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FIyATMAE Climate-optimization of aircraft trajectories

= Aviation is concerned by reducing climate impact of its operations. Aviation climate impact is caused by
CO, and non-CO, emissions, comprising impacts of contrails, nitrogen oxides impacting ozone and
methane, water vapour, and aerosol effects.

= Non-CO, climate impacts show a strong spatial and temporal variation, which can be exploited when
identifying alternative trajectories, by avoiding those regions where emissions have a large impact.

= However, during flight planning currently emission information is available, but no environmental impact
information linked to the emitted amount is available along the trajectory.

Concept: Feasibility study European Application: Case study Uncertainties and robustness
N 2R N ATM
6 W INEY, METEOROLOGY &
Routing with” *.. 54°N ' UNCERTAINTY ROBUST SOLUTIONS

large climate impa

LIOPANS, &

ced dlimate costs [K/
88012 -44e-12 0 44012 88e12

o %] = [=2] -

Atmospheric property

3

S
e
11
328
3
g

5
- ' | Ensel le trajectories
O\ § & >\Az: 42°N Ny 2 » .
X <X A\ ~— Observation A
d % X\ — sing forec,
4 /‘\/\/X/&‘ AAX0 36°N “ Wi i ST

A~ AL T AN X 20 . i
4/ Routing with -7~

- [ | ¥ 4 A7 ‘\ 10 30°N
5 5 lower climate impa¢t | yA
7Y sl s 'Matthes et al., 2012

> —40) _ap —20

ccl = aCCFE™ (@,2,h,t, meteo, mgyn;) H
oARt
L
co.
0Ozone (fast)
- Methane

Grewe et al., 2014a,b
ROBUST CLIMATE-

COST-FUNCTIONS
‘ #7 SESAR » [N | i AT )
DLR JOINT UNDERTAKING Xy ol = A : 5 ‘ e i ‘-

s Horizon 2020 research and innovation progran
bz ]




DLR.de < Chart3 > Aviation & Climate Europe > Dr. Sigrun Matthes « FIYATM4E > 26 Sep 2022

Weatvt]er data angvlz Ozone CIirvgate-Changﬁ-Functions

=

W spn 40w 30°W Ca

Climatology of aviation
weather situations:
Winter W1-W5
Summer S1-S3
University Reading
Irvine et al. 2013

Contribution of a local
NO, emission to climate
change via ozone
formation

Fromming et al. 2021

Clear relationship
between weather and

. ‘ N 6,
% e asw 5w 25 "
DLR sesar < [l

CCFs

- » 'Y
mithe B ta
” .."~ -

-



DLR.de < Chart4 > Aviation & Climate Europe > Dr. Sigrun Matthes « FIYATM4E > 26 Sep 2022

MET Service: Climate Change Functions (CCFs)
Weather Potential
contrail coverage
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weather situation, Fromming et al. 2021
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e Climate change functions characterize sensitivity of the atmosphere to aviation emissions
at specific location (position, altitude, time). = MET products for climate-optimized
trajectory planning require spatially and temporally resolved climate impact information.
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Climate impact mitigation potentials of alternative routings ATM
One Day Case Study of European Air Traffic on 18 December 2015

Matthes et al., 2020

Example 1: Lulea — Gran Canaria (ESPA-GCLP) Example 2: Baku — Luxembourg (UBBB-ELLX)
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Air traffic management for environment
How to integrate climate change information (aCCFs) during flight planning
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Air traffic management for environment
How to integrate climate change information (aCCFs) during flight planning
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Feasibility study: Step towards robustness of climate-optimized trajectories
Using algorithmic Climate Change Functions ECFs (MET service)

* FIyATMA4E developed a concept to identify climate-optimised aircraft trajectories which enables a robust
and eco-efficient reduction in aviation’s climate impact, quantifying non-CO, mitigation potentials.

* FIyATMA4E identified those weather situations and aircraft trajectories, which lead to a robust climate
impact reduction despite uncertainties. Methods on robust decision making under uncertainty conditions
are currently under development, resulting in quantitative estimates of robust mitigation potentials.
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Roadmap: Towards implementation of climate-optimized trajectories

* Implementation relies on provision of climate change functions to ATIM (trajectory optimisation)

* Feasibility study performed on infrastructure comprising MET components — resulting in roadmap
definition how to expand the current ATM system in order to enable climate-optimized trajectories

* Options on how to develop and how to integrate such novel MET products have been studied in earlier
projects, e.g. DG Aeronautics (REACT4C, 2010-2013) and SESAR2020 (e.g. ATMAE, 2016-2018).

* Candidate solutions are proposed: enabling solution
relying on aCCFs (Sol-FlyATM4E-01) and operational ﬂ[ ] \

solution on climate optimized trajectories (Sol-
FlyATMA4E-01)

* Further options on how to expand current ATM and
how to identify overall mitigation potential by climate-
optimized trajectories are currently explored, e.g.
ongoing SESAR2020 (Exploratory Research) FlyATMAE,
ALARM, but also Aeronautics ClimOP and ACACIA.

* Concepts on how to deal with prevailing uncertainties j
are required for a robust decision making.
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Characterization of prevailing uncertainties when providing climate change functions (CCFs)
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Characterization of prevailing uncertainties when providing climate change functions (CCFs)

Assessing weather
situations and their
mitigation potentials
shows strong variation of
climate effects with
synoptic situation, season
and geographic region of
flight.

Further research is
needed in order to
consolidate estimates of
climate effects and
mitigation gains. However,
feasibility studies on
possible implementation
are required in order to
prepare for future
implementation.
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Reanalysis data in order to identify mitigation potentials in real weather situtations

From earlier comprehensive
climate chemistry simulations
for summer and winter
algorithmic climate change
functions have been derived.

Applying these algorithms to
reanalysis data allows to
quantify anticipated climate
effect for a given geographic
position and time of flight.

Climate metrics (ATR) were
calculated with climate
response model AirClim

Individual non-CO, climate
effects show different type of
granularity, strength and
temporal variation of regions
with high impact.
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Characterization of prevailing uncertainties when providing climate change functions (CCFs)

Source of uncertaint Origin of uncertaint
Meteorological Forecast

Quality of meteorological forecast Weather forecast data contains deviation from
real world situations measured by quality of the
forecastand its skill.

Calculation of climate effects and impact

Representation of atmospheric processes Chemistry scheme (e.g. O production), cloud
parametrization, horizontal and vertical
resolution.

Change in GHG concentration/contrails Background (e.g. temperature biasin EMAC).

Radiative forcing (RF) Estimate of RF depends on assumption of linearity
for radiative transfer calculations.

Temperature calculation Temperature change calculation depends on
assumptions on efficacy and temporal evolution
of emissions/RF.

Physical climate metric Climate metric has to be appropriate for the
targeted climate objective but should still allow
some variation with respect to assumptions on
background emission scenario/model, emissions
evolution (pulse/sustained/future scenario),
climate indicator (e.g. averaged temperature
response), and time horizon (e.g. ATR20).

Development of Algorithms to represent CCFs (=aCCFs)

Development of algorithms in aCCFs Due to the fitting of CCF data to meteorology at
the location of emission, imperfections in the
relationships are identified.

Emission calculation in emission model

Emission index/conversion merged aCCFs Assumptions in emission model.

Table from FIYATMAE: List of sources of uncertainties for individual

aCCFs and for their associated calculations on climate effect.
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FIYATMA4E has developed a concept to characterize
prevailing uncertainties and introduced
mathematical concepts on how to integrate identified
uncertainties in the overall climate effects assessment.

This is a prerequisite in order to characterize
robustness of alternative climate-optimized aircraft
trajectories.

This methodology has been applied in a case study (summer &
winter, 2018) for aircraft movements in the European Airspace
where mitigation potentials due to climate-optimized routing
have been identified (Matthes et al., 2022, in prep.) and their
associated uncertainty ranges have been quantified.
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