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Abstract: Flight control electro-mechanical actuators (EMAs) are among the primary onboard systems
that significantly influence the reliability and safety of unmanned aerial vehicles. Recent reliability
studies have shown that the ball-screw element of a flight control EMA is subject to oscillating
operating conditions that may initiate rapid degradation, such as fatigue spall defects. Accordingly,
detecting and quantifying such faults are crucial for developing efficient fault prognostic and remain-
ing useful life estimation capabilities. In this study, a vibration-based fault quantification method
is developed to quantify the fatigue faults of a ball-screw mechanism of an EMA. The method is
based on identifying the ball passing instants through a localized surface defect on the vibrational
jerk rather than the vibrational acceleration measurement. The jerk is numerically determined from
conventional accelerometers using a Savitzky–Golay differentiator. This method was successfully
tested for ball bearings and it is adjusted in this paper for ball-screw faults. The experimental vali-
dation is investigated on a set of fault-seeded samples on NASA’s Ames Research Center Flyable
Electro-Mechanical Actuator test stand.

Keywords: flight control surface; Savitzky-Golay differentiator; spall size estimation; rolling contact
fatigue; vibrational jerk

1. Introduction

There are many growing civil and military applications for unmanned aerial vehicles
(UAVs) due to their low acquisition and operating costs. However, the reliability of in-
service UAVs does not match the superior levels of general aviation [1,2] signaling that
the root causes should be identified and mitigated by health monitoring systems. In this
paper, the focus is on flight control electro-mechanical actuators (EMAs) because their
failures have a significant impact on the total system failures of in-service UAVs, according
to US Office of the Secretary of Defense [3]. An example of a flight control EMA assembly
comprising a variable-speed electric motor, a power-drive unit, displacement sensor, and
a ball-screw mechanism is illustrated in Figure 1. Several reliability studies have been
conducted to identify the potential components and failure modes for health monitoring
systems. The study in [4] emphasized that ball-screw failures are responsible for 16% of the
total mechanical failures during accelerated run-to-failure tests for flight control EMAs.

Health monitoring methods for ball-screw faults of flight control EMA were deeply
investigated by [5–8]. In [5], Balaban et al. investigated a neural network method for
detecting two ball-screw faults: a partial jam and spalls for a flight control actuator. Several
diagnostic features were utilized, including temperature, vibration sensors, and a load
profile indicator from an additional load sensor. The false diagnosis rate was influenced by
different load profiles (i.e., triangle and sinusoidal). The separation between the spall and
jam relied only on the vibration sensors.
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Figure 1. Illustration of a direct-drive EMA for actuating a flight control surface. 
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fication method for ball-screw spalls in EMAs. Power spectral density (PSD) features from 

vibration sensors were extracted and processed by a Bayesian classifier. Chirico and Ko-

lodziej showed that vibration sensors for spall faults significantly outperform the effi-

ciency of using electrical current sensors using the same processing approach. 

In [8], a variant of a particle filter algorithm and an extended Kalman filter were uti-

lized for detecting ball-screw faults for flight control EMAs. A data model for each fault 

scenario was identified as a pre-learning stage. Diagnosis decisions were made by match-

ing the actuator current and load torque to the pre-identified models. 

The health monitoring methods in the above studies were based on machine learning 

techniques that require a pre-learning stage to capture fault signatures and different se-

verity levels. Despite the fact that these methods can attain a good diagnostic perfor-
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ing physical disturbances introduced by the fault. This could be affected by the training 
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have rolling contacts, e.g., ball bearings and ball-screws, are subjected to normal degrada-

tion due to rolling-contact fatigue (RCF). RCF can be defined as a mechanism of crack 

initiation and propagation caused by the near surface alternating stress (i.e., cyclic loading 
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Figure 1. Illustration of a direct-drive EMA for actuating a flight control surface.

Garinei and Marsili in [6] developed a statistical diagnosis method for monitoring
a damaged ball and return channel of a ball-screw actuator. A Hall effect sensor was
mounted on the ball return channel for monitoring the motion’s smoothness of the balls.
The statistical distributions of the Hall sensor data were estimated for different fault
conditions in order to decide the health status.

Chirico and Kolodziej in [7] investigated a vibration-based fault detection and clas-
sification method for ball-screw spalls in EMAs. Power spectral density (PSD) features
from vibration sensors were extracted and processed by a Bayesian classifier. Chirico
and Kolodziej showed that vibration sensors for spall faults significantly outperform the
efficiency of using electrical current sensors using the same processing approach.

In [8], a variant of a particle filter algorithm and an extended Kalman filter were
utilized for detecting ball-screw faults for flight control EMAs. A data model for each
fault scenario was identified as a pre-learning stage. Diagnosis decisions were made by
matching the actuator current and load torque to the pre-identified models.

The health monitoring methods in the above studies were based on machine learning
techniques that require a pre-learning stage to capture fault signatures and different severity
levels. Despite the fact that these methods can attain a good diagnostic performance, they
are dependent on how the machine learning technique captures the underlying physical
disturbances introduced by the fault. This could be affected by the training dataset size,
efficiency of selected data features, and sensor measurement artifacts.

This paper investigates a physical-originated method for quantifying spall faults in an
EMA ball-screw mechanism. The method is based on identifying the geometrical features
of a fatigue defect using a first-time derivative of the acceleration response, i.e., the jerk. The
acceleration response is measured by conventional accelerometers. No machine learning
techniques are used because the target application has a limited number of sensors and data
size. The paper is organized into five sections. Section 2 describes the principles of using
vibrational jerk for quantifying ball-screw spalls. The EMA actuator test stand and the
fault scenarios are provided in Section 3. Experimental work and the fault quantification
performance are discussed in Section 4. Significant findings are presented in Section 5.

2. Jerk Based Spall Quantification Method
2.1. Physical Principles

A basic ball-screw assembly consists of four main elements: the screw, the nut, the
balls, and the recirculation channel, as shown in Figure 2. Mechanical components that have
rolling contacts, e.g., ball bearings and ball-screws, are subjected to normal degradation
due to rolling-contact fatigue (RCF). RCF can be defined as a mechanism of crack initiation
and propagation caused by the near surface alternating stress (i.e., cyclic loading forces)
within rolling contact, which eventually leads to material removal, such as spall and pit
defects [9].
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Figure 2. Illustration of a ball-screw mechanism within an EMA and the acceleration sensor mounted
on the nut.

The mechanisms of inducing vibration transients due to the rolling element movement
within ball-screw assembly are discussed in [10]. When a spall fault is initiated, a radial
clearance at the spall zone (i.e., between the rolling element and the defective nut or screw
races) causes impulsive disturbances at the instant of entry into the spall zone, followed by
a second disturbance at the instant of exit from the spall zone, as shown in Figure 3.

Actuators 2022, 11, x FOR PEER REVIEW 3 of 13 
 

 

radial clearance at the spall zone (i.e., between the rolling element and the defective nut 

or screw races) causes impulsive disturbances at the instant of entry into the spall zone, 

followed by a second disturbance at the instant of exit from the spall zone, as shown in 

Figure 3. 

 

Figure 2. Illustration of a ball-screw mechanism within an EMA and the acceleration sensor 

mounted on the nut. 

 

Figure 3. Illustrated example of a ball-spall excitation mechanism and the vibrational acceleration 

and jerk responses. 

The time difference between these two instants can be mapped into the average spall 

width as in (Equation (1)) [11]: 

Nut

Screw Pitch

Return channel
Nut

Screw

A Spall

Motion

Accelerometer

Z
-a

xi
s

Screw

Nut

Entry Exit

Ball Stress
(Static)

Average Spall Width

Screw-Nut 
Clearance

Acceleration 
Response

Impulsive Load 
Disturbances

Restress

Mechanical 
Transmission Path 

(Spall to Acc. 
Sensor)

Max Defect
Clearance

Displacement

A Spall

0 Destress

Jerk Response

xx

Not to Scale

d/dt

Spall Peaks
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The time difference between these two instants can be mapped into the average spall
width as in (Equation (1)) [11]:

L = T
0.5π fr

(
D2

P − d2)
Dp

(1)

where T is the passing interval of a rolling element between the entry and the exit in seconds,
L is the spall width in mm, fr is the screw speed in number of rotations per seconds, Dp is
the screw pitch diameter in mm, and d is the ball diameter in mm. However, the instants
of entry and exit are nearly smeared by a strong background noise that makes them hard
to identify.

In this paper, a method was developed based on a first-time derivative of the vibration
acceleration response, or the vibration jerk. It was empirically proven that the jerk response
provides a better unified representation of a ball crossing a spall zone than the direct
acceleration response for ball bearings [12], as shown in Figure 3. This is because the jerk
calculates the rate of acceleration changes that are significantly disturbed at the entry and
exit instants.

2.2. Modified Savitzky–Golay Differentiator

A Savitzky–Golay differentiator (SGD) was utilized to numerically estimate the jerk
response because it provides adjustable smoothing and differentiating for highly noisy
data. The SGD involves a polynomial p(n) of order N that is estimated through a set of
noisy data points x[n] of length 2M + 1 as in (Equation (2)) [13]:

p(n) =
N+1

∑
k=0

Cknk,−M � n � M (2)

where Ck and K denote the polynomial coefficients and order, respectively. The coefficients
are estimated by a moving data window of length F = 2M + 1. The SGD derivatives can be
computed directly through the coefficients Ck, as in Equations (3) and (4):

∂p(n)
∂n

= C1 + 2C2n + . . . + NCNnN−1 (3)

∂p(n)
∂n n=0

= C1 (4)

The frequency response for the SGD involves two parts (Figure 4a). The first is an ideal
differentiator to the input signal and it is denoted as the useful differentiation bandwidth
(BW). The second is a noise amplification band for the high frequencies beyond the BW.
The SGD parameters (K, F) can be tuned to select a specific BW, as shown in Figure 4b. This
tuning is crucial for separating a certain BW that is most likely excited by the fault features
(i.e., entry/exit instances). A procedure for such a tuning is provided in Section 2.3. A
basic characteristic of SGD is that the evolution of F is identical for all K and (K + 1), as
investigated in [14]. The selection K is a tradeoff between two performance metrics, namely,
the BW searching range and its resolution. A larger searching range, by increasing K, is
necessary for the consideration of a wider frequency spectrum for the vibration signal,
while a smaller BW resolution (dBW), by decreasing K, is useful for incorporating smaller
changes in the spectrum due to fault entry/exit instants. The dBW in Figure 4b describes
the BW step-change in terms of F. Based on several numerical simulations, the setting K = 3
provides the best balance between the searching range and the bandwidth resolution.

The SGD tuning can be used to adjust the useful differentiation bandwidth. However,
the high frequencies of the input signal are always subjected to significant amplification as
they are located outside the BW. In order to overcome this deficiency, a modified, narrow-
bandwidth SGD (MSGD) is proposed in this paper. A typical SGD is cascaded with a
low-pass filter to eliminate all high frequencies outside the BW, as shown in Figure 5. This
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filter can be effectively realized by using a fast Fourier transform (FFT)-based low-pass
filter (LP-FFT), as described in [15]. The cut-off frequency for the low pass filter equals to
the useful differentiation bandwidth, the BW value.
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Figure 4. (a) Typical frequency response of an SGD sampled at 25 kHz, for F = 25 samples and a cubic
polynomial, K = 3. (b) The influence of changing SGD parameters (K, F) on the BW and dBW.
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2.3. Paramter Estimation for Differentiator

Jerk quantification involves a method to estimate MSGD differentiator parameters.
This method should be performed for short-time acceleration measurements, corresponding
to one or a few revolutions of the ball-screw, to match the short strokes by flight control
EMAs. An empirical method for automatically selecting differentiator parameters (K, F) is
proposed as follows:

• A spalled ball-screw typically generates high frequency transients (e.g., impulsive)
on the acceleration response (Figure 6a) when a ball crosses a spalled zone. These
transients are separated by the ball pass frequency (BPF), as described in [10].

• The acceleration response is subjected to an MSGD defined by a pair of (Ki, Fi), as
shown in Figure 6b.

• The RMS envelope is used to detect the maximum jerk peaks within every individual
impulse, as shown in Figure 6c. The passing interval between the two highest peaks
(i.e., the significant rates of acceleration response change) is assumed to approximate
the entry–exit interval.

• For a given (Ki, Fi) iteration, the coefficient of variation (CV) is estimated between the
variance and the mean of the aforementioned elapsed times. The best pair (Kbest, Fbest),
which also achieves the best quantification results, is the one that corresponds to the
minimum CV, as shown in Figure 6d.
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The principle of using CV is based on the passage of the balls over the same spall
zone. As the speed rate is constant for each case (1–2 screw revolutions), the elapsed times
between the entry and exit instants are mainly due to the spall width. The best (Ki, Fi)
parameters should lead to consistent intervals for individual entry and exit instants. The
CV measures how a group of samples are consistent.

3. Experimental Setup

The Flyable Electro-mechanical Actuator (FLEA) test stand was designed and manu-
factured by the Diagnostics & Prognostics Group, NASA Ames Research Center (Balaban,
2009). The test stand (Figure 7) consists of three identical electro-mechanical actuators:
one nominal, one injected with faults, and the third providing dynamic load. Initially, the
nominal actuator is connected to the load through a magnetic coupling mechanism. The
actuator model is an Ultra Motion Bug, including a ball-screw as described in Table 1. The
data acquisition system consists of two National Instruments 6259 cards, a Galil DMC
4030 motor controller, and the sensor suite described in [10]. The acceleration data were
acquired at 20 kHz. The spall fault was injected by introducing cuts of various geometries
by a precise electro-static discharge process, as shown in Figure 8. Experimental scenarios
were designed to cover a variety of motion and load profiles, spanning the range of the test
actuator capabilities. The applied load varied from −44 N in the tensile direction to 44 N in
the compressive direction.
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Table 1. Ball-screw geometry data.

Parameter Unit Value

Ball diameter, d mm 0.8
Screw pitch diameter, Dp mm 8.4
Nut inner diameter, Dn mm 9.2
Number of balls per rev. - 32

Screw lead, L mm 3.175
Helix angle, a deg. 6.8

The initial size and subsequent growth of these cuts were confirmed by optical inspec-
tion as follows:

• There are six threads between adjacent cuts, as described in Table 2;
• Cuts alternate between the left and right sides of the thread (right is the mount side,

left is the piston side), and the depth of all cuts is 0.3 mm;
• There are five datasets for the different speeds and loads in Table 3.
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Table 2. Spall injection locations.

Spall ID Width [mm] Thread Order Thread Position

1 0.3 8 Left at 24.4 mm
2 0.4 14 Right at 44.45 mm
3 0.4 20 Left at 63.5 mm
4 0.5 26 Right at 82.6 mm

Table 3. EMA datasets used in the experiments.

Dataset ID Load [N] Max. Speed [mm/s] Spall ID

1 −44 40 2
2 0 40 1
3 0 80 3
4 44 80 4
5 0 40 2

4. Results and Discussion
4.1. Fault Detection and Classification

A dedicated study for detecting and classifying actuator jam and spall faults has been
previously published in [10]. Unique frequency domain vibration signatures were success-
fully assigned to classify a healthy actuator, partial jam, and screw spalls. In this paper,
time domain vibration signatures for spalls were further utilized for fault quantification.

4.2. Detailed Quantification Example

The following quantification example is for dataset no. 2, as shown in Figure 9.
The quantification processing is shown in Figure 10. Figure 10a shows the parameter
search based on the minimum CV at K = 3 and F = 1:105. The search result (Figure 10b,c)
indicates F = 35 at (CV = 5.93% and BW = 1240 Hz), which corresponds to an average
entry–exit length of 0.29 mm with 3.3% error level. Figure 11 shows an example of short
time acceleration transients that are subjected to numerical differentiation, MSGD signal,
and its RMS envelope. More detailed quantification conditions and examples are described
in [16].
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Figure 9. Measurements from dataset ID 2 and spall ID 1.
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4.3. Overall Quantification Results

The overall quantification results for the spalled FLEA datasets are shown in Figure 12.
The average and maximum errors are 11% and 15%, respectively. The worst quantification
observed for the maximum load and speed levels were applied.
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Excluding loaded datasets, the average and maximum errors are 10% and 15%, respec-
tively, which support the efficient quantifying of ball-screw spalls at no-load as pre-flight
tests. Table 4 presents the detailed quantification results for the FLEA datasets. Based
on these results and a former study for fault detection and quantification [10], a health
monitoring scenario is introduced. Once an emerging fault is detected and identified, a
fault quantification method is then triggered to monitor the growth of the fault and to
enable an extended service life beyond the initial fault detection stage. Such an extended
time may be beneficial for optimizing aircraft dispatch and maintenance planning.

Table 4. Overall quantification results.

Spall Width
(mm)

Error
(mm) CVmin BW

(Hz) F Load
(N)

Speed
(mm/s)

0.4 0.03 41.21 1060 41 −44 40
0.3 0.01 5.93 1240 35 0 40
0.4 0.05 7.66 500 87 0 80
0.5 0.08 27.66 2900 15 44 80
0.4 0.06 33.45 510 85 0 40

5. Conclusions

A vibration method was developed for quantifying spall fatigue faults for ball-screw
based flight control EMAs. When a spall fault is initiated, a radial clearance at the spall
zone induces impulsive vibration transients that are encoded by the geometrical features
of the spall, including the spall edges. However, these transients are almost smeared
by the background noise that makes them hard to identify on the vibration response.
In this study, a method was developed based on a first-time derivative of the vibration
acceleration response, the vibration jerk. The jerk response provides a better unified
representation of spall-related transients than does the direct acceleration response. The
jerk calculates the rate of acceleration changes that are significantly disturbed at the spall
edges. Spall size estimations with 89% average accuracy were achieved using short-time
vibration measurements that correspond to realistic small angular displacements for flight
control surfaces.
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