
����������
�������

Citation: Otter, M. Signal Tables: An

Extensible Exchange Format for

Simulation Data. Electronics 2022, 11,

2811. https://doi.org/10.3390/

electronics11182811

Academic Editors: Martin Sjölund,

Peter Fritzson, Lena Buffoni, Adrian

Pop and Lennart Ochel

Received: 31 July 2022

Accepted: 31 August 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Signal Tables: An Extensible Exchange Format for
Simulation Data
Martin Otter

German Aerospace Center (DLR), Institute of System Dynamics and Control, 82234 Wessling, Germany;
martin.otter@dlr.de

Abstract: This article introduces Signal Tables as a format to exchange data associated with simula-
tions based on dictionaries and multi-dimensional arrays. Typically, simulation results, as well as
model parameters, reference signals, table-based input signals, measurement data, look-up tables,
etc., can be represented by a Signal Table. Applications can extend the format to add additional
data and metadata/attributes, for example, as needed for a credible simulation process. The format
follows a logical view based on a few data structures that can be directly mapped to data structures
available in programming languages such as Julia, Python, and Matlab. These data structures can be
conveniently used for pre- and post-processing in these languages. A Signal Table can be stored on
file by mapping the logical view to available textual or binary persistent file formats, for example,
JSON, HDF5, BSON, and MessagePack. A subset of a Signal Table can be imported in traditional
tables, for example, in Excel, CSV, pandas, or DataFrames.jl, by flattening multi-dimensional arrays
and not storing parameters. The format has been developed and evaluated with the Open Source
Julia packages SignalTables.jl and Modia.jl.

Keywords: serialization format; data management; Modelica model; FMI model; Modia model;
JSON; HDF5; credible simulation process

1. Introduction

In [1] the authors analyzed how to improve the development of credible models based
on Modelica Association standards such as the Modelica language [2] (https://github.com
/modelica/ModelicaSpecification, accessed on 30 July 2022) or FMI (Functional Mock-up
Interface) [3–5] (https://fmi-standard.org/downloads/, accessed on 30 July 2022). Their
analysis showed that there are various areas where improvements are needed. One of these
areas is the exchange of simulation results data between tools, with the overall goal of
storing the result of a simulation in a standardized (non-proprietary) format on file, in order
that all essential information is available to reproduce simulation runs. Such data should
be useable both by post-processing tools and for archiving it, e.g., for traceable quality
measures as needed for a credible simulation process. Currently, no satisfactory standardized
format of this kind is known; see the analysis in Section 2 (a slightly improved version of
Section 4.4 of [1]). There are further requirements that current formats do not support:

• Clocked variables are only defined at clock ticks, and are undefined otherwise.
• In the recently published FMI 3.0 [5], array sizes can change at event points.
• In certain experimental simulators, variables can appear and disappear during a

simulation; see for example [6,7].

These requirements mean that variables or variable elements are not defined over
all time instants of a simulation. Furthermore, the result of a simulation often undergoes
additional processing. As a simple use case, the absolute difference of two variables shall
be computed, and one or both variables or variable elements are not defined at all time
instants. It would be very helpful if simple standard operations in programming languages,
e.g., array subtraction, could be used to express such actions.

Electronics 2022, 11, 2811. https://doi.org/10.3390/electronics11182811 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11182811
https://doi.org/10.3390/electronics11182811
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6348-9569
https://github.com/modelica/ModelicaSpecification
https://github.com/modelica/ModelicaSpecification
https://fmi-standard.org/downloads/
https://doi.org/10.3390/electronics11182811
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11182811?type=check_update&version=2

Electronics 2022, 11, 2811 2 of 19

In Section 2, an analysis of existing formats is carried out. A new format called Signal
Tables is discussed in Section 3.

2. Overview of Existing Formats

Simulation results are usually stored in a file in binary or ASCII format. This includes
reference data as input for a model as well as reference results that a simulation should
reproduce within some tolerance. Most simulators have their own proprietary storage
format. For example, Simulink (https://www.mathworks.com/help/simulink/, accessed
on 30 July 2022) can store simulation data in various ways in the proprietary MAT-file
format (https://www.mathworks.com/help/simulink/ug/export-simulation-data-1.html,
accessed on 30 July 2022). Simpack (https://www.3ds.com/products-services/simulia/
products/simpack/, accessed on 30 July 2022) stores simulation data in its proprietary
Simpack Binary Result file format, SBR. Nearly all simulators offer an export of simulation
results in CSV format; see the discussion in Section 2.1. When exporting simulation data on
file, also other standard serialization formats are in use; see the discussion in Section 3.5.

This section provides a short overview of existing solutions that are typically used or
have been proposed for Modelica Association standards to store data from simulation of a
Modelica [2] or FMI model [3,4] in a standardized manner. Hereby, compression techniques
are utilized that are useful for object-oriented models.

2.1. CSV Format

When results need to be exchanged, such as reference results of the Modelica Standard
Library (https://github.com/modelica/ModelicaStandardLibrary, accessed on 30 July
2022) or of an FMI model, they are often stored in CSV format (https://en.wikipedia.o
rg/wiki/Comma-separated_values, accessed on 30 July 2022) thanks to its widespread
support in tools. Hereby, a result data set is seen as a table, where every column has a name
(optionally with “.” marks to indicate hierarchical structures and “[..]” to mark elements
of an array) and represents a time series. The first column contains the monotonically
increasing values of the independent variable, usually Time). A discontinuity is indicated
by two identical time instants; for an example, see Listing 1.

Listing 1. Example of a CSV file with a time event at 0.1 s.

Time, control.w_ref, motor.w, motor.on [3]
0.0 , 0.0 , 0.0 , 0
0.1 , 0.0 , 0.0 , 0
0.1 , 1.0 , 0.0 , 1
0.2 , 1.0 , 0.1 , 1
0.3 , 1.0 , 0.2 , 1

The essential advantage of this format is its simplicity and its widespread support.
However, there are numerous drawbacks. In particular, it is not suited for the large data
sets needed to archive simulation results. Also, additional data cannot be stored, such as
parameters or simulation metadata.

2.2. DSRES Format

The DSRES (Dynamic System RESult) storage format was developed in 1996 for larger
result data sets of object-oriented models by the author of this article. It is supported by
Dymola (https://www.3ds.com/products-services/catia/products/dymola/, accessed
on 30 July 2022), OpenModelica (https://openmodelica.org/doc/OpenModelicaUsersGu
ide/latest/technical_details.html#the-matv4-result-file-format, accessed on 30 July 2022),
Wolfram System Modeler (https://reference.wolfram.com/system-modeler/UserGuide/S
imulationCenterSimulationResultFiles.html#92254, accessed on 30 July 2022), and other
tools. There are several importing and exporting scripts available, especially for MATLAB
and Python (https://github.com/jraedler/DyMat/, https://github.com/kdavies4/Mo
delicaRes, accessed on 30 July 2022). The DSRES-format consists of a set of matrices that
are either stored in MATLAB’s MAT v4 binary format (https://www.mathworks.com/pr

https://www.mathworks.com/help/simulink/
https://www.mathworks.com/help/simulink/ug/export-simulation-data-1.html
https://www.3ds.com/products-services/simulia/products/simpack/
https://www.3ds.com/products-services/simulia/products/simpack/
https://github.com/modelica/ModelicaStandardLibrary
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.3ds.com/products-services/catia/products/dymola/
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/technical_details.html#the-matv4-result-file-format
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/technical_details.html#the-matv4-result-file-format
https://reference.wolfram.com/system-modeler/UserGuide/SimulationCenterSimulationResultFiles.html#92254
https://reference.wolfram.com/system-modeler/UserGuide/SimulationCenterSimulationResultFiles.html#92254
https://github.com/jraedler/DyMat/
https://github.com/kdavies4/ModelicaRes
https://github.com/kdavies4/ModelicaRes
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

Electronics 2022, 11, 2811 3 of 19

oducts/matlab.html, accessed on 30 July 2022) or in a textual format. The logical view is
as follows:

1. The string vector name contains the names of the signals. An index i of this vector
characterizes the corresponding signal i. An array variable is flattened into scalar
variables. For example, a vector v of length 3 with name "v" is flattened into three
signals: name = ["v[1]", "v[2]", "v[3]"].

2. The string vector description contains a description text for every signal. The unit of
a variable is stored at the end of every description text, e.g., "...[N*m]".

3. The integer matrix dataInfo[:,4] contains information on where and how a signal is
stored. A signal i is stored:

• in matrix data_j (see next item) with j = dataInfo[i,1];
• in column |k| of matrix data_j with sign(k) as a sign where k=dataInfo[i,2];
• with an interpolation type dataInfo[i,3] (0: linear interpolation);
• with an extrapolation type dataInfo[i,4] (=−1: undefined outside matrix, 0:

keep first/last value outside matrix, 1: linear interpolation through first/last two
points outside matrix).

4. The core data is stored in the matrices data_j, where every column of a matrix contains
the time series of one signal. The first column is the independent variable. Different
matrices can have different time axes, that is, a different number of rows. Typically,
two data matrices are present: one matrix with two rows that stores the parameters as
time series with the first and the last time points, and one matrix with the time-varying
signal data, which corresponds to the data stored in CSV file format.

Due to the connector definition, a Modelica model typically has many variables that
are identical or have opposite signs. The time series of these signals are stored in a compact
way with the DSRES format, as the actual time series of variables that are related by the
equations v1 = v2 = −v3 = −v4 = ... are stored in one column of a data matrix. If all
variables of a Modelica model are stored in a result file, the size of the file can often be
reduced by a factor of four to five using this technique.

A drawback of this format is that only floating point numbers are defined (integers
and Booleans need to be mapped to floating-point numbers, and string values cannot be
stored; it would be easy to generalize this format by storing the type of a variable while
storing the values of every variable type in a separate data_j matrix; however, this was not
done); furthermore, additional attributes and metadata cannot be stored. MATLAB MAT
v4 is a very old format that is seldom used today. The DSRES format was not designed
(and is not suited) for use inside a program to directly perform convenient post-processing
operations on simulation results.

2.3. HDF5-Based Formats

There have been a few attempts to define a standardized time series file format
based on HDF5 (https://www.hdfgroup.org/solutions/hdf5/, accessed on 30 July 2022),
an open source file format that supports large, complex, and heterogeneous data along with
meta-information stored hierarchically in one binary file, in particular, the MTSF format
(Modelica Association Time Series File Format) [8] and the SDF format (Scientific Data
Format) (https://github.com/ScientificDataFormat, accessed on 30 July 2022). In [8], it was
reported that simulation results up to 200 GB could be stored and retrieved in HDF5 format
on file. Although, HDF5 appears attractive for scientific data sets, especially simulation
result data, it has practical drawbacks: it is complex, there is essentially only one reference
implementation in C, and it is not suited for today’s cloud services. For a more detailed
discussion, see Section 1 in [9].

2.4. Recon Format

A more modern design is the recon format [9] (https://github.com/xogeny/recon,
accessed on 30 July 2022), in which simulation results, additional attributes and other

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.hdfgroup.org/solutions/hdf5/
https://github.com/ScientificDataFormat
https://github.com/xogeny/recon

Electronics 2022, 11, 2811 4 of 19

metadata are stored in a network-friendly way in either of two ways. Hereby, the core data
is packed with msgpack (https://msgpack.org/, accessed on 30 July 2022) with additional
structure on top of it based on the JSON data model (https://www.json.org/json-en.html,
accessed on 30 July 2022). In [9], tests were conducted to compare the recon format with
the DSRES format. The few tests performed indicate that the recon format needs about
10% less storage, writes data about 50% faster, and reads data about 10% faster than the
DSRES format, meaning that the recon format outperforms the DSRES format. The recon
format is not designed (and is not suited) for use inside a program to perform convenient
post-processing operations on simulation results.

3. Signal Tables

A Signal Table is basically a standard table in which the table columns can be multi-
dimensional arrays and additional attributes can be stored with every array and with the
table. In this section, a Signal Table is defined with a combination of ordered dictionaries
(ordered key/value pairs), multi-dimensional arrays, and scalars (string, floating-point,
integer, Boolean, etc., variables). This view can be directly mapped to data structures
available in programming languages such as Julia [10] (https://julialang.org/, accessed on
30 July 2022), Python (https://www.python.org/, accessed on 30 July 2022), and MATLAB
(https://www.mathworks.com/products/matlab.html, accessed on 30 July 2022). Below,
the notation is used by which a variable means the variable of the underlying model from
which a Signal Table is produced, while a signal of a Signal Table holds all the values of
this model variable produced from one or more simulation runs, as well as all attributes
associated with the model variable (such as its units).

First, a simple example of a Signal Table is provided in Section 3.1; then, the formal
definition of a Signal Table is provided in Section 3.2.

3.1. Simple Example of a Signal Table

The Julia code in Listing 2 shows how the Julia language can be used to define a simple
Signal Table consisting of the signal "time" (from the model variable time) and the signal
"motor.angle" (from the model variable motor.angle).

Listing 2. Simple Signal Table.

using SignalTables

t = range (0.0, 10.0, length =101) # = [0.0, 0.1, 0.2, ..., 10.0]
sigTable1 = SignalTable(

"time" => Var(values = t , unit="s", independent=true),
"motor.angle" => Var(values = sin.(t), unit="rad",

info = "Measured motor angle")
)
showInfo(sigTable1)
plot(sigTable1, "motor.angle")

Here, SignalTable(..) is a constructor of a Julia dictionary in which key => value
defines a new key and its value. The keys are defined with strings (e.g., "motor.angle").
Var(..) is a constructor of a Julia dictionary that holds the values and all attributes associ-
ated with a signal. As the keys of Var dictionaries are not hierarchical, it is more convenient
for these dictionaries to use Julia symbol keys instead of string keys, as Julia has special
support for them. When exporting to a file, string keys are used. For this reason, the value
associated with the key "motor.angle" is defined as above and not as Var("values" =>
sin.(t), "unit" => "rad", ...). The command showInfo(sigTable1) generates the output
shown in Listing 3.

https://msgpack.org/
https://www.json.org/json-en.html
https://julialang.org/
https://www.python.org/
https://www.mathworks.com/products/matlab.html

Electronics 2022, 11, 2811 5 of 19

Listing 3. Information about simple Signal Table.

name unit size eltypeOrType kind attributes
--
time "s" [101] Float64 Var independent=true
motor.angle "rad" [101] Float64 Var info="Measured motor angle"

As can be seen, the "time" and "motor.angle" values vectors have a size of 101 (the
key "values" of the signal "time" has the value [0.0, 0.1, 0.2, ..]; the key "values" of
the signal "motor.angle" has the value [0.0, 0.99.., 0.19.., ...]). The size of an array,
and thus the sizes of all its dimensions, is provided as a vector of integers. The element type
of these vectors, abbreviated as eltype, is Float64. The plot(..) call generates Figure 1.

0 2 4 6 8 10
time [s]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

motor.angle [rad]

Figure 1. Plot of simple Signal Table of Listing 2.

Below, the notation motor.angle[i] is the value of the variable motor.angle at time[i],
and is stored in the key "values". For example, motor.angle[3] = sin(time[3]) = sin(0.2)
= 0.198... is the value of the model variable motor.angle at time[3] = 0.2. Here, it is
assumed that the first value of a vector has an index of one (as in Julia and MATLAB) and
not zero (as in Python).

3.2. Formal Definition of a Signal Table

A Signal Table is an ordered dictionary of signals with string keys that hold the hierarchi-
cal names of the signals (for example, key = "a.b.c") and with values that are either Var,
Par, or Map dictionaries:

• A Var (=abbreviation for Variable) dictionary has a required key "values" with an
associated value that is a multi-dimensional array of any element type and has one of
the following formats (where vk is variable k and v_k is the associated value of the key
"values"):

– v_k is a vector within the i-th Var that has attribute "independent" = true:
v_k[:] are the values of independent variable vi.

– v_k is a vector with only one independent variable defined:
v_k[i] is the value of scalar variable vk at independent variable v1[i].

– v_k is a matrix with only one independent variable defined:
v_k[i,j] is the value of vk[j] at independent variable v1[i].

– v_k is an array with two or more dimensions:
v_k[i1,i2,...in,j1,j2,...jm] is the value of vk[j1, j2, . . . jm]
at independent variables v1[i1], v2[i2], . . . , vn[in].

• A Par (=abbreviation for Parameter) dictionary has a required key "value" representing
a parameter of any type and does not depend on the independent variables.

• A Map dictionary has no required keys, and collects attributes/metadata that are
associated with a Signal Table or a Var or Par dictionary.

Electronics 2022, 11, 2811 6 of 19

In all dictionary types, optional attributes can be stored with key/value pairs, for ex-
ample, the keys "independent", "unit", "info", "start", variability", and "alias". The
predefined attributes are defined in Appendix A. Applications can add additional attributes.

The Var, Par and Map dictionaries have been derived from the concepts developed
by Hilding Elmqvist for the modeling language Modia [11]. In particular, every Modia
Var, Par, and Map dictionary is a subset of the corresponding Signal Table dictionary (with
exception of unit handling). Differences include that a Var dictionary in Modia does not
have a "values" key and that units are stored via a separate "unit" key in a Signal Table,
whereas units are associated directly with values in Modia via the Julia package Unitful.jl
(https://github.com/PainterQubits/Unitful.jl, accessed on 30 July 2022).

In order to cope with undefined (missing) values, a value or element of an array can
have a value that is called missing, which is the notation used by the Julia language. High-
level programming languages support this concept in various forms; additional details are
provided in Section 3.4. The basic goal is that operations of any type are supported for
missing values. For example, the result of two operands is missing if one or both have a
value of missing, e.g., 2 + missing is missing or a > missing is missing. Missing values are
useful for supporting undefined values in any kind of operations in a convenient way.

If a Signal Table stores all variables with a start attribute, all parameters, a unique
identification of the model, the attributes for the experiment setup, a tool identification
(name,version), information to build the executable version of the model (e.g., name,
version, options of compiler, make file, . . .), and the operating system (name,version), it is
possible to reproduce the simulation run by

• using the tool and build information on the respective operating system,
• instantiating the corresponding model,
• initializing variables with the start attributes,
• using the values of the parameters from value,
• simulating with the attributes from Map experiment (see Table A3),
• setting absolute and relative tolerances with the help of the nominal, unbounded, toler-

ance attributes (for details, see FMI 3.0 [5]).

When used in this way, Signal Tables are one piece in a credible simulation process,
because every simulation result contains enough information to reproduce it.

3.3. Examples

In this section, various examples are used to demonstrate the ways in which Signal
Tables can be utilized. All of these examples have been defined and the results produced
using the open source Julia package SignalTables.jl (https://github.com/ModiaSim/Sign
alTables.jl, accessed on 30 July 2022) based on the Julia programming language. Package
SignalTables.jl provides about 35 functions operating on Signal Tables; see section Overview
of Functions (https://modiasim.github.io/SignalTables.jl/stable/Functions/OverviewOf
Functions.html, accessed on 30 July 2022). Several of them are used below, accompanied by
a short explanation.

In principle, these examples can be carried out in a similar way in other high-level
programming languages such as Python and MATLAB.

3.3.1. Various Signal Table Types

In the Signal Table of Listing 4, various different types of signals are defined.
Here, "_attributes" is a signal with attributes/metadata defined for the Signal Table.

tc is an integer vector [1,missing,missing,missing,missing,2,missing,...] which holds
the tick numbers of a clock (or is missing if the clock is not active). This vector is stored
as "baseClock" with variability="clock" in the Signal Table. The signal "motor.w_c" is a
Float64 signal that has a value at every clock tick. The attribute der="motor.w" of the signal
"motor.angle" defines "motor.w" as being the derivative of "motor.angle" with respect to the
independent variable "time". The signal "motor.file" is a string parameter. The command
showInfo(sigTable2) generates the output shown in Listing 5.

https://github.com/PainterQubits/Unitful.jl
https://github.com/ModiaSim/SignalTables.jl
https://github.com/ModiaSim/SignalTables.jl
https://modiasim.github.io/SignalTables.jl/stable/Functions/OverviewOfFunctions.html
https://modiasim.github.io/SignalTables.jl/stable/Functions/OverviewOfFunctions.html

Electronics 2022, 11, 2811 7 of 19

Listing 4. Signal Table with various types.

using SignalTables

t = 0.0:0.1:10.0
tc = [rem(i,5) == 0 ? div(i,5)+1 : missing for i in 0: length(t)-1]
sigTable2 = SignalTable(

"_attributes" => Map(experiment=Map(stopTime =10.0, interval =0.1)),
"time" => Var(values = t, unit="s", independent=true),
"motor.angle" => Var(values = sin.(t), unit="rad", der="motor.w"),
"motor.w" => Var(values = cos.(t), unit="rad/s"),
"motor.w_ref" => Var(values = 0.9* cos.(t), unit="rad/s"),
"baseClock" => Var(values = tc, variability="clock"),
"motor.w_c" => Var(values = 1.2* cos.((tc.-1)/2), unit="rad/s",

variability="clocked", clock="baseClock"),
"motor.file" => Par(value = "motormap.json",

info = "File name of motor characteristics")
)
showInfo(sigTable2)
plot(sigTable2, ("motor.w", "motor.w_c"), figure =2)
plot(sigTable2, "motor.w_c", xAxis="baseClock", figure =3)

Listing 5. Information about Signal Table with various types.

name unit size eltypeOrType kind attributes
--
_attributes Map experiment =...
time "s" [101] Float64 Var independent=true
motor.angle "rad" [101] Float64 Var der="motor.w"
motor.w "rad/s" [101] Float64 Var
motor.w_ref "rad/s" [101] Float64 Var
baseClock [101] Union{Missing,Int64} Var variability =...
motor.w_c "rad/s" [101] Union{Missing,Float64} Var variability =...
motor.file String Par info="File ..."

If an array has missing values, its Julia element type is Union{Missing,XXX}, meaning
that this type includes all instances of any of its argument types as objects. The plot(..)
commands generate Figure 2.

0 2 4 6 8 10
time [s]

1.0

0.5

0.0

0.5

1.0
motor.w [rad/s]
motor.w_c [rad/s]

Figure 2. Cont.

Electronics 2022, 11, 2811 8 of 19

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
baseClock

1.0

0.5

0.0

0.5

1.0
motor.w_c [rad/s]

Figure 2. Plot of Signal Table with various types.

In the first plot, the continuous signal "motor.w" and the clocked signal "motor.w_c" are
shown. As missing values are ignored in a plot, the missing values of "motor.w_c" are not
shown. The second plot(..) call has the signal "baseClock" as the x-axis, thus, an integer
vector with the numbers 1,2,...,21 of the clock ticks.

Because signal values are arrays, array operations can be conveniently used for post-
processing. An example is shown in Listing 6.

Listing 6. Post-processing of Signal Table with various types.

w = getValues(sigTable2, "motor.w")
wref = getValues(sigTable2, "motor.w_ref")
wc = getValues(sigTable2, "motor.w_c")

diff1 = w - wref
diff2 = w - wc

sigTable3 = SignalTable(
"time" => getSignal(sigTable2, "time"),
"diff1" => Var(values = diff1, unit="rad/s", info="= w - wref"),
"diff2" => Var(values = diff2, unit="rad/s", variability="clocked")

)
plot(sigTable3, ("diff1", "diff2"), figure =4)

In this example, the differences of the continuous signals "motor.w" and "motor.w_ref"
as well as the differences of the continuous signal "motor.w" and the clocked signal
"motor.w_c" (which has missing values) are computed and plotted. The result is shown in
Figure 3.

0 2 4 6 8 10
time [s]

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20 diff1 [rad/s]
diff2 [rad/s]

Figure 3. Plot of post-processed signals of Signal Table with various types.

Electronics 2022, 11, 2811 9 of 19

3.3.2. Transient Simulation

To demonstrate various aspects of simulation result handling, the very simple first
order system defined in Equation (1) is simulated below in various ways.

T · dx
dt

+ x = k · u; x(t0) = x0 (1)

Here, x = x(t) is a state with the initial value x0, u = u(t) is an input, and T, k are
parameters. Modia [11] is used to define and simulate this system with T = 0.2, k = 1.0,
u(t) = 1.0, and x0 = 0. Simulation results are shown as Signal Table in Listing 7 and a plot
of "u" and "x" is shown in Figure 4.

Listing 7. Signal Table of one simulation of model firstOrder.

name unit size eltypeOrType kind attributes
--
_attributes Map experiment=Map(tolerance =1e-6,

stopTime =2.0, ...),
time "s" [101] Float64 Var independent=true
x [101] Float64 Var start =0.0, fixed=true,

state=true, der="der(x)"
der(x) "1/s" [101] Float64 Var
T "s" Float64 Par
k Float64 Par
u Float64 Par

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

FirstOrder (CVODE_BDF, Float64)

u
x

Figure 4. Simulation result of one simulation with T = 0.2, k = 1.0, u(t) = 1.0, and x0 = 0.

Simulations can be carried out for various values of T and collected together in one
Signal Table; see Listing 8.

Listing 8. Parameter variation of model firstOrder resulting in one Signal Table based on five simula-
tions where the first independent variable is "time" and the second independent variable is "T" with
values = 0.1, 0.2, 0.3, 0.4, 0.5.

name unit size eltypeOrType kind attributes
--
_attributes Map experiment=Map(tolerance =1e-6,

stopTime =2.0, ...),
time "s" [101] Float64 Var independent=true
T "s" [5] Float64 Var independent=true
x [101,5] Float64 Var start =0.0, fixed=true,

state=true, der="der(x)"
der(x) "1/s" [101,5] Float64 Var
k Float64 Par
u Float64 Par

Electronics 2022, 11, 2811 10 of 19

Because "T" is varied, this signal is no longer a parameter and is instead an independent
variable defined as a vector with five elements: 0.1, 0.2, 0.3, 0.4, 0.5. The other variables
have a size of [101,5] instead of [101], as they are functions of two independent variables
("time", "T"). Note that the complete information of the parameter variation is stored in
this Signal Table, and therefore the parameter variation can be reproduced, for example,
as needed for a credible simulation process. A plot of "u" and "x" is shown in Figure 5.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

u
x[1]
x[2]
x[3]
x[4]
x[5]

Figure 5. Parameter variation of model firstOrder with T = 0.1, 0.2, 0.3, 0.4, 0.5, k = 1.0, u(t) = 1.0,
and x0 = 0.

Additionally, two or more parameters can be varied. This is demonstrated by addition-
ally varying k with the values 0.7, 0.8, 0.9, leading to a Signal Table with three independent
variables; see Listing 9.

Listing 9. Parameter variation of model firstOrder resulting in one Signal Table based on 5 × 3
simulations in which the first independent variable is "time", the second independent variable is "T"
with values = 0.1, 0.2, 0.3, 0.4, 0.5, and the third independent variable is "k" with values = 0.7, 0.8, 0.9.

name unit size eltypeOrType kind attributes

_attributes Map experiment=Map(

tolerance =1e-6,
stopTime =2.0, ...),

time "s" [101] Float64 Var independent=true
T "s" [5] Float64 Var independent=true
k [3] Float64 Var independent=true
x [101,5,3] Float64 Var start =0.0, fixed=true,

state=true, der="der(x)"
der(x) "1/s" [101,5,3] Float64 Var
u Float64 Par

Because the result of the complete parameter variation simulations is stored in one
Signal Table, post-processing is again convenient, as array operations can be directly
applied on the signal variables, which in this case are three-dimensional arrays. A plot of
"u" and "x" is shown in Figure 6. The legend is no longer displayed in the plot, as there are
too many curves, although the legend remains available via the plot toolbar.

Monte Carlo simulation, worst case optimization, multi-criteria optimization, etc., could
be handled in a similar way as shown above for parameter variations. However, this
would not be practical because many more independent variables are present and not all
combinations of the independent variables are evaluated. Such applications are treated by
enumerating the respective simulations with an integer and having this integer as a second
independent variable. For example, the parameter variation with T and k can be performed
as shown in Listing 10.

Electronics 2022, 11, 2811 11 of 19

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. Parameter variation of model firstOrder with T = 0.1, 0.2, 0.3, 0.4, 0.5, k = 0.7, 0.8, 0.9,
u(t) = 1.0, and x0 = 0.

Listing 10. Parameter variation of model firstOrder resulting in one Signal Table based on 15 simula-
tions in which the first independent variable is "time" and the second independent variable is "run"
with values = 1, 2, . . . , 15.

name unit size eltypeOrType kind attributes

_attributes Map experiment=Map(

tolerance =1e-6,
stopTime =2.0, ...),

time "s" [101] Float64 Var independent=true
run [15] Int64 Var independent=true
x [101,15] Float64 Var
der(x) "1/s" [101,15] Float64 Var
T "s" [15] Float64 Par index1="run"
k [15] Float64 Par index1="run"
u Float64 Par

The difference is that there is a new independent variable, "run" (shorthand for number
of simulation run), with the values 1, 2, . . . , 15, that enumerates all evaluated variations of T
and k. All time-varying variables are a function of "time" and "run". For example, "x" has
size [101,15] instead of [101,5,3] as in Listing 9. Furthermore, T and k are no longer Var
signals, and instead are stored as Par signals "T", "k" with size [15], and their relationships
to "run" are marked with the key index1 = "run" (e.g., k[i] is the value of k at run[i]). A
plot of "x" results again in Figure 6 (only the legends are different, although this is not
shown in the figure).

For Monte Carlo Simulation, worst case optimization, multi-criteria optimization, etc., ad-
ditional data need to be defined. For example, assume that a Monte Carlo Simulation is
performed in which T, k, and the start value of x are randomly selected. Assume that k is
described by a uniform distribution. Then, this information can be stored together with k
as shown in Listing 11.

Listing 11. Signal Table of a Monte Carlo Simulation run where the parameter k is defined with a
Uniform distribution in the range 0.7 . . . 1.1.

sigTableMonteCarlo = SignalTable(
...
"x" => Var(values = ..., startUncertainty = Map (...)),
"k" => Par(values = ..., uncertainty = Map(kind="Uniform",

lower =0.7, upper =1.1))
...

)

Additional details on defining uncertainty descriptions and other data for credible
model descriptions are provided in the companion paper [12].

Electronics 2022, 11, 2811 12 of 19

3.3.3. Steady-State Simulation

In a steady-state simulation, either the derivatives are set to zero and a (usually
nonlinear) equation system is solved for the unknowns, or one simulation is carried out for
a long time until there are no more variations in the states. In both cases, the result of one
steady-state simulation is one value for every variable. With ẋ = 0, the first order model is
transformed to the (trivial) steady-state model of Equation (2):

x = k · u (2)

By varying u with values 0.1:0.1:1.0, again, one Signal Table is constructed; see
Listing 12.

Listing 12. Steady-state simulations of model firstOrder resulting in one Signal Table.

name unit size eltypeOrType kind attributes
--
_attributes Map experiment=Map (...)
u [10] Float64 Var independent=true
stopTime [10] Float64 Var
x [10] Float64 Var
der(x) "1/s" [10] Float64 Var
T "s" Float64 Par
k Float64 Par

In a steady-state simulation, it is sometimes useful to add a signal "stopTime" contain-
ing the time instants when the underlying transient simulation reached its steady-state
condition. A plot of "x" over "u" is shown in Figure 7.

0.2 0.4 0.6 0.8 1.0
u

0.2

0.4

0.6

0.8

1.0
x

Figure 7. Steady-state simulations of model firstOrder with u = 0.1:0.1:1.0 and k = 1.1.

3.4. Missing Values

This section gives a brief overview of how missing values are handled in various
programming languages and file formats:

• In the Julia language, a missing value of any type is represented by the value missing.
The properties of this design (no efficiency degradation, small memory overhead) are
discussed in a blog posting (https://julialang.org/blog/2018/06/missing/, accessed
on 30 July 2022).

• In the R programming language (https://www.r-project.org/, accessed on 30 July
2022), a missing value is represented by the value NA (https://rlang.r-lib.org/refere
nce/missing.html, accessed on 30 July 2022), which is converted to a type-specific
missing value.

• In Python, there is no dedicated missing value; instead, NaN is used for floating-point
types and None is used for Python objects (https://jakevdp.github.io/PythonData

https://julialang.org/blog/2018/06/missing/
https://www.r-project.org/
https://rlang.r-lib.org/reference/missing.html
https://rlang.r-lib.org/reference/missing.html
https://jakevdp.github.io/PythonDataScienceHandbook/03.04-missing-values.html
https://jakevdp.github.io/PythonDataScienceHandbook/03.04-missing-values.html

Electronics 2022, 11, 2811 13 of 19

ScienceHandbook/03.04-missing-values.html, accessed on 30 July 2022). Certain
packages, such as pandas, have special support to make this more convenient.

• In MATLAB, a missing value is supported for certain data types and is represented by
the value missing, which is converted to a type-specific value (https://www.mathwo
rks.com/help/matlab/data_analysis/missing-data-in-matlab.html, accessed on 30
July 2022).

• In JSON, a missing value of any type is represented by the value null.

When Signal Table data are passed to a C or C++ function, for example, when calling
a plot function, these languages have no concept of missing values. Furthermore, line
plot functions usually do not have support for three-dimensional or higher-dimensional
arrays, and only support a limited set of types (for example, Bool types are often not
supported). In order to cope with these issues, package SignalTables.jl provides a function
getFlattenedSignal(signalTable,name) (https://modiasim.github.io/SignalTables.jl/stabl
e/Functions/SignalTables.html#SignalTables.getFlattenedSignal, accessed on 30 July 2022)
that returns a copy of a signal where the value or values are potentially flattened into a
matrix and/or potentially transformed to Float64 and missing values transformed to NaN;
the transformed "values" or "value" are stored in the new key "flattenedValues" and the
description is stored in the new key "legend".

For example, a Boolean signal with values=[true, missing, missing, false] receives
a new key flattenedValues=[1.0, NaN, NaN, 0.0]. An array signal "myarray" with a size of
[100,5,3] receives a new key flattenedValues with a matrix of size [100,15] and a new key
legend = ["myarray[1,1]", "myarray[2,1]", ..., "myarray[5,3]"] that provides a mean-
ingful legend for every column of this matrix. When a Signal Table is flattened with
getFlattenedSignal, it can be imported in standard table formats such as Excel (https:
//en.wikipedia.org/wiki/Microsoft_Excel, accessed on 30 July 2022), CSV, pandas (https:
//pandas.pydata.org/, accessed on 30 July 2022), or DataFrames.jl (https://github.com/J
uliaData/DataFrames.jl, accessed on 30 July 2022).

3.5. Signal Tables on File

An essential property of a Signal Table is that it can be stored on file or transported via
a network protocol. Potentially, every standardized serialization format can be used for
this purpose. Signal Tables are primarily designed for the widespread textual JSON format
(https://www.json.org/json-en.html, accessed on 30 July 2022), and can in principle be
transformed to any JSON-compatible binary serialization format (such as UPJSON, BSON,
MessagePack). A recent comparison of serialization formats is provided in [13]. Furthermore,
it is possible to store a Signal Table in HDF5 format (https://www.hdfgroup.org/solutions
/hdf5/, accessed on 30 July 2022); see below. All these formats encode data when writing
the data to file and decode data when reading the data from file.

Another approach is available via Apache Arrow (https://arrow.apache.org/, accessed
on 30 July 2022) and Apache Parquet (https://parquet.apache.org/, accessed on 30 July 2022),
in which data is used in a buffered way and communicated without encoding/decoding in
order to take modern hardware acceleration into account. For certain large applications, a
huge increase in speed is reported (https://voltrondata.com/news/arrow-columnar-anal
ytics/, accessed on 30 July 2022). TileDB (https://github.com/TileDB-Inc/TileDB, accessed
on 30 July 2022) builds on top of Apache Arrow for fast storage and accessing of large, dense,
and sparse multi-dimensional arrays.

In the following examples, first evaluations of storing Signal Tables via the JSON
format are shown. It is outside the scope of this article to perform a detailed analysis of
performance when using the JSON format along with evaluation of other options. Tests
with the conceptually similar recon format [9] have shown that better performance can
be achieved, as with the DSRES format, if the data are compressed appropriately. The
evaluation below uses the pure JSON format without compression.

https://jakevdp.github.io/PythonDataScienceHandbook/03.04-missing-values.html
https://jakevdp.github.io/PythonDataScienceHandbook/03.04-missing-values.html
https://www.mathworks.com/help/matlab/data_analysis/missing-data-in-matlab.html
https://www.mathworks.com/help/matlab/data_analysis/missing-data-in-matlab.html
https://modiasim.github.io/SignalTables.jl/stable/Functions/SignalTables.html#SignalTables.getFlattenedSignal
https://modiasim.github.io/SignalTables.jl/stable/Functions/SignalTables.html#SignalTables.getFlattenedSignal
https://en.wikipedia.org/wiki/Microsoft_Excel
https://en.wikipedia.org/wiki/Microsoft_Excel
https://pandas.pydata.org/
https://pandas.pydata.org/
https://github.com/JuliaData/DataFrames.jl
https://github.com/JuliaData/DataFrames.jl
https://www.json.org/json-en.html
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://arrow.apache.org/
https://parquet.apache.org/
https://voltrondata.com/news/arrow-columnar-analytics/
https://voltrondata.com/news/arrow-columnar-analytics/
https://github.com/TileDB-Inc/TileDB

Electronics 2022, 11, 2811 14 of 19

When storing a Signal Table in JSON format, additional metadata are stored and
transformations take place for types that cannot be directly represented in JSON to allow
reading from such a file to completely restore the original data:

• A dictionary of type SignalTable, Var, Par, Map is stored as a JSON object with an
additional element "_class":"<kind>", for example, "_class":"Var".

• An array with more than one dimension is stored as a JSON object with additional
information. For example, a Float32 matrix with 4 rows and 2 columns and with values
= [11 12; 21 22; 31 32; 41, 42] is stored as a JSON object as shown in Listing 13.
Note, the elements of the matrix are stored in a vector in column-major ordering.

Listing 13. JSON object of a Float32 matrix with values = [11 12; 21 22; 31 32; 41, 42].

{"_class" : "Array",
"eltype" : "Float32",
"size" : [4,2],
"layout" : "column-major",
"values" : [11, 21, 31, 41, 12, 22, 32, 42]}

• The "values" and "value" elements of a signal are not written on file if the key "alias"
is present. In Julia, the "values" and "value" data of alias signals are present only once
and are referenced from corresponding alias signals. When writing to file, the parent
alias "values" and "value" data is written on file, while the data of the child alias
signals (identified by the "alias" key) are not stored on file. The compression is thus
somewhat less than with the DSRES format sketched in Section 2.2 as negative alias
signals are not specially handled. In object-oriented modeling, trivial equations of the
form v1 = v2, v2 = −v3, v3 = v4, v4 = −v5 often occur. In the DSRES format, the
data of one of these variables is stored. With a Signal Table, the data of two of these
variables is stored (v1 = v2 = v5; v3 = v4). This is similar to FMI 3.0 [5], in which
negative alias variables are not supported in order to simplify the FMI description (in
FMI 1 and FMI 2 [4], negative alias variables are supported).

As an example, sigTable2 from Listing 4 is stored on file "sigTable2.json" with the
commands of Listing 14.

Listing 14. Commands to store sigTable2 from Listing 4 in JSON format on file.

using SignalTables
writeSignalTable("sigTable2.json", sigTable2, log=true)

Several web browsers have special support for conveniently showing JSON files. For
example, the result when inspecting the file "sigTable2.json" with Firefox (https://www.
mozilla.org/en-US/firefox/, accessed on 30 July 2022) is shown in Figure 8. Inspecting
such a file is therefore easy and convenient without additional tool support.

Julia has various packages that can be used to store data on file. In particular, the pack-
age JLD.jl (https://github.com/JuliaIO/JLD.jl, accessed on 30 July 2022) allows lossless
storage of any Julia object in HDF5 format by automatically adding attributes and naming
conventions to preserve type information for each object. A Signal Table can be stored with
this package with the commands of Listing 15.

Listing 15. Commands to store sigTable2 from Listing 4 in HDF5 format on file.

using FileIO
save(File(format"JLD", "sigTable2.json"), sigTable2)

https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://github.com/JuliaIO/JLD.jl

Electronics 2022, 11, 2811 15 of 19

Figure 8. View of the file sigTable2.json in Firefox. The hierarchy of the JSON objects can be
interactively expanded or folded.

4. Conclusions and Outlook

In this paper, a new format has been proposed for exchanging data associated with sim-
ulations based on dictionaries and multi-dimensional arrays. One design goal of this format
is that simulation runs become reproducible; that is, all information necessary to redo a
run or related runs can be stored. This is one important building block for a credible simula-
tion process. Furthermore, the simple format allows for very convenient post-processing
with standard array operations available in high-level languages such as Julia, Python,
and MATLAB.

In [9], two formats of the recon file format were proposed, namely, the “Wall” format
for writing data as a series of “bricks” in the order that data appear during simulation,
and the “Meld” format for writing data in rearranged form such that individual signals
can be easily extracted. The “Signal Table” format is similar in spirit to the “Meld” format,
and has the same advantages [9]: As simulation moves to cloud based systems, it will be
come increasingly cumbersome to move entire files back and forth between the cloud and the
desktop/browser. Having a format that supports "pulling" just the information that is required
on demand facilitates utilizing cloud/remote storage solutions which will lead to more responsive
interfaces and better data management practices and capacity. The meld format is designed for this
use case.

There are various possibilities for improvements to the Signal Table format. In par-
ticular, a compressed format could be defined such that missing values are not stored, only
non-missing values. For example, the values of clocked signals could be stored in separate
vectors without missing values together with the information about the underlying clock.
If variables are only defined in various phases of a simulation (and are otherwise miss-
ing), then only these phases can be stored. This approach is essentially used internally in
Modia [11]; although it makes little sense to expose such a complex internal data structure
to the user. The high-level view should still be the logical view presented in this article. This
is similar to the handling of sparse matrices, for which the user can conveniently perform
efficient array operations despite the complexity of their internal data structures.

Currently, Signal Tables can be stored on file in JSON or HDF5 format. It should be
possible to reduce the file size of the network-friendly JSON format using compression tech-
niques from recon, e.g., by compressing the values with the msgpack format. An evaluation

Electronics 2022, 11, 2811 16 of 19

is needed with respect to the file size and read/write time of large simulation data of the
various ways in which a Signal Table can be stored on file. The results should be compared
with current simulation result file formats, especially the DSRES and CSV formats.

To enable widespread use, the Signal Table format needs to be supported by many
simulation tools. In this respect, it is important to begin discussion with interested tool ven-
dors. Fine-tuning iteration might be needed to more precisely define all pieces of the format
as well as to eventually adapt corner cases and define further standardized attributes.

Funding: This work was organized within the European ITEA3 Call6 project UPSIM (https://itea3.
org/project/upsim.html, accessed on 30 July 2022)—Unleash Potentials in Simulation, grant number
19006. This work was partially funded by the German Federal Ministry of Education and Research
(BMBF), grant number 01IS20072H.

Data Availability Statement: The Julia package SignalTables is publicly available from https://gith
ub.com/ModiaSim/SignalTables.jl (accessed on 30 July 2022) under the MIT open source license.

Acknowledgments: I would like to thank Andreas Pfeiffer, Leo Gall, Hilding Elmqvist, and Jakub
Tobolář for their constructive improvement proposals.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Predefined Attributes of a Signal Table

In the following Tables A1–A3, the predefined attributes of the respective dictionary
types are summarized. Most keys in these tables are identical (or similar) to the attributes
defined in Sections 4.8 and 18.4.1 in the Modelica Specification 3.5 [2] and the attributes
defined in Sections 2.4.6 and 2.4.7 in the Functional Mock-up Interface Specification 3.0 [5],
with the exception that the Modelica/FMI attribute description is called info.

Table A1. Predefined attributes for Var dictionaries. Either "values" or "alias" must be present.
During the construction of a signal table, all Var with the attribute "alias" are automatically pro-
cessed and obtain a "values" key that references the "values" key of the alias variable. As a result,
"values" is present for all Var dictionaries after the construction of a Signal Table. All other keys
are optional.

Key Value Value
Type Description

"info" String Short description of signal.
"independent" Bool = true, if independent variable (i-th independent variable is

i-th Var in signal table with "independent" = true).
If not present, "independent" = false.

"values" Any See Section 3.2.
Elements have units defined with attribute "unit".

"alias" String Key of alias signal (see caption).
"unit" String Unit of all signal elements, e.g., "kg*m*sˆ2".

String Array unit[j1, j2, ...] is unit of variable element v[j1, j2, ...].
"displayUnit" String Display "values" with respect to "displayUnit".

using "displayUnit" for all signal elements.
String Array displayUnit[j1, j2, ...] is display unit of variable element

v[j1, j2, ...].
"start" Any Initial value of variable.
"fixed" Bool = true, if the variable value is "start" after initialization.

= false, if the variable value is "start" before initialization
(default = false).

"nominal" Float64 Nominal value of all variable elements.

https://itea3.org/project/upsim.html
https://itea3.org/project/upsim.html
https://github.com/ModiaSim/SignalTables.jl
https://github.com/ModiaSim/SignalTables.jl

Electronics 2022, 11, 2811 17 of 19

Table A1. Cont.

Key Value Value
Type Description

"unbounded" Bool = true indicates that during time integration, the variable
gets values much larger than its nominal value. Typically,
relative tolerance is set to zero to increase numerical stability,
see FMI 3.0 [5] (default = "false"). For example, the rotation
angle of a vehicle shaft would be typically defined with
"unbounded=true".

"variability" String = "continuous", "clocked", "clock", "discrete" or
"tunable". "tunable" is similar to "discrete" but
characterizes a parameter that is changed/tuned during
simulation (default = "continuous").

"state" Bool = true, if signal is a (continuous, clocked or discrete) state
(default = false).

"der" String Key of variable that is the derivative of the variable with
respect to the first independent variable.

"previous" String Key of variable that is the previous value of the variable at the
current clock tick. ("variability" must be "clocked" or
"clock").

"clock" String Key of clock associated with variable (values is only defined
at clock ticks and otherwise is missing).

"interpolation" String Interpolation of signal points (= "linear" or "none"). If not
provided, "interpolation" is deduced from "variability"
and otherwise it is "linear".

"extrapolation" String Extrapolation outside the values of the independent signal
(= "none", "HoldLastPoint", "LastTwoPoints";
default = "none").

In object-oriented modeling, trivial equations of the form v1 = v2, v2 = −v3, v3 = v4,
v4 = −v5 often occur. For a Signal Table, the data of two of these variables is typically
stored, for example, v1, v3, and variables v2, v5 are defined as aliases of v1, and variable v4
is defined as an alias of variable v3. This is similar to FMI 3.0 [5], in which alias variables are
defined, as opposed to the negative alias variables used in FMI 1 and FMI 2 [4], simplifying
the FMI description and its usage.

Units are defined as strings. There is no accepted standard for a string representation
of units. In a Signal Table, units are stored in the format of the generation tool. When using
the Julia package SignalTables, units are stored according to the string representation of
the Julia package Unitful, for example, unit="kg*m*sˆ2". Unitful has a precise and coher-
ent type system of units, and all operations can be carried out with units; for example,
0.5u"m" + 20u"cm" results in 0.7u"m". When using a Modelica tool, units are stored ac-
cording to the Modelica unit definition, for example, unit = "kg.m.s-2". The used unit
format is defined in a Signal Table with the attribute "unitFormat" in the Map "attributes";
see Table A3. The string representation of units in Unitful is similar to the string repre-
sentation of units of the Modelica Specification 3.5 [2] in Section 19, with the following
essential differences:

• Multiplication is characterized by "*" in Unitful and by "." in Modelica.
• Exponentiation is characterized by "ˆ" in Unitful and without a symbol in Modelica.
• Degree is characterized by "°" in Unitful and by "deg" in Modelica.

For example, "kg*m*sˆ-2" in Unitful is represented in Modelica as "kg.m.s-2". If
necessary, it is therefore straightforward to convert between string representations in
Modelica and in Julia/Unitful.

Electronics 2022, 11, 2811 18 of 19

Table A2. Predefined attributes for Par dictionaries. Either "value" or "alias" must be present. Dur-
ing the construction of a signal table, all Par with the attribute "alias" are automatically processed
and obtain a "value" key that references the "value" key of the alias variable. As a result, "value"
is present for all Par dictionaries after the construction of a Signal Table. All other keys are optional.

Key Value Value
Type Description

"info" String Short description of signal.
"value" Any Value of any type (does not depend on independent signals).
"alias" String Key of alias signal (see caption).
"unit" String Unit of all signal elements, e.g., "kg*m*sˆ2".

String Array unit[j1,j2,...] is unit of variable element v[j1, j2, . . .].
"displayUnit" String Display "value" with respect to "displayUnit".

using "displayUnit" for all signal elements.
String Array displayUnit[j1,j2,...] is display unit of variable ele-

ment v[j1, j2, . . .].
"index1" String See example of Listing 10.

Table A3. Predefined attributes for Map dictionaries. A Signal Table can have an optional key
"attributes" that is a Map with the optional attributes below.

Key Value Value
Type Description

"unitFormat" String Format of the string representation of units
(= "Unitful", "Modelica" or a tool specific format).

"model" Map Attributes defining the model that was used to generate the
Signal Table. Example for Modia:
model = Map(name="FirstOrder",
url="https://github.com/ModiaSim/Modia.jl/blob/main/
test/TestFirstOrder.jl", line=16,
commit="abd3f4ca053775e288e0fd1eff7b9b2ab3b2a372")
Example for Modelica:
model=Map(name="Modelica.Blocks.Examples.PID_Controller",
url="https://github.com/modelica/ModelicaStandardLibrary/
blob/master/Modelica/Blocks/package.mo", line=12,
commit="8d090810980e1e2e51559721cdd4c267a4c849ae").
A model might use models from other libraries and also other
resources like configuration files, tables, files defining the
reference motion etc. All this information should be included
with additional tool specific attributes.

"instantiation" Map Attributes defining the instantiation of the model with tool
specific attributes. Example for Modia:
instantiation = Map(FloatType="Float64",
evaluateParameters=true, logCode=true, logTiming=true)

"experiment" Map Attributes defining the setup of one simulation run.
Example for Modia:
experiment = Map(startTime=0.0, stopTime=10.0,
interval=0.02, tolerance=1e-6, algorithm="CVODE_BDF",
dtmax=0.1, log=true).
Attributes startTime, stopTime, interval, tolerance are
standardized. startTime, stopTime, interval are with
respect to the unit defined for the first independent variable.
tolerance is the relative tolerance. All other attributes are
tool specific.

"statistics" Map The statistics of the simulation run or the simulation runs that
produced the Signal Table in form of tool specific attributes.
Example for Modia:
statistics = Map(nResults = 501, nf_total = 1248,
nf_integrator = 745, nf_zeroCrossings = 0, ...)

Electronics 2022, 11, 2811 19 of 19

Table A3. Cont.

Key Value Value
Type Description

"tool" Map Attributes defining the tool that was used to simulate the model.
Example for Modia:
tool = Map(name="Modia", version="0.9.2",
uuid="cb905087-75eb-5f27-8515-1ce0ec8e839e",
url="https://github.com/ModiaSim/Modia.jl/releases
/tag/v0.9.2",
commit="2948cdd8d57c977ddbbb73bc806670a014572652")
Example for OpenModelica:
tool = Map(name="OpenModelica", version="1.19.2",
url="https://build.openmodelica.org/omc/builds/
windows/releases/1.19/2/64bit/
OpenModelica-v1.19.2-64bit.exe").

"environment" Map Attributes defining the environment in which the tool was used.
Example for Julia:
environment = Map(name="Julia", version="1.7.3",
url="https://julialang-s3.julialang.org/bin/winnt/
x64/1.7/julia-1.7.3-win64.zip")

"system" Map Attributes defining the operating system and the processor.
Example: system = Map(name="Microsoft Windows 10
Enterprise", build="10.0.19044", processor="Intel64
Family 6 Model 142 1919 MHz", RAM="32.575 MB").

References
1. Gall, L.; Otter, M.; Reiner, M.; Schäfer, M.; Tobolář, J. Continuous Development and Management of Credible Modelica Models. In

Proceedings of the 14th International Modelica Conference, Linköping, Sweden, 20–24 September 2021; pp. 359–372. [CrossRef]
2. Modelica Association. Modelica—A Unified Object-Oriented Language for Systems Modeling. Language Specification Version

3.5. 2021. Available online: https://specification.modelica.org/maint/3.5/MLS.pdf (accessed on 30 July 2022).
3. Blochwitz, T.; Otter, M.; Akesson, J.; Arnold, M.; Clauss, C.; Elmqvist, H.; Friedrich, M.; Junghanns, A.; Mauss, J.; Neumerkel, D.;

et al. Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models. In Proceedings of the
9th International Modelica Conference, München, Germany, 3–5 September 2012; pp. 173–184. [CrossRef]

4. Modelica Association. Functional Mock-up Interface for Model Exchange and Co-Simulation—Version 2.0.3. 2021. Available
online: https://github.com/modelica/fmi-standard/releases/download/v2.0.3/FMI-Specification-2.0.3.pdf (accessed on 30
July 2022).

5. Modelica Association. Functional Mock-up Interface Specification—Version 3.0. 2022. Available online: https://fmi-standard.o
rg/docs/3.0/ (accessed on 30 July 2022).

6. Zimmer, D. Equation-Based Modeling of Variable-Structure Systems. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2010.
[CrossRef]

7. Tinnerholm, J.; Pop, A.; Sjölund, M. A Modular, Extensible, and Modelica-Standard-Compliant OpenModelica Compiler
Framework in Julia Supporting Structural Variability. Electronics 2022, 11, 1772. [CrossRef]

8. Pfeiffer, A.; Bausch-Gall, I.; Otter, M. Proposal for a Standard Time Series File Format in HDF5. In Proceedings of the 9th
International Modelica Conference, Munich, Germany, 3–5 September 2012; pp. 495–505. [CrossRef]

9. Tiller, M.; Harman, P. Recon—Web and network friendly simulation data formats. In Proceedings of the 10th International
Modelica Conference, Lund, Sweden, 10–12 March 2014; pp. 1081–1093. [CrossRef]

10. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98.
[CrossRef]

11. Elmqvist, H.; Otter, M.; Neumayr, A.; Hippmann, G. Modia—Equation Based Modeling and Domain Specific Algorithms. In
Proceedings of the 14th International Modelica Conference, Linköping, Sweden, 20–24 September 2021; pp. 73–86. [CrossRef]

12. Otter, M.; Reiner, M.; Tobolář, J.; Gall, L.; Schäfer, M. Towards Modelica Models with Credibility Information. Electronics 2022,
11, 2728. [CrossRef]

13. Viotti, J.C.; Kinderkhedia, M. A Survey of JSON-compatible Binary Serialization Specifications. arXiv 2022, arXiv:2201.02089.

http://doi.org/10.3384/ecp21181359
https://specification.modelica.org/maint/3.5/MLS.pdf
http://dx.doi.org/10.3384/ecp12076173
https://github.com/modelica/fmi-standard/releases/download/v2.0.3/FMI-Specification-2.0.3.pdf
https://fmi-standard.org/docs/3.0/
https://fmi-standard.org/docs/3.0/
http://dx.doi.org/10.3929/ethz-a-006053740
http://dx.doi.org/10.3390/electronics11111772
http://dx.doi.org/10.3384/ecp12076495
http://dx.doi.org/10.3384/ecp140961081
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.3384/ecp2118173
http://dx.doi.org/10.3390/electronics11172728

	Introduction
	Overview of Existing Formats
	CSV Format
	DSRES Format
	HDF5-Based Formats
	Recon Format

	Signal Tables
	Simple Example of a Signal Table
	Formal Definition of a Signal Table
	Examples
	Various Signal Table Types
	Transient Simulation
	Steady-State Simulation

	Missing Values
	Signal Tables on File

	Conclusions and Outlook
	Appendix A
	References

