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Abstract. Large-scale parallel numerical simulations are fundamental for the understanding of
a wide variety of aeronautical problems. Mesh decomposition is applied to make use of parallel
hardware. In particular, when using a massively parallel architecture, not only the final quality
of the mesh subdivision is relevant. Also the partitioning algorithm itself needs to be robust as
well as efficient. A strategy for dynamic mesh partitioning based on runtime measurements is
presented. We integrate the “Geometric Mesh Partitioner” (GeMPa), which is a partitioning
library based on Hilbert Space-Filling Curve (HSFC), in the FlowSimulator (FS) software. FS
is a platform designed to run multi-disciplinary simulations on massively parallel cluster ar-
chitectures. The algorithm performance is evaluated on an unstructured mesh representing the
ONERA M6 wing. In particular, the load imbalance among processes is evaluated and compared
with a well-known graph-based partitioning approach. Finally, we analyze how the number of
processes influences the load imbalance.

1 INTRODUCTION

During the last decades, the rapid advance of computational fluid dynamics (CFD) tech-
nology has fundamentally changed the aerospace design process. A massive use of CFD has
allowed for drastic reductions in wind tunnel time for aircraft development programs, as well
as lower numbers of experimental rig tests in gas turbine engine design processes. The evolu-
tion in simulation capabilities is intimately related to the improvements in both, hardware and
software [1].

Domain decomposition is a fundamental part in almost all parallel applications [2]. Further-
more, to fully leverage today’s high-performance computing (HPC), most toolchains incorporate
a second level of hybrid parallelism, such as OpenMP [3], or make use of GPUs [4, 5] or FPGAs [6]
in heterogeneous architectures.

Domain decomposition methods are mainly categorized in two groups in literature: graph-
based and geometric [7]. In graph-based partitioning, the first step consists in extracting the
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graph from the domain connectivity. Two alternative graphs can be built: the nodal graph
and the dual graph. In the former, which is usually employed in methods with nodal data rep-
resentations, each mesh node corresponds to a graph vertex and all mesh edges coincide with
graph edges. In the latter, which is an appropriate choice for cell-centered numerical methods,
each graph vertex refers to a mesh element and graph edges represent the mesh faces. Af-
ter the graph extraction, the partitioning is computed. This task is generally addressed using
multilevel heuristics, where each level consist of three phases: coarsening, partitioning, and un-
coarsening [8]. The partitioning usually tries to grant the same graph vertex weights in each
process, to avoid imbalances in the computation, as well as the minimum cut of edge weights, to
reduce the communication among processes. Several libraries are publicly available, for instance
Parmetis [9], Zoltan [10], and PT-Scotch [11]. The alternative approach are geometric partition-
ing techniques, which obviate topological interactions between mesh entities and, thus, avoid the
graph extraction from the computational mesh [12, 13]. The partitioning is performed consider-
ing only a representative coordinate for each mesh entity. Common criteria are the integration
node coordinates if the CFD solver is node-based or, alternatively, the average of the integration
node coordinates for an element if the code is cell-based. Geometric methods are usually fast
and have low memory consumption. In addition, for small data changes, the domain cuts move
only slightly, resulting in reduced data redistribution. When geometric methods are used for
complex geometries, however, they can generate disconnected domains leading to an increased
communication volume compared to graph-based ones. An example of a geometric method is
the Recursive Coordinate Bisection (RCB), which consists in recursively subdividing the com-
putational domain into respectively two parts until the desired number of partitions is reached.
Another example are Space-Filling Curve (SFC) methods which map a multi-dimensional space
into a one-dimensional one preserving geometric locality [14]. There are many possible defini-
tions of an SFC, based on different mapping options, among them the well-known Peano and
Hilbert ones.

In this work, we focus on a strategy for dynamic mesh partitioning based on runtime mea-
surements. This approach mitigates the limitations imposed by a-priori estimated weights. In
fact, assigning optimal weights to each element of a mesh is difficult when using complex algo-
rithms. For instance, when adaptive techniques are adopted, such as hp-adaptive finite-element
methods (hp-FEM), multiple refinement levels may be present. Other examples are multigrid
methods, in which non-uniform agglomeration rates can be exploited, or the different cost for
the reconstruction of boundary conditions. In addition, partitioning weights are usually influ-
enced by the underlying computer architecture. When using a dynamic approach, the mesh
subdivision is performed multiple times during the simulation. Therefore, it is necessary to
keep the repartitioning time as low as possible in order to achieve a reduction of the overall
computational time.

To address these challenges, we integrate the Hilbert Space-Filling Curve (HSFC) based par-
titioning library “Geometric Mesh Partitioner” (GeMPa) in the FlowSimulator (FS) software.
FS is a platform designed to run multi-disciplinary simulations on massively parallel cluster
architectures [15]. A relevant plugin to the FS platform is the flow solver CODA which is com-
monly developed by ONERA, DLR, Airbus and bases upon the infrastructure of the flexible un-
structured CFD software “Flucs” [16]. Mesh handling is performed through the FlowSimulator
Data Manager (FSDM). A new plugin has been developed to interface the GeMPa library [17].
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GeMPa is a parallel geometric partitioning library based on the Hilbert Space Filling Curve.
The GeMPa partitioning procedure can be summarized in the following steps: a bounding box
is defined enclosing the unstructured mesh to be partitioned; a regular grid is constructed inside
the bounding box; the grid bins are weighted according to the elements contained in them; the
HSFC is used to project the bins to a 1D space; finally the 1D partitioning problem is solved.
The parallel implementation divides the initial bounding box into sub-boxes, and each parallel
process performs a local partition within its sub-box. A coherent partition of the overall mesh
is obtained by connecting the local partitions. In this manner, the solution achieved is indepen-
dent (discounting rounding off errors) of the number of parallel processes used to compute it.
The main overhead regarding the parallelization is the point-to-point communications required
to distribute the initial data into the sub-boxes. In a recent optimization, collective reduc-
tion communications are used to define the SFC splitting points, reducing the point-to-point
communication requirements. The reader is referred to the reference [18] for a comprehensive
description of the initial implementation of GeMPa.

This paper is organized as follows: in Section 2 we explain the adopted dynamic repartitioning
approach and how runtime measurements are converted into weights in the partitioning process;
in Section 3 an overview of the performance for available partitioning algorithms in FS (which
can be used with CODA) is given; in Section 4 the ONERA M6 wing test case performance
measurements are reported and discussed. Finally, general conclusions are outlined in Section 5.

2 DYNAMIC APPROACH

The classical static mesh-partitioning approach consists in subdividing the domain in a
preparatory step and keeping the mesh distribution unchanged for the entire simulation. In
contrast, when a dynamic mesh-partitioning approach is chosen, the partitioning step is in-
cluded in the evolving part of the simulation. An iterative process tries to achieve an improved
domain decomposition overcoming some limitations imposed by the static approach. This con-
tribution proposes a solution that implements dynamic mesh repartitioning based on runtime
measurements. The main goal is to reduce the imbalance among the processes in order to
improve the overall parallel efficiency of the execution. The so called “imbalance factor” is a
representative quantity to evaluate the partitioning quality and is defined as follows:

imbalance factor =
local time

average time among processes

This factor is equal to one for a perfectly balanced subdivision, where literally equal amounts of
work are assigned to the processes. In the worst case, the imbalance factor is equal to the number
of processes. Then all the work is assigned to a single process, where all other processes remain
idle. An important aspect to consider is that, in principle, the process with the highest workload
is never idle and, hence, dictates the progress of the overall coupled parallel simulation. For
this reason, having a mesh subdivision in which only one process has a high positive imbalance
implies that all other processes remain idle for at least part of the time. On the contrary, a
process with an imbalance lower than 1 is less problematic because it means that only that
process is idle, even if some computational time is wasted. In accordance with best practice for
real applications, the maximum imbalance factor over all processes should not exceed 1.05.
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In mesh-based CFD solvers, data can be related to elements, faces, edges or nodes. During
execution, when data has to be known at different entities, or derived quantities have to be
calculated, e.g. variable gradients, it is necessary to cycle over faces, elements or nodes to retrieve
them. In CODA, which is a cell-based code, three different cycles are performed: elements,
inner faces, and boundary faces. Since most of the computational time is spent in the loops
over elements and faces (inner and boundary), in this work the time spent over element and
face loops has been chosen as the representative quantity to base the partitioning weights on.
Direct measurement for each face and element is not feasible because each runtime measurement
introduces an overhead. For this reason, timings are recorded per loop type in CODA: elements,
inner faces, and boundary faces. In order to satisfy the requirement of the partitioning algorithm,
the measured time is attributed to the elements proportionally to the number of integration
points. Element timings are directly distributed to elements, internal face timings are split to
elements sharing the face, and boundary face timings are assigned to the unique element owning
the boundary face.

Some external libraries, in particular ParMetis and GeMPa, support only integer-valued
partitioning weights. In the present code, floating-point timing values are converted to integer
values using the following relation:

wi = integer

(
100

ti
avg(ti)

)
where wi and ti are the partitioning weight and the runtime measurement, computed from
loop timings, of the ith element, respectively. A scale factor equal to 100 is used to achieve a
sensitivity of around 1% after the integer conversion. Once the partitioning weights have been
computed they are used in the next repartitioning iteration.

3 PARTITIONING METHODS

Three different partitioning algorithms have been considered: recursive coordinate bisection
(RCB), graph-based using ParMetis, and Hilbert space filling curve (HSFC) as provided by
the GeMPa library. The current RCB implementation in FSDM only supports node-based,
but not cell-based partitioning. The mesh subdivision resulting from the RCB method is thus
not directly used for CODA, which features a cell-centered finite-volume discretization. RCB
partitioning is nevertheless employed to balance the initial mesh-data distribution obtained after
loading the mesh, to avoid memory bottleneck in the graph-based partitioning. In fact, the graph
extraction (as implemented in FSDM) has been observed to suffer from memory-overflow error
when applied to the initial distribution (without RCB pre-partitioning).

All performance measurements were executed on the DLR supercomputer CARA. It is com-
posed of 2300 nodes with Infiniband HDR interconnect. Each node consists of two 32-core
AMD EPYC 7601 @2.20GHz CPUs. The code was compiled using GCC 8.2.0 with flags -O3
-march=native. In Table 1, the time spent during the partitioning procedure is reported,
subdivided in: “compute”, the time necessary to compute the new process for each mesh entity;
“redistribute”, the time needed to redistribute the mesh among the processes; “graph”, which
is present only for ParMetis, is the duration necessary to extract the graph from the mesh. The
analysis ranges from 64 to 8192 MPI processes, which corresponds to 1 to 128 compute nodes
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of CARA. In Figure 1, the times spent for the different approaches are put into relation using
the “speed-up factor” notation.

Table 1: Wall-clock time comparison among partitioning methods.

Processes 64 128 256 512 1024 2048 4096 8192

Switches 1 1 1 1 1 1 3 5

RCB
Compute [s] 9.24 6.10 4.34 3.69 4.95 10.1 34.4 -

Redistribute [s] 24.1 18.7 9.73 4.66 3.17 2.11 4.47 -

Parmetis

Graph [s] 92.4 53.0 45.5 33.9 28.8 35.7 - -

Compute [s] 7.34 4.79 3.13 3.09 6.38 21.0 - -

Redistribute [s] 93.5 53.2 33.6 19.3 8.61 5.11 - -

GeMPa
Compute [s] 0.503 0.323 0.215 0.185 0.141 0.129 0.301 0.410

Redistribute [s] 100.8 67.8 41.9 19.7 11.2 7.11 5.42 4.42

64 128 256 512 1024 2048 4096 8192
Processes
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Figure 1: Speed-up factor comparison among partitioning methods.

For ParMetis, around half of the overall partitioning time is actually spent in extracting the
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graph from the computational mesh. In addition, when increasing the number of MPI processes
above 512, the time to compute the new distribution increases. This seems mostly related
to MPI collective operations. The same behavior is also present in the RCB method which
is implemented using frequent AllToAll communication. On the contrary, the redistribution
algorithm, which extensively takes advantage of point-to-point communication, reaches a better
scalability. Another aspect that also impacts partitioning performance is the number of network
switches. The interconnect of the CARA supercomputer is based on a fat-tree layout. In 64-
and 128-node executions, a two-level switch structure is exploited, resulting in higher latency.
The degradation of performance is visible for both, GeMPa and RCB. Focusing only on the
redistribution algorithm, the RCB method differs from the other two since the partitioning is
performed on nodes and relies on a global numbering. ParMetis and GeMPa, instead, compute
the subdivision based on cells and use a local numbering. Apparently better redistribution
performance is achieved with ParMetis. This seems due to the initial mesh distribution, which
has already been reordered with RCB, cf. above. In GeMPa, the unordered mesh distribution
does not affect the partitioning because each mesh entity is mapped into the one-dimensional
space, so the RCB reordering is avoided. Comparing GeMPa partitioning to RCB and ParMetis,
a 2.24x reduction in time is observed when using 64 processes and up to 10.23x reduction for
2048 processes.

4 ONERA M6 WING

The proposed partitioning approaches are tested on a well-known test case of aeronautical
interest, a transonic flow around the ONERA M6 wing. The free-stream Reynolds number is
Re∞ = 14.6 · 106, while the Mach number is Ma∞ = 0.84. The angle of attack is α = 3.06◦.
In Figure 2, the pressure coefficient Cp distribution and the skin friction lines are represented,
highlighting the characteristic lambda-shaped double shock on the upper side of the wing.

The compressible Reynolds averaged Navier-Stokes (RANS) equations are discretized using
CODA’s cell-based finite volume method. The system closure is achieved by the negative for-
mulation of Spalart-Allmaras one-equation turbulence model (SA-neg) [19]. Convective fluxes
are computed using a 2nd-order scheme with an approximate Riemann solver of Roe type. A
pseudo time-marching approach is applied to drive the equation system to a steady solution us-
ing a linearized implicit Euler scheme with a locally constant CFL number equal to 5. The linear
systems are solved using the Jacobi method with an element-local LU preconditioner provided
by Spliss [20]. A hybrid mesh composed of 55.1M hexahedra and 11M prisms is used [21].

Focusing on mesh-partitioning performance, the test case is executed on different configu-
rations ranging from 512 to 8192 pure MPI processes, which correspond to 8 to 128 compute
nodes. The 2nd-level shared-memory parallelization present in CODA is not exploited in these
computations, even though CODA’s parallel scalability is significantly extended by this feature.
Here, the focus is on FS(DM) partitioning of the mesh on process level, which is adopted by
CODA. In Figure 3, a visual representation of the imbalance is given for an execution with 1024
MPI processes combining GeMPa and Parmetis methods with static and dynamic approaches.
The multi-constraint capability of ParMetis grants a satisfactory imbalance distribution using
only the geometric properties of the mesh, namely the static approach. When the dynamic
approach and runtime measurements are applied with ParMetis, the imbalance does not show
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Figure 2: Pressure coefficient Cp distribution and skin friction lines over the ONERA M6 wing.

an improvement and remains in the 0.95 − 1.05 range, just as in the static approach. The
GeMPa limitation of balancing only one constraint, and the geometric nature of the library,
lead to unacceptable imbalances in the static approach with 1.3 imbalance peaks. This is due
to high concentrations of boundary faces (which are more expensive than inner ones) for only
a few processes. The dynamic approach, however, combined with the timings-based weights,
allows an improved imbalance in the 0.98 − 1.02 range. The actual two alternatives here are
static ParMetis and dynamic GeMPa. These are further analyzed in the following. (In cases
for which a higher imbalance is expected, however, also dynamic graph-based partitioning can
be a reasonable alternative.) A quantitative analysis is shown in Figure 4, where the maximum
and minimum imbalance factors are reported as a function of the number of used processes. A
direct comparison with ParMetis is only possible up to 2048 cores, the largest set of processes
that could be run without execution failure in our particular setting. GeMPa is able to achieve
a maximum imbalance of about 2% up to 2048 processes. Moving to 4096 and 8192 processes,
a performance degradation is observed, reaching a 6% deviation from the average, although
still acceptable for a simulation. Regarding ParMetis, instead, a noticeably higher imbalance is
observed already for low process counts. As the number of processes is increased, the imbalance
worsens further.

In Figure 5, the ratio ψ between idle time and the overall maximum time, namely the com-
putational time if all processes did start and also finish at the same points in time, respectively,
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Figure 3: Imbalance comparison for the proposed approaches using 1024 MPI processes.

is reported. In detail, ψ is computed as

ψ =
idle time

overall maximum time
=

∑Nproc

i=1 (max tk − ti)

Nproc · max tk

with ti the time spent in loops and Nproc the number of MPI processes in the execution. In
the dynamic GeMPa approach, 10 repartitioning iterations are performed to investigate the
subdivision quality. Considering only the first partitioning iteration, using only the geometric
constraint, a direct comparison between GeMPa and Parmetis is possible. The graph-based
method clearly outperforms geometric one. When runtime measurements are adopted as par-
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Figure 4: Maximum and minimum imbalance comparison for the proposed approaches.

titioning weights, however, idle times are reduced. After 3 to 5 iterations, depending on the
number of processes, continuing to further refine the partitioning (utilizing additional runtime
measurements) no longer improves the partition quality.
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Repartitioning iterations
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Figure 5: Comparison of idle time for the proposed approaches.

A final analysis is presented of the wall-clock time spent in computing one iteration of the
linearized Euler method for the ONERA M6 case. The number of iterations to solve the linear
system is maintained constant, as well as the cell-local CFL number, to ensure the same amount
of work. The results are summarized in Table 2 and in Figure 6. The dynamic GeMPa algorithm
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Table 2: Wall-clock time of one linearized Euler method iteration for the proposed approaches.

Processes 512 1024 2048 4096 8192

Parmetis [s] 11.720 6.008 3.091 - -

GeMPa [s] 11.526 5.797 2.991 1.538 0.810

Reduction 1.66% 3.51% 3.24% - -
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Figure 6: Wall-clock time of one linearized Euler method iteration for the proposed approaches.

allows a relative wall-cock time reduction of around 3% when using 1024 and 2048 processes.
The improvement is in accordance with the reduction of imbalance from 5% of static ParMetis
to 2% of dynamic GeMPa. Another advantage of the proposed approach is the possibility to use
a larger number of processes with FSDM without incurring in memory overflow errors. (Using
a larger set of cores is achievable also when using ParMetis, namely when exploiting the CODA
hybrid parallelism.) Finally, the solver’s wall-clock time per integration step decreases steadily
and almost linearly up to 8192 processes, indicating very good parallel scalability in this regime.

5 CONCLUSIONS

A dynamic mesh-partitioning algorithm based on runtime measurements has been presented.
The use of timings as partitioning weights demonstrated an improved balance among processes.
Furthermore, graph partitioning libraries require a considerable amount of computational re-
sources when the number of parts is above a certain threshold. Instead, Hilbert space-filling
curve partitioning has been shown as an efficient alternative with a lower memory requirement.
Finally, the reduced computational time to compute the partitioning of HSFC methods is par-
ticularly suitable for cases that require frequent repartitioning.
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The runtime measurements of the current implementation are limited to the loops over mesh
entities in CODA. A future development is the possibility of using timings provided by separate
libraries that are currently not accounted for. One relevant example is the influence of the
linear system solver Spliss that can become predominant for implicit time integration. Further
investigations are also required to better understand how the additional shared-memory level
(which was not considered here) affects the timings and the partitioning. Finally, additional test
cases characterized by more challenging imbalances, as well as actually dynamic setups, are to
be studied next.
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