Overview on the DLR M3 Test Infrastructure

Michael Börner, Sebastian Klein, Andreas Rees, Tobias Traudt, Justin Hardi DLR Institute of Space Propulsion

FAR 2022

2nd International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering

21.06.2022

Knowledge for Tomorrow

DLR M3 Test Infrastructure (1)

- in service for research and technology development for cryogenic rocket propulsion for more than 30 years
- investigation of fundamental processes in rocket combustion chambers and supply systems
 - propellant conditioning
 - transient, two phase flows
 - injection
 - ignition (sequencing)
 - combustion dynamics

The operating conditions correspond to

- orbital engines
- in individual aspects to launcher engines

DLR M3 Test Infrastructure (2)

3 test positions

- M3.1: injection, ignition & combustion dynamics
- M3.3: injection, cryogenic flash boiling & atomization
- M3.5: cryogenic flows, cryogenic fluid hammer, characterization of fluid mechanical components

technology tests

- component tests for turbopumps
- injector element characterization
- ignition transients with varying background pressures
- nozzle plume/ hot gas interaction with structural components (landing gear, heat shields, ...)

fluids

- liquid oxygen and liquid nitrogen
- gaseous H2 or hydrocarbon fuels
- · feed-line pressures of up to 40 bar

M3.1: Ignition and Start Transients Research

• Task area (research focus)

- Injection
- Ignition sequencing
- Laser ignition
- Flame anchoring
- Flammability studies
- Material compatibility

Global features and operation conditions

- LOX/H2 and LOX/Methane (sub-critical)
- optically accessible combustors
- chamber diameter up to 60 mm
- temperatures:
 - H2: 200 K to ambient
 - CH4: ambient
- ground ignition conditions
- "in space" conditions
- "retro-propulsion" conditions

Task area (research focus)

- Injection
- Ignition sequencing
- Laser ignition
- Flame anchoring
- Flammability studies
- Material compatibility

Global features and operation conditions

- LOX/H2 and LOX/Methane (sub-critical)
- optically accessible combustors
- chamber diameter up to 60 mm
- temperatures:
 - H2: 200 K to ambient
 - CH4: ambient
- ground ignition conditions
- "in space" conditions
- "retro-propulsion" conditions

LOX/LNG engines

• Task area (research focus)

- Injection
- Ignition sequencing
- Laser ignition
- Flame anchoring
- Flammability studies
- Material compatibility

Global features and operation conditions

- LOX/H2 and LOX/Methane (sub-critical)
- optically accessible combustors
- chamber diameter up to 60 mm
- temperatures:
 - H2: 200 K to ambient
 - CH4: ambient
- ground ignition conditions
- "in space" conditions
- "retro-propulsion" conditions

- Task area (research focus)
 - Injection
 - Ignition sequencing
 - Laser ignition
 - Flame anchoring
 - Flammability studies
 - Material compatibility
- Global features and operation conditions
 - LOX/H2 and LOX/Methane (sub-critical)
 - optically accessible combustors
 - · chamber diameter up to 60 mm
 - temperatures:
 - H2: 200 K to ambient
 - CH4: ambient
 - ground ignition conditions
 - "in space" conditions •
 - "retro-propulsion" conditions

Börner et al. (2017)

Yang, Cuoco & Oschwald (2007)

- · Simultaneous and same field of view for
 - High speed schlieren
 - High speed OH*/CH*

- Task area (research focus)
 - Injection
 - Ignition sequencing
 - Laser ignition
 - Flame anchoring
 - Flammability studies
 - Material compatibility
- Global features and operation conditions
 - LOX/H2 and LOX/Methane (sub-critical)
 - optically accessible combustors
 - chamber diameter up to 60 mm
 - temperatures:
 - H2: 200 K to ambient
 - CH4: ambient
 - ground ignition conditions
 - "in space" conditions
 - "retro-propulsion" conditions

M3.3

- injection, cryogenic flash boiling & atomization
- cryogenic nitrogen and oxygen
- temperatures down to 76 K
- vacuum levels around 30 mbar
- investigation of cryogenic flash boiling and atomization
- optical spray diagnostics

M3.5: Overview

Tanks:

- V = 80I
- *P* = 50 bar
- Pressure Control
- LN2 jacket isolation

Working fluids:

- LN2
- LOX

Mass flow:

• 2.8 kg/s

Valve:

- Axial Valve
- Closing Time: 18 ms
- LN2 bath

M3.5: Fluid hammer test section (example)

M3.5: Fluid hammer test section (example)

Why to test at M3?

• fast iteration of technology development to increase the TRL

- > early identification of "show-stopper"
- > first step from ideal laboratory environment to "real world" environment
- many tests per test day with access to the test article
 - > hardware- and sequence-oriented test matrices
- test capacity available on short notice
- trained and experienced personnel
- support by experienced **optical diagnostics** group
- breadboard hardware available to test individual components
 - save costs: no need to manufacture a complete set of test hardware

A test bench to test test bench technology

- In 2023 at M3.1: new control and measurment system to test technologies of test benches
 - full access to all sub-components and routines
 - topics to be adressed
 - ➢ intelligent control
 - > photonic technologies
 - ➤ robotic technologies
 - ➤ (wireless) sensor networks
 - ➤ predictive maintenance

-> michael.boerner@dlr.de

Thank you for your attention!

