
Development of an application programming interface for launching and
managing dynamic networks of distributed software

Bachelor’s thesis

for the degree

Bachelor of Engineering

of the course Informationstechnik

at the Baden-Wuerttemberg Cooperative State University Mannheim

by

Sebastian Nocke

Submission on September 16, 2022

Processing Period: 01.07.21 – 17.09.21
Student id, course: 9944135, TINF19IT1
Department: Institut für Softwaretechnologie: Intelligente und Verteilte Sys-

teme
Apprenticing company: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Company’s supervisor: Niklas Först
University’s reviewer: Prof. Dr. Holger Hofmann

Declaration

I hereby assure you that I have written my bachelor’s thesis on the

Subject

Development of an application programming interface for launching and
managing dynamic networks of distributed software

independently and that I have not used any other sources and aids than those
indicated.

I also assure you that the electronic version submitted is the same as the printed
version.∗

∗ if both versions are required.

Köln, September 16, 2022

Contents

Listings 1

1. Introduction 3

2. Preliminaries 4
2.1. Distributed computing . 4

2.1.1. RCE . 5
2.2. Containerization . 7
2.3. Kubernetes . 8

2.3.1. Volumes . 9
2.4. Microservices . 10
2.5. REST API . 11

2.5.1. Requests . 12
2.6. Quarkus . 13
2.7. Cloud system environment . 15

3. Requirements and interface definition 17
3.1. Requirements . 17

3.1.1. Namespace management . 18
3.1.2. Catalog management . 18
3.1.3. Network management and interaction 19

3.2. Interface . 20
3.2.1. Example API calls . 21

4. Concept of the API 27
4.1. Splitting functionality . 27

4.1.1. Hierarchy . 29
4.2. Kubernetes setup . 31

5. Implementation 33
5.1. Catalog-Service . 33

5.1.1. Program catalog . 35
5.1.2. File catalog . 37

5.1.3. Persistent storage . 39
5.2. Instance-Manager . 40

5.2.1. Instance creation . 41
5.2.2. Specific-Instance-Manager . 41
5.2.3. Communication . 43

5.3. Frontend-Service . 45
5.3.1. Catalog forwarding . 45
5.3.2. Network forwarding . 47
5.3.3. Namespace forwarding . 47

6. Conclusion 49
6.1. Current state . 49
6.2. Future prospect . 50

List of Figures

2.1. View of an RCE workflow [10] . 6
2.2. Network View of RCE [10] . 7
2.3. Components of Kubernetes . 9

3.1. Example GET request . 23
3.2. Example POST request . 24
3.3. Example POST request . 25
3.4. Example DELETE request . 26

4.1. Diagram of the service structure . 30
4.2. Visualization of the Kubernetes setup 32

5.1. Catalog-Service UML class diagram 34
5.2. Instance-Manager UML class diagram 42
5.3. Frontend-Service UML class diagram 46

Listings

2.1. Quarkus simple REST handler example 14
2.2. Quarkus complex REST handler example 15

5.1. Stream operation example . 36

- 1 -

Abstract

Creating networks of distriubted software is a complex laborious task. This is due to
the fact that many aspects have to manually configured. Each instance of a program
has to be configured and and created. Tools like Kubernetes make it easier to create
such networks as it provides the ability to create networks on a single computer.
Kubernetes however does not reduce the amount of manual work that has to be done
by a user. Additionally the communication with instances that are deployed inside
a network can be tedious as not every program running in such a network may be
exposed for external acces.

To tackle this problem create an API that reduces the amount of work that has to
be done by a user to create distriubted software networks. The goal of this API is
to make it possible to configure, create, and manage networks with minimal effort.
Furthermore the API is supposed to make the process of running such networks more
safe by strictly controlling which programs can be run via the API.

1. Introduction

The development of distributed software involves several difficulties. One of these
difficulties is testing the software and ensuring the intended behavior is met. Methods
of testing that are used on non distributed software can can be used for testing
distributed software, but will not cover some aspects of the software. The distributed
aspect of the software needs special attention in the testing process.

Distributed software that is deployed to a network of computers that are inter-
connected. In order to ensure the intended behavior of a software in a network is
given, it has to be tested. However this testing is not trivial, as a network of the
software, that is to be tested, has to be created and a test workload has to be run.
Manually creating such networks is a tedious and time consuming task that can be
virtually impossible for software, that is designed to run in networks of hundreds of
instances. The amount of manual effort that is required for the testing in a networked
environment implies, that this kind of testing is performed less often than other
testing methods.

The example of distributed software testing shows that an API for simple and
automated creation of these networks has real application. In addition to the
creation of distributed software network the API will be able to interact with the
instances in a network. These capabilities ensure, that the API can be used to create
automated tests for distributed software.

We implement an API that addresses the previously mentioned aspects. This is done
in the scope of this bachelor thesis.

- 3 -

2. Preliminaries

This chapter describes the preliminaries for this work. In Section 2.1 we introduce the
concept of distributed computing followed by a presentation of RCE in Subsection
2.1.1, which is the software, that will be used to test the API. We establish the
principle of containerization in Section 2.2 before showing the software Kubernetes in
Section 2.3. Section 2.4 will describe the idea of microservices. Next we present the
Quarkus framework that we use for the implementation in Section 2.6. Following
this we introduce the concept of a REST API in Section 2.5. At last we present the
server infrastructure that is used for deployment of the project in Section 2.7.

2.1. Distributed computing

Distributed computing is done by using software that runs on a distributed system.
Distributed systems are a collection of processors that are connected via a network.
Some common features of a distributed system are no common physical clock, no
shared memory, geographical separation, as well as autonomy and heterogeneity
[9]. The missing of a common physical clock is an elementary component of a
distributed system and can introduce disruption and asynchrony to the system. The
fact that the system does not share memory leads to information sharing via messages.
This approach is also well suited to circumvent the lack of a common system clock.
Geographical separation of processors is a common property but is not necessary
for a system to be seen as a distributed system. Some distributed system can cover
vast distances while others have all of their processors within meters of each others.
Autonomy and heterogeneity describe the fact, that the individual processors of the

- 4 -

2.1. Distributed computing

system can differ, e.g., do not have the same speed. This also extends to the topic of
operating systems as they too can be different. The execution of a program on such
a system that uses more than one processor is called distributed computing.

The reasons for using distributed computing include resource sharing, enhanced
reliability and increased performance to cost ratio [9]. Distributed systems enable
resource sharing by making software or data available that is located on other
processors. The usage of distributed computing enhances the reliability because
resources and programs can be provided by replicas in case the original source is not
accessible. This behaviour increases the availability of resources, ensures the integrity
of them, and provides fault-tolerance. The effectiveness of these characteristics
depends on the needs and the implementation of a distributed system. For example
a system that has to provide information where its authenticity is vital while access
to the data is not always required, the data integrity and fault-tolerance may be
higher prioritized than the availability of the system.

2.1.1. RCE

RCE (Remote Component Environment) is a workflow-driven integration environ-
ment. It is created for design and simulation of complex, multi-disciplinary systems,
such as aircraft or ships. The flexibility is achieved by allowing users to integrate their
own design and simulation tools. RCE allows the creation of automated workflows
that consist of the integrated tools. Workflows may be executed on a distributed
network of RCE instances. An example of a workflow is shown in Figure 2.1 For
example the design and evaluation for a new type of airplane with different working
groups with different know-how like aerodynamics or aeroelastics can be supported
by a workflow with different simulation tools to simulate the airplane as a whole. In
order to manage such a project, individual tools are chained together so that simu-
lation results are used as input data for other simulations. RCE is an open-source
software that was developed by the Frauenhofer SCAI and German Aerospace Center
(DLR) from 2006 through 2010. Since 2010, DLR has been developing the software
on its own. It is based on the Eclipse Rich Client Platform [3] [10].

- 5 -

2.1. Distributed computing

Figure 2.1.: View of an RCE workflow [10]

RCE has a wide range of features, but only the ones that are relevant to this work
will be presented. This feature is the distributed execution of a workflow. For this
multiple RCE instances have to be connected in a network. The instances of a
network can then publish tools that can be used to construct workflows that use
these. In Figure 2.2 we show a screenshot of the Network View which is a view in
RCE that shows connected instances and the workflows that they publishing to the
network. When a user runs a workflow that incorporates tools published by other
instances the tool will be run by the instance publishing it. This results in RCE
executing a workflow in a distributed system. RCE will orchestrate the execution of
the tools on different instances. This includes starting a tool only when all its inputs
are provided and collecting its output in order to pass it to a tool that depends on
that data.

- 6 -

2.2. Containerization

Figure 2.2.: Network View of RCE [10]

2.2. Containerization

Containerization provides a modern alternative for virtualization. In the scope of
cloud computing virtualization is used to manage system resources and enable the
execution of different software while restricting access to other processes. Container-
ization is becoming a replacement for virtualization in the area of cloud computing
[11]. Containerization offers most of the benefits of virtualization while providing
additional benefits. Virtualization is based on the usage of a hypervisor that divides
the resources of the system and runs virtual machines using a specified amount of
the total system resources. A virtual machine provides an entire operating system
as well as the program and its dependencies. Containerization works by running
independent containers for each program. Containers do not provide the kernel of
an operating system because the kernel of the host operating system is shared with
them. A container runtime is used for managing containers on a system. Resources
of the host system are provided on demand by the container runtime, opposed to the
approach of virtualization, where resources are assigned statically by the hypervisor.

- 7 -

2.3. Kubernetes

The container runtime, also known as a container engine, creates a running container
from an image file. Such an image contains the application itself, as well as its
dependencies. As a result a container image is loaded with all the data that is
necessary for it to be run by the container engine.

Container images are defined by a layered structure. Each layer is an image on
its own. Every container image starts with a layer of binaries and libraries for its
operating system. On top of that any amount of additional layers can make up a
container image. Such a layer could for example be a specific Linux distribution or
the image of an application like an Apache server. When creating a new container
image the included layers can only be read. The top most layer is mounted as the
writable container as shown in [11]. Creating a container image by building a stack
of read-only image leads to a lightweight approach, as images can easily be changed.

One of the tools that provide the creation as well as the execution of container
images is Docker [4]. Docker provides a container runtime, a tool for the creation
of container images, and Docker Hub which is a database for sharing and pulling
container images.

2.3. Kubernetes

Kubernetes is an open-source container orchestration system for automating software
deployment, scaling, and management. It was originally designed by Google in 2014
before giving it to the Cloud Native Computing Foundation. Originally Kubernetes
exclusively worked with Docker, but since 2016 it can interface with different container
runtimes. Kubernetes is designed to be highly scalable by running on clusters using
a master called the Kubernetes control plane, which interacts with the workers called
Nodes of the cluster [2]. The structure of a Kubernetes cluster can be seen in Figure
2.3.

Kubernetes wraps the containers that are spawned in Pods. Pods consist of one or
more containers inside it. Containers running in the same pod share their storage
and network resources. Containers should be in the same pod, if they run tightly

- 8 -

2.3. Kubernetes

Figure 2.3.: Components of Kubernetes

coupled i.g. containers that depend on each other to fulfill their purpose. In order to
run containerized applications using Kubernetes the user defines a deployment and
applies it to the cluster. Deployments specify all the information that Kubernetes
needs to know in order to create and manage the applications. These information
include the container image of the applications, crash handling, exposing of ports,
replicas and many more.

Kubernetes can create isolated groups of applications by using namespaces. Many
resources like deployments for example have a namespace-based scope. As a result,
such a resource must have a unique name inside the namespace, in that it exists, while
a resource with the same name can be created in another namespace. Namespaces
can be used to separate projects inside a cluster.

2.3.1. Volumes

Files that are written on disk by a container running inside a Kubernetes pod are not
saved persistently. In case the pod crashes or is restarted in any other way, it returns
to a clean state. To save data persistently, a storage that outlasts the lifetime of a pod
is necessary. Kubernetes provides this kind of storage via volumes. A volume has to

- 9 -

2.4. Microservices

be claimed using a PersistentVolumeClaim. The creation of a PersistentVolumeClaim
binds a specified volume to it. Volume claims are namespace-scoped. A volume claim
allows pods that are created in the same namespace access to the volume it is bound
to. The NFS-volume (Network File System-volume) is a specific type of volume.
It uses a network attached file system to provide persistent storage. Usage of an
NFS-volume requires a preconfigured network attached file system to be accessible
from the Kubernetes node.

2.4. Microservices

The microservice architecture does not have a universal definition. For this work we
define a microservice as a service that has a single task and is capable of doing that
task on its own. As the name suggests most microservices are small compared to other
service architectures. This is a result of tackling one task per microservice. However
a microservice is not defined by a small size of its binaries or its interface as some
microservices can be larger given a bigger task to be handled by it. Microservices are
often deployed as a cluster of multiple microservices that interact with each other
using messages. Messages of microservices do not have a specific format, however
the following a standard is recommended to increase the interoperability. In most
real world use cases a single microservice is not capable of solving the requirements
for that use case. This is the reason for microservices being deployed in a group with
each of them solving a part of the total requirements. The microservice architecture
addresses flexibility as well as scalability. Flexibility is improved, because a single
microservice in a group can be modified and updated without having an influence on
the other microservices. A microservice itself should be designed to easily be scalable
thus resulting in the entire service structure being easily scalable [12].

- 10 -

2.5. REST API

2.5. REST API

A REST API is a special kind of API. It provides the interface by exposing endpoints
that can be accessed by users via requests. We describe requests in detail in Section
2.5.1. As the name implies, this kind of API follows the constraints and philosophy of
REST (Representational State Transfer) [5]. In the following we will present aspects
that define REST APIs.

A REST API depends on the server-client architecture. The client-server architecture
is based on a server providing service that users can interact with. Users start the
interaction between themself and the server by sending a request to the server. The
server and more specifically the services that the user addresses will then either
accept and handle the request or refuse it. Due to the fact that users can initiate
communication with the server at any chosen time the services has to be accessible
and thus running at all times. This is often realised by the service running in an
endless loop waiting for requests form clients.

REST APIs are stateless which means that the server does not store a session state.
Statelessness is an extension to the previously described server-client architecture.
Each request that a user issues to the server has to contain all the information that
is required for it to be executed. Users have to manage the session state on their
own and cannot make usage of a context that is stored on the server. The usage of a
stateless design has implications on multiple properties of the API. The visibility of
the API is improved because the contents of a request fully describe the intention
of the request. Reliability as well as scalability are improved because request are
not required to be handled by the same instance of the service. This is a result of
absence of a session state in the service. In the case of a fault of a service such as
a crash there is no client specific data that has to be reconstructed. For the same
reason the service can be supplied by multiple servers where requests are distributed
by e.g. a load balancer thus creating a simple foundation for scalability.

A REST API can implement caching in order to improve the efficiency of network
usage. The cache acts as an mediator between the user and the service. Services
that use caching have to mark data of responses as either cacheable or non-cacheable.

- 11 -

2.5. REST API

Data that is marked as cacheable can be cached in a client side cache for following
equivalent requests. Caching provides the ability to lessen the amount of requests
that the services has to handle while introducing the risk of inaccurate and outdated
data. Consequently the usage of a cache has to be used implemented in a balance of
performance and efficiency gains opposed to the risk of the usage of imprecise data.

REST APIs make use of a uniform interface. This aspect of the API follows the
concept of generality. It leads to a looser coupling of the implementations and the
services they provide. The decoupling of the implementation from a services improves
the ease of replacing the implementation. Beside these advantages the usage of a
uniform interface can lead to a lower efficiency as data has to be formatted to the
uniform format instead of using a service specific format that can be optimised for
its needs. As REST is optimized for common cases of the Web and its hypermedia
structure it does not provide an optimal interface for every task. The uniform
interface of a REST API is defined by the identification of resources, manipulation
of resources through representations, self-descriptive messages, and hypermedia as
the engine of application state [5].

2.5.1. Requests

Users send requests to a REST API for creating, retrieving, updating, and deleting
resources. This is implemented by the usage of different method types. The method
types for requests are listed in the following [6].

GET Retrieval of a resource without modification in any way: Upon successfully
execution a GET request produces a response with the status code 200 with
its response body containing the requested data. A GET request can fail due
to the requested resource not being found which will return status code 404 or
due to an incorrectly formed request.

POST Creation of a new subordinate resource: A POST request creates a new
resource that is subordinate to the path defined by the request. On successful
completion a response with status code 201 should be returned that also
contains a description of the resource as its body.

- 12 -

2.6. Quarkus

PUT Primarily updating an existing resource or creation if it does not exist: If a
PUT request creates a new resource it returns a response with status code
201. In case such a request is used to update a resource the status code of the
response should be 200.

DELETE Deletion of a resource: Successfully deleting a resource returns status code
200 in case the resource has been deleted or 202 in case its deletion has been
queued. Calling a DELETE request on a resource that does not exists results
in a response with status code 404.

PATCH Partially updating a resource: A PATCH request is used to update part
of an already existing resource and returns a response with status code 200.
PATCH requests will fail with status code 404 if the resource whose updating
is requested does not exist.

2.6. Quarkus

Quarkus is a framework build for the Java programming language. It is developed
under the open source Apache License version 2.0. The purpose of Quarkus is to
move Java away from its typical monolithic application structure into the cloud
environment of containers and Kubernetes. Using Quarkus developers can create
cloud-native applications with native Kubernetes support [8].

Quarkus aims to make the development of cloud-native applications efficient and
easy. This is done by providing tools, libraries, and extensions. Kubernetes is tightly
integrated into Quarkus making it easy to deploy applications into a Kubernetes
cluster. Through this integration the generation of Kubernetes resources can be
done automatically. Container images of applications developed using Quarkus can
also be automatically built and deployed. Developing applications is supported
using two types of coding styles. The imperative coding style that is most common
when using the Java programming language. Imperative programming is a style of
programming where instructions are defined in an order. Execution of a program
using the imperative programming style is done by the order in which the instructions

- 13 -

2.6. Quarkus

are defined. The other programming style that is supported is reactive programming.
Reactive programming is a declarative style in which handlers for events are defined.
The concept builds on an application running an waiting for events in order to trigger
the corresponding handlers. Event handlers are executed asynchronous which enables
the application to listen to new events while an event handler is executed. The events
for reactive programming in Quarkus are REST requests. A simple example of a
REST request handler in Quarkus is shown in Listing 2.1. Listing 2.2 depicts a more
complex handler configuration.

1 class ServiceProvider {
2

3 @GET
4 @Path("/v0/simple")
5 public Response restHandler () {
6 return Response .ok("Simple response ").build ();
7 }
8 }

Listing 2.1: Quarkus simple REST handler example

The code example shown in Listing 2.1 would provide a handler for REST GET
request at the “/v0/simple” endpoint. This request does not receive any sort of
parameters and will always return a response with the status code 200 and contains
the message “Simple response”.

The complex example shown in Listing 2.2 is an implementation of a REST DELETE
request. The endpoint for this request handler is put together by two separate Path
annotations. Path annotations that are specified for a class are combined with
annotations for methods inside that class thus resulting in the endpoint for the
request being “/v0/complex/resourceName” where resourceName is a parameter
of the request. Parameters are made accessible to the method by the PathParam
annotation. For the sake of keeping the code example short the two methods
resourceExists and deleteResource are used but their implementation is not shown.
As the names of the methods state the first one would check if the resource specified

- 14 -

2.7. Cloud system environment

by the parameter exists while the second one would delete the resource. The response
contains the status code 200 and the message “Resource deleted” in a JSON formatted
entity as long as the resource exists. If however the resource does not exist the status
code is 400 and the message “Resource does not exist” is sent.

1 @Path("/v0")
2 class ServiceProvider {
3

4 @DELETE
5 @Produces (MediaType . APPLICATION_JSON)
6 @Path("/ complex /{ resourceName }")
7 public Response restHandler (@PathParam ("

resourceName ") String resourceIdentifyer) {
8 if (resourceExists (resourceIdentifyer)) {
9 deleteResource (resourceIdentifyer);

10 retrun Response .ok("{ message : \" Resource
deleted \" }").build ();

11 } else {
12 return Response .status (400).entity("{ message :

\" Resource does not exist \" }").build ();
13 }
14 }
15 }

Listing 2.2: Quarkus complex REST handler example

2.7. Cloud system environment

In this section we will present the server cluster that is used for the deployment
of this project. These servers are internal to the DLR network. They can only be
accessed from that network.

- 15 -

2.7. Cloud system environment

The cluster consists of eleven computers that are deployed together. Only one of
these computers is exposed and acts as an admin and access point to the server
cluster. In order to gain access to the rest of the cluster, it has to be used as a jump
server. It is also the only node of the cluster, that has access to the internet. Thus
the admin node is used to install software onto the nodes that do not have internet
connectivity. The IT-infrastructure forbids access to the internet on the other nodes
as a part of security decisions.

The ten servers that are disconnect form the internet are configured differently and
are named correspondingly. Seven nodes are setup for CPU compute power, each of
them being equipped with four CPUs for a total of 64 cores and 128 threads. The
nodes are called cloud-cpu1 through cloud-cpu7. The remaining three nodes are
configured for GPU compute power, large amounts of storage, and fast storage which
are called cloud-gpu, cloud-storage-big, and cloud-storage-fast respectively. These
nodes are configured with hardware according to their designated tasks. The two
nodes cloud-storage-big and cloud-storage-fast are configured to provide network
attached storage to the other nodes of the server cluster.

Orchestration and configuration of the server cluster is done using Ansible [1]. It is
used on the admin node in order to install software on the other nodes to enable
the rest of the cluster to be disconnect from the network. We will not go into detail
about Ansible because it is not used directly for this work.

- 16 -

3. Requirements and interface
definition

In this chapter we will discuss the requirements of the API in Section 3.1. Following
this we will define the interface in Section 3.2.

3.1. Requirements

In this section we define the requirements of the API and establish the scope of
this project. We have elicited these requirements via unstructured interviews with
prospective users of the interface. Due to the time constraints of this project,
we have opted to omit a more structured approach to requirements engineering.
Moreover, since the resulting interface will not be publicly available it will be rather
straightforward to adapt the interface to future additional requirements. We split up
the requirements for this project. We do this in order to tackle separate topics one
by one. The topics are namespace management, catalog management and instance
management. These topics cover the creation of “frames” for the networks of software
to live in, making software and files available to these frames, and executing the
software in respectively. Each of the following subsection will address one of these
topics. We address them separately, because they tackle different problems of the
API and will be implemented separately.

In the following sections we will talk about programs, services, and instances. We
now define the meanings of these terms for this work. A program is a software that

- 17 -

3.1. Requirements

can be run by the API. Services are the pieces of software that make up the API
itself. Instances describe a service or program when it is running.

3.1.1. Namespace management

This subsection addresses the management of the Kubernetes namespaces that the
API will use to host the networks of distributed software.

Namespaces and their management are crucial to the API, because they enable
the creation of separated networks. Separated networks are necessary in order to
create multiple networks at the same time. Namespaces will have to be created and
deleted by requests. Additionally a mapping of the managed namespaces to reference
ids must be implemented. A reference id is name that is optionally set by a user
when creating a namespace. This mapping will help avoid naming conflicts and
will help with automated workflows by referring to namespaces using the reference
id. Furthermore the ability to assign ingress ports to namespaces will have to be
supported. Ingress ports allow external access to applications running inside the
namespace. The management of namespaces requires using the Kubernetes API.

3.1.2. Catalog management

This subsection describes the requirements for managing the catalog. The purpose
of the catalog is providing data that is accessible for all namespaces. The catalog
is supposed to provide a layer of security. It does so by providing the only way for
programs and files to be added into networks via the API. For this to be effective, the
namespaces that are managed by the API should not be interacted with manually.
The catalog can be divided into the two topics of files and programs. We will start
with explaining the basic goal of the catalog itself. Following that we will describe the
requirements of the file catalog with the program catalog being discussed afterwards.

- 18 -

3.1. Requirements

File catalog

The purpose of the file catalog is to provide a collection of files that can be used by
programs, that will be running via the API. To keep the effort for this project in a
suitable scope the structure of the file catalog is kept simple. All files contained in
the catalog will be exposed at once to a program. The files that are provided via the
catalog should not be modifiable by applications running in the networks of the API.
It is also not permitted that an application running via the API can write files into
the folder of the catalog.

Program catalog

The API uses the program catalog to control the programs that can be in its
namespaces. Each entry for a program in the catalog contains multiple information.
These comprise the name of the program that will be used to create an instance of
it and the path to the container image for that program. Additionally each entry
contains information about the interactions that the program provides, which are
shell commands, ssh commands, and REST API. The entire information that is
stored in the program catalog uses the JSON format. Finally, each program needs a
service that takes care of the creation of the instances. The path for the container
image for that service is also part of each entry in the catalog.

3.1.3. Network management and interaction

The API creates namespaces that will further be used by the API to create networks
of distributed software. Users only interact with the namespaces indirectly through
the API. Users will add instances of of distributed software via the API to its
namespaces. Using this part of the API, users can create networks of distributed
software dynamically without any static configuration. As previously mentioned
in Section 3.1.2 only programs that are registered in the program catalog can be
instantiated inside a network. In addition to the instantiation of programs the
ability for users to interact with running instances has to be given. Three kinds of

- 19 -

3.2. Interface

communication are required for the API to provide a general set of communication.
These will be the execution of shell commands inside the running container, executing
commands via ssh as well as using a REST API that an application may provide.
Not every application will provide every kind of communication, an mentioned in
Section 3.1.2. Thus the kind of communication, for example the execution of a shell
command, can only be executed if the program supports it.

This concludes the definition of the requirements. We now define the interface and
the requests for this project.

3.2. Interface

In this section we will define the interface, that will be used by users of the API. The
interface that will be defined in this section is the external interface of the API. The
splitting up of functionality that we discuss in Section 4.1 causes different interfaces
for internal calls of the API. We discuss further detail on the difference of internal
and external interfaces in that section as well. We will discuss further detail on the
difference of internal and external interfaces section as well.

In general the interface that we will be defining will be that of a REST API as stated
in Section 2.5. This means, that multiple endpoints exist, the requests types can be
GET, POST, or DELETE, and each request contains all the data that is required for
it to be executed. For the simplicity of the further definition the protocol, host and
port on which the API will be accessible will not be mentioned. Every possible API
call will be presented in the following. The definitions will contain the path, method
type, parameters, possible responses and the body of POST requests. Defined API
endpoints are divided into three different groups. Belonging to a group is defined
by the second element of the path of an API endpoint. It will always be one of the
following three values.

• namespace

• catalog

- 20 -

3.2. Interface

• network

3.2.1. Example API calls

In this subsection some API calls will be shown as examples. A single GET and
DELETE request are be shown while two POST requests are used as an example.
The remaining API call definitions can be found in Appendix A.

Figure 3.1 is an example of a GET request to the API. This request contains no
parameters and returns information about the namespaces that are managed by the
API. The response of this request, as well as any other request to the API will return
data in the “application/json” format. For the request the response will contain a
field called “data”, which is a list that contains the information of the namespaces
that were created using the API.

Figure 3.2 shows the definition of the POST request that will be used to upload
a file to the file catalog. The body of this POST request is using the format
“multipart/form-data”. This format is used because it provides the ability to upload
files. In addition to the file itself a name for it has to be specified too. Executing
this API call may lead to different responses.

If the request was successful, the response comprises the fields “data” and “info”.
The former contains a list of all registered files, while the latter contains a message
stating, that the file has been added to the catalog. The request could fail for two
different reasons, that will return different responses. One reason for failure is that a
file with the specified name already exists in the file catalog. The second reason for
failure is that an error occurs while writing the file to the folder of the file catalog.
Each of these failures returns a response that contain an “info” field, which will
contain a human-readable message describe the failure reason.

We show a second POST request in 3.3. This request executes a shell command
inside the container of a running application in a network. This request contains
the network id and the name of the addressed instance as path parameters. Since
this request is a POST request it contains a body as well. The body comprises the

- 21 -

3.2. Interface

command to be executed, the arguments to that command, and a timeout in seconds
for the termination of the command. If the execution of the shell command succeeds
a response will be sent containing the standard output of the command in the “data”
field. This API call has two possible reasons to return a failure response. These
reasons are a timeout of the shell command and providing a resource that does not
exist. Resources that must be provided for this command are the network and the
instance. If the specified network does not exist or the network does exist but does
not contain the specified instance, the response will specify which of these was the
case in the “info” field. In case the shell command took more time to execute than
was specified, the response will contain a message in the “info” field stating that the
shell command timed out.

The last API call that will be presented is of the method type DELETE (Figure
3.4). This request is used for the removal of programs from the program catalog.
Determining which program will be deleted is done by using the parameter “pro-
gramName”. For this request there are two possible responses. If a program with
the specified name exists it will be deleted and the response returns a list of all
the remaining programs in the “data” field. Additionally the “info” field contains
a message stating that the program has been deleted. This is done to provide the
failure reason in a human-readable format. However, if no program with the given
name is found, a response is returned that contains a message in the “info” field that
states that the program does not exist.

- 22 -

3.2. Interface

get /v0/namespaces
get list of all namespaces

Response application/json
200 ok

1 {
2 "data": [
3 {
4 "index": 1,
5 "name": "testnet -0",
6 " referenceId ": " refName ",
7 " ingressPorts ": []
8 },
9 {

10 "index": 1,
11 "name": "testnet -1",
12 " referenceId ": " otherRefName ",
13 " ingressPorts ": []
14 },
15]
16 }

Figure 3.1.: Example GET request

- 23 -

3.2. Interface

post /v0/catalog/files
upload new file

Body multipart/form-data

1 fileName = someFileName
2 file= @local /path/to/file

Response application/json
200 ok

1 {
2 "data": [
3 { "name": "file -0" },
4 { "name": " someFileName " }
5],
6 "info": [
7 "File ’someFileName ’ added"
8]
9 }

400 file already exists

1 {
2 "info": ["File ’someFileName ’ already exists "]
3 }

500 internal error

1 {
2 "info": [" Failed writing to disk"]
3 }

Figure 3.2.: Example POST request

- 24 -

3.2. Interface

post /v0/network/{networkId}/instances/{instanceName}/shell
execute shell command in instance

Parameter
networkId id of a network
instanceName name for the new instance

Body application/json

1 {
2 " command ": "ls",
3 " arguments ": "/ home",
4 " timeout ": 5
5 }

Response application/json
200 ok

1 {
2 "data": " Result of the shell command "
3 }

400 command timeout

1 {
2 "info": ["Shell command timed out"]
3 }

404 instance or network not found

1 {
2 "info": [" Network { networkId } not found"]
3 }

Figure 3.3.: Example POST request

- 25 -

3.2. Interface

delete /v0/catalog/programs/{programName}
delete a program

Parameter
programName name of the program to be deleted

Response application/json
200 ok

1 {
2 "data": [
3 { "name": "program -0", ... },
4 { "name": "program -1", ... }
5],
6 "info": [
7 " Program ’someProgram ’ deleted "
8]
9 }

404 program not found

1 {
2 "info": [
3 " Program does not exist"
4]
5 }

Figure 3.4.: Example DELETE request

- 26 -

4. Concept of the API

In this chapter we will discuss the concept of the API. This begins with presenting
the way that tasks and functionality are split up in different microservices in Section
4.1. By splitting up the functionality of the API into multiple services a hierarchy
emerges, that will be shown in Subsection 4.1.1. At last the structure and the setup
of Kubernetes will be explained in Section 4.2. Kubernetes is necessary for the API as
it provides the ability to manage namespaces that will be used to contain networks
of distributed software.

4.1. Splitting functionality

The requirements of this work can be divided into three different parts as discussed
in Section 3.1. As a result of this division of requirements the implementation will
also be split into multiple parts. Each of these parts will be its own microservice
as we described in Section 2.4. Implementing each set of requirements in its own
microservice leads to a clear division of responsibilities. With each microservice
managing a subset of the API cross communication of the services will be necessary.
In the following we define the names for the services and the topic that the services
will take over.

Catalog-Service Management of the file and program catalog: The Catalog-Service
holds a collection of programs and files for the API. It manages adding and
removing entries.

- 27 -

4.1. Splitting functionality

Namespace-Manager Management of the namespace that will be used by the API:
The Namespace-Manager provides the ability to create and delete namespaces.
Additionally ingress ports for namespaces can be allocated.

Instance-Manager Management and interaction of instance in a network: The
Instance-Manager handles the instantiation of programs in networks of the
API. Furthermore it enables the communication with instances in a network.

A problem that occurs through splitting the project into multiple services is, that
Users that would need to access multiple APIs. This problem can be alleviated by
creating an additional services whose job it is to forward API calls to the specific
microservices. The service that will take this role will be named Frontend-Service.
Another challenge that the API faces comes from the individual needs of different
applications upon instantiation. Programs are configured using different systems
like configuration files. Configuration files or other means of configuring programs
upon start requires individual tasks to be executed. These task may be the creation
of a configuration file and placing it at a specific location or exposing ports to the
network, that are required by an application. This challenge leads to the decision
of including a type of service that is referred to as Specific-Instance-Manager. For
this work, the only task that a Specific-Instance-Manager service is assigned to help
with is the creation of instances of a specific application. As a consequence of this, a
Specific-Instance-Manager is required for each program. The two newly established
services are summarized in the following.

Frontend-Service Forwarding calls to sub services: Provides a single interface for
users and forwards requests to the sub services.

Specific-Instance-Manager Instantiation of a specific program: Individual for every
program that can be run by the API. Its job is to configure a program upon
startup.

The services that we previously introduced are shown in Figure 4.1.

- 28 -

4.1. Splitting functionality

4.1.1. Hierarchy

The microservices are structured in a hierarchy. This hierarchy is not strictly enforced
but serves as a reference for the calls that will be made between the services in most
cases. Furthermore the hierarchy as it is shown in Figure 4.1 sets out the part of the
API that is exposed for external access. Only the Frontend-Service is exposed to
external access. It is the only exposed service, in order to have a single access point
for the API.

The second layer of services contains the three services Instance-Manager, Catalog-
Service and Namespace-Manager. These are the services, that will receive the
forwarded calls from the Frontend-Service. In contrast to the Instance-Manager the
Catalog-Service and the Namespace-Manager will always be present as one running
instance of the services each. Thus the communication to these to services are always
addressing the same service instance. The Instance-Manager service differs from
that scheme by having a running instance inside every namespace that is created by
the API. The Reasoning for that design decision is given in section 4.2.

A third layer to the hierarchy only exists for the Instance-Manager in the form of
Specific-Instance-Manager. It represents a collection of services that are also located
inside the namespaces of the API. They receive a forwarded call from the Instance-
Manager in case a new instance of the program that the Specific-Instance-Manager is
designed for is requested. Consider, e.g., a user who wants to create a new network,
add a program to that network, create a new instance of that program, and execute
a shell command in the container executing that instance. To do so, they first
have to request the creation of a namespace via the API. This call, as well as every
other call created by the user are directed at the Frontend-Service. The request to
create a namespace is forwarded to the Namespace-Manager by the Frontend-Service.
Afterwards they have to create a request for the instantiation of the program in the
previously create namespace. This request is forwarded to the Instance-Manager
running in that network which requests information about the program for the
Catalog-Service before forwarding the request to the Specific-Instance-Manager for
that program. The Specific-Instance-Manager then creates the requested instance.
Finally they have to send a request for the execution of the shell command to the

- 29 -

4.1. Splitting functionality

Network-API

Frontend-Service

Namespace-ManagerInstance-Manager Catalog-Service

Specific-Instance-Manager

Figure 4.1.: Diagram of the service structure

API, which get forwarded to the Instance-Manager. The Instance-Manager will then
issue the execution of the shell command in program instance.

As previously mentioned, the hierarchy is not strictly enforced. This behaviour is
necessary, because the Instance-Manager has to be able to request data from the
Catalog-Service. In the scope of this work, the request of the Instance-Manager to
the Catalog-Service is the only communication of services that are on the same layer.
One aspect of the hierarchy, that is always given is, that a services from a lower
layer never sends a request to one in a higher layer. This means, that the requests of
services in different layers is always are always one directional. Communication in

- 30 -

4.2. Kubernetes setup

that direction is carried out by request from the higher layer with a response from
the service in a lower layer.

4.2. Kubernetes setup

We deploy the project on a server cluster that is internal to the DLR network as
explained in Section 2.7. We use one of the servers, namely cloud-cpu5 as the
Kubernetes node as shown in Figure 4.2. As we explained in Section 2.7, the server
setup has a server called cloud-storage-big that provides an NFS storage to the
Kubernetes node. The API makes the provided storage usable for applications
running inside the Kubernetes cluster by creating a PersistentVolume as described in
Section 2.3.1. As mentioned in 3.1.1, the API creates namespaces. The namespaces
that are created by the API follow the naming scheme of beginning with testnet-,
followed by a self incrementing index that are automatically supplied by the API of
the namespace. Examples for these namespaces can be seen in Figure 3.1.1. The
API itself is also located in a namespace of the Kubernetes node. When deploying
the API, developer can choose the name of the namespace that will house it freely.
For the sake of readability, we will call this namespace network-api for the remainder
of this work.

- 31 -

4.2. Kubernetes setup

NFS
storage

testnet-0network-api testnet-x

Namespaces

cloud-cpu5

file-catalog-volumeKubernetes

cloud-storage-big

Cloud system nodes

testnet-1

Figure 4.2.: Visualization of the Kubernetes setup

- 32 -

5. Implementation

In this chapter we will discuss the implementation of the API. First we explain
the implementation of the Catalog-Service in section 5.1. Following this in Section
5.2 we show the implementation of the Instance-Manager. At last we discuss the
implementation of the Frontend-Service in Section 5.3. Notice that we do not
talk about the implementation of the Namespace-Manager as the service has been
implemented before this work.

5.1. Catalog-Service

We started the implementation of the Catalog-Service by dissecting the requirements
for it. The job of the Catalog-Service is to provide a collection of programs to the
API that can be run by it as well as providing a set of files to programs running in
the API. This leads to the creation of multiple classes that are depicted in Figure 5.1.
The design is based on splitting up the functionality of the Catalog-Service into their
own classes. A single class is responsible for receiving the requests for the service.
This class named CatalogServiceAPI. The specific tasks of creating and managing
the program and file catalog are done by a specific class each. These classes are the
FileCatalog and the ProgramCatalog respectively. The job of the CatalogServiceAPI
class is the separation of the interface of the service from the actual implementation.
In the following we will first describe the implementation of the ProgramCatalog class
and its dependencies in Subsection 5.1.1. Afterwards we discuss the implementation
of the FileCatalog class and its dependencies in Subsection 5.1.2.

- 33 -

5.1. Catalog-Service

FileCatalog

+ addFile(payload: FileCreatePayload): Response

+ getFile(fileName: String): Response

+ getFileSet(): Response

+ deleteFile(fileName: String): Response

+ onStart(event: StartupEvent): void

- copyFileToStorage(payload: FileCreatePayload): Respons

CatalogServiceAPI

+ addProgram(payload: ProgramReference): Response

+ getProgram(programId: String): Response

+ getPrograms(): Response

+ deleteProgram(programId: String): Response

+ addFile(payload: FileCreatePayload): Response

+ deleteFile(fileName: String): Response

+ getFiles(): Response

+ getFile(fileName: String): Response

«interface»
FileStorageConfig

1

1

FileReference

+ fileName: String

0..n

ProgramCatalog

+ addFile(payload: FileCreatePayload): Response

+ getFile(fileName: String): Response

+ getFileSet(): Response

+ deleteFile(fileName: String): Response

+ onStart(event: StartupEvent): void

- saveProgramSet(): boolean

ProgramReference

+ name: String

+ image: String

+ hasSsh: boolean

+ hasShell: boolean

+ hasRest: boolean

ServiceReference

+ image: String

+ port: int

0..n

1

1

«interface»
ProgramStorageConfig

1

Figure 5.1.: Catalog-Service UML class diagram

- 34 -

5.1. Catalog-Service

5.1.1. Program catalog

The program catalog is the part of the Catalog-Service that manages the programs
for the API. As we show in Figure 5.1 the ProgramCatalog class depends on the class
ProgramReference which by itself depends on the ServiceReference class. Additionally
the ProgramCatalog has a dependency on the ProgramStorageConfig interface. We
created these two classes as data containers only without any functionality in the
form of methods. The data stored in these classes has to be serialized. We will later
go into the reason for the need of the serialization. For the serialization we will use a
JSON serializer that is provided by Quarkus resteasy-reactive-jackson extension. In
order for the serialization to be possible the fields of the classes have to be marked
by the JsonProperty annotations. The annotation does not only mark the field as
data that will be serialized but also specifies the name for the field that will store the
data. For this the annotation has to be defined with the name for the field as shown
in the following: @JsonProperty(“fieldName”). The name specified does not have to
match the name of the field that it marks however in this work this will always be the
case. We do not provide an implementation for the ProgramStorageConfig interface
as it is used to inject data from a Kubernetes configmap into the application. This
is done by marking the interface via the ConfigMapping annotation and using the
Inject annotation at the variable declaration in the ProgramCatalog class. The value
provided by the interface is the mount path for the Kubernetes volume that will be
used to store the information of the programs in the program catalog. As we described
in Section 2.3 data saved to the file system of a pod running in Kubernetes is deleted
when the container crashes or restarts. In Subsection 5.1.3 we discuss how we tackled
that problem and explain the reasoning behind having the ProgramStorageConfig
interface.

The ProgramCatalog stores the information of the programs that were added to it in
the Set data structure. A Set is used as the data only has to be stored without the
need for a name mapping or an order for the entries. For accessing the data of the
program catalog or modifying it the class provides five methods. In the following we
will briefly explain the purpose and the functionality of the methods. Additionally
we note which API call to the Catalog-Service will lead to the execution of which

- 35 -

5.1. Catalog-Service

method.

The addProgram method takes over the task of adding a new program to the catalog.
For this the method receives an instance of the ProgramReference class as a parameter.
This method as well as all the other methods that interact with the catalog return
an instance of the Response class which represents the response for a REST request.
Inside the addProgram method we first test if an entry with the same name as defined
in the program that should be added exists. This is done by stream operations on
the Set that store the programs of the catalog as shown as an example in Listing 5.1

1 boolean containsProgramWithName = programSet .stream
(). anyMatch (programReference -> programReference .
name.equals(newProgram .name));

Listing 5.1: Stream operation example

In case a program with the same name already exists the method returns a Response
instance with the code 400. If on the other hand the stream operation does not find a
program with the same name in the catalog the method will continue with adding the
new program. As we later discuss in Subsection 5.1.3 we also have to save the set of
programs after adding a new one. This is done by the private method saveProgramSet
which will also be a topic of the Subsection 5.1.3. The saving of the program set
done by the previously mentioned method can either fail or succeed. In order to
know whether the saving process has succeeded or not the saveProgramSet method
returns a boolean value. That value is true if saving was performed successfully
and false if an error occurred. When saving succeeds a response with code 200 is
returned, otherwise the code will be 500 to indicate the error.

The getProgram method receives the name of a program as a parameter. This
method is called when requesting the information of a single program. Similar to
the stream operation that is used in the previously described method this one uses a
stream operation on the set containing the program information in order to retrieve a
program, that has the name specified by the parameter of the method. The result of
that operation is of the type Optional<ProgramReference>. The Optional<T> type

- 36 -

5.1. Catalog-Service

of Java is a container that may or may not contain an instance of the class T which
in our case is ProgramReference. An Optional<T> can be checked on whether it
holds data or not using its isPresent method. We use this to determine if a program
with the specified name exists or not. In the case of the data being present the
method return this data and the status code 200 as its response. If the data is not
present a response with the status code 404 is return which is generally acknowledged
as the status code for a resource not existing.

The getProgramSet method is called when requesting information of all the programs
of the program catalog. This method is simple in comparison to the ones we presented
previously. Its simplicity is due to the fact that it always returns a response with
the status code 200 and the data of the set containing the programs of the catalog
in the JSON format.

The CatalogServiceAPI calls the deleteProgram method upon receiving a request for
the removal of a program from the catalog. The structure of the implementation
is almost equal to that of the getProgram method. This is the case because for a
program to be deleted we first have to check that it actually exist, resulting in the
same stream operation and conditional behaviour depending on its result. At this
point the deleteProgram method differs from the getProgram method by removing
the entry from the set and calling the method to save the data. Similar to the
addProgram method this method sends different responses depending on whether the
set could be saved or not. The response that the method return in case the specified
program does not exist has the status code 400.

This concludes the methods of the ProgramCatalog class that the CatalogServiceAPI
calls when receiving requests for the program catalog provided by the Catalog-
Service. In Subsection 5.1.3 we discuss the last method (saveProgramSet) of the
ProgramCatalog class.

5.1.2. File catalog

Figure 5.1 shows the FileCatalog class and its dependencies. The dependencies of
the class are the FileReference class, the FileCreatePayload class, as well as the

- 37 -

5.1. Catalog-Service

FileStorageConfig interface. We use FileStorageConfig interface in the same way
as the ProgramStorageConfig interface that we discussed in Subsection 5.1.2. The
FileReference class is a data container for the name of a file with no additional
functionality. For adding files to the catalog we use the FileCreatePayload class. The
FileStorageConfig interface provides a path to a mounted Kubernetes volume. This
volume is used to store the files that the catalog manages. As described in Section 3.2
we use the “multipart/form-data” method type to upload files to the file catalog. In
order to represent the data of these requests we use the FileCreatePayload class. For
Quarkus to be able to format the data of these requests into the FileCreatePayload
class the fields of the class have to be marked with the RestForm annotation. Quarkus
uses the names of the marked fields for the mapping of the parameters to map the
fields of the request to the fields of the class. The implementation of the FileCatalog
class is similar to the implementation of the ProgramCatalog class. We use a set of
FileReferences to keep track of the files that have been added to the catalog. The
class implements methods for adding files to the catalog, retrieving a list of all files,
retrieving the contents of a single file, as well as deleting a file. In the following we
present the implementations of these methods.

The addFile method is used to add a new file to the catalog. It receives an instance
of the aforementioned FileCreatePayload class as a parameter. Analog to the
implementation of the addProgram method of the ProgramCatalog class the method
checks whether a file with the same name already exists. If no file with the same
name exists the method goes on by trying to save the file to a Kubernetes volume.
Saving files to the volume is done using the copyFileToStorage method which will
be discussed Subsection 5.1.3. The method returns an instance of the Response
class stating whether saving the file was successful or not. In case the file was saved
successfully an instance of the FileReference class containing the name for the added
file is added to the set of FileReferences and the method returns an instance of the
Response class containing the status code 200. If the file could not be saved to the
Kubernetes volume the response of the copyFileToStorage method is returned;

The getFile method get called by the CatalogServiceAPI class when it receives a
REST GET request for a file of the catalog. The name of the requested file is passed

- 38 -

5.1. Catalog-Service

to the method as a parameter. First the method checks whether a file with the given
name is an element of the catalog. In case the file does not exist the method returns
a Response with the status code 404. If the file is an element of the catalog the
method continues to read the data of the requested file an returns it in a Response
containing the status code 200.

The getFileSet returns the set of files that have been added to the file catalog. The
CatalogServiceAPI class calls this method when a REST GET request for the set of
files is requested. This method always returns a Response with the status code 200
and the set of FileReferences.

The last method of the FileCatalog class that is called by the CatalogServiceAPI
class is the deleteFile method. This method implements the deletion of a file from
the catalog. The method starts by verifying that the file that is specified by the
parameter of the method is stored in the catalog. If the file is part of the catalog the
method tries to delete the file form the Kubernetes volume. On successful deletion of
the file its entry in the set is also removed and the method returns a Response with
the status code 200. In case the file is not part of the catalog the method returns a
Response with status code 404 stating that the specified file does not exist.

5.1.3. Persistent storage

Persistent storage volumes are a necessity for the Catalog-Service in order to achieve
persistent entries in the catalog. If for example all the data of the Catalog-Service
were to be saved in the file system of the container every time it restarts the data
would be lost. This is due to Kubernetes always starting a container in a clean
state as it is defined in a Deployment. In the Kubernetes environment there are
multiple events that can trigger a Pod and thus a container to be stopped or restarted
both by a user or automatically. A user for example can stop a Pod by deleting
the Deployment that manages the containerized application. As an example for
Kubernetes itself stopping and some times also restarting a Pod automatically the
crash of an containerized application triggers this behaviour. Whether Kubernetes

- 39 -

5.2. Instance-Manager

only stops the Pod or additionally restarts it is depending on the restart policy
defined in the Deployment for that Pod.

Saving the information of the programs in the Kubernetes volume is done by the
saveProgramSet method of the ProgramCatalog class as mentioned in Subsection
5.1.1. For saving the set of programs of the catalog we first create an instance of the
File class. Upon its creation we specify the path of the file to use the mount path
that is provided by the ProgramStorageConfig interface and a constant file name.
In this work we call this file “programs.json”. Mapping the set of programs to a
JSON string and saving it is done using the ObjectMapper class provided by the
resteasy-reactive-jackson extension. We use its method writeValue which takes the
set of programs and the previously mentioned File instance. This method has to be
wrapped in a try-catch block as it can fail due to an IOException. If an exception
is encountered the process of saving the data was not successful and the method
returns false as an indication for this, otherwise it returns the value true.

The files of the file catalog are written to Kubernetes volume as mentioned in
Subsection 5.1.2. We implemented this functionality in the copyFileToStorage
method of the FileCatalog class. For this we provide the method with an instance
of the FileCreatePayload class as a parameter. We start by creating the path for
the file in the mounted Kubernetes volume. This is done by combining the mount
path provided by the FileStorageConfig interface and the name provided by the
FileCreatePayload parameter. We then copy the uploaded file to the previously
constructed path. This operation is surrounded by a try-catch block as it can fail with
an IOException. When the copy operation succeeds the method return a Response
with the status code 200, otherwise the status code is 500. The Kubernetes volume
that is used to store the files is exposed to the namespaces managed by the API.
Through this the files are made accessible to the programs managed by the API.

5.2. Instance-Manager

For the implementation of the Instance-Manager we started by splitting up the
functionality that it should privide into multiple classes. We present the result of

- 40 -

5.2. Instance-Manager

the partitioning of responsibilities in the UML class diagram in Figure 5.2. The
InstanceManagerAPI handles the REST API calls and forwards the requests to four
different classes. The four classes are the ProgramForwarder, the SshCommunicator,
the ShellCommunicator, and the RestCommunicator. The ProgramForwarder im-
plements the creation of instances in the network in which the Instance-Manager is
deployed while the other three implement the communication with instances. First
we discuss the creation of instances in a network in Subsection 5.2.1 before we explain
the communication with instances in Subsection 5.2.3. At last we present the concept
of Specific-Instance-Managers for the API in Subsection 5.2.2.

5.2.1. Instance creation

The creation of instances is done by the ProgramForwarder class. This class has
dependencies to the classes CreationPayload, ProgramReference, and the interface Cat-
alogServiceConfig. The ProgramReference class itself depends on the ServiceReference
class. These two classes mirror the data of the program data of the Catalog-Service
as described in Section 5.1. This data is necessary as it provides the data that is used
to create an instance of a program. When users request the creation of an instance
of a program the ProgramForwarder class requests the information for that program
from the Catalog-Service. In order to address the Catalog-Service the class needs
the URL for it. This URL is provided by the aforementioned CatalogServiceConfig
interface. The interface is configured to provide data that is stored in a Kubernetes
configmap as the ProgramStorageConfig interface discussed in Subsection 5.1.2. Cre-
ating new instances is done by sending requests to a Specific-Instance-Manager for
the program that the instantiation is requested for. As a payload for this we use the
CreationPayload class which wraps the necessary data for the request. The details of
this process are discussed in Subsection 5.2.2.

5.2.2. Specific-Instance-Manager

The Instance-Manager uses Specific-Instance-Managers for the creation of programs
in its network. We will briefly discuss the working principle of a Specific-Instance-

- 41 -

5.2. Instance-Manager

ProgramForwarder

+ forwardInstanceCreation(programName: String, instanceId: String,
 payload: String): Response

- requestProgramInformation(programName: String): Response

- createServiceIfNotExists(programReference: ProgramReference): void

- createService(kubernetesClient: KubernetesClient,
 programReference: ProgramReference): void

- urlForProgram(programReference: ProgramReference): String

+ onStart(event: StartupEvent): void

InstanceManagerAPI

+ createInstance(programName: String, instanceId: String,
 payload: String): Response

+ instanceList(): Response

+ sshRequest(instanceId: String,
 payload: ShellPayload): Response

+ shellRequest(instanceId: String,
 payload: ShellPayload): Response

+ getRequest(instanceId: String,
 requestPath: String): Response

+ getRequest(instanceId: String, requestPath: String,
 payload: String): Response

+ deleteRequest(instanceId: String,
 requestPath: String): Response

1

SshCommunicator

+ executeCommand(instanceId: String,
 payload: SshPayload): Response

1

RestCommunicator

+ getForward(instanceId: String,
 requestPath: String): Response

+ postForward(instanceId: String,
 requestPath: String,
 payload: String): Response

+ deleteForward(instanceId: String,
 requestPath: String): Response

ShellCommunicator

+ executeCommand(instanceId: String,
 payload: ShellPayload): Response

1

1

SshPayload

+ username: String

+ password: String

+ port: int

+ command: String

ShellPayload

+ command: String

+ arguments: String

+ timeout: int

«interface»
CatalogServiceConfig

CreationPayload

+ data: String

+ image: String

1

ProgramReference

+ name: String

+ hasRest: boolean

+ hasShell: boolean

+ hasSsh: boolean

+ image: String

ServiceReference

+ image: String

+ port: int

1

Figure 5.2.: Instance-Manager UML class diagram

- 42 -

5.2. Instance-Manager

Manager as each of these services has to be highly adapted to the program that it is
designed for. We do this by using the RCE-Instance-Manager that we implemented
within the scope of this work in order to be able to create instance of RCE, the
distributed software we presented in Section 2.1.1. An Instance-Manager creates
Specific-Instance-Managers on demand in its own network. For example this means
that an RCE-Instance-Manager is created on the first time an Instance-Manager
receives a request for the creation of an RCE instance. After the RCE-Instance-
Manager is created or it already exists the Instance-Manager forwards a request for
the creation of an RCE instance to the RCE-Instance-Manager. We will not go into
detail of the implemented of the RCE-Instance-Manager as it is specific to RCE and
its only job is to create instances. In order for the API to be able to create instances
of other programs developers have to create Specific-Instance-Managers for these.

5.2.3. Communication

We implement the communication to instances running in a network via three classes.
These classes are the SshCommunicator, ShellCommunicator, and RestCommunicator.
Each of these is responsible for one method of communication.

The SshCommunicator provides the ability to send commands to a program via an
ssh connection. In order to fulfill this task the class provides the executeCommand
method. For this the method takes two parameters which are the id for the instance
on which the command will be executed as well as an instance of the SshPayload
class. We use the SshPayload class as the container for the data that is necessary for
a command to be executed. These values are the username for the SSH account, the
password for the user, the SSH port for the program, and the command. For the
method to be able to make an SSH connection to a program we use the JSch library
[7]. We use the Session and ChannelExec classes for the execution of the command.
The method starts with creating a Session in order to connect to the program followed
by opening the ChannelExec which is used to run the command itself. After setting
up the Session and the ChannelExec we wait for the ChannelExec to disconnect for
the program. Upon successful execution of the SSH command the method returns

- 43 -

5.2. Instance-Manager

a Response with the status code 200 and the result of the SSH command. The
execution can fail due to an JSchException or an InterruptedException. In case one
of these exceptions is triggered the method returns a Response with status code 500.

The ShellCommunicator implements the functionality of executing shell commands
inside a container. This is done by invoking the executeCommand method. Similar
to the method we previously discussed it provides two parameters. On of these
is the id of the instance in which the command will be executed while the other
parameter is an instance of the ShellPayload class. The functionality of this class
is analog to the SshPayload class while providing a set of fields specific to the
execution of shell commands. These fields are the shell command, arguments for
the command, and a timeout in seconds. In the executeCommand method we use
Kubernetes client API provided by Quarkus for the execution of the specified shell
command. For this we create a CountDownLatch this is used for asynchronous
notification of the shell command finish status as we count it down when the
execution succeeds or fails. Additionally we define two ByteArrayOutputStreams that
are used to receive the standard output and the standard error of the shell command
execution. Next we retrieve the Pod that is specified by the instance id using the
Kubernetes client API. Following this we create an ExecWatch which executes the
shell command. Before execution we configure the ExecWatch to use the previously
defined ByteArrayOutputStreams for standard output and error. Additionally we add
an anonymous ExecListener class to count down the CountDownLatch as previously
described. This is done by implementing its methods onClose and onFailure and
calling the countDown method of the CountDownLatch that we defined. After starting
the execution of the shell command we use the await method of the CountDownLatch
in order to wait until is is counted down or the timeout provided by parameters runs
out. We store the boolean return value of this method call in a variable and check
its value. In case the value is false the command execution timed out and we return
a Response with status code 500 to the InstanceManagerAPI. If the value is true and
the await method did not trigger an InterruptedException we return a Response with
status code 200 that also contains the standard output and error of the command. A
triggered exception leads to the method returning a Response with status code 500.

- 44 -

5.3. Frontend-Service

5.3. Frontend-Service

We implement the Frontend-Service by using multiple classes. We show the UML
class diagram for the Frontend-Service implementation in Figure 5.3. The Fron-
tendServiceAPI class receives the REST API calls and forwards these calls to three
classes that implement the actual functionality for the calls. These three classes are
the CatalogForwarder, NamespaceForwarder, and NetworkForwarder. Additionally
the SubServices interface is used by the FrontendServiceAPI class. This interface
has no implementation as it provides information of a Kubernetes configmap in the
same way the ProgramStorageConfig interface of the Catalog-Service. The interface
provides URLs for the sub services that the Frontend-Service communicates with.
Their usage will be discussed later while presenting the three classes that implement
the communication. We forward the API calls from the FrontendServiceAPI class to
the other classes by calling specific methods on them. Each of the classes that handle
the communication provide methods for processing GET, POST, and DELETE
requests. The FrontendServiceAPI class calls the corresponding methods when
receiving requests. For the call forwarding classes to work the FrontendServiceAPI
class sets the URL for each of the forwarding classes on the startup of the service.
We implement an onStart method that has a StartupEvent as a parameter which is
marked by an Observes annotation. This mechanism is provided by Quarkus in order
to implement startup tasks of the service. We set the URLs for the sub services using
setter methods provided by the three classes that implement the communication.

5.3.1. Catalog forwarding

The implementation of the CatalogForwarder class is by design not complex. This
is due to the fact that it forwards the calls to the Catalog-Service without any
additional functionality. We call the Catalog-Service using the Client class provided
by the Java JAX-RS library which is part of the Quarkus framework. We use the
client by constructing requests by combining the URL to the Catalog-Service and
the path of the requests. For each REST method type the CatalogForwarder has a
specific method for handling them. Following this the methods make the request

- 45 -

5.3. Frontend-Service

FrontendServiceAPI

+ forwardCatalogGetRequest(pathElements: List<String>): Response

+ forwardCatalogPostRequest(pathElements: List<String>,
 payload: String): Response

+ forwardCatalogDeleteRequest(pathElements: List<String>): Response

+ forwardNamespaceGetRequest(): Response

+ forwardNamespaceGetRequest(pathElements: List<String>): Response

+ forwardNamespacePostRequest(pathElements: List<String>,
 payload: String): Response

+ forwardNamespaceDeleteRequest(pathElements: List<String>): Response

+ forwardNetworkGetRequest(pathElements: List<String>): Response

+ forwardNetworkPostRequest(pathElements: List<String>,
 payload: String): Response

+ forwardNetworkDeleteRequest(pathElements: List<String>): Response

+ onStart(event: StartupEvent): void

CatalogForwarder

- catalogClient: Client

- catalogUrl: String

+ setCatalogUrl(catalogUrl: String): void

+ getRequest(pathElements: List<String>): Response

+ postRequest(pathElements: List<String>,
 payload: String): Response

+ deleteRequest(pathElements: List<String>): Response

«interface»
SubServices

1

NamespaceForwarder

- namespaceClient: Client

- namespaceUrl: String

+ setNamespaceUrl(namespaceUrl: String): void

+ getRequest(pathElements: List<String>): Response

+ deleteRequest(pathElements: List<String>): Response

+ postRequest(pathElements: List<String>,
 payload: String): Response

- networkIdForRef(networkRef: String): Optional<String>

- createClusterRoleBindingForNetwork(networkId: String): void

- deleteClusterRoleBindingForNetwork(networkId: String): void

- createFileStorageVolumeClaimForNetwork(
 networkId: String): void

- createInstanceManagerConfigMapInNetwork(
 networkId: String): void

- createInstanceManagerInNetwork(networkId: String): void

NetworkForwarder

- networkClient: Client

- networkUrl: String

+ setNetworkUrl(networkUrl: String): void

+ getRequest(pathElements: List<String>): Response

+ postRequest(pathElements: List<String>,
 payload: String): Response

+ deleteRequest(pathElements: List<String>): Response

- getSpecificUrl(networkId: String): String

- checkPath(pathElements: List<String>): boolean

- getFormattedPath(pathElements: List<String>): String

1

1

1

Figure 5.3.: Frontend-Service UML class diagram

- 46 -

5.3. Frontend-Service

using the different method types corresponding to the type they handle. Additionally
the method handling the POST request also adds the payload to the request. The
FrontendServiceAPI provides the path to the method using the parameter of the
method while for POST requests ther is an additional parameter for the payload.
The requests return a response which the methods return to the FrontendServiceAPI.

5.3.2. Network forwarding

The implementation of the NetworkForwarder is similar to the implementation of
the CatalogForwarder. We also implement three methods where each of these for-
wards one type of the supported REST method types (GET, POST, DELETE).
The key difference for the forwarding of network requests is that the URL for these
has to be constructed in a different way. The reason for this is that Instance-
Managers are running inside the namespaces that they manage. As we will explain
in Subsection 5.3.3 each Instance-Manager is exposed by a Kubernetes Service.
The Service exposes an Instance-Manager and makes it addressable using a DNS
address. The DNS address for the Instance-Managers has the format of “instance-
manager.namespace.svc.cluster.local”. This is also the value that the Network-
Forwarder receives from the FrontendServiceAPI class. In order to address the
Instance-Manager we extract the namespace defined in the request path and substi-
tute it into the URL. For this we implemented the getSpecificUrl method. Following
this we format the request path to fit the format required by the Instance-Manager.
Specifically this means removing the namespace and the “instance” element of the
request path. We combine the constructed URL with the formatted path to construct
the complete URL for the forwarded request. With this complete URL we issue
requests and return their results in the same way as discussed in Subsection 5.3.1.

5.3.3. Namespace forwarding

The implementation of the NamespaceForwarder is mostly the same as the im-
plementation of the CatalogForwarder. It is adapted to forward its calls to the

- 47 -

5.3. Frontend-Service

Namespace-Manager and contains additional logic to create an Instance-Manager
in a newly created namespace and setting up Kubernetes to provide functional-
ity to the namespace. We implement this in the method that handle POST and
DELETE requests. First we forward the request to the Namespace-Manager followed
by checking whether the request failed or succeeded. In case a request created a
new namespace we follow this by creating an Instance-Manager in this namespace,
creating a ClusterRoleBinding in order to provide the Instance-Manager its necessary
privileges as well as creating a new Kubernetes volume pointing to the storage of the
file catalog in order to make it accessible for this namespace. If a DELETE request
successfully deleted a namespace the Instance-Manager as well as the Kubernetes
volume are automatically deleted as these are namespace scoped objects however the
ClusterRoleBinding has to be manually removed. We create and delete the previously
described objects each in their own method. We will not discuss them in detail as
these methods do not contain any logic but only use the Kubernetes client API in
order to create or remove the previously stated resources.

- 48 -

6. Conclusion

In this chapter we evaluate the current state of the project in Section 6.1. Following
this we discuss possible extensions for the future in Section 6.2.

6.1. Current state

The testing of distributed software involves a lot of manual work. Automated
networks for the testing provide many advantages. For this purpose we implemented
an API as described in the following.

The API consists of three parts that each manage a separate aspect of the API.
Due to this nature we decided to use the microservice architecture. This lead to
the creation of the four microservices Frontend-Service, Catalog-Service, Namespace-
Manager, and Instance-Manager. The Namespace-Manager was provided as it
has been implemented before this work. We implemented the Catalog-Service and
Instance-Manager first as these provide the functionality of the API. The goal of
the Frontend-Service is to provide a single interface for users to work with the API.
We implemented this by forwarding calls made to the Frontend-Service to their
corresponding services. The Catalog-Service supplies programs that can be run via
the API as well as provide a set of files that can be used by the running programs. For
the entries of the Catalog-Service to be persistent we make use of Kubernetes volumes.
In each namespace that the API manages gets its own Instance-Manager service
running inside of it. Using the Instance-Manager itself users can communication
with instances running in that namespace using shell commands, ssh commands,
or a REST API if a program provides it. We realize the instantiation of programs

- 49 -

6.2. Future prospect

by creating a Specific-Instance-Manager for each program that is registered in the
Catalog-Service. We use Specific-Instance-Managers as the creation of instances may
vary from program to program. Some programs may require configuration data at
specific locations or have to have some specific ports exposed to the Kubernetes
cluster. The necessary flexibility for such processes is provided by having individual
Specific-Instance-Managers.

Kubernetes cluster administrators can setup the API to be usable without much
limitation. An administrator has to setup the API as it needs permissions that
administrators have to give it. After an administrator has setup the API any user of
the Kubernetes cluster can use it. This is due to the fact that we implemented the
API to receive configuration data from Kubernetes configmaps. In its current state
the name of the namespace that is used to house the API can be chosen freely. The
same applies to the Kubernetes volumes that the Catalog-Service uses for persistent
storage. We made the choice to make the setup of the API configurable in order to
make it easily deployable in different Kubernetes clusters without many conditions
to the cluster.

6.2. Future prospect

We see the possibility for authentication in the API in order to limit the access of
users to different parts of the API. The most obvious part of the API that would
benefit from limiting access is the Catalog-Service. This is due to the fact that the
Catalog-Service is supposed to provide security by providing a selection of programs
and files that can be used via the API. Currently every user can add and remove files
and programs to the Catalog-Service. We would increase the security provided by
the Catalog-Service by allowing only a selected set of users to make these operations.
Additionally the API could benefit by adding the possibility of making authentication
necessary for networks of the API. Through this unwanted access and modification
to a network can be prohibited. This may be desirable for networks as modification
of it by other users may be unexpected and can lead to the misbehaviour of the
programs running in it.

- 50 -

6.2. Future prospect

The usability of the API can be increased by simplifying the use of the communication
with programs running in networks. As an example for the SSH communication the
API could create mappings for every program that supports it and is running in a
network. Such a mapping could contain the standard SSH port that will be used for
SSH as well as a user and its password or public key. This would lead to a reduction
in parameters that have to be transmitted by an SSH communication request leading
to simplified usage for the users. A similar mapping could also be applied to the
REST communication in order to remove the need to supply the port of the REST
API supplied by a program. Another functionality that leads to an improved user
experience is connected to Kubernetes ingress ports. Ingress ports can be added
to a namespace in order to make a service running in it accessible from outside of
the Kubernetes cluster itself. The Namespace-Manager provides the ability to add
ingress ports to a newly created namespace. However if a user wants to expose a
service running in a namespace of the API that has an ingress port the service has
to be manually configured to be exposed on the same port as the ingress port. This
process could be made easier for the user by making a mapping for ingress ports
of a namespace. Providing such a mapping would enable a user to specify that a
program that is started should use the port that is associated with an ingress port.

- 51 -

Bibliography

[1] Red Hat Ansible. Ansible is Simple IT Automation. url: https : / / www .
ansible.com/. (accessed: 07.09.2022).

[2] The Kubernetes Authors. Kubernetes. url: https://www.kubernetes.io/.
(accessed: 04.08.2022).

[3] Brigitte Boden et al. RCE: An Integration Environment for Engineering and
Science. 2019. doi: 10.48550/ARXIV.1908.03461. url: https://arxiv.org/
abs/1908.03461.

[4] Docker. Docker - Home. url: https://www.docker.com/. (accessed: 07.09.2022).

[5] Roy Thomas Fielding. “Architectural Styles and the Design of Network-based
Software Architectures”. PhD thesis. Irvine, CA: University of California, 2000.

[6] Lokesh Gupta. HTTP Methods - REST API Tutorial. url: https://www.
restfulapi.net/http-methods/. (accessed: 07.09.2022).

[7] Inc. JCraft. JSch - Java Secure Channel. url: https://www.jcraft.com/
jsch/. (accessed: 07.09.2022).

[8] Jekyll. Quarkus - Supersonic Subatomic Java. url: https://www.quarkus.io/.
(accessed: 08.09.2022).

[9] Ajay D Kshemkalyani and Mukesh Singhal. Distributed computing: principles,
algorithms, and systems. Cambridge University Press, 2011.

[10] Deutsches Zentrum für Luft- und Raumfahrt e.V. RCE. url: https://www.
rcenvironment.de/. (accessed: 15.09.2022).

[11] Claus Pahl. “Containerization and the PaaS Cloud”. In: IEEE Cloud Computing
2.3 (2015), pp. 24–31. doi: 10.1109/MCC.2015.51.

- 52 -

https://www.ansible.com/
https://www.ansible.com/
https://www.kubernetes.io/
https://doi.org/10.48550/ARXIV.1908.03461
https://arxiv.org/abs/1908.03461
https://arxiv.org/abs/1908.03461
https://www.docker.com/
https://www.restfulapi.net/http-methods/
https://www.restfulapi.net/http-methods/
https://www.jcraft.com/jsch/
https://www.jcraft.com/jsch/
https://www.quarkus.io/
https://www.rcenvironment.de/
https://www.rcenvironment.de/
https://doi.org/10.1109/MCC.2015.51

Bibliography

[12] Dharmendra Shadija, Mo Rezai, and Richard Hill. “Towards an understanding
of microservices”. In: 2017 23rd International Conference on Automation and
Computing (ICAC). 2017, pp. 1–6. doi: 10.23919/IConAC.2017.8082018.

- 53 -

https://doi.org/10.23919/IConAC.2017.8082018

Appendix A.

API calls
post /v0/namespaces

create new namespace

Body application/json

1 {
2 " ingressPortCount ": 0,
3 " referenceId ": " someReferenceName "
4 }

Response application/json
200 ok

1 {
2 "data": {
3 "index": 2,
4 "name": "testnet -2",
5 " referenceId ": " someReferenceName ",
6 " ingressPorts ": []
7 },
8 "info": [
9 " Available ingress ports (before): [21000,

21001, 21002, 21003, ...]",
10 " Creating namespace testnet -2"
11]
12 }

- 54 -

Appendix A. API calls

delete /v0/namespaces/id/{id}
delete namespace by id

Parameter

id id of namespace

Response application/json
200 ok

1 {
2 "info": [
3 " Deleting namespace testnet -2"
4]
5 }

404 namespace not found

1 {
2 "info": [
3 " Namespace not found"
4]
5 }

- 55 -

Appendix A. API calls

delete /v0/namespaces/ref/{ref}
delete namespace by reference

Parameter

ref reference of namespace

Response application/json
200 ok

1 {
2 "info": [
3 " Deleting namespace testnet -2"
4]
5 }

404 namespace not found

1 {
2 "info": [
3 " Namespace not found"
4]
5 }

- 56 -

Appendix A. API calls

get /v0/catalog/files
get list of files in the catalog

Response application/json
200 ok

1 {
2 "data": {
3 "files": [
4 {
5 "name": "file -0"
6 },
7 {
8 "name": "file -1",
9 }

10]
11 }
12 }

- 57 -

Appendix A. API calls

delete /v0/catalog/files/{fileName}
delete a file

Parameter

fileName name of the file to be deleted

Response application/json
200 ok

1 {
2 "info": [
3 "File ’fileName ’ deleted "
4]
5 }

404 file not found

1 {
2 "info": [
3 "File ’fileName ’ does not exist"
4]
5 }

500 internal error

1 {
2 "info": [
3 "Error deleting file ’fileName ’"
4]
5 }

- 58 -

Appendix A. API calls

get /v0/catalog/programs
get list of programs in the catalog

Response application/json
200 ok

1 {
2 "data": {
3 " programs ": [
4 {
5 "name": "program -0",
6 "image": "url.to/ container /image",
7 " hasSsh ": false,
8 " hasShell ": true,
9 " hasRest ": true,

10 " service ": "url.to/ service /image"
11 },
12 {
13 "name": "program -1",
14 "image": "url.to/other/image",
15 " hasSsh ": true,
16 " hasShell ": true,
17 " hasRest ": false,
18 " service ": "url.to/some/ service "
19 }
20]
21 }
22 }

- 59 -

Appendix A. API calls

post /v0/catalog/programs
upload new program

Body application/json

1 {
2 "name": " someProgram ",
3 "image": "url.to/ container /image",
4 " hasSsh ": true,
5 " hasShell ": false,
6 " hasRest ": false,
7 " service ": "url.to/ service /image"
8 }

Response application/json
200 ok

1 {
2 "data": {
3 " programs ": [
4 { "name": "program -0", ... },
5 { "name": " someProgram ", ... }
6]
7 },
8 "info": [" Program ’someProgram ’ added"]
9 }

400 program already exists

1 {
2 "info": [" Program ’someProgram ’ already exists "]
3 }

500 internal error

1 {
2 "info": ["Error saving program "]
3 }

- 60 -

Appendix A. API calls

get /v0/network/{networkId}/instances
get list of instances in a network

Parameter

networkId id of a network

Response application/json
200 ok

1 {
2 "data": {
3 " instances ": [
4 {
5 "name": "instance -0",
6 "name": "instance -1",
7 }
8]
9 }

10 }

404 network not found

1 {
2 "info": [
3 " Network not found"
4]
5 }

- 61 -

Appendix A. API calls

post /v0/network/{networkId}/instances/new/{programName}/
{instanceName}
create new instance of a program in a namespace

Parameter

networkId id of a network
programName name of a program
instanceName name for the new instance

Body application/json

1 {
2 " programInitData ": " program initialization data"
3 }

Response application/json
200 ok

1 {
2 "info": [
3 " Instance { instanceName } created "
4]
5 }

400 instance creation failed

1 {
2 "info": [
3 " Instance { instanceName } already exists "
4]
5 }

- 62 -

Appendix A. API calls

post /v0/network/{networkId}/instances/{instanceName}/ssh
execute ssh command in instance

Parameter

networkId id of a network
instanceName name for the new instance

Body application/json

1 {
2 " username ": " someUser ",
3 " password ": " examplePassword ",
4 "port": 22, " command ": "pwd"
5 }

Response application/json
200 ok

1 {
2 "data": {
3 " sshResult ": " Result of the ssh command "
4 }
5 }

404 instance not found

1 {
2 "info": [
3 " Instance { instanceName } not found"
4]
5 }

404 network not found

1 {
2 "info": [
3 " Network not found"
4]
5 }

- 63 -

	List of Figures
	Listings
	Introduction
	Preliminaries
	Distributed computing
	RCE

	Containerization
	Kubernetes
	Volumes

	Microservices
	REST API
	Requests

	Quarkus
	Cloud system environment

	Requirements and interface definition
	Requirements
	Namespace management
	Catalog management
	Network management and interaction

	Interface
	Example API calls

	Concept of the API
	Splitting functionality
	Hierarchy

	Kubernetes setup

	Implementation
	Catalog-Service
	Program catalog
	File catalog
	Persistent storage

	Instance-Manager
	Instance creation
	Specific-Instance-Manager
	Communication

	Frontend-Service
	Catalog forwarding
	Network forwarding
	Namespace forwarding

	Conclusion
	Current state
	Future prospect

	API calls

