
bring interesting results.

Beyond these theoretical aspects, there are several possibilities of further practical investigations
concerning realistic applications. The extension of the implementations to non-constant flexibility
and mass matrices is not only important to validate the mathematical results, but also with regard
to realistic simulations of beams. As mentioned in section 2, in real applications of anisotropic
beams, material properties vary along the beam and the possibility to consider non-constant ma-
trices will therefore be essential for their simulation. In the future, the theoretical and practical
considerations could even be extended to take into account flexibility and mass matrices that are
discontinuous, i.e. have jumps. This would open the possibility to simulate beams whose material
properties do not change smoothly but abruptly, which is often the case in applications. The na-
ture of DG methods, to allow jumps at interfaces, could very well be suitable for such simulations.
The stability of DG approaches for the discretization of hyperbolic PDEs with coefficient matrices
that have jumps is for example investigated in [28].

It would also be interesting to try applying the presented discretization approach to benchmark
problems for the simulation of flexible beams and see how it performs in general, but also compared
to other models and discretization approaches. In the course of this, it might be useful to add
damping mechanisms, in order obtain simulations that reach steady states in finite time. Damping
mechanisms for the intrinsic beam model are for example considered in [3].

To complete this section, we would like to mention another point that has not been taken into
account yet. This is the efficiency of the scheme as it is presented here. In particular, this concerns
the time stepping. Recall that in the simplified notation of section 3.7, the timestep was chosen
according to the CFL-condition

∆t ≤ CFL
1

max |Λii|
min∆x,

where max |Λii| represents the maximal absolute eigenvalue of the advection matrix A. Moreover,
recall that the eigenvalues of A were shown to be the square roots of the eigenvalues of Ψ and also
of (FM)−1 (cf. section 2.4.2). In realistic applications, beams are often flexible in one direction
but almost rigid in another. If one thinks of a helicopter rotor blade for example, the blade is very
flexible in the ”up” and ”down” direction but not in the ”left” and ”right” direction. Such material
properties result in very small entries in the flexibility matrix. Note that the flexibility matrix with
realistic parameters, that was used to plot the deforming beam in section 4.4, describes a relatively
flexible beam, and has diagonal entries of 10−4, nonetheless. The maximal absolute eigenvalue of
A is 100 in this case. For the biggest possible CFL-number, CFL = 1.0, a polynomial degree of
Np = 3 and a number of cells Nc = 16 (which is the setup used in section 4.4), this results in a
timestep of ∆t = 6.25 ·10−4. For beams whose flexibility is arbitrarily small in some directions, the
eigenvalues of A can theoretically become arbitrarily big and the timestep in turn arbitrarily small.
Simulations of such beams are therefore computationally very intensive. One could therefore also
consider, for which beams the discretization approach is practicable in the way it is presented here,
and for which it is not. There might be found a way to avoid such small timesteps by replacing
almost zero entries in the flexibility matrix by zeros and reduce the degrees of freedom, but this
has to be part of future investigations.



71

A Appendices

A.1 Computation of Boundary Terms

In this appendix, we will determine the value of the boundary terms bL and bR from section 3.5.2.
In order to do so, we will firstly determine the matrices A+ and A−, secondly the matrices ΓA+

and ΓA−, thirdly execute the matrix vector multiplications in the boundary terms and fourthly
apply the discrete boundary conditions and gather terms.

Before we actually start with the described procedure above, we recall the definition of the
matrices needed:

T =
1

2

(
F−1/2X T F−1/2X T

F
1/2X TΛ −F

1/2X TΛ

)
, T−1 =

(
XF

1/2 Λ−1XF−1/2

XF
1/2 −Λ−1XF−1/2

)
,

Λ− =

(
−Λ 06,6

06,6 06,6

)
, Λ+ =

(
06,6 06,6

06,6 Λ

)
,

Γ =

(
F 06,6

06,6 M

)
, A = −

(
06,6 F−1

M−1 06,6

)

Π = −
(
06,6 I6,6
I6,6 06,6

)
Ψ = F−1/2M−1F−1/2.

The matrix Ψ is positive definite and can be diagonalized by the orthogonal matrix X (cf. section
2.4.2):

Ψ = X TΛ2X .

We can show easily that

Ψ
1/2 = X TΛX ,

as

Ψ
1/2Ψ

1/2 = X TΛXX TΛX = X TΛ2X = Ψ

holds. Also the inverses of Ψ and Ψ
1/2 are given by

Ψ−1 = F
1/2MF

1/2,

Ψ−1/2 = X TΛ−1X .

Another identity that will be useful in the upcoming computations is

MF
1/2 = F−1/2F

1/2MF
1/2 = F−1/2Ψ−1. (A.1)

Now, the matrices A+ and A− are defined in section 3.3 as

A+ = TΛ+T
−1,

A− = TΛ−T
−1.

And, thus, the matrix A+ explicitly reads

A+ =
1

2

(
F−1/2X T F−1/2X T

F
1/2X TΛ −F

1/2X TΛ

)(
06,6 06,6

06,6 Λ

)
T−1

=
1

2

(
06,6 F−1/2X TΛ
06,6 −F

1/2X TΛ2

)(
XF

1/2 Λ−1XF−1/2

XF
1/2 −Λ−1XF−1/2

)

=
1

2

(
F−1/2X TΛXF

1/2 −F−1

−F
1/2X TΛ2XF

1/2 F
1/2X TΛXF−1/2

)

=
1

2

(
F−1/2Ψ

1/2F
1/2 −F−1

−F
1/2ΨF

1/2 F
1/2Ψ

1/2F−1/2

)

=
1

2

(
F−1/2Ψ

1/2F
1/2 −F−1

−M−1 F
1/2Ψ

1/2F−1/2

)
.



A.1 Computation of Boundary Terms 72

In a similar way, the matrix A− can be determined:

A− =
1

2

(
F−1/2X T F−1/2X T

F
1/2X TΛ −F

1/2X TΛ

)(
−Λ 06,6

06,6 06,6

)
T−1

=
1

2

(
−F−1/2X TΛ 06,6

−F
1/2X TΛ2 06,6

)(
XF

1/2 Λ−1XF−1/2

XF
1/2 −Λ−1XF−1/2

)

=
1

2

(
−F−1/2X TΛXF

1/2 −F−1

−F
1/2X TΛ2XF

1/2 −F
1/2X TΛXF−1/2

)

=
1

2

(
−F−1/2Ψ

1/2F
1/2 −F−1

−F
1/2ΨF

1/2 −F
1/2Ψ

1/2F−1/2

)

=
1

2

(
−F−1/2Ψ

1/2F
1/2 −F−1

−M−1 −F
1/2Ψ

1/2F−1/2

)
.

The correctness of the previous results can be verified by checking if the equation A = A+ + A−
holds, which it does.

The multiplication of A+ by the matrix Γ from the left now yields

ΓA+ =
1

2

(
F 06,6

06,6 M

)(
F−1/2Ψ

1/2F
1/2 −F−1

−M−1 F
1/2Ψ

1/2F−1/2

)

=
1

2

(
F

1/2Ψ
1/2F

1/2 −I6,6
−I6,6 MF

1/2Ψ
1/2F−1/2

)

=
1

2

(
F

1/2Ψ
1/2F

1/2 −I6,6
−I6,6 F−1/2Ψ−1/2F−1/2

)
.

To show the last equality in the above calculation, one uses the identity (A.1). For A−, the
multiplication with Γ yields

ΓA− =
1

2

(
F 06,6

06,6 M

)(
−F−1/2Ψ

1/2F
1/2 −F−1

−M−1 −F
1/2Ψ

1/2F−1/2

)

=
1

2

(
−F

1/2Ψ
1/2F

1/2 −I6,6
−I6,6 −MF

1/2Ψ
1/2F−1/2

)

=
1

2

(
−F

1/2Ψ
1/2F

1/2 −I6,6
−I6,6 −F−1/2Ψ−1/2F−1/2

)
,

where (A.1) can be used to show the latter equation. Again, the correctness of the two matrix
multiplications can be verified by checking if ΓA+ + ΓA− = ΓA = Π holds, which it does.

We can now come to the computation of bL and bR. Starting with bL, by definition we have

bL = UT
R

(
(ΓA+)

∗UL + (ΓA−)
∗UR − 1

2
ΠUR

)
.

In the following we will omit the superscript ( · )∗, to ease the notation. We consider the above
boundary term summand by summand. For the first summand, we have

UT
RΓA+UL =

1

2

(
SR

YR

)T (
F

1/2Ψ
1/2F

1/2 −I6,6
−I6,6 F−1/2Ψ−1/2F−1/2

)(
SL

YL

)

=
1

2

(
ST
RF

1/2Ψ
1/2F

1/2SL − ST
LYR − ST

RYL + Y T
R F−1/2Ψ−1/2F−1/2YL

)
Inserting the discrete boundary condition for SL and YL with zero external boundary data, namely(

SL

YL

)
=

(
SR + F−1/2Ψ−1/2F−1/2YR

03

)



A.1 Computation of Boundary Terms 73

gives us

UT
RΓA+UL =

1

2

(
ST
RF

1/2Ψ
1/2F

1/2SR + ST
RYR − ST

RYR − Y T
R F−1/2Ψ−1/2F−1/2YR

− ST
R03 + Y T

R F−1/2Ψ−1/2F−1/203

)
=

1

2

(
ST
RF

1/2Ψ
1/2F

1/2SR − Y T
R F−1/2Ψ−1/2F−1/2YR

)
.

The second summand is

UT
RΓA−UR =

1

2

(
SR

YR

)T (−F
1/2Ψ

1/2F
1/2 −I6,6

−I6,6 −F−1/2Ψ−1/2F−1/2

)(
SR

YR

)

=
1

2

(
− ST

RF
1/2Ψ

1/2F
1/2SR − Y T

R F−1/2Ψ−1/2F−1/2YR − 2Y T
R SR

)
.

Finally, the last and third summand can be represented by

−1

2
UT
RΠUR =

1

2

(
SR

YR

)T (
06,6 I6,6
I6,6 06,6

)(
SR

YR

)
= Y T

R SR.

Putting all three summands together again, we obtain

bL =
1

2

(
ST
RF

1/2Ψ
1/2F

1/2SR − Y T
R F−1/2Ψ−1/2F−1/2YR

)
+
1

2

(
− ST

RF
1/2Ψ

1/2F
1/2SR − Y T

R F−1/2Ψ−1/2F−1/2YR − 2Y T
R SR

)
+ Y T

R SR

= −Y T
R F−1/2Ψ−1/2F−1/2YR.

The same procedure can be used to determine the right boundary term bR. By definition this is

bR = UT
L

(
(ΓA+)

∗UL + (ΓA−)
∗UR − 1

2
ΠUL

)
,

which we consider summand by summand. Again, we omit the superscript ( · )∗ for a better
readability. The first summand is

UT
L ΓA+UL =

1

2

(
SL

YL

)T (
F

1/2Ψ
1/2F

1/2 −I6,6
−I6,6 F−1/2Ψ−1/2F−1/2

)(
SL

YL

)

=
1

2

(
ST
LF

1/2Ψ
1/2F

1/2SL + Y T
L F−1/2Ψ−1/2F−1/2YL − 2ST

LYL

)
.

The second summand can be written as

UT
L ΓA−UR =

1

2

(
SL

YL

)T (−F
1/2Ψ

1/2F
1/2 −I6,6

−I6,6 −F−1/2Ψ−1/2F−1/2

)(
SR

YR

)

=
1

2

(
− ST

LF
1/2Ψ

1/2F
1/2SR − Y T

L SR − Y T
R SL − Y T

L F−1/2Ψ−1/2F−1/2YR

)
and applying the discrete boundary conditions this time for UR respectively SR and YR, namely(

SR

YR

)
=

(
03

−F
1/2Ψ

1/2F
1/2SL + YL

)
yields

UT
L ΓA−UR =

1

2

(
− ST

LF
1/2Ψ

1/2F
1/203 − Y T

L 03 + ST
LF

1/2Ψ
1/2F

1/2SL − Y T
L SL

+ Y T
L SL − Y T

L F−1/2Ψ−1/2F−1/2YL

)
=

1

2

(
ST
LF

1/2Ψ
1/2F

1/2SL − Y T
L F−1/2Ψ−1/2F−1/2YL

)
.



A.2 Computation of the Matrix Γ|A| 74

The third and last summand is

−1

2
UT
LΠUL =

1

2

(
SL

YL

)T (
06,6 I6,6
I6,6 06,6

)(
SL

YL

)
= Y T

L SL.

Finally, by putting all three summands together again, we have

bR =
1

2

(
ST
LF

1/2Ψ
1/2F

1/2SL + Y T
L F−1/2Ψ−1/2F−1/2YL − 2ST

LYL

)
+
1

2

(
ST
LF

1/2Ψ
1/2F

1/2SL − Y T
L F−1/2Ψ−1/2F−1/2YL

)
+ Y T

L SL

= ST
LF

1/2Ψ
1/2F

1/2SL.

A.2 Computation of the Matrix Γ|A|
First, note that by definition, it holds

|A| = T |Λ|T−1 =
1

2

(
2T |Λ|T−1 + TΛT−1 − TΛT−1

)
=

1

2
(A+ |A|)− 1

2
(A− |A|)

= A+ −A−,

meaning that

Γ|A| = ΓA+ − ΓA−.

The matrices on the right hand side have been determined in Appendix A.1, so that the above
expression can be calculated explicitly by

Γ|A| = 1

2

(
F

1/2Ψ
1/2F

1/2 −I6,6
−I6,6 F−1/2Ψ−1/2F−1/2

)
− 1

2

(
−F

1/2Ψ
1/2F

1/2 −I6,6
−I6,6 −F−1/2Ψ−1/2F−1/2

)

=

(
F

1/2Ψ
1/2F

1/2 06,6

06,6 F−1/2Ψ−1/2F−1/2

)
.

The matrices F±1/2,Ψ±1/2 are positive definite and therefore also the matrices F
1/2Ψ

1/2F
1/2 and

F−1/2Ψ−1/2F−1/2, because for any non-zero z ∈ R6×6 we have

zTF±1/2Ψ±1/2F±1/2z =
(
F±1/2z

)T
Ψ±1/2

(
F±1/2z

)
> 0.

Therefore also Γ|A| is positive definite.



A.3 Convergence Tables 75

A.3 Convergence Tables

Nc
L2-error

(m = 1) (m = 2) (m = 3) (m = 4) (m = 5) (m = 6)

8 4.73 · 10−7 3.03 · 10−7 5.93 · 10−7 7.19 · 10−7 5.09 · 10−7 5.87 · 10−7

16 3.66 · 10−8 2.50 · 10−8 3.77 · 10−8 4.61 · 10−8 4.94 · 10−8 2.69 · 10−8

32 2.44 · 10−9 1.81 · 10−9 2.83 · 10−9 3.21 · 10−9 3.12 · 10−9 2.06 · 10−9

64 1.45 · 10−10 1.22 · 10−10 1.86 · 10−10 2.03 · 10−10 1.93 · 10−10 1.35 · 10−10

128 9.01 · 10−12 8.07 · 10−12 1.17 · 10−11 1.29 · 10−11 1.22 · 10−11 8.63 · 10−12

Table A.1: First six components of the L2-error, computed by the Trixi.jl convergence test for
the numerical solution of (103) with Np = 3,CFL = 0.1 and the upwind numerical flux, compared
to the exact solution (102).

Nc
L2-error

(m = 1) (m = 2) (m = 3) (m = 4) (m = 5) (m = 6)

8 7.50 · 10−7 9.25 · 10−7 1.20 · 10−6 1.61 · 10−6 4.77 · 10−7 5.53 · 10−7

16 7.26 · 10−8 1.09 · 10−7 1.32 · 10−7 1.99 · 10−7 4.04 · 10−8 4.17 · 10−8

32 8.44 · 10−9 1.35 · 10−8 1.61 · 10−8 2.47 · 10−8 4.24 · 10−9 4.20 · 10−9

64 1.04 · 10−9 1.68 · 10−9 2.01 · 10−9 3.09 · 10−9 5.04 · 10−10 4.93 · 10−10

128 1.29 · 10−10 2.1 · 10−10 2.50 · 10−10 3.86 · 10−10 6.22 · 10−11 6.06 · 10−11

Table A.2: First six components of the L2-error, computed by the Trixi.jl convergence test for
the numerical solution of (103) with Np = 3,CFL = 0.1 and the central numerical flux, compared
to the exact solution (102).

Nc
L2-error

(m = 7) (m = 8) (m = 9) (m = 10) (m = 11) (m = 12)

8 6.05 · 10−7 5.30 · 10−7 4.53 · 10−7 4.50 · 10−7 3.88 · 10−7 4.51 · 10−7

16 5.07 · 10−8 3.88 · 10−8 3.88 · 10−8 4.41 · 10−8 1.98 · 10−8 4.41 · 10−8

32 3.17 · 10−9 2.97 · 10−9 2.51 · 10−9 2.68 · 10−9 1.57 · 10−9 3.19 · 10−9

64 1.90 · 10−10 2.05 · 10−10 1.7 · 10−10 1.48 · 10−10 1.16 · 10−10 2.11 · 10−10

128 1.17 · 10−11 1.35 · 10−11 1.10 · 10−11 8.80 · 10−12 8.04 · 10−12 1.34 · 10−11

Table A.3: Last six components of the L2-error, computed by the Trixi.jl convergence test for
the numerical solution of (103) with Np = 3,CFL = 0.1 and the upwind numerical flux, compared
to the exact solution (102).



A.3 Convergence Tables 76

Nc
L2-error

(m = 7) (m = 8) (m = 9) (m = 10) (m = 11) (m = 12)

8 8.86 · 10−7 1.03 · 10−6 9.78 · 10−7 4.69 · 10−7 4.45 · 10−7 3.95 · 10−7

16 1.03 · 10−7 1.20 · 10−7 1.16 · 10−7 4.99 · 10−8 3.66 · 10−8 3.50 · 10−8

32 1.25 · 10−8 1.47 · 10−8 1.42 · 10−8 5.90 · 10−9 3.75 · 10−9 3.74 · 10−9

64 1.55 · 10−9 1.84 · 10−9 1.76 · 10−9 7.26 · 10−10 4.38 · 10−10 4.45 · 10−10

128 1.93 · 10−10 2.29 · 10−10 2.2 · 10−10 9.04 · 10−11 5.38 · 10−11 5.49 · 10−11

Table A.4: Last six components of the L2-error, computed by the Trixi.jl convergence test for
the numerical solution of (103) with Np = 3,CFL = 0.1 and the central numerical flux, compared
to the exact solution (102).

Nc Num. flux
EOC

(m = 1) (m = 2) (m = 3) (m = 4) (m = 5) (m = 6)

8
upwind - - - - - -
central - - - - - -

16
upwind 3.69 3.60 3.97 3.96 3.36 4.45
central 3.37 3.08 3.18 3.02 3.56 3.73

32
upwind 3.91 3.79 3.74 3.84 3.98 3.71
central 3.10 3.02 3.04 3.01 3.25 3.31

64
upwind 4.07 3.89 3.93 3.98 4.01 3.93
central 3.03 3.01 3.01 3.00 3.07 3.09

128
upwind 4.01 3.91 3.98 3.98 3.98 3.96
central 3.01 3.00 3.00 3.00 3.02 3.02

Table A.5: First six components of the EOC, corresponding to the L2-errors in tables A.1 and A.2
for Np = 3,CFL = 0.1.

Nc Num. flux
EOC

(m = 7) (m = 8) (m = 9) (m = 10) (m = 11) (m = 12)

8
upwind - - - - - -
central - - - - - -

16
upwind 3.58 3.77 3.54 3.35 4.29 3.35
central 3.11 3.10 3.08 3.23 3.60 3.50

32
upwind 4.00 3.71 3.95 4.04 3.66 3.79
central 3.04 3.02 3.03 3.08 3.29 3.22

64
upwind 4.06 3.86 3.89 4.17 3.76 3.92
central 3.01 3.01 3.01 3.02 3.10 3.07

128
upwind 4.02 3.93 3.94 4.07 3.85 3.97
central 3.00 3.00 3.00 3.01 3.03 3.02

Table A.6: Last six components of the EOC, corresponding to the L2-errors in tables A.3 and A.4
for Np = 3,CFL = 0.1.



A.3 Convergence Tables 77

Nc
L2-error

(m = 1) (m = 2) (m = 3) (m = 4) (m = 5) (m = 6)

8 4.12 · 10−9 4.62 · 10−9 4.71 · 10−9 6.20 · 10−9 5.65 · 10−9 4.39 · 10−9

16 1.48 · 10−10 1.45 · 10−10 1.86 · 10−10 2.37 · 10−10 2.09 · 10−10 1.39 · 10−10

32 4.84 · 10−12 4.74 · 10−12 6.35 · 10−12 7.60 · 10−12 6.75 · 10−12 4.99 · 10−12

64 1.64 · 10−13 1.54 · 10−13 2.12 · 10−13 2.45 · 10−13 2.24 · 10−13 1.70 · 10−13

128 8.92 · 10−14 7.59 · 10−14 7.99 · 10−14 1.25 · 10−13 1.09 · 10−13 9.64 · 10−14

Table A.7: First six components of the L2-error, computed by the Trixi.jl convergence test for
the numerical solution of (103) with Np = 4,CFL = 0.1 and the upwind numerical flux, compared
to the exact solution (102).

Nc
L2-error

(m = 1) (m = 2) (m = 3) (m = 4) (m = 5) (m = 6)

8 5.78 · 10−9 3.71 · 10−9 6.23 · 10−9 5.89 · 10−9 4.80 · 10−9 5.28 · 10−9

16 1.66 · 10−10 1.13 · 10−10 1.76 · 10−10 1.60 · 10−10 1.34 · 10−10 1.49 · 10−10

32 4.01 · 10−12 3.97 · 10−12 4.16 · 10−12 4.16 · 10−12 3.94 · 10−12 4.19 · 10−12

64 1.35 · 10−13 1.31 · 10−13 1.36 · 10−13 1.45 · 10−13 1.36 · 10−13 1.42 · 10−13

128 8.16 · 10−14 7.14 · 10−14 7.51 · 10−14 1.19 · 10−13 1.03 · 10−13 9.36 · 10−14

Table A.8: First six components of the L2-error, computed by the Trixi.jl convergence test for
the numerical solution of (103) with Np = 4,CFL = 0.1 and the central numerical flux, compared
to the exact solution (102).

Nc
L2-error

(m = 7) (m = 8) (m = 9) (m = 10) (m = 11) (m = 12)

8 5.70 · 10−9 5.54 · 10−9 5.16 · 10−9 5.16 · 10−9 2.95 · 10−9 5.01 · 10−9

16 2.04 · 10−10 2.12 · 10−10 1.85 · 10−10 1.77 · 10−10 1.14 · 10−10 2.21 · 10−10

32 6.42 · 10−12 7.57 · 10−12 6.28 · 10−12 5.18 · 10−12 4.31 · 10−12 7.80 · 10−12

64 2.15 · 10−13 2.54 · 10−13 2.07 · 10−13 1.61 · 10−13 1.48 · 10−13 2.51 · 10−13

128 1.02 · 10−13 1.16 · 10−13 7.34 · 10−14 1.12 · 10−13 5.86 · 10−14 5.45 · 10−14

Table A.9: Last six components of the L2-error, computed by the Trixi.jl convergence test for
the numerical solution of (103) with Np = 4,CFL = 0.1 and the upwind numerical flux, compared
to the exact solution (102).

Nc
L2-error

(m = 7) (m = 8) (m = 9) (m = 10) (m = 11) (m = 12)

8 5.98 · 10−9 4.49 · 10−9 6.07 · 10−9 4.31 · 10−9 4.15 · 10−9 4.07 · 10−9

16 1.64 · 10−10 1.35 · 10−10 1.52 · 10−10 1.41 · 10−10 1.46 · 10−10 1.40 · 10−10

32 3.95 · 10−12 3.89 · 10−12 4.00 · 10−12 3.95 · 10−12 3.82 · 10−12 3.90 · 10−12

64 1.38 · 10−13 1.32 · 10−13 1.29 · 10−13 1.3 · 10−13 1.23 · 10−13 1.24 · 10−13

128 9.27 · 10−14 1.10 · 10−13 6.77 · 10−14 1.07 · 10−13 1.03 · 10−13 5.04 · 10−14

Table A.10: Last six components of the L2-error, computed by the Trixi.jl convergence test for
the numerical solution of (103) with Np = 4,CFL = 0.1 and the central numerical flux, compared
to the exact solution (102).



A.3 Convergence Tables 78

Nc Num. flux
EOC

(m = 1) (m = 2) (m = 3) (m = 4) (m = 5) (m = 6)

8
upwind - - - - - -
central - - - - - -

16
upwind 4.80 5.00 4.66 4.71 4.75 4.98
central 5.12 5.04 5.15 5.20 5.16 5.15

32
upwind 4.93 4.93 4.87 4.96 4.96 4.80
central 5.37 4.83 5.40 5.27 5.09 5.15

64
upwind 4.88 4.95 4.91 4.96 4.91 4.88
central 4.89 4.92 4.93 4.84 4.85 4.88

128
upwind 0.88 1.02 1.41 0.97 1.05 0.82
central 0.73 0.88 0.86 0.28 0.40 0.60

Table A.11: First six components of the EOC, corresponding to the L2-errors intables A.7 and A.8
for Np = 4,CFL = 0.1.

Nc Num. flux
EOC

(m = 7) (m = 8) (m = 9) (m = 10) (m = 11) (m = 12)

8
upwind - - - - - -
central - - - - - -

16
upwind 4.81 4.71 4.81 4.86 4.70 4.50
central 5.19 5.05 5.32 4.94 4.83 4.86

32
upwind 4.99 4.81 4.88 5.10 4.73 4.82
central 5.37 5.12 5.24 5.15 5.25 5.17

64
upwind 4.90 4.99 4.92 5.01 4.86 4.96
central 4.84 4.88 4.95 4.92 4.95 4.98

128
upwind 1.08 1.13 1.50 0.52 1.34 2.20
central 0.57 0.26 0.94 0.28 1.22 1.30

Table A.12: Last six components of the EOC, corresponding to the L2-errors in tables A.9 and
A.10 for Np = 4,CFL = 0.1.



LIST OF FIGURES 79

List of Figures

1 Examples for characteristic curves of a scalar conservation law . . . . . . . . . . . 17
2 Illustration of the jump at an interface . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Illustration of fictitious cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Overview of basic components in Trixi.jl . . . . . . . . . . . . . . . . . . . . . . 56
5 Exact solution of test problem for manufactured solution . . . . . . . . . . . . . . . 58
6 Convergence plot for a polynomial degree of 3 . . . . . . . . . . . . . . . . . . . . . 60
7 Convergence plot for a polynomial degree of 4 . . . . . . . . . . . . . . . . . . . . . 61
8 Example for total discrete energy of numerical solution . . . . . . . . . . . . . . . . 63
9 Comparison of energy and dissipation . . . . . . . . . . . . . . . . . . . . . . . . . 63
10 Deformation of a beam undergoing constant external forces. . . . . . . . . . . . . . 67
11 Tip position of a beam undergoing constant external forces . . . . . . . . . . . . . 68
12 Discrete energy of a beam undergoing constant external forces . . . . . . . . . . . . 68

List of Tables

1 LSERK coefficitents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2 Convergence table for a polynomial degree of 3 . . . . . . . . . . . . . . . . . . . . 59
3 Convergence table for a polynomial degree of 4 . . . . . . . . . . . . . . . . . . . . 60
4 Setup used to generate the plots in figure 8 . . . . . . . . . . . . . . . . . . . . . . 62
5 Setup used to generate the plots in figures 10 - 12 . . . . . . . . . . . . . . . . . . . 66
A.1 Component wise errors for test problem for components 1 − 6 and a polynomial

degree of 3, upwind flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.2 Component wise errors for test problem for components 1 − 6 and a polynomial

degree of 3, central flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.3 Component wise errors for test problem for components 7 − 12 and a polynomial

degree of 3, upwind flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.4 Component wise errors for test problem for components 7 − 12 and a polynomial

degree of 3, central flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.5 Component wise EOCs for test problem for components 1 − 6 and a polynomial

degree of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.6 Component wise EOCs for test problem for components 7 − 12 and a polynomial

degree of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.7 Component wise errors for test problem for components 1 − 6 and a polynomial

degree of 4, upwind flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.8 Component wise errors for test problem for components 1 − 6 and a polynomial

degree of 4, central flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.9 Component wise errors for test problem for components 7 − 12 and a polynomial

degree of 4, upwind flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.10 Component wise errors for test problem for components 7 − 12 and a polynomial

degree of 4, central flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.11 Component wise EOCs for test problem for components 1 − 6 and a polynomial

degree of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.12 Component wise EOCs for test problem for components 7 − 12 and a polynomial

degree of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



NOMENCLATURE 80

Nomenclature

General notations

0i,j zero in Ri×j

0i zero in Ri

Ii,j identity in Ri×j

z̃ cross product matrix of a vector z ∈ R3

Frequently used variables

Θ = Θ(x, t) ∈ R3 internal forces

Ξ = Ξ(x, t) ∈ R3 internal moments

V = V (x, t) ∈ R3 linear velocities

Ω = Ω(x, t) ∈ R3 angular velocities

k = k(x) ∈ R3 initial curvature

fext = fext(x, t) ∈ R3 external forces

mext = mext(x, t) ∈ R3 external moments

F = F(x) ∈ R6×6 flexibility matrix, positive definite

M = M(x) ∈ R6×6 mass matrix, positive definite

A = A(x) ∈ R12×12 advection matrix for intrinsic beam balance law

Ψ = Ψ(x) ∈ R6×6 positive definite matrix

Λ = Λ(x) ∈ R6×6 positive definite diagonal matrix with square roots of eigenvalues
of Ψ as entries

Λ = Λ(x) ∈ R12×12 diagonal matrix, consisting of ±Λ on diagonal

X = X (x) ∈ R6×6 transformation matrix that diagonalizes Ψ

T = T (x) ∈ R12×12 transformation matrix that diagonalizes A

Γ = Γ(x) ∈ R12×12 positive definite coefficient matrix in capacity form

Π ∈ R12×12 constant, symmetric coefficient matrix in capacity form

u = u(x, t) ∈ R12 state variable of intrinsic beam equation in linear advection form,
physical variables

w = w(x, t) ∈ R12 characteristic variables

Qcap = Qcap(u, x, t) ∈ R12 source term for capacity form



REFERENCES 81

References

[1] M. R. Amoozgar, H. Shahverdi, and A. S. Nobari. Aeroelastic stability of hingeless rotor
blades in hover using fully intrinsic equations. AIAA Journal, 55(7):2450–2460, 2017.

[2] M. Artola, A. Wynn, and R. Palacios. A nonlinear modal-based framework for low computa-
tional cost optimal control of 3d very flexible structures. 18th European Control Conference
(ECC), 2019.

[3] M. Artola, A. Wynn, and R. Palacios. Generalized kelvin–voigt damping for geometrically
nonlinear beams. AIAA Journal, 59(1):356–365, 2021.

[4] R. Ballarini. The da vinci-euler-bernoulli beam theory? Mechanical Engineering Magazine
Online, 2006.

[5] O. A. Bauchau, P. Betsch, A. Cardona, J. Gerstmayr, B. Jonker, P. Masarati, and V. Son-
neville. Validation of flexible multibody dynamics beam formulations using benchmark prob-
lems. Multibody System Dynamics, 37(1):29–48, mar 2016.

[6] O. A. Bauchau and J. I. Craig. Euler-bernoulli beam theory. In Structural Analysis, pages
173–221. Springer Netherlands, 2009.

[7] O. A. Bauchau and S. Han. Advanced beam theory for multibody dynamics. ASME 2013
International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, 2013.

[8] A. D. Beck, G. J. Gassner, and C.-D. Munz. On the effect of flux functions in discontinuous
galerkin simulations of underresolved turbulence. In Lecture Notes in Computational Science
and Engineering, pages 145–155. Springer International Publishing, 2013.

[9] M. Borri, G. L. Ghiringhelli, and T. Merlini. Linear analysis of naturally curved and twisted
anisotropic beams. Composites Engineering, 2(5-7):433–456, 1992.

[10] M. H. Carpenter and C. A. Kennedy. Fourth-order 2n-storage runge-kutta schemes. NASA
Report TM 109112, NASA Langley Research Center, 1994.

[11] Y. Cheng and C.-W. Shu. A discontinuous galerkin finite element method for directly solving
the hamilton–jacobi equations. Journal of Computational Physics, 223(1):398–415, 2007.

[12] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengleichungen der math-
ematischen physik. Mathematische Annalen, 100(1):32–74, 1928.

[13] I. Elishakoff. Who developed the so-called timoshenko beam theory? Mathematics and
Mechanics of Solids, 25(1):97–116, 2019.

[14] G. J. Gassner. A skew-symmetric discontinuous galerkin spectral element discretization and
its relation to SBP-SAT finite difference methods. SIAM Journal on Scientific Computing,
35(3):A1233–A1253, 2013.

[15] V. Giurgiutiu. Structural Health Monitoring of Aerospace Composites. Elsevier, 2016.

[16] S. K. Godunov and I. Bohachevsky. Finite difference method for numerical computation of dis-
continuous solutions of the equations of fluid dynamics. Matematičeskij sbornik, 47(89)(3):271–
306, 1959.

[17] H. Hesse and R. Palacios. Consistent structural linearisation in flexible-body dynamics with
large rigid-body motion. Computers & Structures, 110-111:1–14, 2012.

[18] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods. Springer New
York, 2008.

[19] D. H. Hodges. A mixed variational formulation based on exact intrinsic equations for dynamics
of moving beams. International Journal of Solids and Structures, 26(11):1253–1273, 1990.

[20] D. H. Hodges. Geometrically exact, intrinsic theory for dynamics of curved and twisted
anisotropic beams. AIAA Journal, 41(6):1131–1137, 2003.



REFERENCES 82

[21] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[22] Julia 1.8 documentation. https://docs.julialang.org/en/v1/. Accessed: 2022-11-10.

[23] M. J. Jweeg, M. Al-Waily, and K. K. Resan. Energy Methods and Finite Element Techniques.
Elsevier, 2022.

[24] G. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Computational Fluid Dy-
namics. Oxford University Press, 2005.

[25] D. A. Kopriva and G. J. Gassner. On the quadrature and weak form choices in collocation type
discontinuous galerkin spectral element methods. Journal of Scientific Computing, 44(2):136–
155, 2010.

[26] D. A. Kopriva and G. J. Gassner. An energy stable discontinuous galerkin spectral element
discretization for variable coefficient advection problems. SIAM Journal on Scientific Com-
puting, 36(4):A2076–A2099, 2014.

[27] D. A. Kopriva and G. J. Gassner. A split-form, stable CG/DG-SEM for wave propagation
modeled by linear hyperbolic systems. Journal of Scientific Computing, 89(1), 2021.

[28] D. A. Kopriva, G. J. Gassner, and J. Nordström. Stability of discontinuous galerkin spectral
element schemes for wave propagation when the coefficient matrices have jumps, 2020.

[29] W. M. Lai, D. Rubin, and E. Krempl. Introduction to Continuum Mechanics. Elsevier, 3
edition, 2010.

[30] P. D. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation.
Communications on Pure and Applied Mathematics, 7(1):159–193, 1954.

[31] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press,
2002.

[32] C. K. Manoli, S. Papatzani, and D. E. Mouzakis. Exploring the limits of euler–bernoulli
theory in micromechanics. Axioms, 11(3):142, 2022.

[33] A. Muñoz-Simón, A. Wynn, and R. Palacios. Unsteady and three-dimensional aerodynamic
effects on wind turbine rotor loads. In AIAA Scitech 2020 Forum. American Institute of
Aeronautics and Astronautics, jan 2020.

[34] J. Nordström. A roadmap to well posed and stable problems in computational physics. Journal
of Scientific Computing, 71(1):365–385, 2016.

[35] J. Nordström and M. Wahlsten. Variance reduction through robust design of boundary con-
ditions for stochastic hyperbolic systems of equations. Journal of Computational Physics,
282:1–22, 2015.

[36] M. J. Patil and D. H. Hodges. Flight dynamics of highly flexible flying wings. Journal of
Aircraft, 43(6):1790–1799, 2006.

[37] M. J. Patil and D. H. Hodges. Variable-order finite elements for nonlinear, fully intrinsic beam
equations. Journal of Mechanics of Materials and Structures, 6(1-4):479–493, 2011.

[38] M. Petrovitsch. Sur une manière d’étendre le théorème de la moyence aux équations
différentielles du premier ordre. Annals of Mathematics, 54(3):417–436, 1901.

[39] G. Polya. How to Solve It; A New Aspect of Mathematical Method. Princeton University
Press, 1957.

[40] H. Ranocha, M. Schlottke-Lakemper, A. R. Winters, E. Faulhaber, J. Chan, and G. J. Gassner.
Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing.
Proceedings of the JuliaCon Conferences, 1(1):77, 2022.

[41] P. J. Roache. Code verification by the method of manufactured solutions. Journal of Fluids
Engineering, 124(1):4–10, 2001.

https://docs.julialang.org/en/v1/


REFERENCES 83

[42] C. Rodriguez. Control and stabilization of geometrically exact beams. PhD thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg, 2022.

[43] C. Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization.
Mathematical Control and related fields, 12(1):49, 2022.

[44] C. Rodriguez and G. Leugering. Boundary feedback stabilization for the intrinsic geometrically
exact beam model. SIAM Journal on Control and Optimization, 58(6):3533–3558, 2020.

[45] D. L. Russell. Controllability and stabilizability theory for linear partial differential equations:
Recent progress and open questions. SIAM Review, 20(4):639–739, 1978.

[46] M. Schlottke-Lakemper, G. J. Gassner, H. Ranocha, A. R. Winters, and J. Chan. Trixi.jl:
Adaptive high-order numerical simulations of hyperbolic PDEs in Julia. https://github.

com/trixi-framework/Trixi.jl, 2021.

[47] M. Schlottke-Lakemper, A. R. Winters, H. Ranocha, and G. J. Gassner. A purely hyperbolic
discontinuous Galerkin approach for self-gravitating gas dynamics. Journal of Computational
Physics, 442:110467, 2021.

[48] J. C. Simo and L. Vu-Quoc. On the dynamics of flexible beams under large overall mo-
tions—the plane case: Part II. Journal of Applied Mechanics, 53(4):855–863, 1986.

[49] Z. Sotoudeh and D. H. Hodges. Modeling beams with various boundary conditions using fully
intrinsic equations. Journal of Applied Mechanics, 78(3), 2011.

[50] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer Berlin
Heidelberg, 2009.

[51] Trixi.jl documentation. https://trixi-framework.github.io/Trixi.jl/stable/. Ac-
cessed: 2022-11-10.

[52] VAST webpage. https://www.dlr.de/sc/desktopdefault.aspx/tabid-12766/22301_

read-51581/. Accessed: 2022-11-10.

[53] L. Wang, X. Liu, N. Renevier, M. Stables, and G. M. Hall. Nonlinear aeroelastic modelling
for wind turbine blades based on blade element momentum theory and geometrically exact
beam theory. Energy, 76:487–501, 2014.

[54] Y. Xing and C.-W. Shu. High order well-balanced finite volume WENO schemes and dis-
continuous galerkin methods for a class of hyperbolic systems with source terms. Journal of
Computational Physics, 214(2):567–598, 2006.

https://github.com/trixi-framework/Trixi.jl
https://github.com/trixi-framework/Trixi.jl
https://trixi-framework.github.io/Trixi.jl/stable/
https://www.dlr.de/sc/desktopdefault.aspx/tabid-12766/22301_read-51581/
https://www.dlr.de/sc/desktopdefault.aspx/tabid-12766/22301_read-51581/

	Introduction
	Intrinsic Beam Model
	Classical Formulation of the Equations
	Constitutive Laws
	Theory of Linear Hyperbolic Balance Laws
	Transfer to a Linear Hyperbolic Balance Law
	Formulation in Advection Form
	Hyperbolicity of the Equation
	Formulation for Characteristic Variables
	Formulation in Capacity Form

	Boundary Conditions
	Energy Considerations
	Energy Conservation
	Energy Stability


	Discretization
	Theoretical Preliminaries
	A Discontinuous Galerkin Approach for Discretization in Space
	The Numerical Flux
	Implementation of Boundary Conditions
	Discrete Energy Considerations
	Discrete Energy Conservation
	Discrete Energy Stability

	Formulation as Ordinary Differential Equation in Time
	Remarks on Time Discretization

	Numerical Results
	Implementation with Trixi.jl 
	Convergence Tests
	Energy Simulation
	Determination of the Position Line

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendices
	Computation of Boundary Terms
	Computation of the Matrix |A|
	Convergence Tables

	List of Figures
	List of Tables
	Nomenclature
	References

