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Entwicklung eines Front-End Moduls für ein dezentrales multi-
modales SLAM Framework im Bereich der mobilen Robotik

Am Institut für Robotik und Mechatronik (RMC) des Deutschen Zentrum für Luft- und Raumfahrt
(DLR) wird ein dezentraler SLAM (Simultaneous Localization and Mapping) Algorithmus entwick-
elt. Es handelt sich um ein System, das sowohl eine Vielzahl von Daten gleicher Sensormodalität
als auch Messungen von verschiedenen Sensortypen fusionieren soll.
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sollen Synergien zwischen verschiedenen Featuretypen geschaffen werden, um die Qualität der
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1 Introduction

1.1 Motivation

In recent times, human spaceflight beyond low earth orbit has gained more and more interest.
Nearly 30 years after the last human being departed from another celestial body, the National
Aeronautics and Space Administration (NASA) announced with their Artemis program the return
of human beings to the Moon in 2024 [1]. As the first step with the ultimate goal of crewed
exploration of Mars, the Earth-moon resembles the ideal proving ground for future planetary
exploration missions. However, crewed spaceflight is a very complex and therefore expensive
subject, as the utilized spacecraft and equipment have to obtain a human-rating certification.
Even in recent times, together with these precautionary measures, it still bears a substantial
amount of risks, as well as psychological and physiological challenges for the astronauts.
Human-built exploration technology has not yet reached self-sustained operation capability and
is still dependent on regular resupplies from the Earth. Since the turn of the millennium, there
has been considerable interest in In Situ Resource Utilization (ISRU), which would guarantee
independent operation by manufacturing necessary materials from resources at the mission
site. Unfortunately, this technology is still in development and has not been implemented in
a space-related mission for material production. While the first technology demonstrators are
planned in the next few years on the Moon with the goal of producing water or breathable oxygen
before 2025 [2], it would still take decades to reach mandatory technology readiness. Therefore,
especially in cases of long-running missions and exploration of extraterrestrial bodies, the
utilization of robots would significantly increase the possible range and duration of the operation.
It boosts the overall exploration capability and still provides the best cost-to-scientific-benefit
ratio in astronautics.

Apart from standalone research and exploration duties, robotic systems can also provide
assistance to crewed missions in collaboration with human operators. In this case, tasks with
higher uncertainties and risks could be assigned to them, as they are more robust against the
hazardous environment. In addition, the loss of technical equipment is more acceptable than
potential injuries to crew members up to the possibility of crew loss. While the capabilities of
robotic systems are steadily growing with the first ones, e.g., Boston Dynamics’ Spot, reaching
commercial viability, they are still mainly dependent on a human operator due to their lack of
autonomy. First steps in making them more independent can be seen with Boston Dynamics’
latest iteration of their humanoid walking robot Atlas. In addition, Tesla’s recent announcement of
the development of a humanoid assistance robot further increased the attention on the public side.
Aside from the fast-growing commercial sector, considerable research is also being conducted
at universities and research facilities like the German Aerospace Center (DLR). At the Institute
of Robotics and Mechatronics, Surface Avatar and SMiLE2gether, which is derived from the
German expression "Servicerobotik für Menschen in Lebenssituationen mit Einschränkungen",
are just two examples of projects in the field of humanoid service and assistance robots. In
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1 Introduction

the case of Surface Avatar, the focus is mainly on supervised teleoperation with autonomous
robots and collaboration between different robotic applications in a martian surface exploration
setting. On the contrary, SMiLE explores the possibility of utilizing robotic technology in the
field of health- and elderly care. Its surroundings are pretty modest compared to the planetary
exploration scenario in Surface Avatar and resemble a typical housing environment on Earth.

In order to improve autonomous robot operation, the ability to accurately perceive its surroundings
is crucial for the reliability and robustness of the system. Therefore, one of the main requirements
is to provide a robust and accurate working localization and perception framework to establish
spatial awareness at all times. Especially in densely populated areas and in collaboration with on-
site human operators and other participating robots, establishing situation awareness is essential
to ensure operational safety. In recent years, machine perception algorithms have become more
sophisticated and are already able to provide estimates with sufficient accuracy. Nevertheless,
these applications are still under development and associated with many unresolved challenges.
This includes the major issue surrounding the performance and robustness of these primarily
image-based approaches since it is highly dependent on the overall environmental conditions
and the texture of the surrounding surfaces. Alongside the qualitative aspect, these methods are
still very computationally intensive, which poses an additional challenge, especially in the area
of mobile systems without external processing capabilities.

1.2 Research Questions

In this work, a robust and efficient front-end module responsible for tracking and short-term
localization tasks is developed as part of a novel perception framework. While doing so, the
following research questions are central to the development and conceptualization process:

• How can different types of sensors and methods within the processing pipeline for
a tracking system be effectively and efficiently combined to create a multi-modal
perception module on both the hardware-specific area with a special focus on
visual-inertial sensors and the software-related domain?

• What is the best strategy for optimizing and distributing the demanded comput-
ing power to meet the real-time processing capability requirements on mobile
platforms? How can such a system be realized and implemented?

• How does the new approach’s performance and robustness compare to other
state-of-the-art methods in generalized and application-related environments?

2



1 Introduction

1.3 Structure of the Work

At first, Chapter 2 focuses on the theoretical background of the thesis, which forms the foun-
dations of the considerations and developments within the following chapters. Based on the
available hardware setup and our targeted field of application introduced in the previous segment,
the next chapter reflects on the conceptualization process within the development of our targeted
front-end module.

While novel methods for establishing multiple modalities in the hardware and software-related
domain are proposed in Chapter 3 within a theoretical context, these approaches are further
elaborated in Chapter 4 and integrated into the processing pipeline of the tracking system.

Following the conceptualization and implementation tasks, an experimental evaluation is con-
ducted in Chapter 5, in which the performance of the multi-modal front-end module is analyzed
in greater detail. In the end, the thesis is rounded up by the critical assessment of the proposed
and implemented methods in Chapter 6 and concluded in Chapter 7.
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2 Theoretical Background

This chapter introduces the audience to the subject surrounding sensation and perception
to create machine perception with a particular focus on tracking, localization, and mapping
targeting the creation of spatial awareness. Starting from the fundamentals in Section 2.1, we
clarify the terms of sensation and perception in the human context and technical realization. In
the next step, perception is subdivided into different types based on the correlations utilized
in human psychology, which also find use in machine perception. Section 2.2 introduces the
robotic platform and available types of sensory, which serves as the hardware reference to
the development within the thesis. Inspired by this human ability, researchers have transferred
and reconstructed this skill into the man-made domain. At last, individual branches of machine
perception and their current state of research is examined in Section 2.3.

2.1 Fundamentals of Machine Perception

Already since the beginning of engineering, researchers and scientists have drawn inspiration
from nature. While evolutionary processes in biology are relatively slow, the final results are well
adapted to the requirements and very frugal in the case of resource utilization. Thus, researchers
have also adopted the human perception and sensation process, which results in robotic sensing
and machine perception. While the general term and its technical realization have already been
broached in the introduction, it remains still somehow unclear.

2.1.1 General Aspects

In general, machine perception is the comprehensive term for the capability of an artificial system
to interpret data collected by sensors in a manner that is similar to the way human use their
senses and the abilities to relate to the world around them. Before getting into details, it is
necessary to clarify the differentiation between sensation and perception since there is a general
misconception between them and their covered areas in psychology and neuroscience, as well
as in their technical counterpart.

The likelihood of confusion between the terminologies already starts with the origin of the term
perception, which is derived from the Latin word perceptio. Initially, it resembles the meaning of
collection and can also be interpreted as comprehension figuratively. Merely from the linguistic
perspective, it unites these two steps of information processing.

Returning to the fields of psychology and neuroscience, the human perceptual process consists
of a sequence of individual processes that interact with each other in order to determine our
experience of and reaction to stimuli in the environment [3]. Hereby, one would inevitably
stumble upon perception and sensation, where the latter focuses on the process of receiving
and gathering data through human senses. Environmental stimuli are captured by the internal
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2 Theoretical Background

and external sensory organs and transduced into an electric signal with the help of receptor
cells. With this, a first abstraction step of the natural world is made, and the collected stimuli are
then forwarded to the central nervous system for further processing. In short terms, sensation
resembles simple awareness due to the stimulation of a sensory organ [4]. Each of the individual
fields is fully independent, and information is collected in a strictly separated manner. Thus,
there is no interrelation between the gathered data at this point, and each branch contributes to
the creation of awareness in a unique way.

On the contrary, perception resembles a subordinate process after sensation and is responsible
for the processing and interpretation of the individual pieces of received data. In general, the
human body can be classified as a centralized system in which external information is collected
by individual interfaces and forwarded to the spinal cord and brain for further processing. The
received information is organized, identified, and interpreted to form a mental representation [4].
As a result, a higher-level general view is generated, which contributes, among other things, to
the creation of situation awareness and spatial orientation. Apart from the direct sensory inputs
from the five human senses, other psychological processes and social aspects, e.g., speech
and face perception, are also considered. Unlike the strict sensory separation in sensation,
perception is not limited to utilizing information gathered by one sensory modality. By combining
different sensation types and psychological processes, new multi-modal cognitive branches can
be constructed. Chronoception, for example, is not directly related to a specific sensory branch.
Instead, it is a complex involving different psychological processes and areas of the brain, with
the target of perceiving duration and time.
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2 Theoretical Background

2.1.2 Types of Sensory Perception

In the field of machine perception, the majority of classic approaches without consideration
of machine learning and the deployment of neural networks has the target to recreate direct
perception mechanisms. Therefore, each of the five individual branches of external sensation
eventually results in a particular field of perception. However, these mechanisms are not equally
treated by the human body, which is also reflected in the individual research branches within
machine perception. In consultation with linguistic research, they can be ordered in a hierarchical
arrangement of three levels [5, 6].

Visual Field

Starting from the top, vision is ranked as the primary human sense. External signals are collected
via the eye and transduced into electrochemical signals by two types of photosensitive cells
on the retina. With this, three different groups of cone neurons achieve the ability to receive
color-related information. In contrary, rod cells are more light-sensitive and can only collect
information in a monochromatic sense. For this reason, they are almost entirely responsible for
vision under poor lighting conditions. At this stage, some of the gathered data is already pre-
processed directly within the neurons. The generated neural impulses are then collected through
the different retina layers and transmitted via optical nerves to the brain, where perception mainly
occurs in the cerebral cortex [4]. While the sensory stimuli are caused by electromagnetic waves
in the case of vision, the human eye can only sense a tiny spectrum. In the human case, it
typically ranges from ultraviolet to infrared between 380 nm and 750 nm in wavelength.

Although the entire process of visual perception is a complex and comprehensive subject, it is
also the most researched field based on its significance in the overall structure of perception.
This trend is also continuing in its technical counterpart, and machine vision is the most mature
research domain within the field of machine perception. Thus, visual images have long been
utilized for several purposes, as it provides a significant amount of information. Similar to the
human eye, cameras are also classified as passive sensing devices. Therefore, they do not
suffer from interference often encountered with active sensors, e.g., ultrasonic or laser-based
devices [7].

For this reason, robotics and computer vision researchers have targeted visual mobile robotic
localization and perception for decades. Especially in recent times, there has been a growing
interest in visual-based systems since it provides a robust and cost-efficient alternative to
infrared sensors and laser scanners. While localization methods like multi-band high-precision
global navigation satellite system (GNSS) systems are already able to achieve accurate position
measurements with centimeter-level accuracy under open sky conditions [8], they depend on
existing infrastructure. In addition, they are not available in various scenarios, particularly in the
indoor domain. With the turn of the century, perception frameworks using information collected
by passive imaging sensors have gained more interest in robotics. Thus, a cost-efficient system
can be constructed using passive sensors instead of active ones, such as light detection and
ranging (LiDAR) and laser sensors. In addition, those camera systems are lightweight and
comparably simple in design. For this reason, they can be more easily integrated on mobile
platforms, even in large quantities. As a result, machine vision is utilized as the primary system
for perceptive and cognitive tasks on most robotic applications and the first choice to create a
perceptive framework.
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2 Theoretical Background

Auditory Perception

A step down the hierarchy, the second level contains the ability to perceive sound by detecting
vibrations through the air. This mechanism is also known as auditory perception, where the
ears are utilized as the sensation tool. Starting from the outer ear, it is responsible for collecting
and preliminary filtration of incoming sound waves. The pressure waves are then translated into
mechanical oscillation in the middle ear, where also impedance matching is performed. This
step has great significance because the acoustic impedance between the ambient air and the
fluid in the inner ear has to be resolved for optimal connection and transmission capabilities.
In the inner ear, precisely the Cochlea, hair cells transduced incoming oscillations into neural
signals. It is then forwarded to the auditory cortex within the brain’s temporal lobe, where primary
and higher functions in hearing take place. The signal is passed down to the cerebral cortex
for further processing, especially the creation of auditory perception. Apart from basic tasks
of receiving plane auditory information, the perception of sound also involves more complex
tasks, e.g., the separation of superimposed input data, their identification, and the estimation of
the distance and direction of their associated sources. This is realized by the arrangement of
the hearing apparatus with two separate input sources and higher-level automatism. Typically,
frequencies between 20 Hz and 20 000 Hz are detectable for the human ear. With increasing age,
the hair cells for higher frequencies tend to fade out in contrast to the lower boundary, which
hardly shows any signs of wear and tear.

While the research community directed its main focus towards the visual branch in the past
decades, developments were also made in the direction of other perception types. Especially
with the progress in computer science since the turn of the millennium, there has been an
increasing interest in auditory research. However, it is still a niche in scientific research and
development, as the auditory branch plays a subordinate role in the human perception beneath
vision.

In the case of humanoid robots, it is to be expected that robot audition, which represents the
field of machine hearing in robotics, facilitates capabilities similar to human ones. Therefore,
only passive systems for auditory perception without utilizing an active emitter, e.g., ultrasonic
sensors, are considered here. While the research within this field was mainly focused on human
speech processing and understanding in the past, the comprehension of auditory scenes, in
general, is receiving increasing attention. Also referred to as auditory scene analysis, it consists
of three different domains, which are comprised of sound source localization (SSL), sound
stream separation (SSS), and automatic speech recognition (ASR) [9]. In terms of scientific
research, one would inevitably stumble upon the Honda Research Institute, the Imperial College
London, and the Institute of Robotics and Mechatronics at DLR. Here, the main focus is on
techniques for SSL and SSS, including beamforming, separation of superimposed signals, and
voice enhancement. Apart from the rising capabilities of theoretical research with stationary
microphone setups, only a handful of robotic systems are equipped with the necessary hardware
for auditory perception. A notable application is the Advanced Step in Innovative Mobility
(ASIMO) humanoid robot developed by Honda at the beginning of the 21st century [10]. It is
equipped with a total of eight microphones, which are evenly distributed on the left and right-hand
side of the head, resembling the location of human ears [11]. The ability of auditory scene
analysis is provided by the proprietary robot audition framework HARK [12], which is still the
most popular and powerful open-source robot audition software. With its help, ASIMO is able
to perceive and interact with its surroundings through the combination of SSL, SSS, ASR, and
miscellaneous higher-level functions.
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2 Theoretical Background

Haptic, Gustatory, and Olfactory Perception

The three remaining perception mechanisms are equally arranged at the bottom level, where no
further division is made. Haptic perception is the recognition of objects through experienced
forces. As a result, external stimuli are transduced by somatosensory receptor cells in the
skin and then forwarded to the brain for further processing and creating perceptual awareness.
Gustatory perception is the sensory system partially responsible for taste perception by utilizing
the tongue and parts of the oral cavity as the primary sensation tool. The perception of taste can
be explained as the reaction between arriving external stimulus and the gustatory receptor cells
on the taste buds, which are concentrated at the upper side of the tongue. However, the gustatory
process can only partly construct the cognition of taste since only five different types of flavor
consisting of sweetness, bitterness, sourness, saltiness, and the recently added umami can be
discovered. The remaining part is contributed by the olfactory system, which utilizes the nose
and nasal cavity for sensing. In general, olfactory perception is the process of the absorption of
volatile molecules through the nose. By surpassing the first layer of the nasal mucous membrane,
the odor encounters many cilia, which are directly connected to the individual olfactory sensory
neurons. The stimulus is then transduced into an electrochemical signal through the olfactory
system and transmitted to the olfactory bulb in the vertebrate forebrain for perceptive tasks.

In terms of environmental modeling, localization, and navigation, these mechanisms are only of
a subordinate role. To be more precise, only olfactory perception can contribute to the overall
process in a meaningful way from a theoretical perspective. Following vision and audition,
machine olfaction is another significant sensory perceptual system that bears great potential
for future developments. While the earliest research can be dated back to the 1960s [13], the
field of olfaction has been underrated in the past. Thus, it has not received much attention in the
research community, and a great majority of the topic remains unexplored.

The sensory device for this type of machine perception can be summarized as the term electric
nose, which consists of a tool for primary sensing duties followed by an intelligent recognition
module [14]. Unlike the sensation step, which is typically accomplished by an array of gas
sensors, the subsequent processing steps are the more challenging. At this point, a considerable
number of methods from the fields of statistical pattern recognition, neural networks, chemomet-
rics, machine learning (ML), and biological cybernetics has to be utilized for processing incoming
data from the sensor array [15].

In the case of olfactory perception, the solitary analysis of the air composition in the surroundings
is insufficient. The interpretation and recognition of the odor provide the essential foundations
in which the recognition framework has to be trained with carefully selected training samples.
However, the entire system is still very much in research, where the major efforts have been
directed towards classifying and recognizing gasses and odors so far. In contrast, the field of odor
characterization is left unattended. This is a limiting factor for the development of qualification
and quantification of odor properties. There is no universal agreement about a general theory
that would be sufficient to depict the relation between odorants and odor quantities [16]. Unlike
in the visual field, where the entire visible spectrum can be represented as a combination of
three elementary colors, there is still no theory that can describe odors in a more general way.

Up to now, machine olfaction has already been applied to different fields within the foodstuff
industry [17, 18] and environmental detection [19]. As a result, the primary advantage is the
ability to sense odorants and odorless volatile chemicals without linguistic interference. Moreover,
the entire assembly is very compact and can provide an instantaneous response.
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2.2 Robotic Platform and Hardware Architecture

Apart from theoretical considerations, technical platforms must be equipped with suitable hard-
ware to explore and utilize characteristics in their surroundings for tracking, localization, and
mapping. Thus, a robotic system, ideally equipped with multiple classes of perceptual sensors
and sufficiently powerful computation hardware, has to be selected as a reference for the de-
velopment of an environmental modeling and perception system. At the Institute of Robotics
and Mechatronics, a large number of robotic systems are equipped with state-of-the-art percep-
tion sensors. Since our field of research is primarily directed towards service robotics in the
indoor domain, the Rollin’ Justin [20] platform is the ideal hardware reference for the following
development within the thesis.

2.2.1 General Robotic Architecture

As illustrated in Figure 2.1, Rollin’ Justin is a research platform in service robotics, which was
first introduced to the public in 2008. Resembling a human-like shape, it has roughly the size
of a human adult, with 1.91 m in height and approximately 200 kg in weight. It is equipped with
many individually controllable joints, resulting in 51 actuated degrees of freedom (DoF). Thus, it
allows the robotic system to pursue several goals simultaneously while complying with a given
task hierarchy.

In general, Rollin’ Justin can be divided into two sections: the mobile platform at the bottom and
the upper body system. Justin’s base platform contains most of the computation hardware and
is equipped with four retractable legs, at which wheels with individual hub motors are attached
to omnidirectional turnable hinges. It provides a sturdy foundation for the tasks carried out
by the torso while retaining the optional capability of reducing the areal footprint, in case it is
necessary, at the same time. While doing so, the robot occupies an area of roughly 0.80 m2 in
the extended state, which can be reduced to 0.35 m2 when entirely retracted [20]. Especially
in an environmental setting where space is a limiting factor, and the necessity of overcoming
narrow passages has to be considered, e.g., in the household working environment, it is a very
convenient feature. Therefore, it significantly increases the robot’s possible operation range
and field of application. In addition, the mechanism is designed so that its state of operation,
regardless of which expansion state it is currently situated, does not affect the base’s general
location, especially the height. The upper torso is mounted on top of the base platform. Apart
from the humanoid head assembly, it contains a Light Weight Robot (LWR) in its third generation
combined with a second-generation DLR hand (Hand II) on either side. Endowed with 43 DoF in
total, the upper body provides the necessary flexibility, making him the ideal research platform
for sensitive ambidextrous manipulation.

As an entire robotic platform, Rollin’ Justin is able to complete complex assignments in various
fields of application autonomously. Starting from basic household duties like floor-sweeping or
window-cleaning, the complexity of the tasks ranges from relatively simple exercises with a small
number of involved objects over more demanding duties, e.g., pouring water from a bottle, up to
highly dynamic assignments of catching a ball mid-air or juggling exercises.

Designed as a humanoid service and assistance robot, it is outfitted with numerous collision
sensors on the outer edges of the chassis and torque sensors in almost all controllable joints.
Therefore, Rollin’ Justin provides the necessary hardware to be safely manipulated by an
operator nearby and minimizes potential risks of injuries in collaboration with a human or another
robot.
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Figure 2.1: Humanoid robot Rollin’ Justin.

Over the years, Rollin’ Justin has evolved into a universal multipurpose platform on which a
large variety of scientific research is conducted. This includes, among others, research efforts in
the field of human-machine interaction, teleoperation, perception and 3-D-scenery recreation,
and autonomous robot operation, including navigation, path planning, and collision avoidance.
The robotic platform has been refined with each development cycle during its persisting lifespan,
including subsequent upgrades with state-of-the-art technologies. Especially in the field of
sensation and environmental modeling, significant advancements have been made since the
initial rollout. As a result, it is at the current state also the research platform at the Institute of
Robotics and Mechatronics that features the highest quantity and variety of perceptual sensors.

2.2.2 Perception Sensors for Localization and Mapping

In the case of Rollin’ Justin, illustrated in Figure 2.1, not only the basic form is human-like shaped,
but also the assembly and location of its sensors. In the current design iteration, the research
platform is equipped with a large variety of sensors, which is able to provide sensory information
from different types of perceptual modalities.

Visual Camera Systems

Unsurprisingly, Rollin’ Justin’s conceptual design for establishing a perceptual system does not
deviate from the standard practice in robotics. Primarily relying on visual sensors, it is outfitted
with seven camera systems, of which three are located in the head. In contrast, the remaining
ones are mounted at each corner of the base platform.
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Figure 2.2: Exploded view of the Intel RealSense D435i camera system [23].

Orientated on the location of the human eye, the robot is equipped with a stereo camera pair.
Operating in the visible spectrum, the cameras deliver a color image for object tracking tasks
and as visual input for teleoperation. At the moment, they are not contributing to the perceptual
system since the camera pair does not directly provide depth information. For the generation of
a depth image, the stereo images have to be processed by block matching algorithms, which are
very computationally intensive. In practice, the required computational power is not worthwhile
since perceptual tasks can be economically taken over by the other camera system on the
forehead.

In the course of the latest modernization measures, the robotic system was outfitted with five
Intel RealSense D435i cameras, one of which is integrated into the forehead. In contrast, the
other four are installed at each corner of the base platform. As shown in its components in
Figure 2.2, this visual system was developed as a state-of-the-art stereo vision depth camera
system for various fields of application, which also includes the area of autonomous mobile
robots [21]. The imaging assembly can generally be divided into a color sensor and the D430
depth module. The latter component comprises primarily two OmniVision OV9282 infrared
sensors responsible for collecting visual information for the subsequent depth image generation.
For further improvements in the depth image quality, the infrared cameras can be supported
by a vertical-cavity surface-emitting laser (VCSEL) pattern generator. It is mounted between
the imaging sensors on the depth module and projects, if required, a predefined dot pattern

Table 2.1: Overview of most relevant properties of the Intel RealSense D435i camera system [21, 22].

Parameter Specification

Infrared Image Sensor OmniVision OV9282
Max. Resolution 1280 × 800 pixels
Recommended Resolution 848 × 480 pixels (WVGA)
Max. Frame Rate 90 frames per second (FPS)
Shutter Type Global Shutter
Max. field of view (FoV) (H/V/D) 91.2°/65.5°/100.6°
Max. FoV at recom. resolution (H/V/D) 75.0°/62.0°/89.0°

RGB Image Sensor OmniVision OV2740
Max. Resolution 1920 × 1080 pixels
Max. Frame Rate 90 FPS
Imager Shutter Type Rolling Shutter
Maximum FPS 90 FPS
FoV at Max. Resolution (H/V/D) 69.4°/42.5°/77.0°
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in the infrared spectrum unto the front-facing scenery. Especially in low lighting conditions
and poorly textured surfaces, the projected static point pattern creates valuable references for
infrared sensors. Apart from the module for true depth estimation, the camera is accomplished
by an OmniVision OV2740 color sensor. Table 2.1 features a selection of relevant properties
of the imaging assembly of the camera system. Although the depth cameras can provide
a maximum resolution of 1280 × 800 pixels, the resolution should be adjusted to the Wide
Video Graphics Array (WVGA) standard according to the manufacturer to achieve the best
depth-sensing performance [22].

The recorded stereo image pairs from the D430 module are subsequently routed to the integrated
D4 vision processor, where the depth map is calculated in real-time. In the following, all data,
including the images from the three imaging sensors and the computed depth image, are
forwarded via an external Universal Serial Bus (USB) 3.1 Gen1 interface with a USB-C connector.

Although the camera system has a relatively wide FoV, it nevertheless reaches its limits if the
entire environment has to be covered. For this purpose, Intel has integrated an external sensor
synchronization connector directly to the main printed circuit board (PCB) on the top side of the
camera body. By this means, individual cameras can be synchronized for, e.g., image capturing
at identical times while providing the same frame rates [21]. Unfortunately, Rollin’ Justin does
not provide the mandatory hardware wiring and necessary interfaces synchronizing its cameras.

Auditory Sensors

Besides the optical sensors, Rollin’ Justin has also become a research platform for other, more
exotic perceptual systems over its persisting lifespan. In order to have the capability for auditory
scene analysis, a hardware assembly allocated across the robot’s forehead was engineered in
2019 [24].

Following the broadband microphone sub-array approach, the audio spectrum is divided into
three sub-bands responsible for receiving frequencies lower than 1 kHz, between 1 kHz and
2 kHz, and greater than 2 kHz. For this reason, the sensor array consists of eight SPH0645LM4H
microphones with Inter-IC Sound support, which are symmetrically arranged as shown in Figure
2.3b, and internally grouped into specific sub-arrays according to 2.3a. Since the spatial sensing
of sound depends on the experienced signal, respectively time delay by the receivers, a suitable
distance between the individual microphones has to be maintained. During the design process,
their locations were carefully chosen and assigned to sub-bands based on the scaling effect
of the required distance in between with the wavelength. Therefore, the outermost sensors
are responsible for lower frequencies with longer wavelengths to utilize the maximal available
distance based on the given hardware.

In contrast, the necessary gap for shorter waves scales accordingly and can be handled by
inner sensors. Further improving the received speech quality, we increased the sampling rate
to 16 kHz instead of the usual 8 kHz. The microphones were soldered onto a flexible PCB to
create an auditory scene analysis system. By choosing this manufacturing concept, lower
electronic noise and a higher uniformity of electrical characteristics can be achieved compared
to cable-based connections while maintaining structural flexibility in the integration process to
Rollin’ Justin’s curved forehead.

The robot’s auditory system is still not yet available in its current state since it is associated with
further upgrades within the computation network. It is to be expected that the hardware is going
to be fully integrated by early 2023.
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(a) (b)

Figure 2.3: Microphone array design for Rollin’ Justin [24]. (a) Illustrates the construction of the the
sub-array approach, (b) shows the CAD drawings of the microphone positions on Rollin’
Justin’s forehead

Additional Sensors for Tracking and Localization

Apart from conventional sensation methods, Rollin’ Justin features two additional types of
sensors, which could be utilized for localization tasks.

Outfitted with rotary encoders on its wheels, a dead-reckoning location estimation system was
established, also referred to as wheel odometry. Based on the measurement of the covered
distance on all four wheels in combination with the mechanical boundary conditions of the
robot’s model, a reasonably reliable estimation of the change in position can be calculated. This
process takes place in the Simulink model of Rollin’ Justin, and the resulting information is then
forwarded as a part of the robot’s telemetry for further utilization. In general, a 3-D state vector
is provided consisting of the robot’s location in the x-y plane that is parallel to the ground, and
the angle ϑ, which represents the orientation of the robot.

As is usual in mobile robotic systems, Rollin’ Justin is equipped with inertial measurement
units (IMU). Using a combination of accelerometers, gyroscopes, and magnetometers, it is
able to obtain the specific force, angular rate, and orientation of a given body. Two sets of
IMUs are integrated into the robot’s inner framework, mainly for balancing tasks, which are
currently unavailable for perception-related tasks. Nevertheless, each of the five RealSense
D435i RGB-D camera systems does include an integrated BMI055 IMU. Comprising of a 16-bit
triaxial gyroscope and a 12-bit accelerometer, also with detection abilities in three dimensions, it
provides 6 DoF in total [25].

2.2.3 Computation Architecture

While the sensors, as mentioned above, are responsible for collecting information from the
robot’s surroundings, the computer network on the inside forms the backbone for higher-level
perceptual tasks. In the case of Rollin’ Justin, not only the outer appearance is oriented towards
the human body, but also the computer architecture on the inside.
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General Architecture

Table 2.2 summarizes the specifications of the individual processing nodes on Rollin’ Justin.
Starting from the bottom of the perception pyramid, peripheral sensors are not directly connected
to high-level computers but are rather administrated by embedded computing boards. This
layout resembles those in the human system, where sensory inputs are also organized and
pre-processed in intermediate stages before being forwarded to the central nervous system.
Administrative tasks are handled by three NVIDIA Jetson TX2 boards, each attached to an
Auvidea J140 carrier. Two of them are located on the base platform, whereas the remaining one
is included in the head assembly. In the case of the RealSense cameras, Jetson 1 and 2 are
responsible for control and management duties in collaboration with Intel’s RealSense software
development kit (SDK) 2.0. At the same time, Jetson 3 takes charge of sensors in the head unit.
As part of the subsequent development iteration containing the integration of the microphone
array, the embedded computer in the head will be replaced by a more powerful Jetson Xavier
board to satisfy the increased computation demands. Collected sensory information is then
fed into the robot’s internal Ethernet data bus, e.g., via the inter-process communication library
SensorNet on the visual side. From there, the data streams are accessible by higher-level
applications and will be distributed to their designated targets.

Apart from the peripherals, Rollin’ Justin’s high-level computation architecture is built up by three
computers, two of which are real-time capable and in charge of controlling the robotic hardware.
Communicating within the real-time Ethernet for Control Automation Technology (EtherCAT)

Table 2.2: Summary of the individual computation nodes and their specifications within Rollin’ Justin.

Name Specification Task Description

Hannibal Intel Core i7-7820EQ Head computer
Quad-core at 3.0 GHz Administrative tasks for internal communications:
up to 3.7 GHz File-, DHCP- and NTP-server
32 GB DDR 4 SDRAM
Debian 9

Face Intel Core2 Quad Q9000 Robot kernel
Quad-core at 2.0 GHz Tasks associated with motion and movement
4 GB RAM Simulink model of Rollin’ Justin
Debian 9 PREEMPT_RT

Amit QNX real-time OS Tasks associated with
DLR Hand II model
LWR (arms)

Jetson 1 NVIDIA Jetson TX2 Administrative tasks for peripheral sensors
Jetson 2 NVIDIA Tegra X2 SoC Jetson 1: Cameras (left-hand side of the base)
Jetson 3 Dual- + Quad-core Jetson 2: Cameras (right-hand side of the base)

at 2.26 & 2.0 GHz Jetson 3: Head-mounted cameras
8GB LP-DDR 4 RAM
Jetson OS

Jetson 3 NVIDIA Xavier Administrative tasks for head-mounted sensors
(Upcom.) NVIDIA Tegra Xavier SoC Head-mounted cameras

Hexa-core at 2.26 GHz Microphone array
8 GB LP-DDR 4 RAM
Jetson OS

Decker Intel Xeon E5-1620 External console
Quad-core at 3.6 GHz
up to 3.8 GHz
8 GB DDR 3 SDRAM
Debian 9
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network, the robot kernel and the robot’s Simulink control model integrated in Face. Therefore,
this computer manages all tasks associated with motion and movement. The second computer
for direct hardware control purposes is named Amit, and it is responsible for the LWR and the
hand model. In the scope of the thesis, any IT systems related to the real-time branch are
not of great interest to us since they do not contribute to the perceptual process in any sense.
However, the most interesting computer for us is Hannibal, which is the backbone of perceptual
processes. Also referred to as Rollin’ Justin’s brain, it is the head computer, where among other
higher-level system tasks, machine perception-related duties are executed in conjunction with
collected sensor data.

Furthermore, Hannibal is responsible for managing internal and external communication proto-
cols, including the administration of file, Dynamic Host Configuration Protocol (DHCP), and the
Network Time Protocol (NTP) server. Designed as a mobile platform, the robot can communicate
with external hosts via a wired Ethernet connection and over its integrated wireless local area
network (WLAN) interface. Connected to Rollin’ Justin via the latter method, Decker is an
external computer that oversees the entire robot operation. By providing an external console to
its internal systems, operators can monitor and command the robot and its modules from the
outside.

On the software side, the robot is equipped with DLR’s in-house system deployment framework,
Links and Nodes, which provides the basic communication scaffolding and control over individual
modules in operation. From there, the entire robot is administrated and monitored by providing a
structured view of the running processes and the way they are exchanging data.

Available Resources

As one can already assume from previous sections, the field of sensation and perception
contains only a fraction of the tasks that have to be processed by the robot’s internal hardware.
For this reason, available computation resources must be shared between different processes
relating to individual areas of responsibility. While administrative duties of peripheral sensing
devices are already outsourced to individual nodes, Hannibal is the only available computer
within the current hardware architecture for higher-level perceptual tasks.

However, due to the robot’s general orientation restrictions as a mobile system, the already
limited computation resources must be carefully distributed to individual modules according to
their operational importance. Specifically for perception, only two of the eight central processing
unit (CPU) cores are available, which is dwindling small for the given assignment size, given that
comparable platforms utilize multiple onboard computers for perceptual and controlling duties
[26].
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2.3 Environmental Perception and Modeling in the
Mobile Robotics

After the foundations of machine perception have been laid in the previous section, data collected
by individual sensor systems have to be processed and interpreted to establish spatial awareness.
Over the years, two major approaches in the field of tracking, mapping and localization have
emerged in the scientific research community and are presented in the followings.

2.3.1 General Aspects and Terminology

According to the current state of research and technology, Visual Odometry (VO) and Simultane-
ous Localization and Mapping (SLAM) approaches are considered the most promising strategies
for visual perception and creating spatial awareness for both computer vision and robotics [27].
In the early days, most of the research was motivated by the American mars exploration program
to provide planetary rovers with the ability to estimate their relative motion with visual-based
sensors. Compared with dead reckoning methods containing conventional odometry information
from the wheels, visual data from an onboard camera is not affected by physical influences like
wheel slippage, which is a common issue encountered on uneven and rough terrain.

With this, VO is the process of estimating the ego-motion of an agent (e.g., vehicle, human, and
robot) using only the input of a single or multiple cameras attached to it [28]. As a particular case
of the technique known as structure from motion (SfM), it provides an estimation of a camera’s
position and orientation by analyzing incoming image sequences [29]. Therefore, it mainly
focuses on local consistency to calculate the camera’s path incrementally, pose after pose, with
potential local optimization steps to enhance the tracking accuracy and elaborate on minimizing
the drift. On the other side, SLAM is a process in which an agent is required to localize itself in
an unknown environment while incrementally constructing a map of its surroundings [28]. Thus,
it focuses on establishing a globally consistent estimation of the robot’s trajectory inside the
simultaneously generated map. While the line between these approaches becomes increasingly
blurred as development continues, this is precisely where the difference lies in their original
definition. SLAM applications achieve global consistency by revisiting and recognizing already
mapped regions at which loop closure events reduce the accumulated estimator error in both
the map and camera trajectory [30]. In contrast, VO cannot provide an adequate method for the
drift problem due to its design. Although these two approaches started as parallel but separate
lines of research, SLAM can nowadays be viewed as an extension of the VO approach. In
real-world applications, the selection of approach is based on the exact use case since SLAM
methods can also be used for VO applications, in which only the trajectory is necessary. Here,
the main aspects of the selection process are the trade-off between performance, consistency,
and simplicity in implementation.

2.3.2 Design Principle and State of Research

From a structural perspective, modern SLAM systems can be divided into the front- and back-end.
With this, the more locally focused concept of VO is used as the front-end component within
the complete system to process the raw sensor data and recover the incremental motion of the
camera.
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Front-End – Visual Odometry

Generally speaking, visual SLAM algorithms can be divided into two types of strategies in terms
of data association consisting of the direct and the feature-based approach. The ego-motion
and camera relative pose estimation process in the former case is based on optical flow. With
this, relative motion estimation is achieved by analyzing the variations in image intensities, and
information about motion and structure can be reliably estimated by minimizing photometric
error. On the other side, the feature-based method combines feature extraction and matching for
calculating the relative motion in the image sequence. Therefore, reliable and invariant regions
of interest have to be extracted from the original image for further processing and estimation.

While the direct method is best suited for, e.g., collision avoidance tasks by reconstructing
the entire scene to generate a dense map, feature-based approaches are more advanced
for perception and primary navigation duties. In the case of mobile robotic applications, the
latter approach is auspicious since the necessary computation resources, especially memory
consumption, can be relatively small. Due to the pre-processing and information compression
to selected features, only a fraction of the input data has to be saved to generate an adequate
surroundings model for localization and navigation purposes.

In terms of the feature-based approach, the VO pipeline usually incorporates the process of
feature extraction, feature matching, motion estimation, and potential local optimization, as
illustrated in Figure 2.4. Starting from the captured image, feature extraction is the combined
process of generating an abstraction of the image by detecting distinctive regions of interest
and assigning the individual areas with unique identifiers in compliance with their characteristic
surroundings for the subsequent matching and recognition steps. Optionally, the processing
pipeline is supplemented by intermediate stages for keyframe identification, in the case of an
optimization-based approach, and outlier rejection within the feature matching step to achieve a
more accurate camera motion estimation. The last component in the toolchain is responsible
for the local optimization of the concatenated transformations estimated by the previous steps.
Within this module, locally constrained and window-based spatial optimization can be performed
to improve the algorithm’s tracking accuracy further.

Figure 2.4: Basic architecture and components within the VO processing pipeline
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Starting with the basic idea, Moravec proposed the possibility of estimating the ego-motion of an
agent from visual-only inputs in the 1980s [31]. Although the author utilized a single camera in
his so-called sliding stereo setup, it can already be classified as the first approach in the field of
stereo vision since the motion estimation was based on 3-D points of interest. The location of
the features is directly triangulated at each frame, resulting in the estimation of relative motion
in a 3-D-to-3-D point alignment setup. It is accomplished by minimizing the L2 or euclidean
distance between corresponding 3-D feature sets in the source and target image, including the
ability to estimate the absolute scale of the transformations. As an alternative, motion calculation
in a stereo setup can also be handled using only 2-D information from both imager and the
quadrifocal constraints instead [32]. Building on Moravec’s approach, major contributions in the
early ages are published in [33], [34], and [35]. With the growing confidence and technology
maturity after the turn of the century, the NASA and Jet Propulsion Laboratory (JPL) successfully
integrated the novel approach as a part of the navigation system onboard the Mars Exploration
Rovers (MER) as one of the first major applications [36].

Nister et al. coined the generic term for this type of technology in their influential publication
"Visual Odometry" [37] in relation to the concept of wheel odometry, which also similarly
integrates increments to estimate the position of a robot. Furthermore, their proposed algorithm
is conceived as the first real-time long-running implementation with a reliable outlier rejection
scheme. With this, the commonly used feature tracking process is replaced by feature matching,
which is more suitable when a significant motion or viewpoint change is expected [38]. In terms
of motion estimation, they discovered that the 3-D-to-2-D approach delivers more accurate
results than the 3-D-to-3-D method since it minimizes image reprojection instead of the 3-D
feature position error. Especially in the case of triangulated 3-D points, they are equipped with
much higher uncertainties in the depth direction, which significantly impacts the already very
delicate motion estimation process and its achieved accuracy.

As mentioned above, it is possible to determine the relative movement using only 2-D information
by direct comparison without the additional triangulation step. Therefore, the estimation is mainly
based on the essential matrix and the epipolar constraint [28]. Especially in the case of a
monocular setup, 2-D data from the sensor can be directly used for the calculation process.
In comparison, the 3-D information for the 3-D-to-2-D approach has to be triangulated from
two adjacent images and matched to 2-D points in a third image, involving a total of three
frames [39]. It effectively utilizes only one sensor in a monocular setup with perspective and
omnidirectional cameras. One of the main challenges with this approach is that the absolute
scale of motion cannot be estimated and has to be determined from direct measurements or
delivered by other sensors. Therefore, the common method is to normalize the distance between
the first and second frames. The relative scale and camera pose with respect to the first frames
are calculated either using the knowledge of 3-D structures or the trifocal tensor [40]. Particularly
in large-scale environments, stereo vision degenerates to the monocular case when the distance
to the scene is much larger than the stereo baseline. A rule of thumb would be 40 times the
baseline.

Nevertheless, the 3-D-to-2-D method is more often used in practice than the 2-D-to-2-D approach
since it is coupled with faster data association in terms of outlier detection and rejection. This
has the background that the computing time is primarily influenced by the number of mandatory
points for the motion estimation and, subsequently, the outlier rejection step. In the case of
the former method, the minimal case requires a total of three corresponding points within the
P3P algorithm [41]. In contrast, in the latter case, a minimum set of five correspondences is
necessary for the five-point algorithm [37].
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Back-End – Localization and Mapping

Further down the line, the back-end receives the intermediate representation and solves the
underlying optimization problem behind long-term localization and mapping. Thus, it provides
the estimation of a parameter set that describes the spatial pose of the previously extracted
landmarks, from which the location and orientation of the robotic agent are eventually derived.
An overview of the major visual SLAM algorithms is provided in Figure 2.5 in a chronological
order.

Figure 2.5: Overview of the most significant visual SLAM algorithms. Figure adapted from [39].

In the field of SLAM, there are two main design categories on which algorithms can rely. The
initial approaches correspond to filter-based methods similar to those first used to solve the
SLAM problem. In the early research phases, they are not explicitly targeted towards visual data.
However, they are designed to fuse, e.g., odometry data from various sources and information
from laser-based ranging sensors [39]. Therefore, algorithms, such as the EKF-SLAM proposed
by Smith et al. [42], were based on the extended Kalman filter (EKF) for the associated tasks
of tracking, localization, and mapping. The first real-time algorithm using the information from
visual sensors was published by Davison et al. in MonoSLAM [43]. With their introduction of
particle filters, they successfully tackled the issue of considering the initialization of new points
by reducing the uncertainty on the field depth from newly detected visual landmarks. Although
they are already capable of providing the first promising results, there are still significant issues
concerning a large amount of data, especially in large-scale environments. Initial attempts to
improve computation efficiency and scalability were based on windowed methods, which were
relatively unsuccessful. A thriving remedy was created by FastSLAM [44], which solved the
issue regarding the logarithmic scaling of mapped features. The utilization of an unscented
Kalman filter was introduced by Chekhlov et al. in [45]. In the modern era, most methods are
based on a multi-state constrained Kalman filter (MSCKF) [46], which deconstructs the classical
state-vector into separate ones containing the camera pose and landmarks position separately.
In addition, modern approaches, such as Robust Visual Inertial Odometry (ROVIO) [47], further
reduced the system’s complexity by implementing a restrictive culling of landmarks to only keep
the most recent detected features in the state-vector.

The second design principle utilizes parallel methods for distributing necessary tasks inside the
system’s processing pipeline to different threads in the so-called optimization-based approach.
Compared to the previous design, this method has an enhanced ability to reduce tracking drift
by design. Also referred to as the keyframe-based method, distinctive and robust images are
commonly arranged in a graph structure, providing a novel way of storing features without hardly
any constraints in terms of scalability. Furthermore, the overall performance and accuracy
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are enhanced using a global optimization process, which can also be arranged on a specific
window of keyframes [39]. As a result, bundle adjustment (BA) can either be performed on
poses between individual keyframes in pose graph optimization or with the focus on optimizing
the map structure in a structure-only BA. On the other hand, this method also involves a very
high computational cost, which forced the localization and mapping tasks mainly to be handled
offline in early publications. Klein et al. introduced Parallel Tracking and Mapping (PTAM) [48]
as one of the first real-time capable algorithms by dividing the tracking and mapping tasks
into two separate threads running in parallel. Although this approach seems promising, it is
not suitable for deployment in open environments, as it still has issues considering efficient
feature storage, optimization strategy, and loop closure detection. The challenge of considering
long-term robustness was addressed by Strasdat et al. in [49], and the innovative idea of
double window optimization was proposed in [50]. Based on the latter approach, Lim et al.
introduced an alternative method in [51], which allows for a more efficient feature extraction and
description process at the cost of sacrificing invariance against rotation and scale change. This
characteristic was reinstated by ORB-SLAM [52] utilizing the Oriented FAST and Rotated BRIEF
(ORB) algorithm [53] for feature extraction purposes.

Apart from feature-based methods, the first meaningful contribution in the field of direct approach
was introduced in Dense Tracking and Mapping (DTAM) [54], which uses the direct approach for
tracking purposes but constructs a sparse map for easier processing. Further major contributions
were made in the hybrid methods of Semidirect Visual Odometry (SVO) [55] and Direct Sparse
Odometry (DSO) [56], taking advantage of both direct and indirect input searches. In terms of
exploring large environments, the Large-Scale Direct monocular SLAM (LSD-SLAM) is one of
the first direct methods which utilizes semi-dense mapping.

In recent years, the research community has been actively targeting RGB-D camera systems
apart from the classic monocular and stereo setup. Newcombe et al. introduced the idea of
integrating depth information in their KinectFusion [57] by combining RGB and depth data into
a dense surface map. Although this approach lacks sufficient scalability for deployment in a
large-scale environment and loop closure capabilities, it is still conceived as the first RGB-D
SLAM system. The issues were then solved by [58], and the first feature-based approach was
introduced by Endres et al. in [59]. Further meaningful contributions are the Dense vSLAM
published by Kerl et al. [60] and ElasticFusion by Whelan et al. [61]. As an extension to the
original ORB-SLAM, Mur-Artal et al. introduced the compatibility of RGB-D cameras, among
several other enhancements, in their ORB-SLAM 2 [62]. With this, the depth information is used
to extract a virtual stereo coordinate for each extracted feature to achieve a sparse reconstruction
of the environment.

Especially in mobile robots, precise information about their position and spatial orientation is
essential for the overall operation and serves as the basis for further manipulations. For this
purpose, Rollin’ Justin was equipped with a SLAM system based on the methods proposed
and implemented in ORB-SLAM 2. The robot’s unique features and hardware characteristics
were taken into account, resulting in the development of the Multi-camera Robust ORB-SLAM
(MROSLAM) [63]. As the name already suggests, MROSLAM is able to receive and fuse
sensory information from different camera systems without any overlapping FoV. The final
robot pose is estimated based on the extrinsic relations between the utilized camera systems.
Since the integration of the system at the end of 2020, it has become an integral part of
everyday robot operation and has already been used in current research projects. With this,
the robot can explore and localize itself in a generic environment without pre-installed fiducials,
as distinctive landmarks can be identified from the surrounding characteristics. While basic
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tracking, localization, and mapping tasks can already be reliably carried out, the pose estimation
accuracy and especially the robustness against perturbations could still be improved.

2.3.3 Multi-Modal Environmental Perception

Figure 2.6: Overview of the historic milestones and direction of development in the domain of visual
SLAM. Figure adapted from [39].

In general, many contributing factors can negatively affect the accuracy and reliability of a VO
and SLAM system. On the one hand, reduced robustness may be caused by inaccuracies in
the hardware-related domain or due to insufficient development and maturity of the proposed
approaches within machine perception. On the other hand, technological constraints and defi-
ciencies of the selected perception branch could also significantly impact the overall estimation
quality. In order to further improve the capabilities and overcome those limitations, the scientific
community has extended its research efforts increasingly beyond the visual branch. As a result
of this, synergies through reasonable combination of different sensory and perception modalities
should be utilized within a multi-modal system.

Figure 2.6 depicts the historic milestones and the current development trend in the field of visual
SLAM algorithms. As a first step, researchers have directed their focus towards integrating
inertial information from IMUs as an addition to the vision-based process. This sensory modality
is comparable to the capacity of the human vestibular system responsible for the perception of
balance, which is sensed by the inner ear. First evaluations have proven the effectiveness of the
research direction, in which the shortcomings of individual approaches could be compensated.

While the previously presented visual SLAM methods are categorized by the camera system
configuration and the input data type, visual-inertial approaches are classified using the level
of coupling between the information sources [39]. In terms of loosely coupled approaches, the
number of theoretical combinations is widely spread since it is possible to pair up all visual
front-ends with a Kalman filter or with a pose graph optimization back-end like iSAM2 [64] in
order to incorporate inertial measurements. Regarding the tightly coupled algorithms, major
contributions are MSCKF [46] and ROVIO [47] in the domain of filter-based methods. On the
other side, Open Keyframe-based Visual-Inertial SLAM (OKVIS) [65], VINS-Mono [66], and
the newly introduced ORB-SLAM 3 [67] are representatives of the optimization-based design
principle.

Apart from the visual-inertial field of research, multi-modal SLAM approaches are still a rarity.
Nevertheless, there are some notable advancements in, e.g., the auditory domain. Regarding
auditory research in robotics, most of the conducted research is focused on SSL, but also directed
towards the construction of a independent SLAM system. While conventional approaches either
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apply visual SLAM techniques to acoustic Times-of-Arrivals or perform localization tasks by
actively probing the room, acoustic SLAM (aSLAM) [68] was developed as an independent
auditory SLAM system from scratch. By utilizing directions of arrival (DoA) data as input, it can
jointly estimate the unknown observer path and the position of multiple interfering sound sources
with passive acoustic sensor arrays. This algorithm is equipped with sufficient robustness against
reverberation, noise, and periods of source inactivity by design.
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Based on the identified issues of state-of-the-art systems and the resulting research questions
in the previous chapters, we aim to develop a novel VO approach as a part of an in-house
developed SLAM system optimized for Rollin’ Justin and other robots at the Institute of Robotics
and Mechatronics. While still under construction, the Indoor Optimized, Globally Consistent,
Environment-Aware, Longlife-SLAM (IGEL-SLAM) is designed as an application-oriented soft-
ware framework for research on environmental perception and modeling with a particular focus
on tracking, localization, and mapping.

During the conceptualization process, special attention is dedicated to the modular and de-
centralized design architecture by dividing the system into multiple independent components
with well-defined interfaces to achieve the optimum adaption to the distributed hardware and
computation architecture. Hence, the full potential of the otherwise unused computational
resources allocated at different parts of the robot can be utilized and exploited for dedicated
tasks. This approach is especially interesting for lightweight robots with minimal computing
capabilities, as the onboard resources are insufficient for handling the entire machine perception
system. Therefore, only the most essential real-time modules, e.g., the front-end component
responsible for tracking, are executed locally on the robot. In contrast, other components of the
SLAM framework responsible for localization and mapping tasks are carried out at a stationary
workstation via a wireless connection. Taking it a step further, the tracking module itself should
also have the freedom to be distributed to several computing nodes within a robot, on which
the individual processing steps can be executed separately. For this purpose, the individual
components within the toolchain are modularly structured and provided with the interfaces
required for interprocess communication (IPC) at suitable locations. The major challenge here is
to determine a balance between necessary IPC, especially the size of the transferred data as
well as the resulting time-loss, while still managing a real-time capable application and preventing
overloading of the communication bandwidth. In addition, the selected system structure implicitly
results in good extensibility of the overall framework.

Apart from the structural aspects, great emphasis was placed on establishing multiple modalities
at different system levels, which also highly affects the approaches utilized within the VO module.
Thus, it provides a potential solution to the deteriorating performance and robustness of the
primarily vision-based state-of-the-art perceptual system under adverse environmental conditions
by exploiting potential synergies created by the collaboration between different methods. In
the followings, this chapter introduces the audience to two possible domains in which multiple
modalities can be established in the context of front-end applications responsible for tracking and
short-term localization. At first, Section 3.1 introduces the hardware-specific area, in which the
question of how and which type of sensor information can be reasonably utilized and combined
within a front-end module is investigated. Following the sensor-related level, a multi-modal setup
can also be realized in the software-related domain, which will be the central topic in Section 3.2.
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3.1 Multiple Modalities in the Hardware Domain

Starting with the probably more intuitive sensory-related level, a multi-modal setup can be
established in the hardware-specific domain based on two different concepts. In general, we
distinguish between the homogeneous and heterogeneous approaches, characterized by the
type of the considered sensors.

Intra-Class Sensor Collaboration

At first, it is achieved by combining sensor data from input devices with similar characteristics
or at least within the same field of sensory perception. Specifically, information from multiple
sensor systems with, e.g., a particular field of detection, could be consolidated and further
processed to construct additional redundancy layers in the estimation toolchain. The primary
target here is to enhance the quantitative aspects of the collected data in a homogeneous way,
which may also positively impact the data’s overall quality in terms of scenery composition
and surface texture. By expanding the size of the database, which could be considered for
the targeted purpose, it is more likely to obtain perceptual information with higher quality from
a probabilistic point of view. As a result, the collaboration between similar sensors from the
same class would also improve the overall estimation accuracy of state-of-the-art methods in
case multi-sensor support is available. This particular approach was investigated in [63], in
which a multi-camera visual SLAM algorithm was developed as an extension to ORB-SLAM 2.
In addition, a study was conducted in which compelling results were achieved with real-world
datasets. Particularly in applications with unfavorable environmental conditions, the addition of
this type of redundancy significantly contributed to the system’s enhanced robustness against
external influences. Therefore, events which potentially lead to the failure of tracking and
localization capabilities can be minimized. This includes occurrences both on the hardware-
and implementation-related side, as well as in the operational and application-specific field,
such as temporary loss of applicable sensor information caused by, e.g., obscured field of
detection. Especially in the field of mobile service robots, robotic agents should be able to safely
approach stationary objects of interest and navigate through narrow passageways, potentially in
a less-textured environment.

For this reason, it has to be ensured that the failure of one sensor is absorbed by this type of
redundancy and does not affect the overall stability of the superordinate system. In terms of
Rollin’ Justin, this kind of multiple modalities can be realized by combining input-data from the
available Intel RealSense sensor systems. Since they are integrated into a circular arrangement
with individual FoV, a comprehensive view of the robot’s surroundings can be potentially created
with an adequate environmental perception and modeling method.

From the conceptual perspective, the sensor fusion process can be integrated into the front-end
and back-end modules. Apart from their general properties presented in Section 2.3.2, there is
an additional difference in the field of task distribution, and its associated clock speed. While the
front-end modules are responsible for tracking and short-term localization, these tasks are highly
time critical. Thus, the relative motion estimation process has to be equipped with real-time
capabilities. Considering the characteristics of the targeted mobile robot, continued tracking and
localization updates with a minimum of 15 Hz have to be guaranteed.

On the contrary, the back-end is assigned to fulfill long-time localization and mapping duties.
Even though these processes are an integral part of SLAM, which is reflected not only in the
naming, they are mainly responsible for maintaining global consistency in the medium and long
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term. Therefore, and especially with regard to mapping, the mandatory clock speed can be
reduced to, e.g., 1 Hz. As a result of this, a reasonable balance between the required processing
time, which scales with the available computation resources, and the effectiveness should be
evaluated as part of the cost-benefit analysis in the conceptualization phase. For this reason,
the module responsible for sensor fusion is pushed back into the back-end, which can operate at
a lower clock speed since more complex calculations have to be made. In our current approach,
the main objective of the front-end is to process raw sensor data and to provide the back-end with,
among other parameters, a relative motion estimation with sufficient accuracy in a reasonable
amount of time. For simplicity, these modules are limited to receiving information from only one
sensor of the same class in the first design iteration. This decision was also made with for the
best utilization of the distributed computing architecture. At least partially, individual front-end
modules can be executed in the NVIDIA Jetson boards further upstream.

Inter-Class Sensor Collaboration

Apart from the homogeneous approach, sensor data from different sensory perception fields
can be combined to further enhance the robustness and continuity of the perception module.
Similar to the human perception system, potential synergies are created through a reasonable
combination of different sensory modalities. With this, the strength of the utilized areas is bundled
while their individual deficiencies are largely compensated from the system’s perspective. In
contrast to the previous method, in which the absolute quantity of the available information was
enlarged, the focus within the heterogeneous approach is directed towards extending the spectral
distribution of the collected environmental influences. By doing so, a multi-modal redundancy
is established, and potential loss of tracking (LoT) events, which are sensor-specific and vary
depending on the respective perceptual branch, can be averted.

As already introduced in Section 2.3.3, the combination of visual and inertial information is the
most popular approach currently in the research community. While the visual domain is evidently
one of the most potent areas in machine perception, the performance and reliability of state-of-
the-art algorithms largely depend on the quality of the available images. This can significantly
deteriorate during rapid motion sequences, in which the increased presence of motion blur
impairs the resulting image quality. Especially in our selected feature-based approach, it poses a
considerable challenge, as the texture of the recorded scene is blurred by this type of disturbance.
Thus, detecting reliable and unique characteristics becomes more complex and negatively affects
the application’s operational performance. In the extreme case, this would result in a temporary
LoT. Under adverse circumstances, however, this could also develop into a permanent LoT, which
cannot be recovered. In these situations, the overall system would benefit from the additional
IMU information, and tracking and short-term localization functions could be maintained until
the visual method is reinstated. From the perspective of the inertial branch, it also benefits
from this symbiosis. While inertial information in form of linear and angular acceleration make a
valuable contribution in the previously stated situation, they are conceptually subject to a certain
inaccuracy and cannot be used for establishing global consistency or for mapping purposes.
In addition, the IMU model has to be precisely tuned in order to suppress background noise.
For this reason, it is recommended to favor visual information over inertial data in these cases,
which could also be marked as unreliable and neglected.

Regarding Rollin’ Justin, information from various sensory modalities can be combined into a
multi-modal framework. This includes perception data from the visual domain, auditory area,
inertial measurements, and odometry estimations. However, from the perspective of the general
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system architecture, front-end modules are typically very task-specific and sensor-oriented. For
this reason, also to fulfill the targeted modular design principle and the mandatory real-time
capabilities, a cost-benefit analysis should be conducted in order to determine the most suitable
combination of the available sensory modalities.

Starting with the already acquainted combination between visual-based sensors and inertial
measurements, they form the most popular and well-researched area since both sensor types
are widely utilized in the engineering domain with a broad range of applications. From a theoreti-
cal perspective, this particular combination is worthwhile considering the resulting interaction
between the realm of external sensory and internal perception. While the visual domain belongs
is subordinate to the field of exteroception, measurements from an IMU are considered as a
sub-area of proprioception that is referred to as the sense of self-movement, force, and body
position. In contrast to external perception, which exclusively relies on sensory stimuli from the
surrounding environment, the so-called "sixth sense" is practically independent of environmental
conditions. Thus, these sensors give a more generalized view of the respective scenarios with
a more static appearing spectrum of information. As for the practical application, IMUs are
integrated as a low-cost extra, as they are very advantageous in terms of the cost-benefit ratio.
In our targeted hardware platform, these measurement units have been integrated into the Intel
RealSense sensor systems by default. Therefore, all the primarily vision-based sensors respon-
sible for establishing spatial awareness are equipped with visual-inertial capabilities. Although
Rollin’ Justin is also fitted with a standalone IMU, which potentially provides measurements with
better resolution, it is recommended to use the onboard sensors in this context, since they are
integrated in a tightly coupled manner. Consequently, these sensors are entirely independent of
each other, which also corresponds to our desired modular and distributed system architecture.
A positive side effect of this constellation is that the time-consuming extrinsic calibration between
the visual sensor and the IMU can be omitted since the manufacturer already provides the
corresponding parameters.

In terms of the auditory perceptual branch, it is common practice to reconstruct the human ability
of binaural audio localization by utilizing an array of microphones. With this, the tracking and
localization process mainly relies on estimating the DoA of incoming signals. However, after
careful examination of state-of-the-art technologies and available environmental stimuli in the
targeted mission surroundings, the auditory branch has considerable deficiencies in terms of
reliability and availability in the intended field of application. Due to the fact that only passive
sensing devices are available, the overall approach relies on the presence of external acoustic
sources. In a world designed by humans, active audio information is mainly used to announce
a particular event. Permanent acoustic sources are tendentiously designed to be outside of
the human audible range since it s mainly considered a disturbing factor unless it is explicitly
desired, e.g., in the context of entertainment or by means of music. In contrast to light in the
visual field, noise has to be, in most cases, actively produced by individual sources, which results
in a somewhat sporadic behavior. Even in the day-to-day scenario portrayed in our targeted
urban housing application, no reliable sound source can be utilized as a permanent feature for
localization and mapping. Nevertheless, the addition of this, according to findings in the linguistic
research, the second most essential type of sensory perception, would be a step in the right
direction with the ultimate target of establishing a multi-modal perception framework similar to
that of humans. In order to facilitate the previously stated boundary conditions of the front-end,
the auditory modality is not integrated into the visual-inertial approach since methods capable
of handling multiple sound sources are fairly computationally intensive. Thus, the second type
of front-end module must be developed to utilize acoustic stimuli from the surroundings. The
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intermediate representation and resulting estimations are then forwarded to the back-end, in
which the usability of the data is evaluated and fused with information from other front-end
modules as needed.

Last but not least, positional data from wheel odometry sensors are also available as an
additional modality. Since the odometry information is provided in the form of a 3-D state vector
consisting of a 2-D location and 1-D orientation representation, it is not worth the effort to reroute
this type of data through the visual-inertial front-end module. Thus, it can be directly introduced
into the back-end for further processing steps. Optionally, a dedicated front-end module can be
constructed for odometry data to further enhance the reliability and robustness of the estimation.

While different sensory modalities are included in the consideration, it is evident that the visual-
inertial branch forms the most important mainstay regarding tracking, localization, and mapping.
Therefore, within the thesis, the target is to develop a novel approach for a visual-inertial front-end
module within the context of the proposed multi-modal SLAM framework.
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3.2 Multiple Modalities in the Software Domain

After the environmental stimuli are collected from the robot’s surroundings, it has to be processed
in order to create the ability of machine perception. Similar to the hardware-specific domain, the
concept of utilizing multiple modalities can also be found on the software-related side. Building
on the findings and conclusions from the previous sections, the following section concentrates
on establishing multiple modalities by combining different image abstraction methods and the
conceptualization of a novel motion estimation strategy in the visual-based domain.

3.2.1 Multi-Modal Feature Collaboration

From the perspective of computer vision with a particular reference to establishing tracking
capabilities in the context of VO, the range of information in an image is far too extensive for
the intended task. More importantly, vast amounts of computational resources are required in
order to be able to process the sheer volume of data in a matter of milliseconds with onboard
hardware on-line in real-time. At this point, it is recommended to distribute the already limited
resources to a specific set of regions of interest with certain salient characteristics. For this
purpose, it is common practice to insert a pre-processing and selection step to evaluate the
available data since the value of the individual pieces of information contained within an image
differs considerably in terms of uniqueness and the resulting recognizability. This process is
summarized under feature extraction, in which the input data is analyzed and abstracted into a
distinctive collection of landmarks. As a result, only a fraction of the input data has to be further
processed in the optimization loop and saved to generate an adequate surroundings model
for localization and navigation purposes. Especially in the case of mobile robotic applications,
this approach is auspicious since the necessary computation resources, especially memory
consumption, can be kept relatively low.

In computer vision and image processing, a ”feature” is defined as a piece of meaningful
information within the content of an image. In general, features are not restricted by any
geometric constraints. Particularly in the context of our targeted field of application, they should,
above all, possess an adequate amount of characteristic properties to ensure reliable recognition
of the already detected landmarks in repetitively.

Starting from the lowest level, interesting points are one of the fundamental and most popular
features. Harris and Stephens [71] introduced the first reliable keypoint detection algorithm in
the late 1980s to improve Moravec’s corner detector [72]. Since then, it has been improved
and adapted to many image processing algorithms, and researchers have proposed new
approaches based on different detection techniques. Although it is not particularly difficult
to find a reasonable number of characteristics that can be easily recognized by computer
algorithms, identifying features that are invariant against photometric transformation presents
a more significant challenge. This includes invariance against translation, rotation, change of
scale, and covariance to geometric changes. In general, the group of point feature detectors can
be divided into two overall approaches. The first group focuses on corner detection, which is
defined as an intersection of two edges. Specifically, it is characterized as a point in which the
direction of two edges unsteadily changes. Transferred to the image, a corner can be defined
as a variation in the gradient in the associated image, which computer algorithms can easily
identify. Although stable against rotation, conventional corner detectors are not scale-invariant.
This issue is solved by the second group of detectors, which utilizes blob detection and a
multi-scale representation in the form of an image pyramid. Unlike corners and edges, blobs are
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(a) (b)

Figure 3.1: Illustration of a typical scene in the urban housing scenario. In specific, (a) the living room
assembly is portrayed with (b) its contours consisting of line features extracted by a line
segment detection algorithm.

characterized as a region of interest, and feature points are extracted by taking a supporting
neighboring region into account. The rotation invariance was reinforced by assigning landmarks
a specific orientation, which can be achieved, for instance, using the intensity centroid approach
[53]. Here, it is assumed that a corner’s intensity maximum does not overlap with its geometric
center, and a robust orientation is attributed through the resulting vector.

Moving a step further, line features are suitable for describing the contours of human-made
objects since such surroundings are built on a Cartesian grid, leading to regularities in the image
edge gradient statistics [69]. Although line segment features are promising for localization and
navigation purposes, most detection and description research has targeted point and region
features in the past decade. In contrast to point detectors, line extraction algorithms are based
on edge detection since most geometric lines and line segments are based on the outlines of
actual physical occurrences. This forms a lower degree of feature generalization and directly
connects this type of landmark with real-world attributes. Point detectors, on the other side,
cannot be reliably equipped with this feature based on their design and a higher sensitivity
against photometric disturbances. In terms of rotation invariance, a line segment is automatically
equipped with a sense of direction. This type of orientation is exceptionally stable as it invokes
actual physical occurrences, such as the contours of real-world objects. Even though some
point extractors do feature a sense of orientation, as previously stated, it is not equivalent to the
one in conjunction with a line feature. In this case, it is based on an approach that is not as
sophisticated as the physical background and is significantly more susceptible to environmental
influences. Figure 3.1 shows a typical scene in our urban housing scenario and individual line
features extracted by a state-of-the-art line segment detector. It is worth mentioning how well the
contours of the depicted objects are captured. Combined with appropriate filter settings, the line
properties could be even more resilient than they already are.

After the extension from 0-D point to 1-D line features, the image abstraction process can also
be handled by higher dimensional landmarks in the form of 2-D geometric shapes all the way
up to an item-based concept. In the latter approach, the image is subjected to a semantic
segmentation process, during which salient objects can be extracted through further processing
steps and assigned as potential features. However, this method represents a very high degree
of feature specialization, and thus it tends to lose the capability of being deployed in generic,
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previously unknown environments. Therefore, a reasonable balance has to be found between
the generalized and specialized approaches.

At this point, it is also worth taking a look at state-of-the-art feature-based approaches in which
only one specific feature detector is utilized at once. The main idea behind this concept is
to master all tasks that occur within a VO or SLAM algorithm with one feature type to reduce
the framework’s overall footprint. However, this negatively affects the overall robustness and
especially the stability of the entire algorithm, especially in more dynamic situations. For this
reason, in the following, we primarily address the two most generic landmark geometries and
investigate possible multi-modal setups that can be formed based on them.

Intra-Class Feature Collaboration

As the name already implies, the first approach centers around the concept that detections from
different landmark extraction algorithms of a specific geometry are able to collaborate with each
other. By utilizing several feature detectors with different detection principles, algorithm-specific
landmark collections are generated, and potential synergies between them could be formed
to further improve the robustness of the image abstraction process. To make this possible,
individual features are not compared one by one on an atomic level, as it would diminish the
applicability and effectiveness of this approach. Due to the fact that the utilized feature detectors
are designed to target various characteristics within the visual input data, a complete overlap
between the properties of the detected features is rarely expected. For this reason, it would
be more effective to take a step back and instate the categorization and ranking process at
a superordinate layer, which assesses individual image regions according to their respective
significance. This can be realized by dividing the image into individual sections and evaluating the
resulting boxes based on the incorporated features. The evaluation process itself is configured
with different emphases based on the specific use case. Therefore, it depends on the absolute
quantity, the spatial distribution of the detected features, and their relative quality measure, e.g.,
based on their characteristic response value ranking within the associated feature collection.
With this, the final target is to identify sections with a higher probability of containing features
that are more likely to be robust and repeatedly detectable other than unstable phantom features
caused by, e.g., photometric distortions.

Figure 3.2 illustrates the theory behind the intra-class feature collaboration by exemplarily
depicting the spatial distribution of landmarks detected by three point feature detectors, each
following a different extraction philosophy. In terms of a density-based classification approach,
several areas with different properties can be identified in the schematics. The first category
consists of sub-sections on which only landmarks from one feature detector can be found.
At the same time, this type of area also represents the lowest level within the results of the
classification process since any other utilized feature extraction methods do not confirm the
detections. Therefore, they are considered to be relatively unstable, and features from this area
category are more likely to contain a significant amount of outliers. As for the time being, these
landmarks should be set aside and kept as a backup solution unless a sufficient number of
features from more advanced levels cannot be identified in the image.

Taking it a step further, the following categories contain features generated from two or more
different extraction algorithms, either in a small or large quantity. Especially in the latter case, it
implies that the photometric properties within these respective regions are favorable in terms
of their texture and visual composition, which computer algorithms can easily characterize.
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Figure 3.2: Schematic representation of the theoretical approach behind the intra-class feature collabo-
ration.

Therefore, it can be assumed that landmarks within these areas are particularly distinctive, which
would significantly improve the overall stability and robustness of the resulting algorithm.

In addition to the previously introduced levels, a further subdivision can be achieved, for instance,
in a density-related approach. Here, a ranking is established within each category based on
the absolute number of detected features within a particular area. As a result, an ordered list
of preferences is generated, which can be utilized in the following steps within the processing
pipeline of a VO algorithm. Furthermore, a distance-based nearest-neighbor concept can also
be employed to be able to create the ability to provide an even more accurate assessment. At
this point, a pre-defined distance to the nearest features of the same type is determined and
applied to the overall assessment of the individual regions.

Supplementary to the previously presented theoretical illustration, a real-world example is
depicted in Figure 3.3. In this particular instance, three state-of-the-art point feature detectors
are deployed on the given image in Figure 3.3a, each with a different extraction technique. While
the green and blue colored landmarks are identified by a respective corner and blob detection
routine, the algorithm behind the orange ones has both paradigms in focus. In general, there
are several noticeable areas when examining the resulting spatial distribution of the detected
landmarks. On the left-hand side, an accumulation of features from all three detectors can be
encountered on the indoor plant, as the individual leaves create a highly textured area with a
large number of corners and potential blobs in the resulting image.

Further to the right, a similar arrangement can be identified in the TV setup, in which features
are concentrated on the located objects. In contrast, only the corner detector can detect
meaningful landmarks on the not exceptionally well-structured floor covering. In this case,
no further information can be gained about their properties since these features cannot be
combined with detections from other types of detectors in any way. Therefore, this particular
area receives a lower evaluation, and these features should be disregarded for the time being.
As a result, a valence ranking is generated by assessing each previously defined subsection in
an ordered pattern, with which individual weights are assigned to the different areas for further
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(a) (b)

Figure 3.3: Illustration of the evaluation and prioritization process within the intra-class feature collabo-
ration. (a) The initial landmark collection for the valuation procedure is provided by three
state-of-the-art point feature detectors and (b) the regions are assigned with their respective
valuation score.

processing steps. Figure 3.3b exemplarily depicts the valuation and weighting process based on
the previously used image. For illustration purposes, the image is divided into 88 sub-regions.
In terms of practical application, the utilized grid would be much finer, and thus an adequate
evaluation of the respective sub-areas can be achieved.

Apart from evaluating the detected features and identifying image sub-regions with potentially
higher stability, invariance against the change of scale can be implicitly created as a secondary
benefit. Since some of the state-of-the-art landmark detectors do not feature this type of
invariance, they are not particularly suitable for long-term localization and mapping tasks. This
is caused by the fact that the exact size of the feature and its surrounding region of interest
cannot be reliably estimated. Although it might only have little effect on the performance of the
targeted VO algorithm within the thesis, the impact on the overall SLAM framework is significantly
higher. In the context of the intra-class feature collaboration, the landmark size can be implicitly
estimated by considering nearby features’ dimensions, which are invariant against the change of
scale. Even though this approach cannot identify the exact size, it is a good start to give these
features a sense of size and prepare them for mapping and localization tasks as a first step.

Inter-Class Feature Collaboration

Similar to the means of categorization in the hardware-specific domain, landmarks with different
geometric properties are also able to collaborate with each other in order to enhance the
robustness of the processing pipeline. Here, the basic idea behind this approach is to effectively
combine given feature properties, which are unique to the respective detector class. By doing
so, potential synergies are created with the target of maintaining and possibly extending the
continuity of the resulting estimations.

While the focus was mainly on the characteristics and possible correlations between point
features within the feature extraction process in the previous approach, we will investigate
possible methods surrounding the feature matching module. Although point features are the
most commonly utilized landmarks in the context of VO and SLAM, they do not provide the
best starting position in every use case. In parallel to unfavorable environmental conditions and
deteriorating image quality, the feature extraction process is also negatively affected. Especially
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Figure 3.4: Schematic representation of the theoretical approach behind the inter-class feature collabo-
ration.

with increasing levels of blur distortion, the overall texture of the image and the distinctive
characteristics, such as corners, are softened. Consequently, it diminishes both the quantity
and quality, particularly stability, of the detected landmarks, which serves as the baseline for the
subsequent processes in our feature-based method. Due to the fact that the targeted application
is not purely theoretical, the matching process cannot be considered faultless, even under
the most favorable conditions. Therefore, the motion estimation module always includes a
separate outlier rejection routine in which incorrect matchings are identified and neglected for
the subsequent optimization process.

In order to further improve the accuracy of feature matching, especially under the most unfavor-
able situations, an additional evaluation and filtering step has to be introduced to the processing
pipeline. One possible solution is contained in the term of inter-class feature collaboration, in
which characteristics of different landmark geometries are combined. Apart from the well-known
point features, we are also targeting to utilize line segments, which are the most simple form
of geometric features. Since human-made environments contain a significant amount of linear
geometries, it provides a valuable supplement and is a reasonable choice in our first approach.
In addition, line features are considered quite robust in terms of detection and matching capa-
bilities, even in unfavorable situations, due to the fact that they are mostly related to real-world
properties. From an experimental perspective, we already conducted a study in [70] in which
line segments are identified as exceptionally reliable in terms of their repeatability and matching
score, among other findings.

After the scope of available data has been determined in the previous selection, the next step
is to connect the individual pieces of information, thus uniting the advantages of both feature
geometries. Since the target is still to identify a collection of landmarks with higher stability
and, therefore, robustness with a particular focus on feature matching, the process of geometric
clustering is introduced as a potential solution. Basically, landmarks with different geometric
properties are connected based on their location in the image, thus creating a tight correlation
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(a) (b)

Figure 3.5: Illustration of the line clustering process within the inter-class feature collaboration. (a) The
initial landmark collection for the valuation procedure is provided by three point feature
detectors and one line segment detector. (b) Line clusters are assembled according to a
predefined scheme.

in the form of a geometric cluster. Within the process, a bounding box is created around the
higher-dimensional feature, and the remaining landmarks from other detectors are distributed in
the respective collections based on their position. By assigning them into dedicated groups, an
additional cross-check relation is established in terms of feature matching since the collective
structure of a cluster remains consistent throughout the photometric transformation, as illustrated
in Figure 3.2. At this point, the created geometric clusters from the source and target image
are implicitly matched by evaluating the matching results of their members. Based on the
assumption that the matching routine correctly identifies the majority of the feature matchings,
this approach can be used to isolate possible misalignments and matching outliers. Similar to
the previously stated intra-class collaboration, the final evaluation is determined based on a
reasonable weighting of individual landmarks. As a result, the weights applied to the individual
characteristics are not designed to be continuous but rather binary since this approach only
allows the identification of whether a feature is considered an outlier. In the case that a particular
matching is identified as correct, a static weighting coefficient with an appropriate magnitude is
applied to the previously defined scoring system. Indeed, it is also possible to use additional
ranking information generated in the associated feature collections to generate a variable
weighting factor. However, in the first step, only binary weights are applied as the result of this
collaboration method.

To further elaborate on the process of inter-class feature collaboration, the scenario that already
appeared as a practical illustration in the context of intra-class collaboration is consulted again in
Figure 3.5. In addition to the three illustrated types of point extractors from the previous example,
Figure 3.5a includes the detections of a modern line segment detector in white. In the next step,
a bounding box with a predefined size is formed around the line segments. All point features
within the specific region are bundled into a geometric cluster, more precisely designated as
a line cluster. Figure 3.5b illustrates the resulting line clusters. By taking a closer look, it is
noticeable that not all detected lines are considered potential baselines and have a designated
feature collection formed around them. This is because, in minor cases, the line detector also
detects a line that cannot be classified as robust. Therefore, it is considered to be an incorrect
detection instead. In order to identify and neglect such occurrences, a reasonable filter has to be
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implemented. In the simplest case, line segments have to be longer than a predefined threshold
value to be classified as a baseline.

3.2.2 Collaborated Motion Estimation

In order to obtain a high-quality result from the VO application, it is not sufficient enough to only
provide the motion estimation modules with a well-selected and aligned set of input data but also
to employ a reasonable optimization strategy for the calculation of the relative camera motion.
While previous methods target the generation of an optimum feature collection, the focus is
directed towards investigating potential multi-modal approaches within the motion estimation
process. As mentioned in Section 2.3, the camera motion can be estimated from combinations
of 2-D and 3-D correspondences. Depending on the selected data dimension, the resulting
transformation can be derived from the essential matrix, obtained by minimizing the reprojection
error or estimated by aligning the given point clouds. Even though the approaches above are
fundamentally different in their mathematical background, they share a common aspect in the
form of input data representation. The optimization strategies are all based on a collection
of individual data points, which are considered the most atomic way in terms of information
representation.

Although these approaches are considered state-of-the-art, the algorithms are still reasonably
sensitive to remaining matching outliers, thus the overall distinctiveness and stability of the given
point features. In order to further increase the robustness of the optimization process, one
possible solution is to integrate valuable properties of line features into the motion estimation
pipeline. The basic idea behind it is to utilize the additional orientation information in order to
achieve a more robust calculation of the relative rotation. Alongside the already instated motion
estimation approach, the directional information of the line segment features is established
as an additional constraint, resulting in a more robust and accurate calculation of the relative
movements. As a result, a multi-modal motion estimation process is formed, as illustrated in
Figure 3.6.

Figure 3.6: Schematic representation of the theoretical methodology behind the collaborated motion
estimation.
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On the practical side, the collaborated motion estimation can be realized in several ways. Starting
from the conventional side, the first modality is to derive the relative transformation from a set of
2-D and/or 3-D correspondences. Although the minimization of 3-D-to-2-D reprojection error is
more beneficial as it supports a 3-point minimal solution instead of a 5-point requirement, it is
worthwhile also to investigate the potential of the 2-D approach because of the poor depth data
quality of the utilized RealSense cameras. However, the 3-D rigid body transformation as well as
the absolute scale cannot be calculated without further information in the third spatial dimension.
For this reason, the missing parameters have to be calculated by a separate estimation routine
incorporating the depth information as a supplement of the coordinates of individual point features
on the image plan. By separating these processes from each other, only 2-D coordinates from
the image plane, which can be considered highly accurate and otherwise the same magnitude
of imprecision, are used for initial estimation of the relative motion. Thus, this process is not
affected by the properties of the depth information at all. In this case, the variance in data
accuracy does not influence the calculation of the initial motion estimation and can therefore be
minimized. On the contrary, the resulting motion estimation strategy would be significantly more
computation intensive. For this reason, the sequential 2-D-to-2-D approach is disregarded along
with the disadvantages and stability issues of the 3-D-to-3-D method. Therefore, the 3-D rigid
body transformation is estimated using the 3-D-to-2-D strategy.

In terms of utilizing the properties of line correspondences, there are two basic approaches with
which this additional constraint can be incorporated. At first, line features can be seamlessly
integrated into the previous optimization process. In this case, the given line segments are
deconstructed into a line of point representatives, and correspondences between the feature
collections are established accordingly. By assigning properly selected weighting parameters to
these points within the optimization process, the more reliable properties of line features are
implicitly embodied in the overall motion estimation module. Apart from the integrated approach,
the directional information can also be taken into account by introducing a new optimization
parameter. In addition to the 3-D and 2-D coordinates of the feature points, the relative rotation
can be aligned by minimizing the overall line orientation error between 2-D line correspondences.
By doing so, the associated optimization processes are carried out step by step in either a
sequential or parallel manner. In general, the latter approach is considered the more advanced
method, leading to more predictable results and eliminating the unpleasant fine-tuning process
of the weighting parameters.
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3.3 Multi-Modal Methods within the Context of Visual
Odometry

After several multi-modal methods were proposed in the previous sections, these approaches
are contextualized into the context of VO and SLAM in a more practically oriented manner
in the followings. Figure 3.7 summarizes the previously proposed methods for establishing
multiple modalities in the software-related domain. With this, it also provides a visual illustration
of the potential operation site within the context of the processing pipeline of our targeted VO
application.

Starting with the intra-class feature collaboration, it is utilized for sorting and prioritizing detected
landmarks and the valuation of potential regions of interest. Findings obtained from the process-
ing step are then used in the feature matching module for outlier rejection purposes. Furthermore,
the resulting information can also be applied to obtain previously unknown properties of specific
landmarks. With this, the size of features, which is not equipped with invariance against the
change of scale, can be approximated based on properties of nearby size-invariant landmarks.

Further down the chronological order, the intra-class feature collaboration is based on the
prioritization of features with the help of geometric clusters. As a result, the established
correlations are utilized for outlier rejection after the feature matching process in the form of
cross-check validation.

At last, the collaborated motion estimation remains the final approach to establish multiple
modalities in the software-related domain. Within the context of the VO processing pipeline, it
emerges entirely into the motion estimation module and has the task of entirely substituting the
conventional methods.

Figure 3.7: Multi-modal methods in the software-related domain within the context of a feature-based
VO application’s internal structure
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Building on the considerations from the preceding chapter, we head one step further and
practically apply the introduced methods to the development and implementation of our intended
visual-inertial front-end module. While theoretical assessments and standalone experiments
are good ways to identify the potential of novel approaches, the system-related behavior and
performance characteristics can only be evaluated by integrating them into a working VO
algorithm. However, there is no VO/SLAM framework to our knowledge that can provide the
necessary structural flexibility and extendability to incorporate our targeted multi-modal setup.
Therefore, the decision was made to construct a novel VO application from scratch.

This chapter introduces to the Multi-Modal Visual Odometry (MMVO) framework, which is the
primary contribution of this thesis apart from the results of the theoretical assessment. After the
general overview of the system level in Section 4.1, we will consolidate the task-related, more
component-oriented domain in the following sections and address the specific implementation
details of the individual modules in chronological order.

4.1 General System Overview

Following the basic architecture of a conventional feature-based VO algorithm, MMVO is con-
structed to incorporate the multi-modal methods presented in the previous chapter. Since a
high level of modularity is considered one of the key design aspects, each main processing
module is equipped with a well-defined data interface. This way, individual components within
the processing pipeline can be easily interchanged in just few steps and replaced by another
module based on a different, possibly more advanced concept for future developments. In
addition, the intended structural division also allows utilizing the given system as a test bench for
other state-of-the-art methods within the individual sections, which can be made available by
providing a comprehensive library.

Figure 4.1 gives an overview of the framework’s overall structure. From a more abstract
perspective, the system’s working principle can be summarized as follows: For every new frame,
the relative displacement to the current keyframe, which serves as the source image during
the motion estimation process, is estimated. Within this procedure, various types of point and
line features are identified from the initial image. In the next step, the detected landmarks are
equipped with a unique signature for the subsequent matching process. Here, reasonable
correlations between the source and the target image are identified and forwarded to the motion
estimation module. At the same time, the initial landmark collections are being further processed
and fused into an adjusted set of features according to the previously introduced methods. Once
all the requisite data are available, the relative displacement to the corresponding keyframe and
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its true scale is calculated in combination with the pixel-wise aligned depth information. As an
option, this process can be assisted by including estimations from the predictive state-space
module, in which the IMU measurements are processed separately for pose tracking. The
next component in the toolchain is responsible for the local optimization of the concatenated
transformations computed by the previous steps. Within this module, locally constrained pose-
graph optimization and windowed BA can be performed to improve the algorithm’s tracking
accuracy further.

Apart from that, the main motion estimation pipeline is supplemented by an intermediate stage
for keyframe identification. Depending on a pre-defined set of criteria, a new keyframe is created
and handed over to a temporary collection, which serves as the source image in the upcoming
motion estimation iterations. Due to the required real-time processing capabilities, these tasks
within the front-end are separated and distributed over several threads. As the last step, the
estimated relative displacement is transformed into the respective frame of the currently used
coordinate system and its origin, either set by the initialization process or automatically triggered
after an LoT event occurs. In the end, the relative pose and the respective origin are forwarded
to the back-end for mapping, long-term localization, place recognition functions, and sensor
fusion purposes.

In order to better understand the system’s individual components, the building blocks are ex-
plained in greater detail in the following sections. Since the conceptional design of MMVO strictly
follows the internal structure of a feature-based VO application, it incorporates, among others,
the central functions of landmark extraction, feature matching, motion estimation, and keyframe
identification. Furthermore, methods surrounding the generation of potential synergies for evalu-
ating and prioritizing the given feature collections are summarized under the term Feature Entity
Fusion and Filtering (FEF2). In contrast to the previously mentioned vital components, however,
the implementation of reasonably configured modules for IMU data handling and optimization
is associated with a high amount of workload, which cannot be ignored. For this reason, the
realization of these modules would far extend the scope of the thesis. Therefore, these modules
are constructed as inactive components at the corresponding locations and will not be elaborated
in greater detail.

4.2 Landmark Extraction

In general, the landmark extraction terminology is composed of the sequential arranged pro-
cesses of feature detection and description. At first, the visual information of an image is
analyzed and abstracted into a collection of regions of interest, forming the foundations for
subsequent processes. The selection is then passed to a description algorithm, which assigns
the characteristic area with a distinctive mark considering its surroundings.

Although it is not difficult to find enough characteristics, which can be easily recognized and
characterized by computer algorithms, but to identify features that are invariant against photo-
metric transformations, i. e., translation, rotation, change of scale, and covariance to geometric
changes. For this reason, we conducted a "Requirement Analysis for Perception On Assistant
Robots in Multi-Modal Environment Condition" [70]. In addition to the analytical examination of
promising state-of-the-art feature extraction algorithms, an experimental study was carried out
based on real-world datasets from mission-related environments where Rollin’ Justin is typically
situated. With this, prevailing environmental properties are evaluated to identify the best-suited
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Figure 4.1: Overview on the general system architecture of the Multi-Modal Visual Odometry (MMVO)

visual abstraction and characterization frameworks. As a result, findings and realizations were
summarized in several recommendations, including a proposed collection of feature extraction
methods, which can be employed within the multi-modal image abstraction framework in the
followings.

4.2.1 Feature Detection

Starting with the first step in the processing pipeline, the feature detection module is constructed
with a particular emphasis on the capability to facilitate a variable number of individual detection
algorithms. Therefore, this building block is divided into two specific types of components
based on their associated functionalities and depth of integration. At first, the landmark detector
manager acts as the superordinate module and is responsible for the general administration
of the image abstraction process. Basically, it is in charge of converting and distributing the
incoming visual information to the selected detection algorithms and managing the obtained
landmark collection for subsequent processing steps. For this reason, it is directly embedded
in the internal structure of MMVO. On the contrary, the second component is assigned to the
actual image abstraction process. In order to fulfill the overall modular characteristic of the
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front-end, different feature detection algorithms are implemented in individual function blocks with
a generalized interface definition. In contrast to the management framework, these modules are
easily interchangeable, and the collection of landmark detectors can be customized according to
the specific use case. An external configuration file defines the exact composition and associated
tuning parameters. Furthermore, a guardian mechanism has to be implemented to prevent
regional accumulation of the detected landmarks since distinctive characteristics are not evenly
spread throughout an image. To counteract these circumstances, a grid of 64 columns and 48
rows is applied to the image, in which the associated detectors are deployed separately within
each cell. In the end, the provisional landmark collections are composed according to a relative
threshold in order to ensure a homogeneous distribution over the image.

As the result of the previously introduced experimental evaluation, four different feature detection
approaches, consisting of three point and one line feature detectors, are considered the most
promising in the context of the anticipated field of application and the expected environmental
conditions. Each of them is equipped with an individual focus on specific environmental cir-
cumstances, from which potential synergies can be generated by reasonably combining the
characteristics of the landmarks. Therefore, in the first approach, these auspicious detection
algorithms will be integrated into MMVO for our anticipated multi-modal setup. In order to provide
an overview of the utilized methods, they are individually introduced in the followings.

Good Features To Track

The first algorithm used in the proposed framework was introduced as a direct advancement of
the Harris corner detector [71] in 1994. Inspired by Moravec’s work [72], Harris and Stephens pro-
posed the first meaningful corner feature detector [71] in 1988 by minimizing the auto-correlation
function to compare an image patch against itself shifted for small displacements. Deducing
from the mathematical model, they developed a measure for the qualitative quantification of
corners. Depending on the magnitude of the response function, the examined region is classified
as a corner feature if it surpasses a selected threshold value. Shi and Tomasi proposed their
Good Features To Track (GFTT) [73] by redefining the decisive criterium as follows:

R= min(λ1,λ2), (4.1)

in which λ1, λ2 are two eigenvalues of the auto-correlation matrix. Their research showed that
the physical correspondence of feature points and the classifier’s robustness could be further
improved by an alternated definition of the response function.

In the experimental evaluation, GFTT achieved the best results based on the performance
metrics. Especially in less-textured environments and more dynamic situations in which the
increased presence of motion blur impairs the resulting image quality, this detection algorithm
can still identify a sufficient number of distinctive features. Although GFTT cannot be assigned
to SLAM-related tasks under normal circumstances in a standalone setup, it provides a valuable
aid in our targeted multi-modal setup, particularly in challenging environmental conditions.
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(a) (b) (c)

Figure 4.2: Illustration of (a) CenSurE bi-level filter geometries, (b) FAST test pattern, and (c) theory
behind the intensity centroid. Images adapted from [74, 75].

Center Surround Extrema

Apart from the corner detectors, the second method uses the blob detection technique to identify
suitable landmarks. Since it is based on a multi-scale representation in the form of an image
pyramid, the location accuracy of the features detected by earlier approaches deteriorates
with increasing octave and the consequent sub-sampling of the initial image. Agrawal et al.
compensated the issue by introducing a new method for the approximation of Laplacian of
Gaussian (LoG) in their proposed Center Surround Extrema (CenSurE) detector [74] in 2008.
As illustrated in Figure 4.2a, the estimation is accomplished using bi-level center-surround
filters, with which full spatial scale can be achieved at every image in the scale space. Multiple
bi-level filter geometries can be used, ranging from rectangular box filter (quadragon) to circular
filter as a polygon with infinite edges. After the filter responses are computed at each pixel
in the image, potential feature points are identified by local extrema detection. At this point,
a non-maximum suppression is performed over the scale space in a 3×3×3 neighborhood.
They further enhanced their algorithm’s robustness against noise by employing a threshold
value-based selection process to reject candidates with low contrast. In addition, poorly localized
keypoints along edges must be eliminated since they also negatively contribute to noise sensitivity.
Therefore, the curvature of the surrounding area is analyzed by the calculation of a Hessian
matrix at the keypoint’s coordinates utilizing the proposed procedure by Harris and Stephens
[71].

According to the results from the preliminary study, CenSurE performed very well, especially in
the achieved matching score in the characterizing stand-alone objects in the evaluated scenarios.
Although the number of detected correspondences is among the lowest in the participating
detectors, it achieved the highest repeatability score. Based on the characteristics of the
occurring pattern on the flooring, feature detection is naturally suppressed by the algorithm to a
certain degree, where the number of detections is neglectable. For this reason, CenSurE would
be a valuable complement to the multi-feature approach and is the ideal candidate for specific
tasks in which features from the floor are undesired or have to be separated from others.
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(a) (b) (c)

Figure 4.3: Illustration of (a) exemplary image section, (b) level-line field, and (c) identified line support
regions. Images adapted from [76].

Oriented Features from Accelerated Segment Test

The last metric combines the advantages of the corner and blob detection approach. Although
other feature detectors, such as the Difference of Gaussian (DoG) in the Scale-Invariant Feature
Transform (SIFT) and Fast-Hessian in the Speeded-up Robust Features (SURF), have already
generated satisfactory overall results, they are very opulent in the demand of necessary com-
putational power and the subsequent high time consumption. Hence, Rosten and Drummon
developed Features from Accelerated Segment Test (FAST) with the target of computation time
minimization for real-time on-line applications in 2008. The authors developed an alternative
metric in their publication [75] to identify keypoint candidates, in which the comparison is only
happening in the image dimensions. As illustrated in Figure 4.2b, a circle of 16 pixels is built
around the pixel of interest (PoI) without considering any information from the scale dimension.
Whether it should be classified as a potential keypoint, respectively corner, is based on the
deviation of surrounding pixels to the Intensity of the examined pixel. Drawbacks caused by
the relaxation of the deciding factor are compensated using non-maximum suppression in the
case adjacent feature pixels are detected. A decision tree is created to determine the statistically
best choice of the evaluation starting point by utilizing machine learning principles, which also
benefits the detection speed.

Rublee et al. robustified the detector by utilizing the Harris score [71] as an additional metric to
improve the corner feature quality, resulting in oriented FAST (oFAST). Furthermore, they
assigned an orientation to the detected keypoints through the intensity centroid theory in
conjunction with developing their ORB algorithm [53]. The direction is represented by the vector
between the corner’s intensity maximum and its geometric center, as illustrated in Figure 4.2c.

In general, the preliminary study identified this detector as the all-rounder algorithm. Although
it never achieved the best performance metrics, it was ranked as the method with the most
comprehensive detection abilities in the evaluated scenarios. Therefore, it provides a solid
foundation for our targeted multi-modal approach to constructing a basic detection structure.
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Line Segment Detector

Moving to the field of one-dimensional representatives, one of the most popular algorithms
was introduced by Gioi et al. in their Line Segment Detector (LSD) [76]. In particular, it was
developed as a robust and self-adjusting framework where no manual parameter tuning is
necessary. As illustrated in Figure 4.3, the line support regions are identified by examining the
computed level-line field from the source image, which in turn consists of each pixel’s level-line
angle. The solution space is further downsized by a statistically based a contrario approach,
and noise-related identifications are eliminated. A potential keyline candidate is classified as a
line segment if the corresponding geometrical object, a rectangle, is associated with it. Those
aligned points are identified by the directional correctness of their gradient orientation, which
has to be within a tolerance region. At last, the number of false alarms is constructed as the
final classification measure and compared to a selected threshold value ϵ. In case the number
of false alarms value of the examined rectangle is smaller than ϵ, an ϵ-meaningful rectangle is
identified, and thus, the line segment candidate is classified as a keyline.

This detector shows great potential in the given environments should be included in a supporting
role due to its high robustness against blur disturbance and the more solidified orientation
information it includes. While this particular detector does not stand out from the performance
parameters of the remaining detection algorithms, it nevertheless achieved similar results. This
is mention-worthy because the selected benchmarking metrics are more demanding than those
for point features since it implicitly inquires its orientation as a further evaluation criterion. All
in all, it proves the outstanding potential of line features for their utilization in human-made
surroundings.

4.2.2 Feature Description

After identifying stable and transformation-invariant key features, each element has to be
equipped with a unique signature for comparison and recognition purposes. In this context,
one can also mark it as the feature’s fingerprint since it always contains information from its
immediate neighborhood.

Similar to the construction on the detection side, this second building block within MMVO’s
main processing pipeline is divided between the landmark descriptor manager and subordinate
components accommodating the individual description algorithms. The exact composition and
the associated tuning parameters are also defined in an external configuration file and can be
modified accordingly.

While feature detectors can be deployed in parallel in an extraction framework, feature descriptors
are neither interchangeable nor designed to collaborate with others. This is because each
descriptor characterizes the point of interest and its surroundings by a different pattern, which
can only be interpreted by the same algorithm. As a result, only one description method can
be chosen for the entire run-time of the framework. Since two different landmark geometries
are utilized in our targeted multi-feature method, a two-pronged approach has to be applied
in order to prepare the detections for the following processing steps. Therefore, based on the
recommendations of the preliminary study, two different feature description concepts, one for
the characterization of point features and the other for line segments, will be included in the first
approach.
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(a) (b) (c)

Figure 4.4: Illustration of (a) BRIEF sampling pattern, (b) ORB sampling pattern, and (c) characteristic
line bands in LBD. Images adapted from [53, 77, 78].

Rotated Binary Robust Independent Elementary Features

From today’s perspective, feature descriptors can be classified into two separate categories
based on their associated data types. Even though distribution-based, therefore floating point,
descriptors such as SIFT and SURF are well-constructed transformation-invariant algorithms,
the feature signatures are not stored efficiently. In order to further decrease the descriptor size,
the defined neighborhood around a keyfeature could also be classified by a relatively small
number of pairwise intensity comparisons. Accordingly, a bit vector is incrementally composed
as stated by a prescribed pattern. Calonder et al. proposed the Binary Robust Independent
Elementary Features (BRIEF) as one of the first methods utilizing this kind of abstraction [77].
Figure 4.4a illustrates the sampling pattern of arbitrary point pairs from an isotropic Gaussian
distribution with the spread of σ2 = 1

25S2. This design is chosen for the sampling process within
BRIEF, as it produces the best results in terms of recognition rate. However, BRIEF is not
rotation-invariant, therefore, very sensitive to in-plane rotation. For this reason, Rublee et
al. proposed the idea of rotated BRIEF (rBRIEF) as the descriptor for their ORB algorithm
[53], targeting the addition of rotation awareness without compromising the computational and
matching speed of the native BRIEF. Before the comparison tests, image patches are smoothed
by using integral images. Each test point consists of a 5×5 sub-window of a 31×31 pixel patch,
as depicted in Figure 4.4b. Basically, rotation-invariance is achieved by utilizing the provided
orientation information and aligning the sampling pattern accordingly before the comparison
process, therefore, constructing a rotated version of BRIEF. As a side effect, the variance
decreases in each description string, making a feature less discriminative since it responds less
distinctively to inputs. This is compensated by a greedy search algorithm, which iterates through
all possible binary tests to find combinations with high variance and low correlation at once. As a
progression to BRIEF, the authors have kept the number of elements at 256, thus corresponding
to 32 bytes per keypoint.

Since only one point descriptor can be selected, it was decided to utilize rBRIEF as the feature
description algorithm. Although the native BRIEF implementation is roughly three times faster
than the "steered" version, the latter algorithm is still the more advanced choice, as it offers the
best balance between reliability, robustness, and required computation time according to the
preliminary analysis.
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Line Band Descriptor

Apart from the point feature descriptors presented above, one-dimensional feature representa-
tives have to be described differently. Zhang and Koch developed their Line Band Descriptor
(LBD) [78] as an efficient and robust algorithm for the characterization of line segments and their
line support region (LSR). As the name already implies, LBD splits the detected LSR into a set of
bands parallel to the longitudinal side of the rectangle, all with identical lengths as the line itself.
For each line band (LB), the orthogonal direction to the LB at the clockwise side is computed,
and a reference frame centered in the middle point of the line is created. A Gaussian function
is applied to the gradients of the pixels along the newly created direction with the subsequent
assignment of global and local weights. After pre-processing, the algorithm calculates the
individual band descriptors with respect to adjacent bands by accumulating gradients in the
respective row. The final description matrix is constructed by stacking up all results together.

Each line band is represented by an eight-dimensional floating-point vector, comprising its
standard deviation and mean vector. By default, the number of LB is set to 32, which yields
256 floating-point values, thus 1024 bytes in total. In the implementation process of MMVO, a
runtime-optimized binary version of the native floating-point descriptor was integrated. Within
this approach, an 8-bit string is generated by comparing each band descriptor and concatenating
32 comparison strings. As a result, each line segment is represented by 256 bits, thus 64 bytes
in total.

4.3 Feature Matching

After the extracted landmarks are assigned with a unique signature regarding their characteristic
surroundings, necessary correspondences between the feature collections of the source and
target image have to be established. Similar to the construction of previous modules, the third
building block within MMVO’s main processing pipeline comprises of two different types of
components, targeting a modular design. While the landmark matcher manager is responsible
for administration and data distribution tasks, different matching algorithms are accommodated
in individual subordinate modules. With this, the exact composition and the associated tuning
parameters are also defined in an external configuration file and can be modified accordingly.
Following the general structure of the feature description toolchain, a two-pronged approach
must be applied within the feature matching module since landmark descriptions with different
geometric properties have to be matched using the respective methods. Therefore, two different
matching algorithms are integrated to facilitate both feature geometries in the first design iteration.

Although the utilized description approaches are fundamentally different in their theoretical
principles, they both belong to the family of binary descriptors. As an alternative to the distribution-
based methods, the respective support region can also be described by correlating specific
properties of individual pixel pairs inside the region of interest. In pursuit of efficiency, the boolean
value is incrementally sampled in a binary string to maximize the descriptiveness of every used
bit. In contrast to the euclidean distance applied in floating-point descriptors, binary ones are
based on the Hamming distance for comparison and matching purposes. This approach was
inspired by the locality-sensitive hashing technique, which would minimize the calculation effort
since only exclusive disjunctive operations followed by a bit count are necessary. Since both
description algorithms are correlation-based, suitable binary matching methods have to be
selected and integrated. In the case of point features, the matching method is based on the Fast
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Library for Approximate Nearest Neighbors (FLANN) [79], which provides a quick approach to
identify potential correspondences within the two sets of landmarks. In addition, a filter algorithm
is implemented directly downstream of the matching procedure. Based on Lowe’s distance ratio
test [80], it is one of the first steps in the multi-staged filtering and outlier rejection routine, which
specifically targets the identification and disposal of incorrect matchings. In terms of establishing
correspondences between line features, the matching process is based on the characteristics of
the associated line bands. With this, the most commonly applied method is incorporated into
MMVO, which utilizes the multi-index hashing approach introduced in [81].

In order to reduce the computational effort and improve the real-time capabilities, MMVO utilizes
the concept of keyframes, which are defined as a particularly selected image collection with
specific properties. In general, it can be interpreted as the overall scaffolding of the associated
tracking pipeline and is, therefore, essential for the motion estimation and short-term localization
process. For simplicity, keyframes are utilized as the reference frame for the matching process,
while the target image comprises the current frame. This matching procedure also meaningfully
increases the stereo baseline between the source and target frame compared to identifying
correspondences between successive image pairs. As a result, the estimation accuracy of the
relative displacement between the selected frames is improved while enhancing the algorithm’s
tolerance against external disturbances.

4.4 Feature Entity Fusion and Filtering

After the initial image abstraction process, four different landmark collections are formed in our
anticipated VO algorithm, which serves as the information basis for the subsequent steps in the
motion estimation toolchain. Concurrent with the major components in a VO’s primary processing
pipeline, potential synergies between specific characteristics of these feature collections are
formed for prioritization, property approximation, and outlier rejection purposes. This results in the
composition of an adjusted landmark set containing more robust features for the actual relative
motion estimation. As already briefly mentioned in the general system overview, the Feature
Entity Fusion and Filtering (FEF2) assembly is considered an accumulation of individual modules,
in which our aspirations in the area of multi-modal feature collaboration are practically applied in
the MMVO setup. While conventional filtering mechanisms in state-of-the-art applications are
usually placed after the feature matching procedure, we want to extend these efforts and start
one step earlier by integrating FEF2 next to the central processing pipeline. With this, a multi-
staged prioritization, filtering, and outlier rejection routine is established. First considerations
and evaluations can be triggered in parallel to the feature description and matching pipeline
once the initial landmark collection is assembled by the respective feature detectors. Therefore,
the FEF2 modules should be viewed as an additional component to the image abstraction and
data provision toolchain. Basically, it is divided into the intra-class collaboration, contained in
the fusion part, and the inter-class collaboration, which incorporates both components. Since
the theoretical principles are already introduced in the conceptualization chapter, the following
sections will highlight the implementation details. In general, a score-based prioritization and
filtering system is created for the multi-modal feature collaboration. Here, each landmark f is
assigned a particular valuation score S, consisting of the intra-class and inter-class contribution
Sf ,IACC and Sf ,IRCC. To express it more mathematically, it is defined as

S f = S f ,IACC + S f ,IRCC . (4.2)
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4.4.1 Intra-Class Feature Collaboration

From a theoretical perspective, the intra-class feature collaboration concept could be applied
to all kinds of landmark geometries once at least two feature types with compatible geometric
properties are available. Based on the selected landmark detection algorithms within MMVO,
the properties of three different point feature types consisting of oFAST, CenSurE, and GFTT
are combined.

In general, the regions are evaluated by two different qualitative measures. Starting from the top,
the image has to be divided into individual sections for evaluation. Since the feature detection
process incorporates a similar procedure to ensure that the landmarks are evenly distributed
throughout an image, the grid size has to be selected accordingly. In contrast to the previous
application, a wider pattern has to be selected here since the primary objective is to identify
correlations between different feature types based on their spatial distribution in the image. For
this reason, the image is initially divided into a grid of 32 columns and 24 rows, forming a total of
768 cells. While conventional prioritization and filtering methods usually apply binary weights, we
target to create a score-based valuation system. With this, the regions are individually assessed
using a density-based approach, in which the absolute number of the contained features n is
considered the primary qualitative measure for the evaluation. At this point, a first indication
of the regions’ content value and photometric condition can already be created based on the
total number of landmarks in the individual cells. To further reinforce the informative value of
the evaluation system, each feature type is assigned its weighting factor w since its associated
significance depends on the specific characteristics of the respective algorithm. As an example,
oFAST features are compared to those detected by the GFTT algorithm. It is evident that the
first landmark type offers a higher value for VO and SLAM applications due to their invariance
against rotation and change of scale. Therefore, these detections should be preferred over the
ones extracted by the latter method, which can be achieved by giving them a higher valuation
in the score-based prioritization system. For this reason, oFAST is given a weighting factor
of 4, CenSurE of 2, and GFTT of 1, respectively. At last, the cell-specific score is refined by
the second qualitative measure in the form of the feature-specific ranking position within the
individual landmark collection. For this purpose, the characteristic response value of each
feature type is normalized and summarized within the specific regions. The scaling factor er is
then applied to the overall score of the respective cell as the arithmetic mean of the previously
obtained value. In the end, the cell-specific significance value Sc,IACC is defined as

Sc,IACC =
D
∑

d

erd wd nd = S f ,IACC , D ∈ oFAST, CenSurE, GFTT. (4.3)

For the prioritization process on the feature-specific level, all landmarks contained in individual
cells are assigned with the cell-specific significance value, as indicated in Equation (4.3). This
way, a well-founded qualitative classification of landmarks within an image is achieved.

As a side effect of intra-class collaboration, previously unknown feature properties can be
approximated by considering nearby landmarks detected by a detector of a similar approach.
In this particular case, the size of GFTT landmarks can be approximated by adjacent oFAST
features since they are both corner detectors. Therefore, for each cell, the arithmetic mean of the
meaningful region size is calculated from individual oFAST features, and the expected block size
is then applied to the GFTT detector to steer the resulting landmarks towards the targeted value
actively. If a reasonable number of scale invariant features cannot be achieved in the specific
cell, the eight neighboring regions’ mean value is used. In the extreme case, where a sufficient
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number of landmarks cannot be obtained within either neighbor, the mean region size from the
previous iteration is taken. Although this decision would inevitably affect scale settings in the
medium and long term, especially in the mapping domain, they are stiff sufficient for tracking
tasks, leading to the minimization of LoT events. Depending on the given circumstances, the
landmarks are assigned with a flag indicating that they are potentially not suited for mapping
purposes in case a sufficient number of active mapping features is available.

4.4.2 Inter-Class Feature Collaboration

Building on the landmark prioritization method presented in the previous section, inter-class
feature collaboration combines landmarks with different geometric properties for filtering and
outlier rejection. Therefore, line clusters are created in MMVO using line segments detected by
the LSD algorithm in association with the other three available point feature types.

Basically, this method is divided into two segments, which consist of the associated modules
for the fusion and filtering procedures. Starting with the line cluster construction, the first step
is identifying suitable baselines from the original feature collection. For this purpose, a filter is
introduced to disregard line segments with a length less than a reasonably selected threshold.
From a theoretical point of view, longer line features are considered more robust since the
discriminative capability of edge contours improves with increasing size. In addition, they are
more likely to be associated with real-world properties. Therefore, the threshold is selected
based on the overall size distribution within the feature collection and the shortest 25 % of the line
segments are disregarded in the followings. A bounding box is created around the associated
baselines for the geometric clustering procedure. At this point, the width of the line cluster region
is defined in relation to the detected width of the utilized line segment. In order to compensate for
possible inaccuracies, the width of the meaningful line cluster region is magnified by the factor
of five. On the other side, the length of the bounding box is based on the identified length of the
respective line segment. Similar to the previous parameter, it is extended by the width of the line
cluster region, increasing the boundary at each end by half of the respective width. As the last
step of the fusion process, correspondences between the baseline and all other point features
contained within the bounding box are created, resulting in the generation of line clusters.

The second step consists of the prioritization and filtering module, in which additional information
from the feature matching process are considered. With this, correspondences between line
clusters from the source and target image are implicitly created by the identified matchings
between individual landmarks. A correspondence is formed in case more than 50 % of the line
cluster members, including the baseline, are matched towards the same line cluster. As a result,
a different approach for outlier rejection is established, in which binary weighting parameters are
applied to the respective landmarks. It should be noted that the feature must be disregarded
if it is identified as a matching outlier. On the contrary, the landmark’s overall value should be
elevated in case the correspondence is verified by the feature entity fusion and filtering routine.
In summary, the feature-specific significance score Sf ,IRCC is defined as

S f ,IRCC =

(

+S f ,IACC , if C+f ∈ M+.

−S f ,IACC , otherwise,
(4.4)

where Cf represents the correspondence between the associated landmarks and M+ the set of
correct matchings.
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4.5 Motion Estimation

Following the data acquisition and preparation toolchain, in which suitable landmarks and feature
correspondences are identified, extracted, and refined from the image, the relative displacement
between the source and target image is calculated in the following module. For this purpose, the
position information of point features is combined with the directional properties of line segments
to create a more robust motion estimation model.

In general, the presented toolchain can be divided into two segments consisting of the sequential
arrangement of a first pose estimation step and the subsequent refinement process. At first, an
initial estimation of the relative transformation is calculated based on the 3-D feature coordinates
from the keyframe and their 2-D projection in the target image. Therefore, the multi-level data
acquisition toolchain provides a prioritized and filtered collection of corresponding landmarks,
from which a certain proportion of the most promising feature matchings is forwarded to the
motion estimation pipeline. With this, only the highest valuated 50 % of the landmarks are
considered, while the lower boundary is set to a minimum of 100 feature correspondences,
if applicable. The relative pose displacement can be estimated by solving a set of equations
surrounding the Perspective from N Points problem, referred to as Perspective-n-Point (PnP)
[82] in the following. Based on the provided data collection, an optimum solution that minimizes
the reprojection error from 3-D-to-2-D- point correspondences is found for the translatory
and rotational components of the relative transformation in combination with intrinsic camera
parameters and optional distortion coefficients. Within the collaborated motion estimation
module, an initial solution is provided to the PnP solver in order to accelerate and stabilize the
optimization process. For this purpose, MMVO assumes a constant velocity model between
the previous two frames predicts the expected camera pose in the current iteration. Even
though the feature correspondences are pre-selected through their significance score, a small
proportion of outliers are expected to be included in the data collection Therefore, the PnP
solver is combined with the RANdom SAmple Consensus (RANSAC) scheme [41] to reinforce
the algorithm’s stability and improve the estimation accuracy. If the quantity of the available
correspondences falls below the minimum requirement of three, the camera pose cannot be
computed based on the image pairing in the current iteration. In this particular case, a preliminary
transformation is constructed either by the constant velocity model or the estimation provided
in the IMU handler. However, these associated camera poses are considered significantly less
accurate and robust than the visual-based method. Thus, an LoT event is triggered in case the
image-based motion estimation cannot be recovered in a reasonable time frame. In addition to
the resulting transformation matrix, the solver provides information about the identified inliers,
which is transmitted to the keyframe identification module further downstream of the tracking
toolchain. After the relative displacement was estimated in the previous process, the camera
pose should be further refined by minimizing the associated reprojection error using a non-linear
optimization algorithm. For this purpose, the orientation properties of the line segments are
implicitly applied to the non-linear Levenberg-Marquardt minimization scheme.
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4.6 Keyframe Identification

The last step in the MMVO’s tracking pipeline is dedicated to the task of when and whether a
keyframe should be introduced to the feature matching and motion estimation process. While on
one end, the system’s footprint and real-time capabilities could be adversely affected in case a
profuse number of keyframes are instated, both types of divergences impair the pose estimation
accuracy. Therefore, a reasonable balance has to be created within the keyframe identification
procedure since it directly affects the framework’s performance capacities on multiple levels.
According to Lin et al. [83], appearance-based VO and SLAM applications commonly rely
on five different types of keyframe selection methods. However, a closer inspection reveals
that state-of-the-art approaches can be further generalized into two categories based on their
respective selection procedures. At first, potential keyframes are identified and introduced to the
associated collection using a threshold-based system. With this, a new keyframe is generated
once the characteristic parameter falls below a respective threshold value. Starting from the
most ordinary indicator, distance- and time-interval-based methods were integrated into earlier
algorithms, e.g., PTAM [48] and SVO [55], but also modern ones, such as LSD-SLAM [84].
Further, the selection process can also be initiated by calculating the feature matching score
between the source and target image in the feature matching process in OKVIS [65]. A seemingly
more advanced method is introduced in VINS-Mono [66], in which the keyframe selection is
based on parallax. In addition, this process can also be triggered by computing an image
content index based on the clustering space and the feature distances between the associated
landmarks within the source and target image. With this method, the question surrounding
whether the current frame should be classified as a keyframe has to be answered instantly, and
no further changes and modifications can be made in retrospect. Taking it a step further, the
keyframe identification process can be supplemented by giving the possibility to be modified in
retrospect by complying with, e.g., the survival of the fittest principle. This particular approach
is applied in the ORB-SLAM [52, 62, 85] family, in which keyframes are selected in real-time
more optimistically. After the initial decision, the keyframe collection is further adjusted, and
individual candidates are neglected in the following iterations using suitable mechanisms. This
method is generally considered the more promising one since the final decision is supplemented
by additional information from the more extensive keyframe collection. On the contrary, it is also
associated with a higher demand for computation resources, which is evidently outbalanced by
the benefits of this approach. [52] [85]

Apart from the multi-modal feature collaboration and motion estimation methods, we also
target to establish multiple modalities by a suitable combination of different parameters and
threshold values. Starting from the approach of the identification module, the more advanced
double-staged method is applied, in which the final keyframe is determined from a pre-selected
collection. After the relative displacement is calculated in the motion estimation module, an
overall rating of the target image, which is at the same time the currently received frame, is
generated. Since tracking and localization in a global frame are based on the relation between
subsequent keyframes, it is essential to ensure that a reasonable number of correspondences
can be established in between. Further, selecting keyframes with many robust landmarks is
also beneficial in the short-term since it serves as the reference for motion estimation purposes
in the local frame. The main idea behind our approach is to consider a posteriori information
collected since the last keyframe selection in order to create a more sophisticated identification
procedure, with the target of selecting the best-suited frame. Basically, the general workflow
of MMVO’s keyframe selection process is inspired by the one introduced in ORB-SLAM and
adapted to suit the peculiarities of a VO-only application. Therefore, the implemented system
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works with three different thresholds defined in a relative frame. In contrast to the survival of the
fittest principle, a different sampling method with a more advanced and lightweight post-selection
algorithm is applied. As the first step within the keyframe identification module, an overall rating
of each available image is generated. This score is based on the number of landmarks, which
are classified as inliers during the motion estimation process and also referred to as stereo
landmarks, in relation to the number of correspondences after the feature matching module.
In case the number of stereo landmarks drops below 50 % of the initially identified quantity
of robust features within the current keyframe in at least five successive frames, a temporary
frame collection is sequentially constructed in the following iterations, including the images
within the decision criterium. The second threshold comprises of the median value of the total
number of feature correspondences between subsequent keyframes in the global frame within
the current coordinate system. Once the number of stereo features falls short of either the
previously stated figure or an absolute number of 100 verified matchings, a new keyframe is
selected from the temporary collection. Since the procedure is primarily designed to minimize
the effects of unpredictable photometric distortions, the temporary collection only contains the
last 25 %, or a minimum of three, of the frames between the decision point and the previous
keyframe. For example, in case the last keyframe was inserted 21 frames ago from the decision
point, only the last five frames are considered for the selection process. Especially in scenarios
where the image quality can be drastically deteriorated from one frame to another and vary
in an unpredictable manner, the general VO process would benefit from this approach. In the
end, the selected keyframe is inserted into the processing pipeline. It serves as the reference
for the successive iterations until a new keyframe is instated according to the same procedure.
Although the estimation accuracy might be compromised in the short term in a more locally
oriented frame since the keyframe is not instantly selected, the accuracy of the global pose
estimation would be reinforced, as it is ensured that the reference frame is consistently chosen
as the best possible for the following estimations.

55





5 Experimental Evaluation

Following the theoretical conceptualization and the implementation of MMVO presented in
the previous chapters, we conducted an experimental evaluation concerning the performance
characteristics of the multi-modal VO approach. Starting from the theoretical fundamentals of the
selected evaluation metrics in Section 5.1, we focus on evaluating application-oriented real-world
data from the urban housing scenario in which Rollin’ Justin is usually situated. The first part
of the chapter introduces the evaluation metrics and experimental setup. Section 5.3 explains
the evaluation process in greater detail before the obtained results are presented and analyzed.
With this, the impact of the individual multi-modal methods is assessed in a standalone manner
at first. The achievements of the individual approaches are then compared to a performance
baseline generated by the MMVO implementation that follows the multi-feature setup but does
not include the collaboration methods. In the second step, a qualitative assessment of the overall
framework, including all proposed multi-modal methods, is conducted. Hereby, the results are
compared to the performances of MMVO in a single-feature setup and ORB-SLAM 2 [62]. On
the hardware side, the experiments are conducted on a Dell Precision 5820 Workstation with an
Intel Xeon W-2123 CPU running at 3.60 GHz and 16 GB of DDR 4 memory.

5.1 Evaluation Metrics

Before the performance of the novel approaches can be evaluated, a well-selected set of
conclusive metrics has to be established. Overall, the evaluation is performed by analyzing the
quality of the generated trajectory. The motion of rigid bodies can be expressed as a sequence
in the specific Euclidean group SE(3), which is provided by the transformations from the world
to the body frame for each timestamp. As proposed by Sturm et al. [86], the assessment is
achieved by measuring the differences between the camera poses P1, ..., Pn ∈ SE(3) and the
time-synchronized ground truth poses Q1, ...,Qn ∈ SE(3). At this point, only the relative quality
measure is considered within the thesis since VO applications, as the name already suggests,
are more focused on establishing local consistency. In contrast, global estimation accuracy, in
case of continuous tracking, is depending on the selected back-end optimization strategy. Thus,
the analysis in the global frame would be less conclusive in terms of MMVO. For this reason, the
absolute measure will be neglected in the following examination. The trajectories are associated
by the timestamps of the individual data points and aligned using Umeyama’s method [87]. With
this, the evo evaluation implementation [88] is utilized for the alignment of the pose estimates
with ground truth information and the computation of performance metrics. In summary, three
performance metrics are defined for the standalone assessments and the overall performance
evaluation of the VO framework.

57



5 Experimental Evaluation

5.1.1 Relative Pose Error

At first, the relative pose error (RPE) measures the local accuracy of the estimated trajectory
over a fixed time interval ∆. Therefore, this metric is often referred to as the key performance
indicator for VO systems, as it corresponds to the drift of the given trajectory. According to Sturm
et al. [86], the RPE at time step i is defined as

RPEi = (Q
−1
i Qi+∆)

−1(P−1
i Pi+∆). (5.1)

For the sequence of n camera poses P1, ..., Pn, m= n−∆ individual relative error parameters
are obtained along the resulting trajectory. In the end, the translational component of these error
values, denoted as∥trans(RPEi)∥, are aggregated in the computation of the root mean squared
error (RMSE) over the considered time frame defined as

RMSE(RPE1:n,∆) = (
1
m

m
∑

i=1

∥trans(RPEi)∥2)0.5. (5.2)

Further, the rotational contributions can be evaluated by representing the individual rotation
matrices as a 3-D vector. However, it has been found that it is sufficient to omit this particular
evaluation step in standard applications since the rotation error is implicit in the translation
measure. Alternatively, the performance of the VO and SLAM algorithms can be achieved
by calculating the mean or median error instead of RMSE, which would further contribute to
minimizing the influences of potential outliers. Nevertheless, the latter measure was deliberately
chosen for the evaluation process, as it provides a clearer insight into the central tendencies of
the given parameters.

5.1.2 Sequence Completeness Ratio

The second metric contributing to the system-level performance evaluation examines the tracking
pipeline’s robustness regarding the algorithm’s stability against LoT. Since conventional VO
approaches do not provide an adequate place recognition mechanism to recover from an LoT
event, the completeness ratio can be considered an important steadiness measure of the
respective approach. In general, this metric is defined as

Completeness Ratio=
nPk

nQk

(5.3)

where nPk
represents the number of estimated camera poses and nQk

the number of the time-
synchronized ground truth information within the image sequence k.

5.1.3 Computation Time

The last metric aims at the statistical distribution of the necessary execution time of the overall
system. For comparison reasons, time expenditure is normalized for the computation of a single
pose estimation between the keyframe and the associated target. It is essential for on-line
applications, e.g., construction of a VO, since the overall computation time is a determining
factor for the real-time capability.
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5.2 Dataset

Apart from the selected performance indicators, a suitable dataset must be generated as a
prerequisite for the experimental examination. However, the selection and assembling process is
challenging since the dataset has to be capable of assessing individual aspects of the associated
VO and SLAM algorithm. Therefore, different real-world scenarios with varying environmental
conditions, scene complexity, and, among others, realistic occurrences, such as distortion
effects, have to be created.

5.2.1 Data Acquisition and General Structure

In this work, the Indoor Multi-Cam Dataset (IndoorMCD) introduced by Sewtz et al. [89] is used
as the evaluation basis, which aims to establish a comprehensive benchmark in the field of
visual-inertial VO and SLAM applications, with a particular focus on multi-sensor collaboration.
It was recorded in the SMiLE Laboratory at the Institute of Robotics and Mechatronics. In
general, a typical urban housing setting including a kitchen and living room assembly in its
basic configuration is depicted, as illustrated in Figure 5.1. Since the environmental setup
of the present dataset directly corresponds to the application-related surrounding in which
our targeted hardware platform typically resides, it provides the ideal information base for
the experimental evaluation. Within IndoorMCD, several scenarios have been recorded in
varying setups. Therefore, three different environments are created in the laboratory, including
a kitchen, a living room assembly, and an office area. To make the overall setup even more
realistic, temporary walls, including a door, are used to create different room layouts between
the individual scenarios with a total available area of 6.50 m × 4.50 m.

An overview is provided in Table 5.1. In more detail, the kitchen assembly consists of a typical
countertop including an oven, a fridge, several electronic appliances, and ordinary things such
as vegetables or a kitchen scale. Within this area, most structures are static, and their surface
conditions do not offer a large number of textures. Arriving in the living room, it offers a sofa
including a coffee table, multi plants, and a television shelf. In addition, decoration items are
dispersed throughout the living area to provide a more residential atmosphere. At last, the
office area contains either one or two desktops, including computer monitors, keyboards, and
a reasonable number of office chairs. Further commodities such as pens, scissors, and other
amenities that frequently change their place are also included to recreate a realistic everyday life
situation. To make the dataset even more challenging, furniture and the appearance of other
objects change over time to simulate human presence.

Table 5.1: Overview of each scenario’s (S) specific properties and number of runs (R). Scenarios 0-4
have been captured in created environments in our lab, the last one is recorded in an actual
apartment

S #R Environment Device Sync GT

0 19 kitchen, office, living-room HCD ✓ ✓
1 28 kitchen, office, living-room HCD ✓
2 20 2 rooms: kitchen, living-room HCD ✓ ✓
3 15 2 office desktops HCD ✓ ✓
4 15 kitchen, office, living-room Marvin ✓
5 10 actual apartment HCD ✓
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Figure 5.1: Overview of the environmental settings of the SMiLE Laboratory, in which the IndoorMCD
was recorded. The illustrated configuration resembles the environmental conditions and
scenery setup of the scenarios 0, 1, and 4 which contains a typical urban housing setting
including a kitchen, living room, and office assembly.
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Overall, the benchmark consists of 105 individual sequences arranged in five different scenarios
captured using multiple commercial off-the-shelf (COTS) sensor systems providing RGB-D
information and IMU measurements. Within each scenario, the complexity of the trajectory
and challenges confronting the algorithms being evaluated increase with each data sequence.
Basically, the data sequences can be divided into three different categories. While the first
runs only contain a small quantity of rotation and translations in the elementary sequences,
the trajectories increase in length and amount of movement in the advanced lapses. They
ultimately include loops and revisits of previously explored areas. The final sequences in form
of the long-runs add further environmental changes that can be observed when places are
visited multiple times. In order to simplify the recording process, the data sequences are not
directly captured on Rollin’ Justin since the robotic system is quite cumbersome, especially
in narrow situations. Instead, the hardware setup for the data acquisition process consists of
three Intel RealSense D435i sensor systems, denoted as left, front, and right, in two different
configurations. At first, the majority of the dataset was recorded using the hand-held camera
device (HCD), which offers 6 DoF and integrates all sensors in a compact configuration, as
depicted in Figure 5.2c. The small form factor allows simple and uncomplicated use by the
operator and enables mobile manipulation. Apart from the hand device, data sequences were
also recorded using the Mock-up Platform for Audio Research and Vision on Rollin’ Justin
(MARVIn) to simulate the characteristics of wheel-based systems. The mockup platform is
illustrated in Figure 5.2b. In particular, this design is intended to mimic the FoV of sensors
equipped on real assistant systems such as Rollin’ Justin. With this setup, the motion variability
is effectively reduced to only 3 DoF consisting of two translations x and y, as well as the rotation
θ around their orthogonal axis.

The camera settings are directly derived from Rollin’ Justin’s current configuration. A summary
of the most important properties is provided in Table 5.2. Following the manufacturer’s recom-
mendation for optimal performance [22], the image resolution is set to 640 × 480 pixels at a
frame rate of 15 Hz.

For the experimental examination of MMVO, we decided to focus on a subset of the IndoorMCD
dataset. In particular, the elementary and advanced sequences from scenario 1 and 4 are
selected as the database for the evaluation. At this point, the long-runs are intentionally
omitted since they are rather targeting benchmarking frameworks with mapping and long-term
localization capabilities to preserve global consistency. For this reason, it is preferable to
rely on individual shorter sequences with a certain number of rotations and translations for
the evaluation of MMVO. Within the latter scenario, the data sequences were recorded using
MARVIn that perfectly resembles the characteristics of our expected hardware configuration
and, more importantly, the associated motion variability in terms of the prevailing degrees of

Table 5.2: Hardware properties and settings within the IndoorMCD dataset for the experimental evalua-
tion.

Parameter Specification

Camera model Intel RealSense D435i
Color image sensor OmniVision OV2740
Image resolution 640 × 480 pixels (VGA)
Frame rate 15 FPS
Exposure Automated exposure time
White balance Automated white balance settings

Accelerometer sample rate 400 Hz
Gyroscope sample rate 250 Hz
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(a) (b) (c)

Figure 5.2: Overview of the utilized hardware platforms and recording devices. The IndoorMCD dataset
was recorded using (c) HCD and (b) MARVIn to simulate the sensor characteristics of the
humanoid assistance robot (a) Rollin’ Justin.

freedom. In addition, we decide to head a step further and test the limits of our framework by
evaluating data sequences with 6 DoF and a higher level of distortions recorded by the HCD in
scenario 1. Since the experimental evaluation focuses on the performance characteristics of
MMVO in a standalone application, a multi-camera setup is not required. Therefore, we only
consider the data sequences from the front sensor, which is mounted at an elevated position
and thus provides the most comprehensive view. The utilized data sequences are summarized
in Table 5.3.

5.2.2 Camera Calibration

The intrinsic parameters responsible for the perspective projection and the distortion figures of
the visual sensors are estimated using the DLR Calibration Laboratory [90]. Within the calibration
process, the pinhole camera model is utilized, and the desired parameters are obtained using
different views of a 2-D checkerboard target, including a distinctive origin for each sensor. These
parameters consist of the focal-lengths fx and f y , the principal point (cx , cy), the skew kskew,
and the distortion contributions K and P. The depth map is aligned to the color image on the
hardware side of the RealSense devices resulting in a pixel-to-pixel correspondence in the
images. In addition, the Brown-Conrady [91] model can be applied to remove distortion from the
color image.

Each device is calibrated using the color sensor in terms of extrinsic relations at the system level.
Since the experimental evaluation focuses on the performance characteristics of MMVO in a
standalone application and does not require a multi-sensor setup, the exact procedure will not
be further elaborated.
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5.2.3 Ground Truth

In order to provide an adequate valuation basis for the performance metrics in Section 5.1,
time-synchronized ground truth trajectories relating to the change of scene between individual
frames in the evaluated data sequences have to be established. Within IndoorMCD, highly
accurate ground truth estimations are obtained using a Vicon MX T40 motion capture tracking
system. Therefore, the recording devices are equipped with several reflective markers, which
are monitored by up to six infrared cameras mounted overhead on the ceiling, as illustrated in
Figure 5.1. Overall, the system operates at 100 Hz and generates the trajectory of the tracked
recording devices with an accuracy of less than 1 mm.

For calibrating the motion capture system to the origin of the data acquisition platform, several
reflective markers are placed on the checkerboard and registered manually to its origin. Multiple
images of the calibration target are captured by the front camera, which is at the same time the
origin of the respective recording device. In the end, the relation between the Vicon tracking
system and the system’s origin is estimated by summarizing the transformation of the front
camera to the checkerboard and individual marker positions in the motion capture system.

5.3 Evaluation Results

After all previously specified prerequisites are fulfilled, the developed multi-modal feature col-
laboration methods are examined in this section. Therefore, different system configurations
are created, and the set of conclusive evaluation metrics introduced in Section 5.1 are applied
to the resulting trajectories of the selected data sequences. At first, the feature combination
and collaboration methods are analyzed in a standalone setup. In the next step, MMVO is
benchmarked against conventional applications and approaches. With this, our focus is directed
towards the RPE and completeness ratio of each data sequence to relate the accuracy and the
tracking stability of the multi-modal system in the state-of-the-art context. At last, a run-time
analysis is conducted to assess the real-time capability of the proposed VO application. In all

Table 5.3: Overview of the data sequences included in the experimental evaluation.

Scenario Run Sequence Designation nframes tsequence spath

1

0 mcd5_hcd_nosync_s1r0 235 15.7 s 4.92 m
1 mcd5_hcd_nosync_s1r1 248 16.5 s 4.22 m
2 mcd5_hcd_nosync_s1r2 331 22.1 s 5.89 m
3 mcd5_hcd_nosync_s1r3 347 23.1 s 6.42 m
4 mcd5_hcd_nosync_s1r4 301 20.1 s 5.86 m
5 mcd5_hcd_nosync_s1r5 350 23.3 s 4.91 m
6 mcd5_hcd_nosync_s1r6 428 28.5 s 7.23 m
7 mcd5_hcd_nosync_s1r7 342 22.8 s 5.72 m
8 mcd5_hcd_nosync_s1r8 436 29.1 s 7.75 m

4

0 mcd5_marvin_s4r0 286 19.1 s 2.77 m
1 mcd5_marvin_s4r1 439 29.3 s 4.10 m
2 mcd5_marvin_s4r2 588 39.2 s 4.44 m
3 mcd5_marvin_s4r3 601 40.1 s 5.78 m
4 mcd5_marvin_s4r4 489 32.6 s 4.92 m
5 mcd5_marvin_s4r5 818 54.5 s 7.47 m
6 mcd5_marvin_s4r6 643 42.9 s 4.71 m
7 mcd5_marvin_s4r7 848 56.5 s 5.93 m
8 mcd5_marvin_s4r8 931 62.1 s 5.79 m
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evaluation processes, the maximum number of landmarks to be extracted is set to 500 per
frame for each utilized extraction algorithm. Therefore, the initial landmark collection contains
maximum 2 000 feature entities in MMVO’s intended multi-feature configuration with four different
types of detectors. The time interval ∆ is set to 15, indicating the relative drift per second.

5.3.1 Standalone Analysis

Before benchmarking MMVO against state-of-the-art algorithms, we first want to investigate the
influence of the proposed multi-modal feature collaboration methods in a standalone setup. For
this reason, trajectories from three different system configurations are generated and compared.
Since our focus is directed towards identifying the potential of individual approaches, all system
configurations are provided with the same feature collection to maintain equal conditions.
Therefore, the multi-feature setup resembles the default setting of MMVO, which consists of
landmarks extracted by the ORB, GFTT, CenSurE, and LSD detection algorithms. The first setup
provides the performance baseline, in which no additional prioritization, filtering, and outlier
rejection steps are executed apart from the standard processes within the tracking pipeline. At
this point, individual landmarks from different feature types are treated equally and forwarded
to the motion estimation module. In this particular case, line segments detected by the LSD
algorithm are not included since this type of feature geometry cannot be utilized in the reference
setup. The second and third configurations build on top of the first one. They are further equipped
with respective methods for multi-feature collaboration regarding FEF2 in MMVO (MFC) and
the collaborated motion estimation approach in MMVO (CME). Within these setups, feature
information from all four detectors can be combined, and possible synergies are elaborated.

Based on the different system configurations, trajectories are generated for individual data
sequences and examined in combination with the provided ground truth reference. The results,
including the RPE and completeness ratio of each evaluated data sequence, are summarized in
Table 5.4.

At first, the analysis starts with scenario 4, in which the data sequences were recorded by
MARVIn that perfectly resemble the characteristics of our expected hardware configuration on
Rollin’ Justin. Apart from the fact that all setups were able to complete the dataset without
LoT, it is noticeable that the achieved values of the quality measure are very similar among
the different methods. More precisely, the RPE scores only vary within a magnitude of a few
millimeters regardless of the arithmetic mean or maximum value. For this reason, the trajectories
are reviewed individually as the next step to further investigate the background of this behavior.
As an example, Figure 5.3 illustrates the trajectories and the associated RPE distributions of the
second run within this scenario. A closer look at the ground tracks reveals that the estimated
course in the baseline case in Figure 5.3a is already reasonably accurate in terms of the global
frame. Since the multi-feature collaboration approach is primarily conceptualized for improving
the robustness and reliability of the feature collections to the motion estimation process, it
indicates that the overall quality of the features is sufficiently high. Also in the collaboration
motion estimation in Figure 5.3c, the behavior is consistent with our initial assumption. Within this
multi-modal method, information from the line features are utilized in an additional optimization
step after an initial pose is estimated using point features. In this case, the initial estimation
is already reasonably accurate, and the camera pose can only be marginally enhanced, or
in some cases, not at all. A closer examination of the respective histograms confirms this
statement. While the proportion with the highest RPE values is slightly reduced in the case of
the multi-feature collaboration setup in Figure 5.3b, the magnitude of the RPE values remains
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very similar. Therefore, it can be concluded that the scope for improvement within these data
sequences is already saturated, and no mentionable enhancements can be achieved with the
proposed multi-modal approaches. Overall, the influences of these methods are insignificant in
this particular scenario and can be neglected with good conscience.

In the next step, the influences of the multi-modal feature collaboration methods are investigated
using data sequences recorded in more challenging conditions with 6 DoF and an overall higher
level of photometric distortions. In contrast to the results of the performance indicators in the
previous scenario, the impact of these methods is considerably more notable, as indicated in
Table 5.4. Here, the mean RPE is reduced by approximately 5 cm on average in the multi-feature
approach and up to 100 cm in sequence 6 and 15 cm in sequence 0. At the same time, a similar
effect is also visible in the case of the collaborated motion estimation. Although the overall
impact of this particular method is not as significant as that of the previous approach, the positive
effects are nevertheless evident. Figure 5.4 illustrates the trajectories and the associated RPE
distributions of the second run within this scenario. Starting with the MMVO setup, including
the multi-feature collaboration component in Figure 5.4b, the mean RPE of the generated
trajectory is reduced by approximately 3 cm compared to the baseline case in Figure 5.4a. The
improvement in tracking accuracy is explained by taking a closer look at both configurations’
statistical RPE distribution and ground tracks. While the first indication of the deteriorating
precision of the estimated camera poses is implicitly provided by comparing the respective
ground tracks, the statistical distribution of the achieved RPE values is more significant in terms
of ensuring local consistency. As the sequences in this scenario were recorded by a hand-held
device without any support, the overall quality of the obtained features is expected to be much
lower than in the previous scenario, with a higher fraction of matching outliers. In the case of
the multi-feature collaboration setup, the landmarks are evaluated and prioritized to identify
a set of highly distinctive landmarks. Therefore, the initial collection is filtered, and the most
promising feature correspondences are forwarded to subsequent processes in the tracking

Table 5.4: RPE in m and the completeness ratio (CR) of the standalone evaluation. MMVO with multi-
feature (MF) setup including ORB, GFTT and CenSurE landmarks provides the baseline for
the systems with multi-feature collaboration (MFC) and collaborated motion estimation (CME)
modules.

Scen. Run
MMVO (MF) MMVO (MFC) MMVO (CME)

RPEmean RPEmax CR RPEmean RPEmax CR RPEmean RPEmax CR

1

0 0.61052 1.24225 100 % 0.45837 1.52418 100 % 0.61053 1.24225 100 %
1 0.31789 1.04061 100 % 0.28201 0.63108 100 % 0.29707 0.59583 100 %
2 0.44076 1.02512 100 % 0.41204 0.86710 100 % 0.42907 1.06638 100 %
3 0.43022 0.90421 100 % 0.39608 1.36455 100 % 0.35085 0.80264 100 %
4 0.45977 1.39624 100 % 0.40734 0.68540 100 % 0.45976 1.39624 100 %
5 0.40428 1.63362 100 % 0.32440 0.93329 100 % 0.39777 1.56193 100 %
6 0.52279 1.71953 100 % 0.42524 1.02885 100 % 0.52279 1.71953 100 %
7 0.34460 0.75738 100 % 0.31396 0.62094 100 % 0.34460 0.75739 100 %
8 0.37344 1.02520 100 % 0.36543 1.18372 100 % 0.37344 1.02519 100 %

4

0 0.22149 0.38122 100 % 0.22680 0.37908 100 % 0.21283 0.38060 100 %
1 0.20643 0.37462 100 % 0.20601 0.37550 100 % 0.20643 0.37461 100 %
2 0.16324 0.27868 100 % 0.16264 0.29057 100 % 0.16366 0.27840 100 %
3 0.21227 0.35841 100 % 0.21345 0.35963 100 % 0.21226 0.35841 100 %
4 0.21777 0.37761 100 % 0.21495 0.37623 100 % 0.21786 0.37643 100 %
5 0.19207 0.33091 100 % 0.19157 0.33097 100 % 0.19206 0.33091 100 %
6 0.15967 0.27812 100 % 0.15962 0.27875 100 % 0.15928 0.27685 100 %
7 0.14875 0.31521 100 % 0.14841 0.31528 100 % 0.14824 0.31606 100 %
8 0.13385 0.29871 100 % 0.13320 0.29649 100 % 0.13384 0.29871 100 %
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(a) MMVO (MF) (b) MMVO (MFC) (c) MMVO (CME)

Figure 5.3: Ground track trajectories and RPE distribution in the standalone analysis of scenario 4 run
2. Illustration of the results of (a) MMVO with multi-feature (MF) setup, (b) MMVO with
multi-feature collaboration (MFC), and (c) MMVO in connection with the collaborated motion
estimation (CME) module.

pipeline. Although the motion estimation module is equipped with an outlier rejection routine,
the accuracy of the camera pose estimation can be improved by the additional prioritization and
filtering process. On the other side, the collaborated motion estimation also achieved reasonable
improvements in the accuracy of the estimated trajectory indicated by the successful reduction of
the mean RPE value. However, the evaluation result also indicates that this combination is more
sensitive to estimation outliers since the maximum error is increased compared to the baseline.

5.3.2 System Performance Benchmark

Following the standalone assessment of the different multi-modal feature collaboration methods,
we want to relate the accuracy and the tracking stability of the multi-modal system in the context
of what is considered state-of-the-art. Therefore, the performance of our multi-modal system
is benchmarked against the tracking results of ORB-SLAM 2. Due to the fact that the overall
system performance is highly dependent on the framework structure and implementation details
on the software side, the comparison between these two applications does not always reflect
the true potential of the utilized methods. For this reason, an additional setup is included in the
system performance benchmark, in which the characteristics of ORB features are integrated
into the MMVO implementation in a single-feature setup. Therefore, landmarks detected by this
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(a) MMVO (MF) (b) MMVO (MFC) (c) MMVO (CME)

Figure 5.4: Ground track trajectories and RPE distribution in the standalone analysis of scenario 1 run
2. Illustration of the results of (a) MMVO with multi-feature (MF) setup, (b) MMVO with
multi-feature collaboration (MFC), and (c) MMVO in connection with the collaborated motion
estimation (CME) module.

feature extraction algorithm provide the database for the subsequent processing steps within the
tracking pipeline.

Based on the different system configurations, trajectories are generated for individual data
sequences and examined in combination with the provided ground truth reference. The results,
including the RPE and completeness ratio of each evaluated data sequence, are summarized in
Table 5.5.

Starting with the results from scenario 4, the error values of all three algorithms are in a similar
order of magnitude at first glance. As already stated in the standalone analysis, the similarity is
caused by the characteristics of this particular scenario, in which photometric and disturbances
are sufficiently low. Therefore, all three approaches are able to establish an adequate number
of reliable correspondences between the individual frames. On closer examination, a general
trend emerges, in which MMVO achieves a slightly better tracking accuracy with both feature
collaboration methods. Compared to the state-of-the-art algorithm, the RPE values are improved
in most sequences, and the difference between the respective error values is under 1 mm.

In the more challenging scenario 1, in which the algorithms are confronted with higher degrees
of photometric distortions and more rapid motion sequences, the result of individual tracking
algorithms are further apart and more distributed. In contrast to the previous scenario, in
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which all three approaches were able to fully complete the data sequences without LoT, the
completeness ratios are more diverse in these sequences. While all three approaches were
able to fully complete the previous sequences without LoT, the completeness ratio differs from
algorithm to algorithm as well as from sequence to sequence. At this point, one of the multi-
modal application’s main advantages emerges in its enhanced tracking stability. While MMVO, in
its intended configuration, completed most of the data sequences without LoT, it is the exception,
with the methods solely based on the features from the ORB detector. When examining the
achieved RPE values, no definitive trend can be established at first glance since the results
fluctuate depending on the contemplated sequence. However, the results are more explainable
once the completeness ratio is considered. Since the depicted error values refer to the fraction
of the data processed by the respective method, the relations between the remaining frames
after theLoT event occurred are, therefore, not included. A closer look into evaluations with
similar tracking progress confirms this.

Figure 5.5 illustrates the trajectories and the associated RPE distributions of the fourth run within
this scenario. A peculiarity of this presented data sequence is that all three tracking methods
provided a complete trajectory. For this reason, it provides the best basis for analyzing the
achieved performance parameters. Based on the obtained mean and maximum RPE values
in Table 5.5, the racking results of both MMVO implementations are more precise than the
one achieved by ORB-SLAM 2 in terms of local consistency. The performance evaluation
of theMMVO-based methods is more complicated and cannot be easily assessed based on
the mean values since they are very similar in the magnitude of a few millimeters. On closer
inspection of the respective histograms in Figure 5.5, it can be observed that the distribution
curve has been shifted downwards in Figure 5.5b in relation to Figure 5.5a, resulting in a lower
magnitude of the obtained RPE values in the case of the multi-modal approach.

In summary, it can be stated that the previously established trend also continues in this scenario.
The performance parameters of the multi-modal approach are within the region of the bench-

Table 5.5: RPE and completeness ratio (CR) of the overall system evaluation. Performance benchmark
between MMVO with only ORB features, the complete MMVO setup with multi-feature
collaboration (MFC) and collaborated motion estimation (CME) modules, and ORB-SLAM 2
with default parameters.

Scen. Run
MMVO (ORB Features) MMVO (MFC + CME) ORB-SLAM 2

RPEmean RPEmax CR RPEmean RPEmax CR RPEmean RPEmax CR

1

0 0.47554 1.15943 67.2 % 0.45833 1.52418 100 % 0.43038 0.91567 100 %
1 0.38950 0.56039 81.0 % 0.28201 0.63108 100 % 0.26759 0.52420 79.9 %
2 0.44926 0.89855 82.5 % 0.41204 0.80510 100 % 0.41192 0.81492 100 %
3 0.35477 1.45178 38.3 % 0.39608 1.36455 100 % 0.16148 0.41365 37.5 %
4 0.42355 0.75204 100 % 0.41801 0.77437 100 % 0.46211 0.81867 100 %
5 0.23996 0.75093 37.7 % 0.29204 0.63021 100 % 0.23047 0.58242 37.7 %
6 0.62739 3.50029 30.6 % 0.42256 1.30662 100 % 0.25468 0.57355 23.9 %
7 0.26097 0.54457 29.5 % 0.31396 0.62094 100 % 0.26649 0.63780 28.3 %
8 0.31902 0.89269 30.3 % 0.36199 1.18389 100 % 0.18355 0.41359 34.6 %

4

0 0.25054 0.69947 100 % 0.22461 0.38072 100 % 0.22296 0.37851 100 %
1 0.20704 0.37220 100 % 0.20600 0.37550 100 % 0.20122 0.37921 100 %
2 0.16511 0.27500 100 % 0.16179 0.26936 100 % 0.16713 0.27875 100 %
3 0.21286 0.35266 100 % 0.21244 0.36155 100 % 0.21226 0.35153 100 %
4 0.23821 1.09597 100 % 0.21495 0.37623 100 % 0.22013 0.38059 100 %
5 0.19298 0.33402 100 % 0.19157 0.33096 100 % 0.19521 0.32212 100 %
6 0.15838 0.27871 100 % 0.15962 0.27874 100 % 0.16293 0.28064 100 %
7 0.15008 0.31294 100 % 0.14841 0.31528 100 % 0.15065 0.31889 100 %
8 0.16363 1.26917 100 % 0.13254 0.29738 100 % 0.13419 0.29897 100 %
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(a) MMVO (ORB) (b) MMVO (MFC + CME) (c) ORB-SLAM 2

Figure 5.5: Ground track trajectories and RPE distribution in the system performance benchmark of
scenario 1 run 4. Illustration of the results of (a) MMVO with single-feature setup including
ORB features, (b) MMVO with the multi-feature collaboration (MFC) and the collaborated
motion estimation (CME) module, and ORB-SLAM 2.

marked state-of-the-art application. On an occasional basis, our approach is able to outperform
the tracking capabilities of ORB-SLAM 2, as depicted in Figure 5.5 and a few other cases in
Table 5.5. Compared to the single-feature setup in MMVO (ORB), the accuracy and overall
robustness of the tracking pipeline are also enhanced.
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5.3.3 Computation Time

Apart from the qualitative examination of the resulting trajectories, our focus is on the computation
time in this section. Therefore, we iterated through all 18 data sequences to provide an adequate
base for the run-time analysis. In addition, the execution time of the employed multi-modal
feature collaboration methods should also be compared to the run-time of tracking systems with
state-of-the-art approaches. However, the required computation time is highly dependent on the
software-side implementation. For this reason, the evaluation baseline is also generated based
on the MMVO implementation. With this, it is essential to mention that the recorded benchmark
values only account for the pose tracking process of one relative displacement of the keyframe
and the currently provided image. Other associated tasks surrounding the tracking pipeline are,
therefore, not included.

Table 5.6 displays the mean execution time of the tracking pipeline for estimating the relative
displacement between two frames. Further information concerning the statistical distribution is
given in Figure 5.6. The combination of these two evaluation methods guarantees a reliable
assessment of the computation time, especially in time-critical tasks, which is implicitly given
with the target of developing a perceptual system. Unsurprisingly, the required mean processing
time in the multi-feature setup is higher than in the single-feature approach by a factor of five.
This is mainly caused by significantly more data being processed in the proposed approach,
resulting in a mean run-time of nearly one-hundredth of a second.

Figure 5.6: Statistical distribution of execution time of the tracking pipeline for estimating the relative
displacement between two frames.

Table 5.6: Mean execution time of the tracking pipeline for estimating the relative displacement between
two frames.

Module Mean Execution Time [ms]

MMVO (ORB) 20.780
Feature Extraction 5.342
Feature Matching 3.589
Motion Estimation 4.534

MMVO (MFC + CME) 99.867
Feature Extraction 39.242

FEF2 10.358
Feature Matching 22.515
Motion Estimation 21.427
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Based on the results from the experimental evaluation in the previous chapter, the findings
and realizations are summarized and critically assessed. The discussion chapter is structured
according to the order within the experimental evaluation.

At first, the elaborated multi-modal feature collaboration methods are analyzed in a standalone
setup to identify the individual influence on the tracking system. Starting with the multi-feature
collaboration, the results of the investigation have demonstrated that the accuracy of the tracking
pipeline can be drastically enhanced by the prioritization and filtering algorithm. Within MMVO,
this module is responsible for the valuation of each feature entity within the initial landmark
collection to identify distinctive and more robust features. Consequently, it also provides a further
filtering step for rejecting matching outliers in addition to the conventional method of applying
Lowe’s ratio test [80]. Although the motion estimation module is equipped with a separate outlier
rejection scheme, the experimental evaluation revealed that this routine is insufficient. Especially
in terms of deteriorating image quality and a higher level of photometric distortions induced by,
e.g. rapid motion sequences, the additional prioritization, and filtering algorithm would be a
valuable aid to the tracking pipeline. Apart from the mean RPE, which has been reduced by
the feature valuation system in all data sequences without any exception, the maximum error
value follows the general trend even though it reached a new global peak in three of the 18
sequences. Based on the available characteristic figures, no definitive explanation can be given
for this phenomenon. For this reason, additional analysis has to be conducted to investigate
the occurrence of this event further since it is most likely caused by the feature valuation and
filtering system.

Apart from the first multi-modal method, the impact of the collaborated motion estimation pipeline
is investigated in the second step. In this case, the results are not as straightforward as in the
first approach. While in some cases, the effect of the additional optimization step is clearly
visible and contributes positively to the overall tracking accuracy, the respective error measure
remains the same as in the baseline configuration in more than 50 % of the cases. In particular,
the characteristics of the mean RPE value have not been influenced either on the constructive
or the destructive side. Although the effectiveness of this particular type of multi-modal feature
collaboration method and its potential is confirmed by the experimental evaluation, it also
revealed the shortcomings of the current implementation regarding the algorithm’s robustness
and reliability. In the current implementation stage, the collaborated motion estimation module
consists of a sequential arrangement of two separate motion estimation processes. Therefore,
the refinement stage depends on the initial estimation provided by the collection of point features.
With this, it is advisable to compare the distribution of the achieved RPE values between these
approaches. In case a more accurate estimation is achieved by the feature valuation and filtering
system, as the mean RPE parameters suggest, it is most likely that the collaborated motion
estimation process would rather have a negative effect on the overall precision of the trajectory.
As an alternative approach, a combined motion estimation pipeline can be developed, in which
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the line orientation information is explicitly included in the initial process, thus establishing a
parallel configuration. This way, the dependency can be decoupled, resulting in a potential
improvement in estimation accuracy.

After determining the influence of each multi-modal contribution in the standalone analysis, these
methods are combined in the MMVO framework and placed in the context of state-of-the-art
approaches as part of the evaluation of overall system performance. Within this, our algorithm
is benchmarked against the camera tracking capabilities of ORB-SLAM 2 and MMVO in a
single-feature setup, including landmarks provided by the ORB detector. As usual, the first step
contains the qualitative assessment of the tracking accuracy based on the estimated trajectories
and the corresponding performance metrics. Surprisingly, our expectations were exceeded by
far since the performance indicators of the multi-modal system are approximately within the
region of the state-of-the-art application. In some sequences, our approach is even able to
outperform the tracking accuracy of ORB-SLAM 2. However, the most outstanding characteristic
of the multi-feature MMVO is its significantly enhanced tracking capability and stability, even
under the most unfavorable conditions. While MMVO, in its intended configuration, is able to
complete all data sequences without LoT, it is rather an exception with the remaining methods
that are solely based on ORB features. Combined with the previously analyzed qualitative result
of the estimated trajectories, one might state that our novel development is considered the
most comprehensive tracking algorithm within the scope of this examination. In addition, the
implementation efficiency of the MMVO framework is implicitly outlined by comparing the RPE
scores obtained by the single feature configuration to the achieved characteristics of ORB-SLAM
2. Since they are based on a similar initial feature collection, it is to be expected that their relative
error indicators are within the same magnitude in the case of two equivalent implementations.
However, the performance in the single-feature setup is less accurate than the one achieved
by the state-of-the-art approach. This implies that the methods utilized in the ORB-SLAM 2’s
tracking pipeline are more advanced and can provide estimations with a smaller error margin.
For this reason, promising methods such as generating a local map for the feature tracking
process can be adapted to MMVO to improve the algorithm’s performance as a possible next
step.

In contrast to the encouraging qualitative results, the bottleneck of our proposed system is
revealed by the evaluation of the necessary computation time. While the mean execution time in
the single-feature setup is approximately 21 ms with outliers up to 38 ms, the necessary compu-
tation time increases by a factor of five in the multi-feature approach. Therefore, the targeted
real-time capability of a minimum of 15 Hz cannot be fulfilled with the current configuration. A
closer inspection of the individual contributions shows that the feature extraction module registers
the highest increase in run-time of all components, which is mainly caused by the line extraction
algorithm. However, the additional information provided by the line features is deeply rooted
in the concept of both multi-modal feature collaboration approaches. While the stability of the
present collaborated motion estimation has to be significantly improved, the contribution of the
geometric clustering method is not explicitly demonstrated in the experimental evaluation within
the thesis. For this reason, the actual impact of the line clustering and filtering process has to
be investigated in greater detail as the next step. Nevertheless, a general cost-benefit analysis
regarding the practicability of employing line features would be recommended. Apart from the
feature extraction module, another potential step in streamlining the overall footprint of MMVO is
the development of a dynamic distribution and control routine. Depending on the actual situation
and encountered photometric conditions, this system is targeted to adjust the initial composition
of the feature collection dynamically. In the case of the overall conditions within scenario 4,
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the experimental analysis revealed that, in most cases, all evaluated configurations are able to
achieve a more or less equivalent result in Table 5.4 and Table 5.5. Therefore, the workload in
all modules within the tracking pipeline can be reduced by utilizing ORB features in the majority
while retaining a smaller subset of, e.g. GFTT landmarks. Conversely, the system is booted to
its full capacity in more difficult circumstances in order to maintain the tracking process. Overall,
it would be recommended to reassess the general design concept within MMVO to combine
many different feature types regarding real-time capability. While one of the key design aspects
within the ORB-SLAM family is to rely on one particular feature type for all processes within
the scope of SLAM, the design choice in our approach is quite the opposite by combining the
characteristics of four different detection algorithms. Thus, it would inevitably result in a heavier
footprint for the entire application.
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7.1 Summary

In this work, a robust and efficient front-end module responsible for tracking and short-term
localization tasks is developed as part of a novel perception framework. Following the initial
analysis of state-of-the-art approaches and the hardware properties, a feature-based VO al-
gorithm, designated as MMVO, was proposed based on sensory data from an RGB-D setup
and additional IMU measurements. Special attention was dedicated to establishing multiple
modalities at different system levels during the conceptualization process. While a multi-modal
setup was achieved in the hardware domain by consolidating information obtained by the visual
perception system with IMU measurements, this concept could also be applied on the software-
related side. Therefore, three different feature collaboration methods were proposed in two
major arrangements.

The first approach centers around the concept that detections from different feature extraction
algorithms of a specific geometry are able to cooperate. By utilizing several point feature extrac-
tors with different detection principles, algorithm-specific landmark collections were generated,
and potential synergies between them could be formed to improve the overall quality of the
detections. Within the intra-class feature collaboration, the robustness of individual landmark
entities was analyzed based on their surroundings and prioritized using a custom-designed
valuation system. As a second step, landmarks with different geometric properties could also
collaborate in the inter-class feature collaboration to enhance the robustness of the tracking
pipeline. In this case, unique characteristics of line segments were effectively combined with
point features, resulting in the generation of line clusters. Alongside the information from the
landmark matching process, these geometric clusters were used as an additional step in the
feature valuation system, providing a valuable contribution to the rejection of matching outliers.

Apart from the previous approaches, which were focused on the data preparation toolchain
for the subsequent processes in the tracking pipeline, the following method directly targeted
the module responsible for calculating the relative displacement between two images. At this
point, a sequentially arranged motion estimation process was proposed, in which the relative
displacement was initially estimated using the point feature collection. In the second stage,
the initial calculation is further refined by implicitly including the orientation information of line
features.

After the feature collaboration methods had been successfully integrated into MMVO, an experi-
mental evaluation was conducted to investigate the performance characteristics of our approach.
While the standalone analysis of the multi-feature collaboration demonstrated that the accuracy
of the tracking pipeline was significantly enhanced by the prioritization and filtering algorithm,
the collaborated motion estimation results were not as straightforward as in the first approach.
Although the additional optimization step positively contributed to the overall tracking accuracy in
some cases, the reliability of this approach could not be clarified with absolute certainty. In the
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7 Conclusion

next step, our proposed VO framework was placed in the context of state-of-the-art approaches
and benchmarked against ORB-SLAM 2. As a result, it was identified that the tracking perfor-
mance of our system regarding local consistency was comparable to the accuracy achieved by
the state-of-the-art reference and even more accurate in some sequences. However, the most
outstanding characteristic of MMVO is that it was able to complete all data sequences without
loss of tracking, whereas it is an exception in ORB-SLAM 2. The subsequent run-time analysis
revealed the bottleneck of our system in terms of the necessary computation time, which by far
exceeds our defined requirement of a minimum frame rate of 15 Hz. Therefore, MMVO cannot
be classified as real-time capable in its present form.

7.2 Outlook

For further work, the real-time capability issue should be addressed first. Therefore, the system
must be streamlined in various regions, e.g. by deploying a situation-based dynamic distribution
and control routine. Taking it a step further, creating a deep-learning-based landmark detector
is also conceivable, which summarizes the individual characteristics of the utilized feature
extraction algorithms. By doing so, it could potentially contribute to the optimization of the
necessary computation time within MMVO. Furthermore, a suitable motion model for handling
IMU measurements has to be integrated into the system. Although MMVO is conceptualized as
a multi-modal RGB-D-IMU framework, only the interfaces were provided on the system side.
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