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Abstract: Fuel cell electric vehicles (FCEVs) can be used during idle times to convert hydrogen
into electricity in a decentralised manner, thus ensuring a completely renewable energy supply. In
addition to the electric power, waste heat is generated in the fuel cell stack that can also be used. This
paper investigates how the energy demand of a compiled German neighbourhood can be met by
FCEVs and identifies potential technical problems. For this purpose, energy scenarios are modelled
in the Open Energy System Modelling Framework (oemof). An optimisation simulation finds the
most energetically favourable solution for the 10-day period under consideration. Up to 49% of the
heat demand for heating and hot water can be covered directly by the waste heat of the FCEVs. As
the number of battery electric vehicles (BEVs) to be charged increases, so does this share. 5 of the
252 residents must permanently provide an FCEV to supply the neighbourhood. The amount of
hydrogen required was identified as a problem. If the vehicles cannot be supplied with hydrogen in a
stationary way, 15 times more vehicles are needed than required in terms of performance due to the
energy demand.

Keywords: renewable energy; fuel cell electric vehicle; combined heat- and power; energy
self-sufficiency; decentralised power generation; neighbourhood; low power from wind and PV;
charging of battery electric vehicles; additional waste heat utilisation

1. Introduction

Germany consumes more primary energy than it generates itself. This difference
is largely covered by fossil fuels such as mineral oil, gas, hard coal and uranium [1,2].
In order to reduce emissions and to reduce energy imports, electric mobility is therefore
also becoming increasingly relevant in Germany [3]. New energy-efficient houses are
increasingly being equipped with heat pumps for hot water and heating due to the better
energy efficiency and independence from fossil fuels [4–6]. Consequently, the number of
large electrical consumers in the German power grid is increasing.

This rising demand for electrical energy is countered by the shutdown of conventional
power plants. In Germany, the last nuclear power plant will be taken off the grid at the end
of 2022 [7]. Coal-fired power plants are not to supply any more electrical energy until 2038
at the latest [8]. These eliminated capacities must be replaced by renewable energy sources.
The disadvantage of renewable energy sources, however, is that energy generation is not
as reliable and controllable as with conventional power plants. Storage technologies and
flexible generators will therefore become more relevant so that generation bottlenecks can
be bridged.

Green hydrogen, in addition to its potential as an alternative fuel for ships [9] besides
ammonia [10] or as an alternative for a carbon-free iron and steel industry [11], can also
be a possible technology for flexible reconversion into electricity through fuel cells [12,13].
This can be done centrally or decentrally through stationary combined heat and electricity
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plants (CHP) [14]. Another alternative would be to use fuel cells in passenger cars [15,16],
as these are only used for driving 4.7% of the time [17,18]. Thus, they would theoretically
stand around unused for the remaining 95.3% of the time. During this time, the vehicles
could bridge generation bottlenecks in a decentralised manner and thus represent real
added value for the owners.

Different research groups have already investigated Fuel Cell Electrical Vehicles
(FCEVs) as mobile CHPs (MCHPs) simulatively in combination with individual building
types [19–21]. These investigations demonstrated the high potential of FCEVs used as
MCHPs plants for both domestic and commercial use. For example, an FCEV combined
with a battery storage system can easily cover the entire electricity requirements of a single-
family home most of the time of the year [20]. The Open Energy Modelling Framework
(OEMOF) was regularly used for these and other studies (for instance [22,23]). It is a
tool for modelling and analysing energy systems and is particularly well suited for the
consideration of cross-sectoral studies [24,25]. So far, only one or several vehicles have
been considered for supplying a single building with electricity and heat. However, it
has not yet been investigated how the supply of an entire neighbourhood can be realised.
This paper therefore focuses on the question of how many residents of a neighbourhood
would have to provide an FCEV in the event of energy generation bottlenecks so that the
neighbourhood can be completely supplied with electrical and thermal energy and what
problems there might be in a practical application. Likewise, the influence of an increasing
number of electric vehicles to be charged on this number will be investigated.

To answer these questions, a typical German neighbourhood, whose buildings are
heated electrically with heat pumps, is created with the help of OEMOF. A period over ten
days is determined in which the energy demand of the neighbourhood is highest. During
this period, the electrical and, as far as possible, the thermal energy demand of the entire
neighbourhood is to be covered exclusively by FCEVs.

The technical problem identified was the daily amount of hydrogen required. If only
50% of a full tank of hydrogen could be used each day, 75 vehicles would be required and
about 40% of the residents would have to permanently provide an FCEV. If, on the other
hand, the vehicles could be supplied with hydrogen on a stationary basis, only 5 vehicles
would be necessary. This would correspond to 2.6% of the residents and would be much
more practicable.

2. Methods

The main optimisation objective is to cover the total heat and electricity demand of
the considered neighbourhood, which should be composed as realistically as possible, by
integrating a virtual portable power plant composed of FCEVs into its energy system to
bridge an imaginary ten-day period of an event of a generation bottleneck of renewable
energies occurring at the worst possible time. Therefore, a given modelling approach
is adapted and extended [20,21]. The model’s exact input and output parameters, the
boundary conditions, and the considered scenarios are described in more detail below.

2.1. Composition of the Neighbourhood and Derivation of Load Profiles

As already said, the neighbourhood should be as realistic as possible. Therefore, the
most recent data available is used on household composition and average living space from
the Federal Statistical Office are used [26]. In the neighbourhood, multi-family houses with
12 flats each and single-family houses are considered. With one flat per house (equivalent
to a single-family house), the average living space is 129 m2; with three or more flats per
house, it is 70 m2, based on 2019 data from Germany [26].

The composition of households in Germany in 2019 is as shown in Table 1.
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Table 1. Composition of Households in Germany in 2019 [27,28].

People per Household Share of Households Reference Person employed

1 42.3% 53.9%
2 33.2% 72.1%
3 11.9% 72.1%
4 9.1% 72.1%

5 or more 3.5% 72.1%

To implement these key figures as good as possible in the simulation, three multi-
family houses (“MFHs”) types and six single-family houses (“SFHs”) types are formed from
these (see Table A1 in the Appendix A). As the individual load profiles are generated with
the tool “LoadProfileGenerator” (LPG) [29], predefined household types are selected. The
electrical energy demand and the particular hot water demand result from these types of
homes. The breakdown of the abbreviation indexes are given in the Appendix A (Table A2).
Each of the three MFHs is represented thrice, and each of the SFHs is represented twice
in the neighbourhood. The neighbourhood is thus composed of the residents shown
in Table 2.

Table 2. Classification of the 252 Residents of the Neighbourhood.

U18 Day Shift Night Shift Unemployed

63 86 21 82

As already mentioned in Section 2.1, the load profiles are generated with the LPG,
version V10.4.0.40. The tool generates an adjustable, location- and time-dependent heating
load profile for the buildings, based on actual temperature profiles (set to ‘Hamburg 2007’),
an individual electrical load profile for each household, and individual hot water demand
profiles for the homes. The setting ‘Load types to include’ is set to ‘Recommended for
households and houses’. All electrical consumers are taken into account with the “Energy
Saving” setting. The annual heating energy demand of German buildings fell from 146 kWh
to 131 kWh per sqm and year between 2008 and 2018 (partly due to new buildings) [30].
In the LPG, a heating energy demand of 140 kWh m−2 per year is set to create adverse
boundary conditions. Air conditioning of the living spaces is not provided. The load profile
time resolution to be generated is set to 15 min steps.

After generating the load profiles, these are available for each type of house according
to the set households. Since the required hot water is available in litres in the load profile,
it must be converted into the required heating capacity for further use. Assuming that the
hot water consumed has a temperature of 60 °C (recommended temperature to minimise
germ growth [31]) and the tap water to be heated is assumed to be 14.2 °C warm [32],
the power in watts per liter required is calculated to 213 W L−1 as follows:

PHotWater =
cWater ∗ ∆T

tPro f ileResolution
∗ V =

1.16Wh
L ∗ K

∗ 45.8 K ∗ 4
1h

∗ V ≈ 213
W
L

∗ V (1)

With cWater as the heat capacity of water, ∆T as the temperature difference between
tap and hot water, tPro f ileResolution as the time resolution of the load profile and V as the
volume of water to be heated in this timestep.

2.2. Determination of the Period to Be Considered

Periods of approx. 2 days, in which hardly any energy is available from wind and
sun, tend to be the rule in Germany [33]. However, the claim of this paper is to assume the
worst-case conditions for consideration, since sufficient energy supply must be ensured
even in these conditions. Thats why a period of 10 days [34] is chosen. To determine
the period with the highest energy demand occuring in the neighbourhood, 354 periods
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are formed. Each period starts on day X and ends after 240 h, as shown in Figure 1. It is
assumed that the thermal energy demand and the hot water energy demand in all buildings
are covered by electric heat pumps and that these have a COP of 4 (for more details on this,
see Section 2.5).

The maximum occurs beginning on day 349 and amounts to 32.2 MWh of electrical
energy consumed for heating, hot water supply, and direct electricity use. The resulting
period to be considered thus begins on 15 December 2007 at 0:00 and ends on 24 December
2007 at 23:59:59. In Section 3.1, the energy demand during this period is analysed and
presented in more detail.
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Figure 1. Energy consumed in the neighbourhood under consideration in MWh over a period
starting at 0:00 on the start day and ending after ten days respectively 240 hours at 23:59 (blue dots).
The maximum demand of 32.2 MWh on day 349 is shown in yellow (dashed).

2.3. Modelling Approach

The modelling approach used in this paper is based on the approach from [20], which
in turn is based on a linear optimisation with variable time series resolution implemented
in python using OEMOF [24,25]. Thus, investigation of thermal, electrical, hydrogen and
natural gas energy flows into and out of buildings can be modelled. Self-defined notional
costs are used to formulate a minimisation problem. Energy flows can be prioritised by set-
ting these costs as desired and are therefore defined such, that no energy is drawn from the
grid. However, different boundary conditions (see Section 2.5) are chosen depending on the
scenario considered (see Section 2.6). The modelling approach used in this paper is based
on the approach from [20], which in turn is based on a linear optimisation with variable
time series resolution implemented in python using OEMOF [24,25]. Thus, investigation of
thermal, electrical, hydrogen and natural gas energy flows into and out of buildings can
be modelled. Self-defined notional costs are used to formulate a minimisation problem.
Energy flows can be prioritised by setting these costs as desired and are therefore defined
such, that no energy is drawn from the grid. However, different boundary conditions (see
Section 2.5) are chosen depending on the scenario considered (see Section 2.6).

2.4. In- and Output Parameters of the Model

Figure 2 shows the input and output parameters considered in the model. The main
input parameters of the model are the defined static heat and electricity demand of the
building. These demands should be covered by the variable heat and electricity production
from the FCEVs. Solar electricity from rooftop PV systems or electricity from the grid
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is not available in any of the scenarios considered. The period during which the car is
coupled to the building, it can provide energy. Efficiency values of the fuel cell systems are
predefined via parameters. A heat pump with a given coefficient of performance (COP)
can be used for additional heat generation in the building. The model also accounts for
the flexible thermal and electrical storage units. The capacity parameter of these storage
units is determined via optimisation. The capacity parameters of these storage units are
determined by optimization so that they are as small as possible and as large as necessary.
The losses incurred and other parameters (see Section 2.5) are taken into account in the
dimensioning. All variable energy flows (green boxes in Figure 2) are to be determined by
the optimisation.

Figure 2. Representation of the relevant model elements: fixed load profiles (orange boxes) and
variable power flows to be determined (green boxes). The optimal capacity of the electrical and
thermal storage capacity is also to be determined by the solver. As a period with low renewable
energy being available is considered, no electricity is available from the grid. The model should
therefore avoid the draw of electrical power from the grid.

The result of a simulation is the determined energy flows (cf. Figure 2), for which the
lowest notional costs are incurred for the given boundary conditions (see Section 2.5). The
results also include the needed electrical and thermal power capacities of the FCEVs to be
optimised and the capacities of the storage facilities, if available.

2.5. Optimisation Boundary Conditions

The exact boundary conditions and settings of the model are explained in more detail
below. The coefficient of performance of modern heat pumps varies between average values
of 3.5 to 4.5. These values are based on the requirements for obtaining a subsidy from the
German Federal Office of Economics and Export Control (“Basisförderung Wohngebäude”
and “Innovationsförderung” for electrical air heat pumps) [35]. Therefore, a COP of 4 is
selected for the heat pump of the model building under consideration, precisely as in [20].

The degree of energy efficiency of the virtual power plant consisting out of several
FCEVs is, as in [20], determined based on [21,26]. It is approximated for the simulations
as follows: For every 100 kWh of chemical energy expended in the form of hydrogen,
41.87 kWh of electrical energy and 29.77 kWh of thermal energy are generated. This corre-
sponds to an electrical efficiency of 41.87% and a thermal efficiency of 29.77%. However,
since the power must still be fed out of the car and, if necessary, made usable (e.g., the
direct current fed out must first be converted via an inverter), losses are also calculated for
this. Therefore, 10% losses are taken into account for heat and 5% for electricity.

In the scenarios (cf. Section 2.6), a distinction is made between scenarios with and
without storage capacities available in the buildings. If storage capacities are available, the
sizes are not predefined but determined during the optimisation process. The costs are
defined such, that thermal storage capacity is cheaper than electrical storage, so that the
electrical storages are kept as small as possible. A round trip efficiency of 90% is taken into
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account for the electrical storage unit [36], and an efficiency of 92% for the thermal storage
unit [21]. Storage losses that occur over time, e.g., at the heat storage, are not taken into
account separately.

The specific costs are defined as such, that using energy from the FCEV is preferred
over using energy from storages (cEFromStorage > cEFromFCEV). The thermal and electrical
energy generated by the FCEV must be used entirely and shall not be wasted. Therefore
the cost of feeding a thermal and electrical surplus sink is defined as very high. This is to
prevent that, for example, only the electricity is used and the heat remains unused.

The time resolution in the optimisation is set to 15 min. As in [20], individual days
are not optimised, but rather the entire period is under consideration. This is done since
energy can theoretically be stored for several days and does not have to be consumed at
the end of the 24 h, as would be the case with optimisation daily. The solver used in the
simulations is the “coin-or branch and cut” solver (CBC) [37].

A brief overview of the boundary conditions is given in Table A3 in the Appendix A.

2.6. Considered Scenarios

As a derivation from the boundary conditions and the pure energy demand of the
neighbourhood, the charging of battery electric vehicles, which will become increasingly
relevant in the future, is also considered in the scenarios shown in Table 3. The number
of cars to be charged and the period they are charged is defined relative to the number of
employees and their working hours (cf. Table 2). For simplification, it is assumed that the
vehicles are charged every weekday. In this way, weekend excursions or the charging of
visitors’ cars and cars of non-employees, if applicable, are also partially taken into account
in terms of energy.

The amount of energy to be charged per day for each vehicle is 5.1 kWh. This results
from the average commuting distance (dcdist) of German employees, which bases on [38]
and is calculated as follows, and the consumption of an average electric car (approx.
170 kWh km−1, see [39]).

dcdist = 22.2% ∗ 7.5 km + 30.2% ∗ 17.5 km + 14.8% ∗ 37.5 km + 5.1% ∗ 50 km = 15.05 km (2)

The following Table 3 shows all the scenarios considered:

Table 3. Scenarios Considered.

Employees BEVs Day BEVs Night Energy for Charging

0% 0 0 0 kWh
10% 2 9 561 kWh
25% 5 22 1377 kWh
50% 10 44 2754 kWh
75% 15 66 4131 kWh

The period overnight and over day is the same as the period used to determine the
required power capabilities of the FCEVs. The BEVs can be adaptively charged with 0 kW
to 150 kW during these periods. The defined amount of energy must have been charged
into each vehicle at the end of the period. Each scenario is considered once with and
without storage capacities in the individual residential buildings.

3. Results and Discussion

In this section, both the initial situation is examined in terms of energy and the results
of the different scenarios considered are presented and discussed. Finally, the potential
offered by the additional use of waste heat from the FCEVs and how much energy can be
saved by this is examined.
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3.1. Energy Demand Analysis

Figure 3 shows how the energy demand of the neighbourhood is composed. As can
be seen in the diagram, the blue portions, i.e., the electricity demand for heating, are higher,
by a factor of approx. 2 to 3 depending on the day. This is not surprising, as heating is
exclusively provided by heat pumps and the period under consideration is in December.
The highest energy demand occurs on 22.12. and amounts to 3543 kWh. This day will
probably be decisive for optimising the required power capacities.
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Figure 3. Energy demand analysis on the individual days of the period under consideration. The blue
bars show the electrical energy used by the heat pump for hot water and heating in kWh. The orange
bars show the other electrical energy used in kWh. A maximum of 3543 kWh of energy is required
on 22 December 2007. Since a period in which no renewable power is available is assumed for the
period under consideration, no power is generated by the buildings’ PV systems and all power is
drawn from the grid.

3.2. Capacity Requirements

Optimising the energy demand of the neighbourhood as it is with a virtual power
plant consisting of a to be determined number of FCEVs (depending on the given technical
framework conditions required to provide the determined power capacity) results in the
needed capabilities shown in Figure 4 result. The optimisation distinguishes between two
capabilities. One is determined between 19:00 and 7:00 (shown in blue and dark grey)
and another between 7:00 and 19:00 (shown in orange and light grey). Thus, a statement
about which capacity is required at night and during the day can be given. Furthermore,
a distinction is made between a scenario without (Figure 4, left) and a scenario with storage
capacities to be optimised (Figure 4, right). For determining the proportions of the virtual
power plant’s thermal and electrical power capacity, the efficiency configuration of the fuel
cells, comprising the virtual power plant, is decisive. The results are also given in numbers
in Table 4.
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Table 4. Power Demand in the Neighbourhood.

Parameter Without Storages Including Storages

Storage EL - 656 kWh
Overnight EL 198 kW 108 kW
Overday EL 229 kW 134 kW

Storage TH - 699 kWh
Overnight TH 141 kW 76 kW
Overday TH 163 kW 95 kW

As can be seen in the graph, the required power demand is significantly lower with
storage capacities in the buildings. The power demand during the day is higher than the
demand during the night. This is because most residents of the neighbourhood under
consideration are either sleeping or working at night. Thus, the need for hot water and
electricity is comparatively lower. Without storage, the power demand is defined by
the peak demand. Including storage, the lowest possible power demand is determined
based on prioritisation via the notional costs. The power demand is thus rather constant.
However, energy losses occur at the storage units, and, conversely, more hydrogen is
needed to supply the neighbourhood, which is described in more detail in Section 3.4.

Without Storage With Storage
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Capacity:
656 kWhEl
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0 kWhEl
0 kWhTh

Electricity FCEV Day
Waste Heat FCEV Day
Electricity FCEV Night
Waste Heat FCEV Night

Figure 4. Power demand in the neighbourhood, with and without storage capacities. The blue
bars show the required electrical power in the period from 7:00 to 19:00. The orange bars show the
necessary electrical power in the period from 19:00 to 7:00. The grey bars above show the waste heat
from the FCEVs utilised in addition to the electrical power supplied.

3.3. Taking Electromobility into Account

Considering the current development of electric mobility, it would be unrealistic to
assume that no BEVs will be charged in a neighbourhood in the future. For this reason, the
charging of BEVs is taken into account in the following scenarios. First, it is investigated
how the required power capacities without storage in the residential buildings develop
with an increasing number of vehicles to be charged. The results are shown in Figure 5 and
numerically in Table 5.
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Table 5. Power demand including Electromobility, without Storage Capacities.

Par./BEVs 0 12/9 5/22 10/44 15/66

Storage EL - - - - -
Overnight EL 198 kW 198 kW 198 kW 198 kW 198 kW
Overday EL 229 kW 229 kW 229 kW 229 kW 229 kW

Storage TH - - - - -
Overnight TH 141 kW 141 kW 141 kW 141 kW 141 kW
Overday TH 163 kW 163 kW 163 kW 163 kW 163 kW

As can be seen in Figure 5, no additional power capacities are necessary. This is related
to the cars being charged flexibly over 12 hours, and the charging power can be reduced
accordingly to 0 kW at the peak loads that occur in the neighbourhood. The total amount
of hydrogen consumed is higher according to the additional energy required for charging.
Furthermore it is investigated, how the required power capacities develop with increasingly
more BEVs to be charged if optimal storage facilities are available. The results are shown in
Figure 6 and numerically in Table 6.
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Figure 5. Power demand in the neighbourhood without storage capacities. The X-axis shows the
scenarios considered resp. the relative number of employees in the neighbourhood who use a BEV
daily for commuting and charge it in the neighbourhood during the other half of the day according
to their working hours. The information in the brackets behind the percentage figure indicates the
period in which the cars are charged (daytime/nighttime). The bars have the same meaning as
in Figure 4.
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Figure 6. Power demand in the neighbourhood with optimally dimensioned storage capacities. The
X-axis shows the scenarios considered resp. the relative number of employees in the neighbourhood
who use a BEV daily for commuting and charge it in the neighbourhood during the other half of
the day according to their working hours. The information in brackets behind the percentage figure
indicates the period in which the cars are charged (daytime/nighttime).

As can be seen, the required power demand increases by 40 kW of electrical power
for 66 cars during nights. During the day, it decreases by 8 kW of electrical power for
15 BEVs. The electrical storage necessary decreases somewhat (−38 kWh for 15/66 BEVs
corresponding to −6%) with an increasing number of BEVs, while the thermal storage
capacity decreases significantly (−218 kWh for 15/66 BEVs corresponding to −31%). This is
related to the fact that a higher thermal power capacity accompanies the higher electrical
power capacity at night. From the smaller storage capacity, it can be concluded that less
energy from the day needs to be stored for the night. Presumably, there are power peaks
during the day due to the behaviour of the residents, which is why a generally higher
capacity is necessary during the day and energy is stored for the night.

Table 6. Power demand including Electromobility, including Storage Capacities.

Par./BEVs 0 12/9 5/22 10/44 15/66

Storage EL 656 kWh 609 kWh 630 kWh 618 kWh 618 kWh
Overnight EL 108 kW 112 kW 118 kW 130 kW 148 kW
Overday EL 134 kW 134 kW 134 kW 133 kW 126 kW

Storage TH 699 kWh 657 kWh 592 kWh 477 kWh 481 kWh
Overnight TH 76 kW 79 kW 84 kW 93 kW 106 kW
Overday TH 95 kW 95 kW 95 kW 95 kW 90 kW

As a result of the increasing number of BEVs to be charged, the power demand shifts
somewhat to the night, as seen from the power demands. This trend is due to the behaviour
of the residents, since more FCEVs are likely to be available at night to feed energy back into
the energy grid of the neighbourhood. As in the previously examined scenarios without
storage, the total amount of hydrogen consumed is higher according to the additional
amounts of energy required for charging explained in more detail in the following section.

3.4. Hydrogen Consumption Analysis

The influence of an increasing number of BEVs on the required hydrogen is investi-
gated and shown in Figure 7.
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Figure 7. Analysis of the average daily hydrogen demand for the scenarios considered. Shown
in blue are the respective scenarios without storage systems. In orange, the individual scenarios
with optimally dimensioned storage capacities. The X-axis shows the scenarios considered resp.
the relative number of employees in the neighbourhood who use a BEV daily for commuting and
charge it in the neighbourhood during the other half of the day according to their working hours.
The information in the brackets behind the percentage figure indicates the period in which the cars
are charged (daytime/nighttime).

Without BEVs, an average of 205.4 kg of hydrogen is required daily without storage
capacities. With optimal storage, 206.7 kg are required, which corresponds to approx. 0.6%
more. The additional demand for hydrogen increases linearly with the number of BEVs
and amounts to 13.5% more hydrogen for a total of 81 vehicles to be charged daily in the
scenario “75% (15/66)”. The additional hydrogen demand, therefore only slightly increased
(27.7 kg d−1 without storage, 27.9 kg d−1 with storage).

3.5. Energy Saving Potential through Waste Heat Utilisation

Since periods in which little power is available from wind and PV mainly occur in
colder parts of the year, the heating demand is higher. It is a particularly relevant factor
for the total amount of energy required. As already shown in Section 1, there have already
been initial experiments with FCEVs feeding back energy. However, these were limited
exclusively to electrical power. The additional benefit that can be derived from the waste
heat of the fuel cell stack is investigated. Figure 8 shows how the total energy demand of
the neighbourhood is met by shares of different energy suppliers. For example, the study is
carried out on the scenario without BEVs and on the scenario “75% (15/66)”. The scenarios
with storage capacities are chosen in each case, as these will probably be more realistic
in the future. Since it is already known that the virtual power plant entirely covers the
electrical energy demand, the outer ring of the pie charts shows wherefore the electrical
energy is used. The inner-circle indicates the source of the thermal energy required for
heating and domestic hot water.
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72%
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Heat HP (18.2 MWh)

Figure 8. Energy-saving potential through further use of waste heat and influence of additional
charging of BEVs. The outer ring shows how the electrical energy fed out from the FCEVs is used:
the blue portion shows the electrical energy consumed directly, the light grey portion shows the
energy consumed by the heat pump, and the green piece shows the energy used to charge the BEVs.
The inner-circle diagram shows where the heat energy needed for hot water production and heating
comes from: orange is the heat fed out of the FCEVs, and dark grey is the heat generated by the
heat pump.

As shown in the diagram on the left, just below half of the thermal energy demand can
be covered by the virtual power plant consisting of FCEVs. 17% of the generated electricity
is additionally used to cover the rest of the thermal need. The additional use of waste heat
thus leads to a saving of 18.5 MWh of thermal energy, respectively 4.63 MWh of electrical
energy (corresponds to approx. 14.4%).

If 81 BEVs charged daily are included in the analysis, additional heat can be used
due to the higher electrical energy demand. The amount of heat supplied increases by
2.3 MWh or 12.4%, but the heat generated by the heat pump only decreases by 800 kWh.
This can be explained by the fact that the heat is not generated according to demand and
has to be stored for later use-losses occur in the process. Nevertheless, this corresponds to
an additional saving of about 200 kWh of electrical energy. Compared to where no waste
heat would be used in this scenario, 4.83 MWh or 13.5% of electrical energy, which would
otherwise be additionally necessary for heating, is saved. The percentage of energy saved
in this scenario with BEVs is correspondingly somewhat lower, as more electrical energy is
required overall.

Of course, all energy savings figures refer only to the all-electric buildings in the
neighbourhood. If other energy sources were used for heating, e.g., gas or wood chips, the
savings would be more significant: without BEVs, 49%, with BEVs, 53% of energy can be
saved for heating and domestic hot water. Likewise, it was assumed that the buildings are
slightly insulated below the average building standards. In the future, it is hoped that the
facilities will be insulated better and thus require less energy for heating. The percentual
savings potential would then increase even further.

4. Conclusions

The simulation results have shown that FCEVs are, in principle, suitable for supplying
neighbourhoods with renewable energy using green hydrogen at times when little wind and
solar power is available. The additional use of waste heat increases efficiency significantly,
saving up to 53% of the energy required for heating and hot water preparation.
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If we take as a benchmark a Hyundai Nexo, whose fuel cell stack has a specified
continuous electrical power of 32 kW according to the vehicle registration certificate, then
theoretically 5 FCEVs (with storage capacities in the neighbourhood) can completely cover
the entire energy demand, including the electrical energy demand for charging BEVs, under
all circumstances. With an increasing number of BEVs to be charged, the power demand
shifts from daytime to nighttime so that even 4 FCEVs would be sufficient during the day.
At five vehicles per 189 adult residents, this equates to 2.6% of adult residents required to
permanently provide an FCEV. With four vehicles, it is 2.1%. In addition, this is the case for
assuming the worst possible conditions for all circumstances.

However, the hydrogen required is the limiting factor with a total tank capacity of
6.33 kg hydrogen (at 700 bar) [40,41]. If we assume that half of the tank capacity (i.e., about
3.2 kg of hydrogen) is available to the vehicles every day, 75 FCEVs that need to be refuelled
every day would be required instead of the five cars being theoretically sufficient in terms
of their power capabilities. Consequently, it would be beneficial to supply the cars with
hydrogen on a stationary basis for a technical realisation.

The accuracy of the actual achievable thermal and electrical efficiency of regenerative
FCEVs is estimated in this paper based on current data. Possible dependencies of these
efficiencies on external influences, such as the outside temperature, are not taken into
account, since no data exist on this yet. To create a better basis for upcoming simulations,
further experiments are needed. Likewise, it must be said that economic interests of the
owners of the vehicles are not considered in this work. The focus is purely on the energy
aspects. For an actual practical implementation of the scenarios considered, this will of
course only work if the owners of the FCEVs derive an economic benefit from the provision
of their vehicle. For this, the wear and tear of the equipment and the costs of the equipment
required to transfer the energy from the vehicles to the corresponding local grids should be
taken into account.
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Abbreviations
The following abbreviations are used in this manuscript:

BEV Battery Electric Vehicle
CHP Combined heat and electricity plant
COP Coefficient of performance
FCEV Fuel Cell Electric Vehicle
LPG Load profile generator
MCHP Mobile combined heat and electricity plant
MFH Multi family house
MILP Mixed integer linear programming
OEMOF Open Energy System Modelling Framework
PV Photovoltaics
SFH Single family house
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Appendix A

Table A1. Formed House Types.

Type Living Space Households

MFH-1 12* 70 m2 CHR01, CHR03, 2* CHR07, CHR10, CHR14, CHR17, CHR32, CHR36, CHR38, CHR44, CHR46
MFH-2 12* 70 m2 CHR04, CHR07, 2* CHR10, CHR17, CHR18, CHR22, 2* CHR26, CHR46, CHR48, CHR60
MFH-3 12* 70 m2 2* CHR01, CHR02, CHR03, 2* CHR07, 2* CHR30, CHR31, CHR40, CHR44, CHR59
SFH-1 1* 129 m2 CHR44
SFH-2 1* 129 m2 CHR03
SFH-3 1* 129 m2 CHR18
SFH-4 1* 129 m2 CHR33
SFH-5 1* 129 m2 CHR49
SFH-6 1* 129 m2 CHS04

Table A2. Breakdown of Household Abbreviations.

Abbreviation Breakdown

CHR01 Couple both at Work
CHR02 Couple, 30–64 age, with work
CHR03 Family, 1 child, both at work
CHR04 Couple, 30–64 years, 1 at work, 1 at home
CHS04 Retired Couple, no work
CHR07 Single with work
CHR10 Single man, 30–64 age, shift worker
CHR14 3 adults: Couple, 30–64 years, both at work + Senior at home
CHR17 Shiftworker Couple
CHR18 Family, 2 children, parents without work
CHR22 Single woman, 1 child, with work
CHR26 Single woman under 30 years without work
CHR30 Single, Retired Man
CHR31 Single, Retired Woman
CHR32 Couple under 30 years without work
CHR33 Couple under 30 years with work
CHR36 Single woman, 30–64 years, without work
CHR38 Single man, 30–64 years, without work
CHR40 Couple, 30–64 years, without work
CHR44 Family with 2 children, 1 at work, 1 at home
CHR46 Single woman, 1 child, without work
CHR48 Family with 2 children, without work
CHR49 Family with 1 child, without work
CHR59 Family, 3 children, parents without work
CHR60 Family, 1 toddler, one at work, one at home

Table A3. Static Boundary Conditions of the Simulations.

Condition Value

Charging Power of BEVs 0–150 kW
Coefficient of Performance of Heatpumps 4.0
Electrical Efficiency of Fuelcell Stack FCEV 0.4187

Electrical Efficiency of Electrical Storage 0.9
Electrical Transfer Losses from Car to Building 5%

Energy Density Hydrogen 33.33 kWh/kg
Electrical Energy needed per Day per BEV 5.1 kWh
Heat Transfer Losses from Car to Building 10%

Maximum Continious Electrical Power per FCEV 32 kW
Tank Volume of one FCEV 6.33 kg

Thermal Efficiency of Fuelcell Stack FCEV 0.2977
Thermal Efficiency of Thermal Storage 0.92

Time Resolution of the Simulations 15 min
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