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Abstract—Synthetic aperture radar (SAR) interferometry is a 

well-established technique for producing high-resolution digital 

elevation models (DEMs) of the Earth’s surface and measuring 

displacements on different time scales. Observations of SAR 

interferograms, however, show that azimuth ambiguities can be 

coherently imaged and may lead to phase biases and coherence 

losses that significantly degrade the interferometric performance. 

Whereas imposing very low ambiguity levels may represent a 

severe design constraint for a spaceborne SAR system, a slight 

variation of the pulse repetition interval (PRI) is a new, simple, yet 

effective technique to decorrelate ambiguities, which in turn 

reduces the phase biases and coherence losses without 

substantially affecting the imaged swath width. An additional 

benefit of the PRI variation is that range ambiguities also become 

decorrelated. This paper addresses two cases: For the repeat-pass 

case, slightly different pulse repetition frequencies (PRFs) can be 

used for the two acquisitions and the minimum required PRF 

difference can be analytically derived resorting to the power 

spectral density of the ambiguous signals; For the single-pass case, 

a slight variation of the PRI during the common acquisition is an 

effective solution, in case an along-track baseline is present. In 

particular, a square wave PRI variation scheme outperforms 

sinusoidal or random ones. Finally, simulations using TanDEM-X 

data are presented to show the improvement in interferogram and 

DEM quality resulting from ambiguity decorrelation. This work is 

relevant for the design of future spaceborne interferometric SAR 

systems and for the enhanced exploitation of current ones. 

 
Index Terms—Azimuth ambiguities, interferometry, 

microwave remote sensing, synthetic aperture radar (SAR). 

I. INTRODUCTION 

YNTHETIC aperture radar (SAR) interferometry exploits 

the coherent combination of two or more SAR images for a 

large number of applications. If two images, often referred to as 

the master and slave images, are acquired from slightly 

different viewing angles, a digital elevation model (DEM) of 

the observed scene can be formed, while images acquired at 

different times from the same position allow for measurements 

of, e.g., ocean current velocity using along-track SAR 

interferometry or radial displacements using differential 

interferometry [1]-[4]. The accuracy of the resulting products 

ultimately depends on the complex correlation (or coherence) 
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between the two SAR images, which is the product of the 

contributions of various decorrelation sources, such as thermal 

noise, quantization noise, baseline decorrelation, volume 

decorrelation, Doppler decorrelation, temporal decorrelation, 

co-registration and processing errors, as well as range and 

azimuth ambiguities [5]-[6]. 

Azimuth ambiguities were initially accounted for through a 

decorrelation contribution 𝛾𝑎𝑚𝑏,𝑎𝑧 given by 

 

𝛾𝑎𝑚𝑏,𝑎𝑧 = 1 (1 + 𝐴𝐴𝑆𝑅)⁄                            (1) 

 

where AASR is the azimuth ambiguity-to-signal ratio (AASR), 

i.e., similarly to thermal noise [7]-[8]. Observations of several 

TanDEM-X interferograms, such as the one in Fig. 1 acquired 

over the Franz Josef Land, Russia, however, have shown that 

azimuth ambiguities may be coherently imaged and lead to 

significant interferometric phase biases 𝜑𝑏𝑖𝑎𝑠 and modulations 

of the coherence magnitude 𝛾, which can be analytically 

described by the following expressions, derived in [9]: 

  

𝜑𝑏𝑖𝑎𝑠 = arg {1 + 𝐴𝐴𝑆𝑅𝑙𝑜𝑐𝑎𝑙
𝛾𝑎

𝛾𝑚
𝑒𝑗(𝜑0,𝑎−𝜑𝑜,𝑚)}  (2) 

 

                    𝛾 =  
1

1 + 𝐴𝐴𝑆𝑅𝑙𝑜𝑐𝑎𝑙

∙ 

√𝛾𝑚
2 + 𝐴𝐴𝑆𝑅𝑙𝑜𝑐𝑎𝑙

2 𝛾𝑎
2 + 2 𝐴𝐴𝑆𝑅𝑙𝑜𝑐𝑎𝑙

𝛾𝑎

𝛾𝑚
cos(𝜑0,𝑎 − 𝜑𝑜,𝑚) (3) 

 

where 𝐴𝐴𝑆𝑅𝑙𝑜𝑐𝑎𝑙 is the local azimuth ambiguity-to-signal ratio, 

𝛾𝑚 and 𝜑𝑜,𝑚 are the coherence magnitude and interferometric 

phase of the ambiguity-free interferogram, respectively, and 𝛾𝑎 

and 𝜑𝑜,𝑎 are the coherence magnitude and interferometric phase 

of the interferogram of the ambiguities, respectively.  

A spectral-based technique to estimate the local azimuth 

ambiguity-to-signal ratio is presented in [10], where it is also 

shown that the latter ratio is likely to be larger than -10 dB in 

low-backscatter areas and can even reach 0 dB in some cases. 

As discussed in [11], a local AASR of -5 dB results in a phase 

bias characterized by a standard deviation of 5 to 10 degrees 

(depending on the signal-to-noise ratio) and a decorrelation 
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contribution due to azimuth ambiguities in the order of 0.7-0.8. 

The aforementioned decorrelation and phase bias contributions 

are critical to be accounted for in the overall height error and 

coherence budget. One could reduce the local AASR by 

imposing a lower AASR requirement in the overall design, but 

this would drive the complexity and the cost of the SAR system, 

e.g., by increasing the length of the azimuth antenna and 

introducing a weighting in the azimuth antenna to decrease the 

sidelobes. Please note that a simple increase of the PRF leads to 

a decrease of the swath width in order to keep the range 

ambiguities at an acceptable level.  

The local ambiguity-to-signal ratio could also be reduced by 

removing azimuth ambiguities through a postprocessing step 

[12]-[19]. A Wiener filter could be applied, as proposed in [13], 

but this would result in a resolution degradation, which turns 

into a reduction of the number of interferometric looks and thus 

of the coherence. Ambiguities could also be coherently 

subtracted directly from the interferogram, as was first 

demonstrated in 2011 in a DLR-internal study to reduce the 

phase errors and coherence losses in the TanDEM-X 

interferogram of Fig. 1 (see also [9], [11]). This technique was 

then further elaborated for short-baseline along-track 

interferometry in [20] and [21], but the accurate and fully 

autonomous estimation of the complex scaling coefficient 

makes this technique challenging. 

Equations (2) and (3) suggest that the phase bias and the 

coherence loss can also be controlled by limiting the coherence 

magnitude of the interferogram of the ambiguities 𝛾𝑎, i.e., by 

decorrelating the azimuth ambiguities of the master and slave 

images. If total decorrelation is achieved, there is no 

interferometric phase bias anymore and the decorrelation 

contribution degenerates into the expression in (1), where AASR 

has still to be understood as the local one, i.e., the decorrelation 

contribution due to azimuth ambiguities is similar to the one 

due to thermal noise.  

𝛾𝑎 is influenced by the acquisition geometry, which in some 

cases makes the azimuth ambiguities of the master and slave 

images be mutually shifted and therefore decorrelated. Under 

the conservative assumption that the acquisition geometry leads 

to full overlap of the ambiguities, ambiguity decorrelation can 

still be achieved by acting on the mutual sampling of the master 

and slave images.  

The paper is organized as follows. Section II addresses the 

repeat-pass case, for which an analytical expression of the 

minimum required pulse repetition frequency (PRF) difference 

between the two acquisitions is derived. Section III considers 

instead the single-pass case and presents different pulse 

repetition interval (PRI) variation schemes together with the 

resulting swath width reduction and ambiguity decorrelation. In 

Section IV the impact of ambiguity decorrelation on 

interferogram and DEM quality is assessed through simulations 

using TanDEM-X data. Conclusions are drawn in Section V. 

II. REPEAT-PASS SAR INTERFEROMETRY 

If the master and slave images are acquired at different times, 

the adoption of slightly different PRFs in the two acquisitions 

might suffice to decorrelate azimuth ambiguities. This case also 

includes the pursuit monostatic mode of TanDEM-X [6], where 

the time lag between the two acquisitions is in the order of a 

few seconds. 

The minimum PRF difference 𝛥𝑃𝑅𝐹 required for 

decorrelation can be obtained by imposing that the relative 

     
 
Fig. 1.  Interferometric phase (left), magnitude of the complex coherence (center) and DEM (right) of a detail of a TanDEM-X interferogram affected by azimuth 

ambiguities, acquired over the Franz Josef Land, Russia. The horizontal and vertical axes represent ground range (5.12 km) and azimuth (10.24 km), respectively. 
The azimuth ambiguities of the mountain in the lower part of the image are seen in the upper part as a bias in the sea ice region.  
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azimuth shift 𝛥𝑥 of the first-order azimuth ambiguities between 

the two acquisitions is larger than the autocorrelation length ℓ𝑎 

of the ambiguous signals times the satellite speed.  

The azimuth shift 𝛥𝑥 is given by [22]-[24] 

 

                                        𝛥𝑥 =
𝜆 𝑅0 𝛥𝑃𝑅𝐹

2 𝑣𝑆
  (4) 

 

where 𝜆 is the wavelength, 𝑅0 is the radar-target range of 

closest approach, and 𝑣𝑆 is the satellite speed, whereas the 

autocorrelation length ℓ𝑎 of the ambiguous signals depends on 

the power spectral density (PSD) of the ambiguous signals, 

therefore on both the azimuth antenna pattern and the selected 

PRF. Fig. 2 shows the PSDs of the main signal and the first-

order left ambiguity for TanDEM-X, which is characterized by 

a rectangular antenna with length L = 4.8 m and 𝜆 = 0.03 m, 

with PRF = 3000 Hz. It also provides the corresponding 

normalized autocorrelation functions, obtained as inverse 

Fourier transforms of the PSDs. Although strictly speaking the 

PSD and the autocorrelation function are different for the two 

ambiguous signals due to the different PRFs, a difference in the 

order of few Hz can be neglected. As is apparent, due to the 

shape of the PSD of the ambiguous signals, the autocorrelation 

length of the ambiguous signals can be several times (i.e., in 

this example about five times) larger than that of the main 

signal, which is approximately equal to 𝐿 (2 𝑣𝑆)⁄ , i.e., 0.3 ms. 

The autocorrelation length becomes smaller for higher PRFs, 

i.e., around 5000 Hz, which are, however, unlikely to be used 

within typical TanDEM-X acquisitions.  

Defining as α the ratio of the autocorrelation lengths of the 

ambiguous and main signals, it holds 

 

                                        𝛥𝑃𝑅𝐹 > α
𝐿 𝑣𝑆

𝜆 𝑅0
  (5) 

 

where conservative values of α of at least 5 should be assumed. 

In other words, due to the shape of the PSD of the ambiguous 

signals, the minimum required PRF difference is such that it 

mutually shifts the first-order azimuth ambiguities by five 

azimuth resolution cells. For higher-order azimuth ambiguities, 

the azimuth shift will be larger by a factor 𝑘 equal to the order 

of the ambiguity, while the autocorrelation length of the 

ambiguous signal will be in the worst case and for a rectangular 

antenna in the same order of magnitude as the one obtained for 

first-order ambiguities. 

For TanDEM-X, a 𝛥𝑃𝑅𝐹 ≅ 8 Hz is required for a 𝑃𝑅𝐹 ≅
3000 Hz, which does not significantly influence the width of 

the common swath to be imaged. As is apparent from its 

derivation, this simple model does not account for the 

defocusing of azimuth ambiguities resulting from the wrongly 

compensated range cell migration. However, two-dimensional 

(2-D) simulations show that (5) still provides a good estimate 

of the 𝛥𝑃𝑅𝐹 value required for ambiguity decorrelation. The 

simulations are carried out by convolving the 2-D impulse 

responses of the system with complex white Gaussian signals 

representing distributed targets (fully developed speckle) and 

then estimating the coherence of the first-order azimuth 

ambiguities of the master and slave images as a function of the 

PRF difference 𝛥𝑃𝑅𝐹. Fig. 3 shows the coherence of the first-

order azimuth ambiguities as a function of 𝛥𝑃𝑅𝐹 obtained from 

2-D simulations for TanDEM-X with a PRF = 3000 Hz (the 

coherence reduces significantly at 𝛥𝑃𝑅𝐹 ≅ 8 Hz, as expected), 

for a high-resolution X-band system with a 2.4-m-long antenna 

and a chirp bandwidth 𝐵𝑟 = 600 MHz, and for an L-band 

system with a 10-m-long antenna. In all cases there is full 

agreement with the estimates obtained using (5).  

 

 
 

 
 

Fig. 2.  Power spectral densities normalized to maximum of the main signal 

(top) and normalized autocorrelation functions (bottom) of the main signal and 

the first-order left ambiguity for TanDEM-X with 𝑃𝑅𝐹 = 3000 Hz. 

 

Note that for the TanDEM-X case, the minimum value of 

𝛥𝑃𝑅𝐹 obtained using (5) is smaller than the PRF difference 

𝛥𝑃𝑅𝐹𝑛𝑜 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 required to avoid overlapping of the first-order 

azimuth ambiguities of the master and slave images, which is a 

sufficient condition for ambiguity decorrelation. 

𝛥𝑃𝑅𝐹𝑛𝑜 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 can be obtained by imposing that the azimuth 

shift 𝛥𝑥 is larger than the azimuth extension of the first-order 

azimuth ambiguities (in meters) 𝐸𝑎, which, accounting for the 

defocusing due to the wrongly compensated range-cell 

migration, is given by [22]-[24] 

                                         

𝐸𝑎 ≅
𝑃𝑅𝐹 𝜆2 𝑅0

4 𝑣𝑆 𝛿𝑟
  (6) 

 

where 𝛿𝑟 is the range resolution of the system. It holds  
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𝛥𝑃𝑅𝐹𝑛𝑜 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 >
𝜆 𝑃𝑅𝐹

2 𝛿𝑟
        (7) 

 

For a TanDEM-X acquisition with 𝐵𝑟 = 100 MHz, a PRF 

difference in the order of 𝛥𝑃𝑅𝐹𝑛𝑜 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≅ 30 Hz for 𝑃𝑅𝐹 ≅

3000 Hz is required to avoid overlap of the first-order azimuth 

ambiguities, i.e., larger than the PRF difference required for 

ambiguity decorrelation. This means that azimuth ambiguities 

can be decorrelated, even if they partially overlap. 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 3.  Coherence of the ambiguities for repeat-pass SAR interferometry as a 

function of the PRF difference between the two acquisitions 𝛥𝑃𝑅𝐹 for (a) 

TanDEM-X with a 𝑃𝑅𝐹 = 3000 Hz, (b) a high-resolution X-band system with 

a 2.4-m-long antenna, (c) a L-band system with a 10-m-long antenna, and 

different values of the chirp bandwidth 𝐵𝑟. 

 

Furthermore, as a consequence of the use of different PRFs, 

range ambiguities of the master and slave images will also be 

relatively displaced in range and will not overlap nor produce 

any coherent interference, as long as 

                         

|
1

𝑃𝑅𝐹+𝛥𝑃𝑅𝐹
−

1

𝑃𝑅𝐹
|

𝑐0 

2
≅

 𝛥𝑃𝑅𝐹 

𝑃𝑅𝐹2

𝑐0 

2
> 𝛿𝑟 (8) 

 

where 𝑐0 is the speed of light and where it has been assumed 

that the first-order range ambiguity is only smeared in azimuth 

(due to the mismatch in the azimuth compression) and not in 

range [22]. For the TanDEM-X example, where the minimum 

required PRF difference to achieve ambiguity decorrelation was 

calculated to be 𝛥𝑃𝑅𝐹 ≅ 8 Hz for a PRF = 3000 Hz, (8) is 

already verified for slant range resolutions better than 133.2 m, 

i.e., the slight PRF difference has the additional benefit of 

mutually shifting range ambiguities of the master and slave 

images and preventing any coherent interference of range 

ambiguities. 

 If a large interferometric stack has to be created, the 

selection of numerous distinct PRFs, which lead to mutually 

decorrelated ambiguities, is constrained by the timing (or 

diamond) diagram. Those constraints can be relaxed adopting 

techniques based on waveform variation and dual-focus 

postprocessing that help the system designer get rid of the nadir 

interference [25], [26]. For example, in the presence of the sole 

transmit interference, for TanDEM-X and a ground swath width 

of 30 km, a PRF span ranging from about 50 Hz (far range) to 

about 100 Hz (near range) is available around PRF = 3200 Hz. 

This means that, assuming a total decorrelation for 𝛥𝑃𝑅𝐹 ≅
8 Hz, a number of distinct PRFs ranging from 7 (far range) to 

13 (near range) can be used. If a larger number of distinct PRFs 

is needed, a significant ambiguity decorrelation is still obtained 

for smaller PRF spacing, e.g., the coherence drops to around 0.4 

for 𝛥𝑃𝑅𝐹 ≅ 4 Hz in the TanDEM-X example of Fig. 3 (a). 

Moreover, the residual phase biases of different interferograms 

within the stack will be randomly distributed with a mean 

interferometric phase equal to zero, therefore the resulting 

phase bias for an image stack will depend on the overall 

processing and is likely to become successively smaller, as 

more and more data sets are combined. 

III. SINGLE-PASS SAR INTERFEROMETRY 

If the master and slave images are acquired at the same time 

and a single transmitter is used, the adoption of a slight PRI 

variation during the acquisition could help decorrelate 

ambiguities, as long as a non-zero along-track baseline 𝐵𝑎 is 

present. The impulse response function (IRF) in proximity of 

the ambiguities, in fact, is azimuth-variant in case of variable 

PRI and the along-track baseline induces (after co-registration) 

a relative azimuth time shift 𝛿𝑢 between the available azimuth 

samples of the master and slave images roughly given by  

 

 𝛿𝑢 ≅
𝐵𝑎

2𝑣𝑔
           (9) 

 

where 𝑣𝑔 is the ground velocity and where a bistatic 

configuration has been assumed with the same satellite 

transmitting all pulses (Fig. 4). 
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Fig. 4.  Relative azimuth time shift of the samples after co-registration resulting 
from a non-zero along-track baseline. 

 

Under the assumption that the acquisition geometry leads to 

overlap of the ambiguities, the absence of an along-track 

baseline leads to the same IRFs for the master and slave image 

independently of the PRI variation scheme. At the same time, 

the presence of an along-track baseline without a PRI variation 

is not sufficient to avoid correlation of the ambiguities, as the 

ambiguities of the master and slave images might be 

characterized by different phases, but their phase difference 

would still be constant (the latter is also the case in Fig. 1). 

In presence of the aforementioned relative shift, the raw data 

of master and slave could be resampled, e.g., using best linear 

unbiased (BLU) interpolation [27]-[30], to a uniform grid 

before focusing and interferogram formation. The coefficients 

of the BLU interpolation depend on the spectrum of the main 

signal and are not the optimal ones to resample the ambiguous 

signal, which has a different spectrum and will therefore be 

resampled in a wrong way and, in general, in a different way in 

the master and slave images, leading to a decorrelation of the 

ambiguities. 

An additional advantage of a PRI variation, especially if 

followed by a “wrong” resampling, is that ambiguities will be 

further smeared compared to the constant PRF case and will be 

therefore characterized by a reduced range resolution. This 

corresponds to a smaller critical baseline for the ambiguities, 

which could in turn result in a decorrelation of the ambiguities 

of distributed scatterers. 

A. PRI Variation Schemes 

The PRI variation scheme will influence the positions of the 

blind ranges for each range line. In particular, the positions of 

the blind ranges depend on the moving sum of a number of 

consecutive PRIs equal to the number of traveling pulses 𝑛𝑡  

[32], which is roughly given by 

 

𝑛𝑡 ≅
2𝑅0

𝑐0𝑃𝑅𝐼𝑚𝑒𝑎𝑛
           (10) 

 

where 𝑐0 is the speed of light and 𝑃𝑅𝐼𝑚𝑒𝑎𝑛 is the mean PRI.  

The continuous variation of the PRI recalls staggered SAR 

systems, which include BLU interpolation as an integrating part 

of the concept [27]-[30], are characterized by smeared and 

decorrelated range and azimuth ambiguities [24], [32], and are 

well suited for interferometry [33]-[35]. While in staggered 

SAR, however, a PRI variation is required that ideally shifts 

blind ranges to all possible positions across the swath in order 

to have them uniformly distributed, for the scope of this work 

the PRI variation should allow keeping the width of the imaged 

swath. Considering that for most SAR systems the imaged 

swath is smaller than the maximum one allowed by the timing 

(or diamond) diagram due to, e.g., signal-to-noise ratio or 

ambiguity requirements, a small variation of the blind ranges 

across the synthetic aperture can be tolerated. 

Three PRI variation schemes are considered in the following, 

namely:  

• Sinusoidal PRI Variation, whose PRIs can be written as 

 

𝑃𝑅𝐼𝑘 = 𝑃𝑅𝐼𝑚𝑒𝑎𝑛 (1 + 𝐴 sin
2𝜋𝑘

𝑁
) , 𝑘 = 0, … ,  𝑁 − 1  (11) 

 

where 𝐴 is the amplitude of the PRI variation, e.g., 𝐴 = 0.01 

means that the PRI variation is ±1% with respect to 𝑃𝑅𝐼𝑚𝑒𝑎𝑛, 

and 𝑁 is the length (to be understood as number of PRIs) of 

the sequence, which repeats then periodically; 

• Square Wave PRI Variation, whose PRIs can be written 

as 

 

𝑃𝑅𝐼𝑘 = {
𝑃𝑅𝐼𝑚𝑒𝑎𝑛(1 + 𝐴), 𝑘 = 0, … ,  𝑁 2⁄ − 1

𝑃𝑅𝐼𝑚𝑒𝑎𝑛(1 − 𝐴), 𝑘 = 𝑁 2⁄ , … ,  𝑁 − 1
   (12) 

 

with 𝑁 even to keep the symmetry. In this case only two 

distinct PRIs are used, a first PRI, 𝑃𝑅𝐼𝑚𝑒𝑎𝑛(1 + 𝐴), is 

repeated 𝑁 2⁄  times, then a second PRI, 𝑃𝑅𝐼𝑚𝑒𝑎𝑛(1 − 𝐴), is 

repeated 𝑁 2⁄  times, then the first PRI is repeated again 𝑁 2⁄  

times and so on.   

• Random PRI Variation (to be intended as a sequence of 

N random PRIs, which repeat periodically), whose PRIs 

can be written as   

 

𝑃𝑅𝐼𝑘 = 𝑃𝑅𝐼𝑚𝑒𝑎𝑛[1 + 𝐴 𝑎𝑘], 𝑘 = 0, … ,  𝑁 − 1   (13) 

 

where 𝑎𝑘 is an independent realization of a random variable 

with uniform distribution in the interval [−1; 1]. The 

advantage of repeating the same sequence of random 

realizations is justified in Section III.B. 

Note that the three PRI variation schemes are expressed so 

that they are characterized by the same PRI span, if the value of 

𝐴 is the same. Fig. 5 shows the PRI trend for two cycles of PRI 

variation for the three presented sequences with 𝑃𝑅𝐼𝑚𝑒𝑎𝑛 =
0.303 ms, 𝑁 = 100 and 𝐴 = 0.007. 

B. Swath Reduction 

If the length 𝑁 of the sequence of PRIs is much larger than 

the number of traveling pulses 𝑛𝑡, the maximum achievable 

swath width 𝑊𝑆 for a sinusoidal or a square wave PRI variation 

is approximately given by 

   

𝑊𝑆 ≅ (1 − 2 𝐴 𝑛𝑡  )𝑊𝑆𝑐𝑜𝑛𝑠𝑡
      (14) 

 

where 𝑊𝑆𝑐𝑜𝑛𝑠𝑡
 is the maximum swath width obtained for a 

constant PRI equal to 𝑃𝑅𝐼𝑚𝑒𝑎𝑛, e.g., for 𝑛𝑡 = 16 and 𝐴 =
0.001, the maximum swath width would reduce by 3.2%; hence 

the need of keeping the amplitude 𝐴 very small. The formula is 

derived under the conservative assumption that the 𝑛𝑡 PRIs 

adjacent to the maximum PRI are all equal to the maximum  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

6 

 

 

 
Fig. 5.  Sinusoidal (top), square wave (center), and random (bottom) PRI 

variation schemes provided in (11), (12), and (13), respectively, for 𝑃𝑅𝐼𝑚𝑒𝑎𝑛 =
0.303 ms, 𝑁 = 100 and 𝐴 = 0.007. Two cycles are displayed. 

 
 

PRI. 

Still under the assumption that the length 𝑁 of the PRI 

sequence of PRIs is much larger than the number of traveling 

pulses 𝑛𝑡, the assessment of the swath reduction for the periodic 

random PRI variation of (13) cannot be approximated in a 

straightforward way as in the case of sinusoidal and square 

wave PRI variations, but requires some further considerations. 

Due to the randomness of the PRI, theoretically the swath 

reduction could also reach the value provided in (14), but this 

worst case would only happen in the very unlikely case that 𝑛𝑡 

consecutive independent realizations of 𝑎𝑘 are all equal or 

almost equal to 1 (or -1). A more reasonable approach is to 

resort to probability theory. The sum of 𝑛𝑡 PRIs characterized 

as in (13), i.e., uniformly distributed, follows the Irwin-Hall 

distribution, which for large values of 𝑛𝑡 can be approximated 

by a Gaussian distribution, whose standard deviation (relative 

to 𝑃𝑅𝐼𝑚𝑒𝑎𝑛) 𝜎 is given by 𝐴√𝑛𝑡 √3⁄ . By considering an 

interval of ±2𝜎 (95% rule) and approximating, we obtain the 

following expression for the maximum achievable swath width 

𝑊𝑆, which looks, but for a square root, very similar to (14): 

 

𝑊𝑆 ≅ (1 −
4

√3
 𝐴√𝑛𝑡  ) 𝑊𝑆𝑐𝑜𝑛𝑠𝑡

≈ 

(1 − 2 𝐴√𝑛𝑡  )𝑊𝑆𝑐𝑜𝑛𝑠𝑡
         (15) 

 

The comparison of (15) to (14) highlights that for a random 

PRI variation the same swath reduction is obtained for a much 

larger PRI span (i.e., four times larger for 𝑛𝑡 = 16) compared 

to the sinusoidal and square wave cases. While for sinusoidal 

and square wave PRI variations, in fact, the swath reduction is 

proportional to the number of traveling pulses 𝑛𝑡, for periodic 

random PRI variation the swath reduction is approximately 

proportional to the square root of the number of traveling 

pulses. This is shown with an example in Fig. 6, which refers to 

a TanDEM-X like system characterized by a pulse width of 25 

µs and a mean pulse repetition interval 𝑃𝑅𝐼𝑚𝑒𝑎𝑛 = 0.303 ms, 

corresponding to a mean PRF of 3300 Hz. For the sinusoidal 

and square wave PRI variations the parameters 𝑁 = 100 and 

𝐴 = 0.007 have been used (resulting according to (14) to an 

approximate swath reduction of about 22.4%), while for the 

periodic random PRI variation the parameters 𝑁 = 100 and 

𝐴 = 0.007√𝑛𝑡 = 0.028 have been used, which results in the 

same swath reduction (less than 14 km in ground range).  Note 

that the areas in blue/red/green include not only the blind ranges 

in the raw data, but also areas characterized by reduced range 

resolution after pulse compression [28]-[29].  

A larger PRI span implies a further smearing of azimuth 

ambiguities, which might help reducing the critical baseline, as 

discussed above. The interval has been chosen around ±2𝜎 and 

not larger, because the length of the PRI sequence is limited and 

so is the number of realizations. This justifies repeating the 

same random sequence rather than having a very long one 

(requirements on the minimum sequence length will be 

discussed in Section III.C). An “unfortunate” realization, in 

fact, can just be discarded, as the system designer can choose 

the PRI variation to be adopted for the acquisition in advance.  

If the length of the PRI sequence 𝑁 is instead equal to the 

number of traveling pulses 𝑛𝑡 (or to 𝑛𝑡 − 1), larger PRI span 

(and namely amplitudes 𝐴) can be exploited without incurring 

in a significant swath reduction. For all three considered PRI 

variations, in fact, the moving sum will be constant for one of 

the two blind ranges delimiting the swath, due to the fact that 

the addends of the moving sum stay the same, and almost 

constant for the other one, where the moving sum includes 𝑁 −
1 out of the 𝑁 values. In this case for all three considered PRI 

variations the same PRI span leads to the same swath reduction 

and the maximum achievable swath width 𝑊𝑆 can be 

approximated as  

 

𝑊𝑆 ≅ (1 − 𝐴)𝑊𝑆𝑐𝑜𝑛𝑠𝑡
       (16) 

 

In this case, in fact, the maximum relative variation of the blind 

range is 2𝐴 (i.e., the highest possible difference between 2 PRIs 

of the sequence), but the swath reduction is only due to one of 

the two blind ranges.  

Fig. 7 shows an example of the case 𝑁 = 𝑛𝑡 for the three 

considered PRI variations. It is apparent that the swath 

reduction is much smaller than in Fig. 6, although the PRI span 

is much larger (𝐴 = 0.05 vs. 𝐴 = 0.007). For 𝑁 = 𝑛𝑡 − 1, the 

moving sum is constant for the closer of the two blind ranges 
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and (16) still holds. 

 
Fig. 6.  Swath decrease at a slant range around 𝑅0 = 700 km as a result of the 

sinusoidal PRI variation in (11) with 𝑁 = 100 and 𝐴 = 0.007 (left), the square 

wave PRI variation of (12) with 𝑁 = 100 and 𝐴 = 0.007 (center) and a random 

PRI variation of (13) with 𝑁 = 100 and 𝐴 = 0.007√𝑛𝑡 = 0.028 (right). The 

swath reduction is in all cases less than 14 km. 

 

 

 
Fig. 7.  Swath decrease for the case 𝑁 = 𝑛𝑡 = 16  at a slant range around 𝑅0 =
700 km as a result of the sinusoidal PRI variation in (11) (left), the square wave 

PRI variation of (12) (center) and a random PRI variation of (13), all with 𝐴 =
0.05. The swath reduction is in all cases less than 4 km. 

 

C. Decorrelation and Along-Track Baseline 

The PRI variation scheme and its parameters 𝑁 and 𝐴 have 

to be selected for a given along-track baseline in order to 

provide a substantial decorrelation of azimuth ambiguities, 

while keeping the swath reduction as small as possible. 

The trend of ambiguity decorrelation versus along-track 

baseline can be obtained for a specific set of system parameters 

and an along-track baseline by means of simulation. For a 

periodic PRI sequence, this trend will also be periodic with 

period 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
 given by 

 

𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
= 2 𝑣𝑔 ∑ 𝑃𝑅𝐼𝑘

𝑁−1
𝑘=0 ≅ 2 𝑣𝑔 𝑁 𝑃𝑅𝐼𝑚𝑒𝑎𝑛    (17) 

 

This means that for an along-track baseline equal to integer 

multiples of 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
 the samples of master and slave in spite of 

the PRI variation and the non-zero along-track baseline will still 

be available at the same positions and will not determine any 

ambiguity decorrelation. 

Given a sequence of PRI and an along-track baseline, it is 

possible to assess the resulting ambiguity decorrelation by 

convolving the impulse response of the ambiguity, which is in 

general different for the master and slave images, with fully-

developed speckle and estimating the coherence. For sinusoidal 

and square wave PRI variations, it can be observed that the 

coherence of the ambiguities decreases as the along-track 

baseline increases from 0 to 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
2⁄  (or from 𝑝 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑

 to 

𝑝 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
+ 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑

2⁄ , with 𝑝 ∈ ℕ), as the relative shift 

between the available samples of master and slave increases. 

Likewise, as the along-track baseline increases from 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
2⁄  

to 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
 (or from 𝑝 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑

+ 𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
2⁄  to (𝑝 + 1)𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑

, 

with 𝑝 ∈ ℕ), the coherence of the ambiguities increases. The 

maximum decorrelation therefore occurs for 

 

𝐵𝑎 = (𝑝 + 1 2⁄ )𝐵𝑎𝑝𝑒𝑟𝑖𝑜𝑑
, 𝑝 ∈ ℕ      (18) 

 

where ℕ also includes 0. For random PRI variations the along-

track baseline that leads to the maximum ambiguity 

decorrelation depends on the specific PRI realizations, still the 

minimum usually corresponds to the value of 𝐵𝑎 given in (18).  

These considerations therefore suggest that the length 𝑁 of 

the PRI sequence can be selected (at least for sinusoidal and 

square wave schemes) so that the maximum decorrelation is 

obtained. By substituting (17) in (18) it holds 

 

𝑁 ≅
𝐵𝑎

2 (𝑝+1 2⁄ ) 𝑣𝑔 𝑃𝑅𝐼𝑚𝑒𝑎𝑛
, 𝑝 ∈ ℕ      (19) 

 

The expression in (19) provides a set of possible values of 𝑁, 

which can be obtained by varying the integer variable 𝑝 and, if 

needed, to some extent the value of 𝑃𝑅𝐼𝑚𝑒𝑎𝑛, assuming that 𝐵𝑎 

and 𝑣𝑔 are given. For 𝐵𝑎 = 290 m, 𝑣𝑔 = 7040 m/s and 

𝑃𝑅𝐼𝑚𝑒𝑎𝑛 = 0.303 ms, for instance, we can choose 𝑁 = 136 

(corresponding to 𝑝 = 0 and belonging to the case  𝑁 ≫ 𝑛𝑡), 

but also 𝑁 = 16 (corresponding to 𝑝 = 4 and belonging to the 

case 𝑁 = 𝑛𝑡) or other further values of 𝑁. 

Once different options for the sequence length are available, 

the parameter 𝐴, related to the PRI span, needs to be selected. 

In general, the higher the PRI span, the more substantial the 

ambiguity decorrelation, but also the more significant the swath 

reduction.  

2-D simulations have been carried out for a typical 

spaceborne scenario and the same sequences for which the 

swath reduction had been assessed in Figs. 6 and 7. The 

coherence has been estimated using a 9×9-pixel window. Fig. 8 

shows for the aforementioned PRI variations the coherence of 

the ambiguities as a function of the along-track baseline. These 

plots have to be considered as periodical, i.e., they repeat with 

a period given by the maximum along-track baseline given in 

the plot. 

It can be noticed that long sequences allow decorrelation for 

larger along-track baselines, although one could also exploit in 

some cases the periodical effect with short sequences. As is 

apparent, for comparable swath reduction, the square wave PRI 

variation allows in both cases for the highest decorrelation, 

while a random PRI variation is less effective, especially if the 

length of the sequence of PRIs is equal to the number of 

traveling pulses. From Fig. 8 (b) it can also be noticed that in 

this example, which refers to the TanDEM-X system, 

substantial ambiguity decorrelation can be achieved, as long as 

the along-track baseline is larger than 20 m. 
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(a) 

 
 (b) 

Fig. 8.  Coherence of the ambiguities as a function of the along-track baseline 

for the sinusoidal PRI variation in (11) (blue), the square wave PRI variation of 

(12) (red) and the random PRI variation of (13) (green). (a) 𝑁 = 100 (length of 

the sequence of PRIs is much larger than the number of traveling pulses), 

corresponding to swath width reduction depicted in Fig. 6. (b) 𝑁 = 16 

sinusoidal PRI variation (length of the sequence of PRIs equal to the number of 

traveling pulses), corresponding to swath width reduction depicted in Fig. 7. 

 

It is worth to notice that the minimum and maximum PRIs of 

the square wave variations of Figs. 6 and 7 correspond to 

differences of the instantaneous PRFs in the order of 55 Hz and 

330 Hz, respectively. This means that in order to achieve a 

significant decorrelation of azimuth ambiguities in the single-

pass case an instantaneous PRF change much larger than the 

PRF difference required for the repeat-pass case (only 8 Hz in 

the example of Section II) is needed. 

At the end of Section II, it was observed that the PRF 

difference also determines a relative shift of range ambiguities. 

In the single-pass case, as a consequence of the continuous PRI 

variation range ambiguous echoes appear at different ranges for 

each pulse, i.e., they spread over several range resolution cells, 

and are also likely to be decorrelated [29]. 

IV. IMPACT ON INTERFEROGRAM AND DEM QUALITY 

In order to assess the impact of ambiguity decorrelation on 

interferogram and DEM quality, simulations are performed 

starting from the dataset of Fig. 1.  

After having removed azimuth ambiguities from both the 

master and slave images using a Wiener filter (which provides 

an ambiguity suppression relative to the main signal 

suppression of about 11 dB), ambiguities have been artificially 

reintroduced in both the master and slave images by convolving 

the focused image with the IRF of the focused first-order 

azimuth ambiguity, translating it, and scaling it according to the 

desired ambiguity-to-signal ratio. Furthermore, the ambiguity 

decorrelation has been introduced by multiplying the 

interferogram of the ambiguities by a phase screen generated 

according to the statistical distribution corresponding to the 

desired decorrelation level [1].  

Figs. 9 and 10 show the resulting interferometric phase, the 

magnitude of the complex coherence, and the DEM obtained 

after phase unwrapping, for systems with AASR = -17 dB and 

AASR = -22 dB, respectively. Both the case of no decorrelation 

and that of a coherence of the interferogram of ambiguities 

equal to 0.3, i.e., corresponding to almost complete ambiguity 

decorrelation, have been considered.  

Fig. 9 corresponds to an AASR = -17 dB and shows that in 

the absence of ambiguity decorrelation strong circular artifacts 

appear in both the interferometric phase and in the DEM. The 

same artifacts appear as a slight noise-like disturbance for the 

same AASR level and decorrelated ambiguities. The visual 

comparison of Figs. 9 (bottom) and 10 (top) also shows that the 

disturbance pattern obtained for AASR = -17 dB and 

decorrelated ambiguities is very similar to that obtained for 

AASR = -22 dB and coherent ambiguities, which confirms that 

decorrelating azimuth ambiguities through slight PRI variation 

represents a viable alternative to support demanding AASR 

requirements. 

Whereas coherent effects of azimuth ambiguities are more 

apparent in low backscatter areas such as water or sea ice, phase 

bias can also be noticeable and lead to nonnegligible height 

biases over land scenes. Fig. 11 shows a further simulation 

using a TanDEM-X data set acquired near Klagenfurt am 

Wörthersee, Austria, and assuming AASR = -17 dB. The 

portions of the SAR image responsible for and affected by 

azimuth ambiguities are shown in Fig. 11 (a) and (b), 

respectively. The phase bias in the area affected by ambiguities 

in the case of no decorrelation and that of an ambiguity 

decorrelation equal to 0.3, i.e., corresponding to almost 

complete ambiguity decorrelation, is displayed in Fig. 11 (c) 

and (d), respectively. In this example the ambiguity 

decorrelation leads to a decrease of the average absolute phase 

bias from 7.1° to 4.6°, corresponding to a decrease of the 

average absolute height bias from 91 to 58 cm. 

V. CONCLUSION AND OUTLOOK  

This paper tackles the problem of artifacts appearing in SAR 

interferograms as a result of the coherent interference of 

azimuth ambiguities and proposes a solution based on 

ambiguity decorrelation, which can be used as an alternative to 

or even in combination with other postprocessing techniques. 

For the repeat-pass case, it is shown that it is enough to use 

two slightly different PRFs for the two acquisitions to 

decorrelate azimuth ambiguities. An analytical expression is 

provided for the minimum required PRF difference, which 

amounts to only few Hz for TanDEM-X. It is also mentioned 

that this PRF difference additionally shifts range ambiguities 

and therefore prevents possible coherence interference effects. 

For the single-pass case, a slight variation of the PRI during 

the acquisition helps decorrelating ambiguities, if an along-

track baseline is present. For TanDEM-X, an along-track 

baseline larger than 20 m is required to achieve substantial 

ambiguity decorrelation. In particular, it is shown that the 

square wave PRI variation, i.e., repeating N/2 times a given 

PRI, then N/2 times a second PRI, then again N/2 times the first 
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PRI and so on, performs best. The square wave PRI variation is 

also the easiest to implement in most systems, e.g., it is the only 

one that can be straightforwardly implemented in TanDEM-X, 

as it does not require an extremely fine PRI variation. The PRI 

variation scheme needs to account for the along-track baseline 

of the acquisition and to be optimized accordingly. It could be 

investigated whether waveform diversity in addition to PRI 

variation could help achieving further ambiguity decorrelation. 

While an accurate performance assessment can only be made 

for a specific system, simple simulations under conservative 

assumptions show the effectiveness of the technique, which 

could be useful for the design of future spaceborne 

interferometric SAR systems, such as High Resolution Wide 

Swath (HRWS) [36], as well as for the enhanced exploitation 

of current ones. 

     
 

     
 

Fig. 9.  Impact of ambiguity decorrelation on interferometric phase (left), magnitude of the complex coherence (center), and DEM (right) for AASR = -17 dB. 
(top) No decorrelation. (bottom) Coherence of the ambiguity = 0.3. The horizontal and vertical axes represent ground range (5.12 km) and azimuth (10.24 km), 

respectively. 
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Fig. 11.  Example of impact of ambiguity decorrelation on a land scene using a TanDEM-X data set acquired near Klagenfurt am Wörthersee. (a) Portion of the 

SAR image (amplitude) responsible for azimuth ambiguities. (b) Portion of the SAR image (amplitude) affected by azimuth ambiguities. (c) Phase bias in the area 

affected by ambiguities in the case of no decorrelation. (d) Phase bias in the area affected by ambiguities in the case of ambiguity decorrelation equal to 0.3. The 
horizontal and vertical axes represent ground range (4.93 km) and azimuth (4.11 km), respectively. 
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