
PHYSICAL REVIEW E 106, 054903 (2022)

Bulk modulus along jamming transition lines of bidisperse granular packings
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We present three-dimensional discrete element method simulations of bidisperse granular packings to in-
vestigate their jamming densities φJ and dimensionless bulk moduli K as functions of the size ratio δ and
the concentration of small particles XS. We determine the partial and total bulk moduli for packings near
their jamming densities, including a second transition that occurs for sufficiently small δ and XS when the
system is compressed beyond its first jamming transition. While the first transition is sharp, exclusively with
large-large contacts, the second is rather smooth, carried by small-large interactions at densities much higher
than the monodisperse random packing baseline, φmono

J ≈ 0.64. When only nonrattlers are considered, all the
effective transition densities are reduced, and the density of the second transition emerges rather close to the
reduced baseline, φ̃mono

J ≈ 0.61, due to its smooth nature. At size ratios δ � 0.22 a concentration X ∗
S divides

the diagram—either with most small particles nonjammed or jammed jointly with large ones. For XS < X ∗
S , the

modulus K displays different behaviors at first and second jamming transitions. Along the second transition, K
rises relative to the values found at the first transition; however, is still small compared to K at X ∗

S . Explicitly, for
our smallest δ = 0.15, the discontinuous jump in K as a function of XS is obtained at X ∗

S ≈ 0.21 and coincides
with the maximum jamming density where both particle species mix most efficiently. Our results will allow
tuning or switching the bulk modulus K or other properties, such as the wave speed, by choosing specific sizes
and concentrations based on a better understanding of whether small particles contribute to the jammed structure
or not, and how the micromechanical structure behaves at either transition.

DOI: 10.1103/PhysRevE.106.054903

I. INTRODUCTION

When a collection of nontouching spheres is externally
compressed, there is a critical packing fraction at which the
contacts between spheres percolate across the whole system
[1–5]. At this state the granular packing develops a mechan-
ically stable structure that can reversibly withstand further
external deformation—at least for small enough (infinitesi-
mal) strains [6]. Such a state is known as the jammed state
and is characterized by a jamming density φJ . For stiff, rigid
particles, one can talk about “rigidity,” whereas for soft par-
ticles, the structure and bulk properties of granular packings
have been quantified by mechanical properties such as the di-
mensionless bulk modulus, K . Close enough to jamming, for
small enough confining stress and thus small enough contact
deformations, the difference between soft and stiff should di-
minish, while only soft particles allow exploring the jammed
state by increasing the deformations [6]. Previous works have
shown that φJ and K depend not only on the size ratio δ

and on the concentration of small particles XS [5,7–15], but
also on the preparation procedure [5,6,16]. For example, this
allows tuning the packing density and effective bulk modulus
of frictionless particles to the highest values by choosing dif-
ferent combinations of (δ, XS) for bidisperse packings [12,17].
The multitude of generally possible size distributions (see
Ref. [18] and references therein) is not considered here.

In a recent paper [17] we have explored in detail the impact
of a wide range of δ and XS on jamming. Upon compres-
sion, bidisperse packings experience an additional transition
at low δ and low XS. Two transitions arise: one driven by
predominantly large particles obtained at low densities and
the other by jamming small particles jointly with large ones
at higher densities upon further compression. This means that
the second transition is the source of an additional stiffness of
the jammed packing, rather smooth compared to the sharp first
transition. This additional transition has opened a new win-
dow of research, since packing structures obtained along this
additional line might lead to different mechanical properties.
Our aim in this work is to study the mechanical properties of
bidisperse systems along the jamming lines, especially along
the additional transition line found in Ref. [17]. Here we focus
on the bulk modulus to quantify both the rigidity of jammed
bidisperse packings and also the second transition at higher
densities, as it is accessible from isotropic compression. This
means that the shear modulus cannot be calculated from this
protocol, at least not without additional probing, e.g., as done
in Ref. [19]. We also analyze the relevance of rattlers in
jammed bidisperse granular packings and the number of con-
tacts along the jamming lines. In general, this work attempts
to answer the following questions:.

(a) How does the bulk modulus K of a jammed bidisperse
packing change as a function of δ and XS?
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(b) Which values of (δ, XS) provide the highest K?
(c) What are the relations between macrovariables like K

with the microstructural features (packing fraction, contact
number, fabric, force networks)?

This paper is organized as follows. In Sec. II we discuss
the technique and procedure of the simulation. We define
the concentration of small particles, XS, and discuss how the
number of particles in each bidisperse mixture changes with
XS. In Sec. III we explain the jamming diagram and discuss
the nature of the second transition line found at low δ and
low XS. Section IV shows the relevance of rattlers on the
jamming density and mean contact number along the jamming
lines. Section V presents the dependence of the effective bulk
modulus at and above jamming on δ and XS. We conclude with
a summary and further discussions.

II. TECHNIQUE AND PROCEDURE OF THE SIMULATION

We use the open source code MERCURYDPM to perform
three-dimensional (3D) discrete element method (DEM) sim-
ulations to study the macroscopic properties of soft-sphere
jammed packings [20–24]. Newton’s equations for all parti-
cles are numerically solved to analyze their motion in time.
N = NL + NS = 6000 particles are used to set up bidisperse
packings, with a number of large, NL, and small, NS, particles,
with dimensionless radius, rL = 1/2, kept constant, and rS

varied with the size ratio, δ = rS/rL ∈ [0.15, 1].
In general, we use dimensionless quantities, �, using the

transformation �′ = ��′
u, where the prime represents the

variables with units, variables without prime are dimension-
less, and �′

u is the scale variable carrying the units, see
Ref. [6]. For example, the transformation of the large parti-
cle radius is r′

L = rLx′
u, where we choose the unit of length,

x′
u = 2r′

L = 3 [25], as the large particle diameter, i.e., the
dimensionless radius of large particles is rL = 1/2. Similarly,
the small particle diameter, 2rS = r′

S/r′
L =: δ, defines the size

ratio.
The same material density is used for large and small par-

ticles, which makes it convenient to choose the unit of density
as ρ ′

u = ρ ′
p = 2000, i.e., the dimensionless density is ρp = 1.

Consequently, the unit of mass is m′
u = 8ρ ′

pr′3
L , so that the

dimensionless masses of large and small particles are mL = π
6

and mS = π
6 δ3 = mLδ3, respectively.

As a last free unit, we choose the time t ′
u = (m′

u/κ
′
u)1/2,

proportional to the collision timescale t ′
c (see Sec. II B and Ap-

pendix A), with stiffness κ ′
u = κ ′

n = 105, so that κn = 1. The
unit of time follows from the previous t ′

u = (8ρ ′
p/κ

′
n)1/2r′3/2

L ≈
0.735. The viscous damping used is γ ′

n = 1000, result-
ing in a dimensionless γn = γ ′

n/(m′
u/t ′

u) = γ ′
n/(8ρ ′

pκ
′
nr′3

L )1/2 ≈
0.0136. From our nondimensionalization, we obtain the di-
mensionless pressure as P = P′(x′

u/κ
′
u) = 3 × 10−5P′. Note

that the identity P = 2rLP/κn = 2r′
LP′/κ ′

n is a consequence
of our choice of units, but this is not true in general for other
choices.

A. Bidisperse systems

A bidisperse packing is characterized by its size ratio δ,
the volume concentration of small particles XS = NSδ

3/(NL +
NSδ

3), and its density φJ . The former can be controlled, but

FIG. 1. Number of large NL and small NS particles as a function
of XS for two typical δ. The total number of particles is set to N =
6000. The inset exhibits four combinations of (δ, XS), corresponding
to jammed packings at the maximum compression, φmax = 0.90.

the latter depends, e.g., on the preparation procedure. Figure 1
shows the variation of the number of large and small particles
as a function of XS for two typical values of δ. For a particular
δ, keeping N constant, the number of small particles increases
rapidly, while the large one decreases as XS → 1. The in-
tersection point, which represents packings formed by the
same amount of small and large particles, NL = NS = N/2,
is shifted to lower XS as δ decreases, representing the 50:50
bidisperse particle mixture studied previously using δ = 0.71
[4,26]. However, we will argue in Sec. V that using the 50:50
mixture does not provide the densest packing and highest bulk
modulus; instead, one has to choose a proper combination of
(δ, XS). For the case of δ = 0.15, the intersection point is
as low as XS = 0.01. Below the intersection point shown in
Fig. 1, the packing is formed by small particles in a sea of
large ones (not shown, see [12]), while far above, the few large
particles are embedded in a sea of small ones, see the insets
for XS = 0.4.

B. Contact model

We use the linear normal contact force model given as fn
i j =

f n
i j n̂ = (κnαc + γnα̇c)n̂ [12,20,27], with the contact overlap

αc = (ri + r j ) − ai j , where ri, r j , and ai j are the radii and
relative separation between the centers of particles i and j,
respectively. α̇c is the relative velocity in the normal direction
n̂. An artificial background dissipation force, fb = −γbvi, with
γb = γn, proportional to the velocity vi of particle i is added,
resembling the damping due to a background medium.

From the contact model, one can compute [see Ap-
pendix A] the contact duration, tc, and the restitution
coefficient, e, both depending on δ. For example, the fastest
response tc corresponds to the interaction between the smallest
particles (δ = 0.15) as tSS

c = t ′SS
c /t ′

u = 0.07(κ ′
n/8ρ ′

pr′3
L )1/2 ≈

0.09, together with the strongest dissipation, eSS = 0.477, see
Appendix A for its definition and Fig. 13 for its variation with
δ. The integration time step is chosen to be 50 times smaller
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FIG. 2. (Top) Illustration of the evolution of packing fraction φ

as a function of the dimensionless time t . The protocol allows ac-
cessing both jamming and unjamming densities of the system. Note
that for δ = 0.41, 0.73, the initial target of φ0 = 0.60 and φmax =
0.82 are chosen, whereas for δ = 0.15, φ0 = 0.70, and φmax = 0.95.
(Bottom) Energy ratio plotted against t at XS = 0.1 for different
δ. The empty arrows represent where the first jamming transition
is identified along the decompression branch, while the solid one
corresponds to the second transition. The increase in energy ratio
during the relaxation phase is due to Epot decaying faster than Ekin,
for the larger values of δ that have comparatively weak dissipation.

than this shortest timescale tSS
c . If even smaller size ratios δ

would be used, computation time would increase, since finer
time steps are needed to resolve the collisions among small
particles. We expect similar results for δ < 0.15 but restrict
ourselves to a minimal δ = 0.15 for this study. The contact
and background dissipation terms are used to damp kinetic
energy and reduce computational time during relaxation.

We restrict ourselves to the linear contact model without
any friction between particles [19,28]. Thus we exclude all
the nonlinearities present in the system due to contact models
and focus on the effect of the size ratio and concentration of
small particles on jamming.

C. Testing protocol

Each bidisperse packing characterized by the parameters
(δ, XS) is created and further compressed using a unique,
well-defined protocol [29], see Fig. 2 (top). The initial con-
figuration is such that spherical particles with dimensionless
radii rL and rS are uniform and randomly placed in a 3D box
without gravity, with an initial packing fraction of φini = 0.3
and uniform random velocities. The possible artificial large
overlaps lead to a peak in kinetic energy at the beginning,
which is quickly damped due to background and collisional
dissipation. Such low-density systems with high kinetic en-
ergy only help to quickly randomize the particles. Changes in

the initial spatial and velocity distributions should not change
the jamming density. The granular gas is then isotropically
compressed to approach a direction independent initial con-
figuration with target packing fraction, φ0, which depends on
δ and XS, being slightly below the jamming density, i.e., the
transition from fluidlike to solidlike behavior [4,30–32]. After
this initial preparation, randomization, compression phase,
where kinetic energy can be considerable to take care that the
particle positions are randomized, first, a relaxation process of
the system is allowed at constant φ = φ0.

The smooth isotropic compression (decompression) up to
φ = φmax (back to φ = φ0) is realized by a simultaneous in-
ward (outward) movement of all periodic boundaries of the
system. For example, the vertical wall position, or height, is
given by

z(t ) = z f + z0 − z f

2
(1 + cos[2π (t − t0)/T ]), (1)

with strain εzz(t ) = 1 − z(t )/z0, where z0 and z f are the initial
and extreme vertical size of the box at zero and maximum
strain, respectively. T is the dimensionless total time of simu-
lation defined by T = T ′/t ′

u ≈ 12 000, with T ′ = 9000. Note
that the simulation procedure observed in Fig. 2 is driven
by the target packing fraction chosen at different stages.
During the loading/unloading periods the deformation rate
is of the order ε̇v = ε̇xx + ε̇yy + ε̇zz ∝ (1 − z f /z0) sin[2π (t −
t0)/T ]/T .

The time offset, t0, is chosen such that all wall motions by
the cosinusoidal function allows for a smooth startup and fin-
ish of the motion so that shocks and inertia effects are avoided.
Other testing methods could be used [26,33,34]; however, they
should have no different outcome since the deformation is
very slow, a regime for which the equivalence between our
procedure and an energy minimization approach was shown
in Ref. [35].

Given sufficient energy is dissipated by either background
medium or collisions, this allows us to determine a consistent
jamming density at quite low strain rates, see Ref. [36]. To
quantify the rate of deformation, it is convenient to define the
dimensionless inertial number, Iv = ε̇vd/

√
P/ρ, analogous to

the shear inertial number [6]. In the existence of background
damping, an additional viscous number, Iγ , together with Iv ,
characterizes the rheology of the system, see Refs. [37,38].
Note that rheology is not investigated in this study. The
contact and background dissipation are used to remove the
energy before the resulting static packings are analyzed. A
brief discussion of the role of the background damping in the
dynamics of the systems is given in Appendix A.

D. Representative example case

Figure 2 (bottom) shows a log-scale plot of the energy ratio
for three bidisperse packings at XS = 0.1. We observe that for
δ = 0.15, the kinetic energy is decaying, since the collision
and background medium dissipate the kinetic energy of the
particles. Due to an applied strain, the system has a big chance
to rearrange, irreversibly, which creates kinetic energy [6].
Due to both mechanisms, the kinetic energy remains consider-
able during relaxation and compression, and it decays closer
to zero only after rearrangements and when decompression
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starts slowly. For higher δ, the kinetic energy drops towards
zero only later, at the respective jamming densities. Such dif-
ferences in the behavior of the kinetic energy during loading
and unloading (compression and decompression) are due to a
different relaxation densities and due to the different elasticity
of collisions between particles, e.g., e ∼ 0.95 at higher δ, see
Fig. A. In this case, background dissipation might take place
by dissipating most of the kinetic energy. After the relaxation
period, the system is further isotropically compressed (load-
ing) until a target maximum packing fraction φmax > φJ is
achieved, which depends on the values of (δ, XS) chosen, see
Fig. 2 (top). Along this process, the remaining kinetic energy
of the system drops to near zero, Ek/Ep ≈ 10−6, suggesting
the development of the jammed packing. Plotting Ek/Ep in
log scale, one can see that many things are happening when
Ek/Ep → 0, see Fig. 2 (bottom). Here, multiple peaks appear
due to particle rearrangements. However, we cannot be sure if
these particle rearrangements affect the macroscopic behavior
of the system. This has started to be studied [6,16], but it is
not still conclusive. After the loading process, the isotropic
decompression (unloading) starts until the initial φ0 is reached
again. In this case, all potential energy due to overlaps is
translated into kinetic energy, revealing the unjamming be-
havior of the systems. Once the simulation protocol ends, the
jamming density, see the arrows in Fig. 2 (bottom), and bulk
modulus of each bidisperse packing are determined from the
decompression branch, since these values are less sensitive to
the rates of deformation [29]. Note that the open arrows (first,
lower transition) show up short before the kinetic energy ratio
rises sharply, while the solid arrow (second transition) is not
accompanied by such a feature—which is due to and com-
patible with our procedure and choice to report the jamming
transitions on the unloading path: the second transition has
mostly large particles jammed, see Sec. III.

III. JAMMING DENSITY: FIRST
AND SECOND TRANSITION

We quantify the fraction of large particles, nL = Nc
L/NL,

and small particles, nS = Nc
S/NS, contributing to the force net-

work as a function of φ for different δ and XS. Nc = Nc
L + Nc

S
is the number of large and small particles in contact, while
NL and NS are the total number of large and small particles in
the system. Figure 3 shows jumps in nL,S at different (δ, XS),
which are equivalent to the jumps in the total mean contact
number, see Ref. [17]. A clear decoupling of the behavior of
nL and nS is found at lower δ and lower XS, see Fig. 3(a), while
for higher values of δ, both types of particles contribute simul-
taneously to the jammed structure, see Figs. 3(b) and 3(d).
Such decoupling indicates that the fraction of small particles
that is jammed is large only at higher densities, whereas large
particles are jammed already at lower densities. To extract
more precisely the value of the jamming density where nL

and nS jump, we compute the first derivative ∂n/∂φ for each
particle size. Figure 4 shows the derivatives of nL and nS

as functions of φ, showing a characteristic peak (maximum
derivative) at values consistent with the respective φJ . For
δ = 0.15 and XS = 0.1, the peak for large particles is found
at small φ, while the peak for small particles is obtained at
higher density, see Fig. 4(a). The smaller peak amplitude is

FIG. 3. Fraction of large nL and small nS particles in contact, as
functions of the packing fraction φ, for different combinations of δ

and XS.

due to the smooth behavior of nS [39] compared to nL, but still,
a critical density can be extracted, representing the largest
increase in the number of small particles jammed, see the
inset in Fig. 4(a). This evidences that the system experiences
a transition from a predominantly large particle structure to
one where both particle sizes contribute upon compression.
On the other hand, at higher δ, the peaks for both fractions of
particles show the same φJ , indicating that both particle sizes
are forming the jammed structure together, see Figs. 4(b)–
4(d). Therefore, using this method one can extract the values
of φJ for the entire range of δ and XS.

FIG. 4. Derivatives of nL and nS as functions of the packing
fraction for different combinations of δ and XS. The maximum value
of each derivative is considered to occur at the jamming density, φJ .
The five-point difference method with accuracy ∼O(φ4) was used.
The inset is a zoom-in around the peak of the derivative of nS. A
clear peak is seen at φ ≈ 0.87, representing the largest increase in
the number of small particles jammed.
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FIG. 5. Jamming density φJ as a function of the concentration
of small particles XS for different size ratios δ. The extreme XS

values (0 and 1) correspond to monodisperse systems, which exhibit
φmono

J = φRCP ≈ 0.64, as indicated by the dashed horizontal line.
Solid lines represent the Furnas model of Eq. (1) in Ref. [17]. Open
(solid) symbols represent the first (second) transition line. The arrow
corresponds to the end point of the second transition X ◦

S , given in
Fig. 3, at φJ ≈ 0.87.

Figure 5 displays such extracted φJ values, where smaller
δ results in jamming at higher densities for intermediate XS.
Additionally, an increasing line of jamming densities is ob-
served for smaller XS. Such a line extends the transition where
both size particles are jammed for a low range of XS, thus
introducing a more complete jamming diagram for bidisperse
packings. This new feature of the jamming density already
was reported in Ref. [17], where the authors made the dis-
tinction between two jammed states depending on whether
small particles are jammed together with the large ones or not.
This work also showed that the second transition starts at a
size ratio below around δ = 0.22 and grows longer, extending
towards smaller and smaller XS, for decreasing δ. Comparison
to an asymptotic model introduced by Furnas in Ref. [40], see
Fig. 5, suggests that if the size ratio of the particle types is
extreme (δ → 0), φJ can decouple into two limiting cases,
sharing a common point at a specific X ∗

S . One limit considers
an approximation where large particles dominate the jammed
structure, while small particles are not taken into account
since they are too few, too small to play any role (0 � XS <

X ∗
S ). In the second limit, both large and small particles par-

ticipate in the jammed structure (0 � XS � 1). In this case,
the number of small particles is large enough to contribute
and even drive a few large particles into the jammed state.
The former limit indicates that small particles would induce
contact only once they fill the remaining space. Therefore the
Furnas model predicts a maximum density of φJ (X ∗

S ) ≈ 0.87
at X ∗

S = (1 − φRCP)/(2 − φRCP) ≈ 0.26, where both line lim-
its meet. This is in reasonable vicinity of the value obtained
here from our simulations for X ∗

S ≈ 0.21 and δ = 0.15. In
Fig. 5, the second transition line given by the simulation data
qualitatively follows the Furnas model ending at X ◦

S = 0.1 for

FIG. 6. Dimensionless mean overlap, 〈αc〉 = 〈α′
c〉/2r′

L, for each
contact type as a function of XS for different δ. The values correspond
to the jamming line where both species of particles contribute to the
jammed structure. Open (solid) symbols represent the first (second)
transition line. The dashed vertical line highlights the end point found
at XS = 0.1 for δ = 0.15, represented by the arrow in Fig. 5. (Some
noise in the data comes from the fact that we are slightly above
jamming, where a tiny variation may have a big effect.)

δ = 0.15. The transition stops at this value, since for XS < X ◦
S

no jumps in the fraction of small particles contributing to the
jammed structure are found (see Supplementary Information
of Ref. [17]). The additional line terminates at an end point
at some finite X ◦

S , which depends on δ, unlike in the Furnas
model.

In Ref. [15] the authors have shown that the jamming
density of bidisperse packings can be lower than the monodis-
perse case when δ → 1 and XS → 0. This behavior is not
visible in our Fig. 5 for δ = 0.73 at XS < 0.1, since too few
data points are available in this regime that is not the focus
of this study. Nevertheless, the jamming density without rat-
tlers exhibits lower values than for the monodisperse case,
see Fig. 7. For δ → 1, where small particles are similar to
large ones, and XS < 0.1, we expect that the few small parti-
cles more likely become rattlers inside the jammed structure
formed by large particles, so that φJ could decay below φmono

J .
However, this needs to be further investigated in detail.

The high packing fractions and high pressures for which
the second transitions are found, in Fig. 5, might suggest
a high level of overlap (deformation) between the already
jammed large particles in the system. Such extreme over-
laps could lead to nonphysical granular packings, since stiff
real particles typically would break, possibly causing a much
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FIG. 7. Jamming density without rattlers φ̃J as a function of the
concentration of small particles XS for different values of the size
ratio δ. The dashed and dotted horizontal lines correspond to the
jamming density of monodisperse systems with (φmono

J ≈ 0.64) and
without rattlers (φ̃mono

J ≈ 0.61). The Furnas model is represented by
the solid lines, see Eq. (1) in Ref. [17], where φ̃mono

J was used as input.
This shifts the model slightly downwards in the packing fraction.
Open (solid) symbols represent the first (second) transition line

different system behavior. To quantify this, we determine the
mean overlap, 〈αc〉 = 〈α′

c〉/x′
u = 〈α′

c〉/2r′
L, for LL, SS, and

LS contact types along the lines where both particle species
contribute to the jammed structure. Figure 6 and Appendix D
show the values of 〈αc〉 as a function of XS at different δ. For
δ � 0.41, the jammed packings show a mean overlap close to
zero for all XS. For δ < 0.41 and XS < X ∗

S , the mean overlap
increases for each contact type along the second transition
as a result of overcompression. However, the partial 〈αc〉 for
the large particles is still quite low at the second transition.
The second transition presented here at low δ and low XS

can be obtained by considering experimental possibilities; an
overlap of around a few percent can be easily obtained in
3D experiments of soft PDMS sphere packings [9], since the
maximum overlap of such a typical sphere can reach about
10%. In 2D, soft photoelastic, birefringent disks can be used
as well, since a mean overlap of 3% for δ = 0.71 has been
readily obtained in, e.g., Ref. [4].

IV. ANALYSIS WITHOUT RATTLERS

In 3D simulations of particles without friction and with-
out gravity, rattlers are those particles having less than four
contacts. Rattlers are not mechanically stable and do not con-
tribute to the force distribution [12,26,41,42]. This indicates
that the removal of rattlers would strongly affect variables
such as the jamming densities found in Fig. 5; how much
are the mean contact number and packing density affected?
Here, we first recalculate φJ , considering only those particles
i having four contacts or more (Z̃i � 4), where the tilde indi-
cates the fact that rattlers are recursively excluded from the
contact network. This means that we monitor if new particles
with Z̃i < 4 are created after the removal of rattlers. If so, we

FIG. 8. Partial jamming density without rattlers φ̃L,S, as a func-
tion of XS, for different δ. Open (solid) symbols represent the first
(second) transition line. The sum φ̃L + φ̃S = φ̃J leads to the jamming
densities shown in Fig. 7.

have to remove new rattlers from the contact network. This is
repeated until no rattlers remain in the packing.

Figure 7 shows the jamming density without rattlers, φ̃J , as
a function of XS, complementing Fig. 5. We present the same
four typical size ratios, but similar explanations can be applied
for other values of δ. Obviously, all φ̃J < φJ , affecting also the
monodisperse lower limit, φ̃mono

J ≈ 0.61. The jamming den-
sities along the first transition line, between 0.1 � XS < X ∗

S ,
are qualitatively similar to the monodisperse case, irrespective
of δ, only lower and with some more scatter. This confirms
that only large particle nonrattlers are forming a monodisperse
jammed structure.

For all δ and XS � X ∗
S , the first transition jamming densities

follow the Furnas’ model trend, showing a similar maximum
at XS, like in Fig. 5. However, for the smallest δ, when
XS → X ∗

S ≈ 0.21 from the right, φ̃J shows a different feature
of the transition. For larger XS, the system structure is formed
by large and small particles, while for smaller XS, only large
particles carry forces. The additional second transition of φ̃J is
also shown above the first transition, between 0.1 � XS < X ∗

S ,
as shown by the solid symbols in Fig. 7. However, the jam-
ming density of small particles on top of large particles is
displaced downwards due to the removal of rattlers. Rather
than continuing the trend from right to left, XS decreasing,
the second transition nonrattler jamming density drops and
emerges from the monodisperse lower limit.

The jamming densities shown in Fig. 7 can be better under-
stood by analyzing the packing fraction of either large or small
particles, having more than four contacts, along the first and
second transition lines. This scenario is shown in Fig. 8. For
all δ along the first transition and between 0.1 � XS < X ∗

S , one
has φ̃J = φ̃mono

J ≈ 0.61 (dotted line). The packings behave
like a monodisperse system of large particles, as most evident
for δ = 0.15, where φ̃L ≈ 0.61, whereas φ̃S = 0, see Fig. 8(a).
Then, φ̃S(δ = 0.15) jumps to a finite value at XS = X ∗

S ≈
0.21, indicating the transition to both species contributing. For
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FIG. 9. Partial mean contact numbers without rattlers determined
at φ̃J as a function of XS for different δ. Open (solid) symbols
represent the first (second) transition line. The dashed line represents
Ziso = 6 expected for 3D frictionless monodisperse granular pack-
ings at jamming.

XS > X ∗
S , φ̃S and φ̃L increase or decrease, respectively. Along

the second transition, XS < X ∗
S , the large particles always

dominate the density over small ones. For all δ, an intersection
point of equal-volume contribution is found at XS ≈ 0.5. For
instance, for δ = 0.15, φ̃L = φ̃S = 0.37, while for δ = 0.73,
φ̃L = φ̃S = 0.31. Above and below the intersection point, the
small and large species dominates the first jamming of the
system.

Looking deeper into the packing, we determine the partial
mean contact numbers using

Z̃LL =
∑Nc

LL
i=1 Z̃ i

LL

ÑL
, (2)

Z̃LS =
∑Nc

LS
i=1 Z̃ i

LS

ÑL
, (3)

Z̃SS =
∑Nc

SS
i=1 Z̃ i

SS

ÑS
, (4)

Z̃SL =
∑Nc

SL
i=1 Z̃ i

SL

ÑS
, (5)

where each sum is running over the number of contacts (LL,
LS, SS, SL) in the packing, respectively. We have divided
by ÑL and ÑS to examine the contribution of each contact
type to the total coordination, Z = ZL + ZS (with Z � 4). For
instance, at large XS the few large particles in the system have
particularly large Z̃LS, since they are surrounded by many
small ones. At the same time, Z̃SL is near zero, since each
small particle is in contact with very few or no large ones.
As expected, not shown, ZLS = ZSL if in Eqs. (3) and (4) the
denominator is replaced by the total Ñ = ÑL + ÑS.

Figure 9(a) shows Z̃LL ≈ Ziso = 6 for δ = 0.15 between
0.1 � XS < X ∗

S , while Z̃SS remains zero (open circles). This
is one of the reasons that both jamming density and bulk
modulus have approximately constant values in this regime of

FIG. 10. Partial dimensionless pressures P as a function of φ for
four combinations of δ and XS. Note the different horizontal axis
scaling top-left and the extreme overlaps (deformations) at large φ.
The arrow indicates the second transition, φJ ≈ 0.87, extracted by
the derivative of nS, see Figs. 3 and 4.

XS, see Figs. 5 and 12, respectively. For higher XS > X ∗
S , Z̃LL

and Z̃SL decay to zero while Z̃SS and Z̃LS increase. Note that
Z̃SS ≈ Ziso as XS → 1, since the jammed packing is formed by
small particles only.

Along the second transition line, Z̃LL and Z̃LS decrease
within 0.1 � XS < X ∗

S . Note that Z̃LL > Z̃iso along the sec-
ond transition, since the packing is becoming denser so that
the overlaps and the contact numbers between large particles
increase with decreasing XS. The mixed contacts of large par-
ticles, Z̃LS, show many contacts with small ones for δ = 0.15
with a dip at XS ≈ X ∗

S . In contrast, the contacts related to small
particles display a maximum at XS � X ∗

S .
The results presented in Fig. 9 show how differently the

two-particle species in the bidisperse granular packing con-
tribute to its rigid structure along the first and second jamming
transition. Similar values of the partial mean contact number
along the first jamming transition were reported in Ref. [10],
disregarding the second transition.

V. BULK MODULUS NEAR THE JAMMING DENSITY

Here we focus on the pressure of each particle species,
since they are the most important variable to determine how
much they contribute to the force network and thus to the
bulk modulus. Therefore rattlers are considered since they
can also contribute to the stiffness of the jammed packing
upon compression. Appendix B shows the derivation of the
large and small dimensionless pressures: PL = 2r′

LP′
L/κ ′

n and
PS = 2r′

LP′
S/κ

′
n, respectively.

Figure 10 shows typical evolutions of the dimensionless
pressures of each particle size with packing fraction φ for
four combinations of δ and XS. Irrespective of XS, PL and
PS show values of zero at very low φ since the system is
not jammed. When the system becomes jammed, PL and
PS start showing nonzero values for φ > φJ . For XS = 0.4,
Figs. 10(b) and 10(d) show that each type of P starts rising
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simultaneously, both contributing to the jammed structure,
at φJ ≈ 0.77 (for δ = 0.15) and φJ ≈ 0.70 (for δ = 0.41).
For XS = 0.1, the values of P for δ = 0.41 show a similar
behavior to those found for XS = 0.4, see Fig. 10(c). However,
by reducing the size ratio until δ = 0.15, P shows a different
scenario, see Fig. 10(a). In this case the jamming of the system
is initially driven by the jammed structure formed by large par-
ticles at φJ ≈ 0.71. At this value the small particles are located
in the cages formed by the large ones having zero contacts
and contributing zero partial pressure, as was previously in-
dicated in Refs. [12,17]. This scenario, where predominantly
large particles are jammed, has been widely considered in
the literature as the jamming state of a bidisperse system,
but it is the jamming state of a monodisperse packing of
large particles with only a few contacts among small particles
carrying load [12]. Making the packing denser, some small
particles make contact with the structure of large particles,
revealing a continuous rising but low value of PS  PL driven
mainly by LS contacts particles (not shown explicitly here);
see the weak increase of nS and PS around φJ ≈ 0.76 given
in Figs. 3 and 10(a). Then at higher densities a large number
of small particles quantified by nS get jammed at φJ ≈ 0.87
contributing considerably PS < PL. In this case, both SS and
SL contacts contribute to PS, see Fig. 14(a). Similar behaviors
are obtained when looking at the partial mean contact number
where a discontinuity at jamming is also found, see Ref. [17].

Each of the jamming density values displayed in Fig. 5
represents a jammed structure that can show resistance when
the external stress is applied. The system behaves like an
elastic solid. One of the properties that quantifies the me-
chanical behavior of granular packings is the bulk modulus
K = φ ∂P/∂φ, the change of pressure P, with packing fraction
φ. To determine the dimensionless bulk moduli KL and KS

as a function of φ, we use the empirical fit equation P =
P0(φ − φJ )a to approximate the dimensionless pressures PL

and PS. This is consistent with Ref. [17], where one jamming
density was determined for each particle size. In previous
works [2,4] a value of a ≈ 1.1 for δ = 0.71 was reported. We
find here that the power a depends on the pressure, for each
particle size, and on the combination (δ, XS). In particular, we
find that for high δ the fitting parameters of the power law do
not change too much with the fitting range and thus the fitting
range is arbitrary, see Fig. 15. However, at low δ the fitting
parameters for PS are quite sensitive to the fitting range while
those related to PL only slightly vary, see Fig. 16. We think
that such variations of PS are caused by the high overlaps de-
veloped at high φ, which tend to modify the fitting parameters.
Therefore we fit PS in smaller ranges, near to φJ , keeping aS

as close as possible to aL. This results in low overlaps and
similar power laws between large and small particle pressures.
Full details of the fitting parameters are given in Appendix C.

Once the fitting parameters for PL and PS are extracted,
one can determine the dimensionless bulk moduli of large and
small particles using their definition: K = φ P0 a (φ − φJ )a−1.
Figure 11 shows the partial dimensionless bulk moduli as
a function of φ for the same combinations of (δ, XS) as in
Fig. 10. We can see a jump, similar to those observed in Fig. 3,
for both particle sizes at high δ and high XS, see Figs. 11(b)–
11(d), least pronounced in 11(c). However, Fig. 11(a) shows
two behaviors of KL and KS, jamming at different φ, with

FIG. 11. Dimensionless bulk modulus K as a function of φ for
four combinations of δ and XS. The arrow indicates the second
transition, φJ ≈ 0.87, shown in Fig. 3.

and without a jump, respectively. This confirms that at lower
densities large particles jam first, forming a structure with an
overall bulk modulus. Then, at φ ≈ 0.76, some small particles
make contact with large ones, leading to KS �= 0. Increasing φ,
small particles make gradually more contact with large ones
until a considerable amount of small particles make many
contacts also with those small particles already jammed, see
the arrow in Fig. 11(a) and the jump in Fig. 3(a). Although
no jump in KS is obtained here, a jump in the bulk modulus
between small-small particles KSS is indeed observed, see
Fig. 14(e). Such a jump is hidden by the bulk modulus given
by the mixed contacts KLS = KSL, since it dominates KS. The
second transition where small particles are jammed jointly
with large ones indicates a different packing structure with
a higher bulk modulus according to K = KL + KS. For the
case of the force network, large particles carry high forces
while small ones carry low forces, as has been presented
in Refs. [23,24] and confirmed by our overlap data shown
above in Fig. 6. However, it would be interesting to study
how the force distribution changes according to size ratio
and concentration of small particles, especially for lower size
ratios where the second transition appears. The results shown
in Fig. 11 demonstrate that for low δ and XS, small particles
jam only at large φ to provide a different jammed structure
and consequently, a higher bulk modulus.

Next we extract the dimensionless bulk modulus at φ

slightly above each jamming density shown in Fig. 5. As an
arbitrary choice, we evaluate the data when φ − φJ reaches
1% above each φJ . Figure 12 shows the variation of the
partial and total K as a function of XS for different values
of δ. For δ � 0.41 and low XS, large particles dominate the
structural resistance over small ones, KL > KS. At larger XS,
KL is reduced while KS increases, showing an intersection
point at a specific XS(δ). This point marks the onset of dom-
ination of the small particles in the structure over the large
ones, KS � KL. The intersection point between KL and KS has
nothing to do with the intersection point shown in Fig. 1. In
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FIG. 12. Partial and total dimensionless bulk modulus K as a
function of XS for different δ. Open (solid) symbols represent the first
(second) transition. These K values were obtained roughly 1% above
the jamming density φJ shown in Fig. 5, which causes the ambiguous
scatter. The dashed line corresponds to the total dimensionless bulk
modulus for monodisperse packings, Kmono ≈ 0.76. Note the differ-
ent vertical axis scaling in the top panel. The arrow indicates the
second transition shown in Fig. 3(a), φJ ≈ 0.87.

the traditional 50:50 mixture cases, the bulk modulus is not
equally distributed but is dominated by the large particles.

Interestingly, the total dimensionless bulk modulus for the
larger δ � 0.41 is largely independent of XS, showing almost
constant values, almost the same as monodisperse packings
for Ktot (δ = 0.73) ≈ 0.76. For even smaller δ = 0.15, a dif-
ferent behavior is found. Along the first transition (open
symbols), KL shows a constant value for 0.1 � XS < X ∗

S ,
while KS = 0, indicating that predominantly large particles
provide the resistance of the system. At X ∗

S ≈ 0.21, both KL

and KS show a jump to a specific value, which is consistent
with the peak in φJ shown in Fig. 5. For XS > X ∗

S , KL decays to
zero, whereas KS increases until the small particles dominate
the structural resistance of the system. The total dimensionless
bulk modulus Ktot shows a similar jump at X ∗

S , exhibiting its
highest value at XS ≈ 0.35 and then tending to the monodis-
perse value as XS → 1.

As was demonstrated in Ref. [17] and shown in Fig. 5,
small particles, indeed, begin to strongly contribute to the
jammed structure already formed by large particles—as in-
dicated by the jump in K at the second transition. This makes
the system stiffen, showing a second transition line at low XS

and low δ, see solid symbols in Fig. 12. Along the second
transition line, KS indeed increases within XS ∈ [0.1, 0.21],
contrary to the zero values found along the first transition. In
this range, KS increases while KL decreases with increasing XS

towards Ktot ≈ Kmono. The gap between the first and second
transition obtained at low XS for Ktot demonstrates that the

structural resistance increases by around 50% when small
particles contribute to the jammed structure of the system.

In a very recent paper, similar results of the bulk modulus
as a function of XS were shown [13]. The authors found
jumplike behavior for δ = 0.17 near XS ≈ 0.21 for very low
pressure levels, indicating the first jamming transition. While
the authors did not explicitly identify the additional transition
line shown in Fig. 5, their results suggest that the small parti-
cles can cause the second transition at higher pressure levels.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

In summary, we show that in bidisperse packings of soft
particles, the dimensionless bulk modulus K can show both
sharp and smooth transitions at first or second transition
depending on which parameters are changed. Its magnitude
depends on whether large and small particles jam simulta-
neously or not. We find a critical combination of size ratio
and concentration of small particles (δc = 0.22, X ∗

S ≈ 0.21),
below which the jamming density and bulk modulus present a
new, additional transition, mostly disregarded, except in some
previous literature [12,17]. For δ > δc and XS > X ∗

S , the bulk
modulus comes from a structure formed by both large and
small particles that simultaneously jam at the same density.
However, for δ < δc and XS < X ∗

S , the bulk modulus displays
two transitions obtained at different densities that depend
on particle size. This means that large particles first jam at
low densities, forming an initial structure where small ones
mostly do not contribute. It is only at higher densities that the
small particles start to get jammed jointly, with large particles
forming a different structure.

The highest bulk modulus was observed at X Kmax
S ≈ 0.35,

for the lowest size ratio considered, δ = 0.15, which is far
from the highest jamming density shown in the jamming
diagrams in Figs. 5 and 7. Although many small particles are
jammed below (δc, XS < X ∗

S ), the total bulk modulus shows a
much lower magnitude compared to the bulk modulus above
(δc, XS > X ∗

S ), see Fig. 12. Indeed, for δ = 0.15, K increases
by approximately 50% to the case when small particles are
jammed jointly with large ones at a higher density. This sug-
gests that distinct jammed structures are created at first and
second transitions, where much stiffer structures are created
for larger XS.

The behavior of the bulk modulus and its relation to the
jamming density, as presented along the first and second
jamming transitions, have given better insights into the me-
chanical properties of jammed bidisperse systems. By tuning
the values of δ and XS, one can get stiffer or less stiff bidis-
perse structures. The different values of the bulk modulus
obtained here suggest that other properties such as shear mod-
ulus, vibrational density of states, or force distributions must
be different as well.

Future research could aim at understanding how φJ

changes when different materials (different restitution coef-
ficients e, dissipation by contact damping γn, or background
damping γb), different contact friction coefficients, μp > 0,
different size and shape distributions, or different testing pro-
tocols (compression rates) are used. This would give us a
broader overview of the dependence of the jamming den-
sity on particle properties, the surrounding medium, and also
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protocols or methods and modes of deformation (isotropic vs
shear or deviatoric). This might eventually allow understand-
ing the interplay of a fluid with the particles when (a) small
fines are washed out of a matrix formed by jammed larger par-
ticles, or (b) the dynamics and statics of suspended particles
possibly display a crossover from a viscosity dominated, slow
regime to an inertial dominated, more rapid flow state where
the large and small particles interact with the fluid in strongly
different ways.
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APPENDIX A: RESTITUTION COEFFICIENT
VS SIZE RATIO

The restitution coefficients between particles i = L,S and
j = L,S, for the linear contact model used are given by

ei j = exp

(
−γnt i j

c

2mi j

)
, (A1)

with the normal damping γn, the effective mass, mi j =
mimj/(mi + mj ), and the contact duration time t i j

c such that

mLL = π/12 = mL/2, (A2)

mSS = mLL δ3, (A3)

mLS = mSL = 2mLL

(
δ3

1 + δ3

)
, (A4)

t i j
c = π√

κn
mi j

− (
γn

2mi j

)2
, (A5)

where the dimensionless variables κn = 1, ρp = 1, and γn =
0.013 are inserted.

The dependence of e with δ is shown in Fig. 13. We observe
that eSS and eLS decrease as δ → 0, while eLL does not change
since the radius of the large particles is constant. For δ = 0.15
(dashed line), eLL = 0.95, eSS = 0.47, and eLS = eSL = 0.59,
respectively. This demonstrates how the dissipation of each
contact type depends on δ. The fact that large δ → 1 results
in rather weak dissipation is one reason for using the back-
ground dissipation. However, we believe that even though
competition between the energy dissipated by collisions and
the energy dissipated by the background medium might take
place, this should be relevant only in dynamic situations. This
can be seen in the energy ratio given in Fig. 2 (bottom), where
for δ = 0.4 and δ = 0.73, the potential energy dominates over
kinetic energy, during the whole process, above jamming, by
orders of magnitude. For static packings created by a slow
enough, quasistatic deformation, the interplay between dissi-
pated energies should neither play a role in the determination
of the jamming density [16] nor for pressure and thus bulk
modulus.

FIG. 13. Partial restitution coefficients are plotted against the
size ratio δ. The vertical dashed line corresponds to the smallest
value used, δ = 0.15. Note that for δ → 1, eSS, eLS → eLL = 0.95.
ei j stops at δ = 0.0564, since below imaginary values are obtained
for eSS and eLS.

APPENDIX B: PARTIAL PRESSURE DEFINITIONS

The dimensionless pressure and the components of the
stress tensor are defined by

P = 2r′
L

κ ′
n

P′ = 1

3
tr{σαβ}; σαβ = 1

V

∑
c∈V

fα�β, (B1)

where fα is the dimensionless force components and �β =
r j
β − rk

β are the dimensionless branch vector components con-
necting the center of the particles k and j that share contact c.
The sum over all contacts in the volume V can be decomposed
into four sums, each one running over each contact type in the
system: LL, SS, LS, SL. This is written as

σαβ = 1

V

Nc
LL∑

i=1

f LL
αi �LL

βi + 1

V

Nc
SS∑

i=1

f SS
αi �SS

βi

+ 1

2V

Nc
LS∑

i=1

f LS
αi �LS

βi + 1

2V

Nc
SL∑

i=1

f SL
αi �SL

βi , (B2)

where Nc
LL, Nc

SS, Nc
LS, and Nc

SL are the number of contacts
of each contact type, with Nc

LS = Nc
SL. Applying the property

tr{A + B} = tr{A} + tr{B}, dividing by 3 in Eq. (B2), and us-
ing the definition of pressure given in Eq. (B1), one arrives at

P = PLL + PSS + 1
2 (PLS + PSL), (B3)

where

PLL = 1

3V

Nc
LL∑

i=1

f LL
αi �LL

αi , (B4)

PSS = 1

3V

Nc
SS∑

i=1

f SS
αi �SS

αi , (B5)
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PLS = 1

3V

Nc
LS∑

i=1

f LS
αi �LS

αi , (B6)

PSL = 1

3V

Nc
SL∑

i=1

f SL
αi �SL

αi . (B7)

Therefore PL = PLL + PLS and PS = PSS + PSL. Since
PLS = PSL, a factor of 1/2 in Eqs. (B2) and (B3) has to be
used to avoid an overestimation of the total pressure, since
the mixed contacts are counted twice. PLS = PSL is obtained
because the normal branch vector length is defined between
particle centers, making no distinction between particle sizes,
i.e., �LS = �SL. Alternatively, if the branch vector length were
defined using the distance from the center of each particle i
to its contact location, at a distance radius minus overlap/2
[27], then PLS �= PSL, since rL �= rS; see Refs. [43,44] for the
method applied here and the alternative, respectively. Dis-
cussing the differences between the two stress definitions is
beyond the scope of this paper and thus postponed to future
studies.

Figures 14(a)–14(d) show the values of the partial pres-
sures calculated using the expressions given in Eqs. (B4)–
(B7). For δ = 0.15 and XS = 0.1, large particles first jam at
φ ≈ 0.71, then mixed contacts do so (smoothly) at φ ≈ 0.75,
and later small particles jam at φ ≈ 0.87. Figures 14(e)–14(h)
show the partial bulk modulus extracted by the fitting method
defined in Appendix C. One can see that KLL and KSS exhibit
a jump, whereas KLS increases smoothly, see Fig. 14(e). This
demonstrates that the LS-SL contact network does not expe-
rience a sharp transition whereas the SS contacts do. In fact,
KLS dominates the bulk modulus in KS observed in Fig. 11(a),
thus hiding the jump in KSS.

APPENDIX C: FITTING PARAMETERS
FOR THE PRESSURE

A power law of the form P = P0(φ − φJ )a is used to fit the
dimensionless pressure data of each bidisperse packing and
study the variation of the fitting parameters with the fitting
range of volume fractions φ to find the range or regime where
the parameters are least dependent on the fitting details, like
the number of points, n. The fitting begins using the first three
points of the data, n = 3, starting around slightly above φJ ,
until a maximum, which is varied point by point following
φmax = φJ + nφ, with φ ≈ 10−3. The fit begins with three
points, since in the least-squares method the number of data
points n must be equal to or higher than the number of fitting
parameters, in our case m = 3, to find a solution. For each fit
we extract the values of the fitting parameters as a function of
φmax.

Figures 15 and 16 show the fits of the total and partial
pressures and the variation of the fitting parameters a, φJ , and
P0 as functions of the fit range, i.e., number of data points
n. For δ = 0.41, the fitting parameters, especially a and φJ ,
do not change too much, almost consistently for the different
species. While a does increase a little with n, for lower XS

the parameter aS turns out to be different, i.e., sensible to the
fitting range, see Fig. 15(e). The parameter P0 is significantly

FIG. 14. (a)–(d) PLL, PSS, and PLS as a function of φ for the same
δ and XS shown in Fig. 10. (e)–(h) KLL, KSS, and KLS as a function
of φ for the same values shown in Fig. 11. The arrow indicates the
second transition, φJ ≈ 0.87, extracted by the derivative of nS, see
Fig. 3.

different between total pressure and the different species, see
Figs. 15(g) and 15(h).

For δ = 0.15, a and φJ do not show a significant variation
for higher XS. However, aS is quite sensitive to the fitting
range at low XS, see Fig. 16. We think that such variations
are due to the high overlaps developed during compression,
strongly affecting the power-law exponent. Most of the fitting
parameters of PL are rather insensitive to the fitting range and
thus the fitting range for PL is arbitrary. For PS the situation is
quite different: The parameters are quite sensitive to the fitting
range at low δ and low XS. Therefore a special assumption
is considered for the fitting range, i.e., we fit the data of PS,
at low δ and low XS, with a narrow fitting range near to φJ ,
keeping aS ∼ aL as closely as possible. This guarantees low
overlaps for small particles and similar power-law exponents
for both large and small particles. The fitting parameters ex-
tracted from PL and PS are used to determine the bulk modulus
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FIG. 15. Total and partial pressures for size ratio δ = 0.41 with
XS = 0.1 (a) and XS = 0.4 (b); the corresponding fits are given by
P = P0(φ − φJ )a, with (c)–(h) fitting parameters (φJ , a, P0) as func-
tions of φmax (where 50 points is the whole regime φ ∈ [φJ : φmax =
0.82].) The lines in (c) and (d) represent φJ shown in Fig. 5. The lines
in (e) and (f) represent aMono = 1.25, slightly different from the value
a ∼ 1.1 in Ref. [4]. The solid symbols correspond to the values of the
parameters obtained by the fits given in (a) and (b), respectively.

of large and small particles, using K = φP0a(φ − φJ )a−1, in
Sec. IV.

APPENDIX D: LINEAR RELATION BETWEEN PRESSURE
P AND OVERLAP 〈α〉

In this Appendix we demonstrate that the dimensionless
partial pressures, Pi j = 2r′

LP′
i j/κ

′
n, depend linearly on the di-

mensionless mean overlap, 〈αi j〉 = 〈α′
i j〉/2r′

L, where i, j ∈
[L,S]. This is shown in Fig. 17 for the same values of δ and XS

as in Figs. 14(a)–14(d).
The ranges of pressures and mean overlaps depend

on the contact types. Each contact type experiences dif-
ferent overlaps at different pressures, evidencing the dif-
ferent roles each contact type has inside the force net-
work. To understand why pressure is linear with overlap,
one can write PLL = 2P′

LLr′
L/κ ′

n ≈ (ZLL/3V ′) 4F ′
LLr′2

L /κ ′
n =

(4/3)ZLL〈α′
LL〉/r′

L ∝ ZLL〈αLL〉, using V ′ ≈ r3′
L and F ′

i j =
κ ′

n〈α′
i j〉. Using similar reasoning, we find PSS ∝ ZSS〈αSS〉δ and

PLS ∝ ZLS〈αLS〉(1 + δ)/2 due to the branch vectors �′
i j = r′

i +
r′

j . The trend lines in Fig. 17 quantify the different slopes that
are due to the different partial mean contact numbers Z , the
different mean overlaps, and the different branch vectors. For
XS = 0.1, the large and the mix contribution is dominating,

FIG. 16. Total and partial pressures for size ratio δ = 0.15 with
XS = 0.1 (a) and XS = 0.4 (b); the other figures and symbols are as
in Fig. 15. Note the different number of points, due to the maximum
(left, φmax = 0.95) and minimum (right, φmax = 0.82).

the small particles contributing little for δ = 0.41 and only
a bit for δ = 0.15. In contrast, for XS = 0.4, the small and
the mix contribution is dominating, the large particles hardly
contributing for δ = 0.15 and only a little for δ = 0.41.

FIG. 17. The partial dimensionless pressures P = Pi j as func-
tions of the dimensionless mean overlap 〈α〉 = 〈αi j〉 for different δ

and XS values. Note the different horizontal axis ranges for different
δ.
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