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Abstract. Various satellite imagers of the vertically inte-
grated column of carbon dioxide (XCO2) are under devel-
opment to enhance the capabilities for the monitoring of fos-
sil fuel (FF) CO2 emissions. XCO2 images can be used to
detect plumes from cities and large industrial plants and to
quantify the corresponding emission using atmospheric in-
versions techniques. However, this potential and the ability
to catch the signal from more diffuse FF CO2 sources can be
hampered by the mix between these FF signals and a back-
ground signal from other types of CO2 surface fluxes, and in
particular of biogenic CO2 fluxes. The deployment of dense
ground-based air-sampling networks for CO2 and radiocar-
bon (14CO2) could complement the spaceborne imagery by
supporting the separation between the fossil fuel and bio-
genic or biofuel (BF) CO2 signals. We evaluate this potential
complementarity with a high-resolution analytical inversion
system focused on northern France, western Germany, Bel-
gium, Luxembourg, and a part of the Netherlands and with
pseudo-data experiments. The inversion system controls the
FF and BF emissions from the large urban areas and plants, in
addition to regional budgets of more diffuse emissions or of
biogenic fluxes (NEE, net ecosystem exchange), at an hourly
scale over a whole day. The system provides results corre-
sponding to the assimilation of pseudo-data from a single

track of a 300 km swath XCO2 imager at 2 km resolution and
from surface ground-based CO2 and/or 14CO2 networks. It
represents the diversity of 14CO2 sources and sinks and not
just the dilution of radiocarbon-free FF CO2 emissions. The
uncertainty in the resulting FF CO2 emissions at local (urban
area/plant) to regional scales is directly derived and used to
assess the potential of the different combinations of observa-
tion systems. The assimilation of satellite observations yields
estimates of the morning regional emissions with an uncer-
tainty down to 10 % (1σ ) in the satellite field of view, from an
assumed uncertainty of 15 % in the prior estimates. However,
it does not provide direct information about emissions out-
side the satellite field of view or about afternoon or nighttime
emissions. The co-assimilation of 14CO2 and CO2 surface
observations leads to a further reduction of the uncertainty in
the estimates of FF emissions. However, this further reduc-
tion is significant only in administrative regions with three or
more 14CO2 and CO2 sampling sites. The uncertainty in the
estimates of 1 d emission in North Rhine-Westphalia, a re-
gion with three sampling sites, decreases from 8 % to 6.6 %
when assimilating the in situ 14CO2 and CO2 data in addition
to the satellite data. Furthermore, this additional decrease ap-
pears to be larger when the ground stations are close to large
FF emission areas, providing an additional direct constraint
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for the estimate of these sources rather than supporting the
characterization of the background signal from the NEE and
its separation from that of the FF emissions. More generally,
the results indicate no amplification of the potential of each
observation subsystem when they are combined into a large
observation system with satellite and surface data.

1 Introduction

Article 4 of the Paris Climate Agreement aims to reduce
greenhouse gas (GHG) emissions within a few decades on
the basis of equity, until they are compensated for by GHG
removals. The monitoring of this international ambition im-
plies some operational observation of the GHG emissions,
in particular those of carbon dioxide (CO2) from fossil fu-
els (FFs). A significant contribution to this monitoring is ex-
pected from observations of atmospheric composition and at-
mospheric inversion systems (IPCC, 2019; European Com-
mission et al., 2016; Pinty et al., 2017). In particular, the
development of spaceborne imagery of the vertically inte-
grated column of CO2 (XCO2), at spatial resolution better
than 5 km, should make it possible to detect plumes down-
wind from anthropogenic sources of CO2 (Pillai et al., 2016;
Schwandner et al., 2017; Broquet et al., 2018). A key exam-
ple of such imagery is the Copernicus Anthropogenic Carbon
Dioxide Monitoring (CO2M; Pinty et al., 2017; Kuhlmann
et al., 2019; Lespinas et al., 2020) constellation, which is
scheduled to launch in 2025–2026. Each satellite of the con-
stellation will observe XCO2 with a ∼ 300 km swath and a
∼ 2× 2 km2 spatial resolution.

Previous analyses of the potential of high-resolution satel-
lite imagery of XCO2 (such as ESA, 2015; Wang et al., 2020;
Santaren et al., 2021) have focused on its use as a stand-
alone observation system and on the potential complemen-
tarity of images of co-emitted species co-registered with an
instrument on board the same satellite or from another mis-
sion (Reuter et al., 2019; Kuhlmann et al., 2019, 2020). How-
ever, the distinction between FF and natural CO2 signals and
thus the separation between the FF and natural components
in the flux estimates remain difficult, even when using high-
resolution images and satellite data on co-emitted species
(Kuhlmann et al., 2020; Santaren et al., 2021; Sadiq et al.,
2021). The separation between the emissions from biofuel
(BF) and FF combustion is another challenge because BF
emissions can be located in the same hotspots as FF ones
(Ciais et al., 2020).

The deployment of dense ground-based networks of near-
surface air sampling for radiocarbon (14CO2) has also been
considered as a complement to the spaceborne imagery (Eu-
ropean Commission et al., 2016). Indeed FF-emitted CO2 is
radiocarbon-free (Pinty et al., 2017; Levin et al., 2003, 2021):
14CO2 surface data have a less ambiguous sensitivity to the
signal from FF emissions than CO2 surface data. However,

practical constraints lead to sampling 14CO2 daily if not
weekly to monthly (Levin et al., 2020). This prevents the di-
rect identification of temporal variations at higher frequen-
cies, e.g. hourly, associated with the signal from cities and
point sources, but time series of continuous hourly measure-
ments of CO2 should enable these specific temporal varia-
tions to be captured. Various studies have been conducted
to estimate the potential of 14CO2 surface data in addition
to CO2 surface data to discriminate anthropogenic from bio-
genic CO2. Most of the studies with real samplings corre-
sponded to local analyses (e.g. Levin et al., 2003; Turnbull
et al., 2006; Lehman et al., 2013; Wenger et al., 2019; Lee
et al., 2020). Inversions with pseudo-data were used to assess
the potential of 14CO2 surface data to monitor the FF CO2
emissions at continental scales (Wang, 2016; Wang et al.,
2018; Basu et al., 2016). However, Graven et al. (2018) or
Basu et al. (2020) showed promising results regarding the
quantification of budgets of FF CO2 emissions or the assess-
ment of their estimates from inventories based on ∼ 10 sta-
tions of 14CO2 at the scale of California or of the United
States, respectively.

This study aims at assessing the potential of a combination
of a spaceborne XCO2 imager and ground-based 14CO2 and
CO2 networks to monitor FF emissions of CO2 at finer spa-
tial scales, typically that of administrative regions in Europe,
and with a view to feed operational systems with highly accu-
rate emission estimates. More specifically, it aims at assess-
ing how these additional ground-based networks decrease the
uncertainty in FF emissions by improving the distinction be-
tween the FF and biogenic fluxes.

There is currently no large-swath XCO2 imager in or-
bit, and we assume that dense networks of 14CO2, with
more stations than the current ones even in areas relatively
well equipped like Europe (Levin et al., 2020, https://www.
icos-cp.eu/, last access: 25 August 2022), are required to sup-
port such monitoring of the FF CO2 emissions. Furthermore,
the combination of remote sensing data and air sample mea-
surements has often been difficult, mainly due to systematic
errors in satellite retrievals and in the atmospheric chemistry-
transport models that simulate them. In this case, the air sam-
ple measurements are rather used to constrain some bias cor-
rection of the remote sensing data (Bergamaschi et al., 2009)
and/or the model (Locatelli et al., 2015), or they are implic-
itly used to dampen the effect of these systematic errors. The
gradual improvement in the quality of retrievals and models
over time has just recently opened the door to a more har-
monious use of remote sensing data and air sample measure-
ments for inverse modelling (Byrne et al., 2022).

Therefore, this study relies on inversion tests performed
with parameters corresponding to pseudo-observations and
different scenarios of observation systems, i.e. on observ-
ing system simulation experiments (OSSEs). The analy-
sis focuses on the strengths and limitations of the atmo-
spheric sampling from the different measurement systems.
It discards components of the uncertainties associated with
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the current atmospheric radiative transfer inversion systems,
used to retrieve XCO2 data from satellite measurements, and
to the current atmospheric transport models underlying the
atmospheric inversion. Our OSSEs include the simulation of
the sampling of a CO2M-like spaceborne instrument from
single orbits over western Europe at 12:00 (universal time
coordinated, UTC) and a scenario of a dense CO2 and 14CO2
ground-based network.

The work performed relies on a Bayesian inversion frame-
work, in which the knowledge of control parameters, here
the CO2 fluxes, improves with the assimilation of related
observations. It is focused on the direct computation of the
uncertainty in the control parameters. We analyse the uncer-
tainty in the posterior values of the control parameters as a
function of the observation system that is used for the in-
version and the corresponding uncertainty reduction, i.e. the
relative difference between the posterior uncertainty and the
prior uncertainty in the control parameters. The analysis of
this uncertainty reduction is made over 1 d at the local scale
(urban areas, industrial plants) to the scale of administrative
regions in Europe, following the rationale and the general
inverse modelling framework of Santaren et al. (2021). It fo-
cuses on a large part of western Europe, using a regional at-
mospheric transport model with a 2 km horizontal zoom over
northern France, western Germany, Belgium, Luxembourg,
and a large part of the Netherlands.

The assimilation of 14CO2 and CO2 surface data in addi-
tion to XCO2 images and the inclusion of non-FF fluxes of
14CO2 in the inversion framework make use of the larger-
scale inversion framework developed by Wang (2016). It
takes into account not only the 14CO2 emissions from nu-
clear power plants and fuel reprocessing plants but also the
specific isotopic signatures of the heterotrophic respiration
(HR) and net primary production (NPP) by land ecosystems
(Miller et al., 2012; Basu et al., 2016, 2020) and thus solves
for these fluxes separately. It also controls the emissions from
BF burning.

The analytical inversion framework is described in Sect. 2.
Results from the pseudo-data experiments with the assimila-
tion of satellite observations alone are taken as a reference
and presented in Sect. 3.1. Then a larger suite of experiments
combining 14CO2 and CO2 surface and XCO2 satellite ob-
servations is used to assess their complementarity in Sect. 3.2
to 3.3. Section 4 provides some discussions about this inver-
sion framework and a conclusion regarding complementarity
of XCO2 satellite, 14CO2, and CO2 surface observations.

2 Methodology of the inversion

This section presents the high dimensional inversion frame-
work designed in this study for the co-assimilation of CO2
and 14CO2 data. It has strong similarities with the system
developed by Santaren et al. (2021), which assimilates CO2

data only, and it borrows from Wang (2016) to assimilate
14CO2 data. The system relies on the following.

– A local- to regional-scale analytical inversion frame-
work (Wu et al., 2016) presented in Sect. 2.1, which
controls anthropogenic emissions from large cities and
industrial plants in addition to regional budgets of more
diffuse emissions or of natural fluxes at hourly resolu-
tion (see the definition of the control vector in Sect. 2.5).

– A zoomed configuration of the regional atmospheric
transport model CHIMERE (Menut et al., 2013) for
most of western Europe, described in Sect. 2.2.

– Hourly to annual maps of all types of surface CO2
and 14CO2 fluxes, at high spatial resolution from the
CO2 Human Emissions project (CHE, https://www.
che-project.eu/, last access: 25 August 2022), which are
described in Sect. 2.3. They are used to distribute the
local- to regional-scale budgets of the fluxes into corre-
sponding high-resolution flux maps (see Sect. 2.5).

– Simulations of the locations and uncertainty of the
XCO2 retrievals and of the CO2 and 14CO2 ground-
based data as a function of time, for different scenar-
ios of the observing system, as described in Sect. 2.6.
For the XCO2 data, we rely on the simulation of the
CO2M sampling during one satellite pass over the area
of interest generated by the Institut für Umweltphysik
Bremen (IUPB) in the frame of the ESA-PMIF project
(European Spacial Agency, Plume Monitoring Inversion
Framework Wang et al., 2020; Lespinas et al., 2020).

Inversions are conducted over a 1 d window from 00:00
to 24:00 UTC, on 1 July 2015, i.e. in summer when the bio-
genic fluxes are relatively high. The restriction to 1 d is con-
nected to results of Santaren et al. (2021), which show the
lack of sensitivity of observations made during a given day
to the fluxes during other days over the modelling domain,
and to the large computation cost associated with the prepa-
ration of a full day of analytical inversion. With such an in-
version window, wider than the one chosen in Broquet et al.
(2018) or Santaren et al. (2021), the system tracks the signal
from the FF emissions up to 12 h before the satellite over-
pass (see Sect. 2.6.1) and 10 h before the in situ data assim-
ilation window (see Sect. 2.6.2). After a few hours, the air
masses having been transported over typically∼ 30–100 km,
and the signal from individual FF CO2 sources (industrial
plants, cities, regions) is much diffused and hardly detectable
in XCO2 images. Consequently this 1 d timescale is large
enough to represent the full extent of the CO2 FF plumes that
can be exploited in images from CO2M-like instruments to
compute the corresponding emissions (Broquet et al., 2018;
Santaren et al., 2021). The ability to track large-scale bud-
gets of FF emissions over longer time periods relies on com-
plementary observations of FF emission tracers. These trac-
ers, such as the 14CO2 measurements considered here, may
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help filter a relatively low FF signal from the biogenic signal,
which is generally much larger over long distances (Pinty
et al., 2017; Palmer et al., 2006; Fortems-Cheiney et al.,
2021; Sadiq et al., 2021). CO2 and 14CO2 ground-based net-
works could also reinforce the constraint on the FF CO2
emission estimates during the few hours before the satellite
overpass. By starting the inversion window 12 h before the
satellite overpass and 10 h before the first surface measure-
ment, we account for the full window of FF CO2 emission,
the estimate of which can potentially be directly constrained
by these different datasets or by their combination.

2.1 Inversion general equation

Under the assumption that all uncertainties in the inversion
problem have a Gaussian and unbiased distribution, these un-
certainties are fully characterized by their covariance matri-
ces. The inversion uses an observation operator to connect
the control parameters (the flux budgets; see Sect. 2.5) to
the observation vector (the space defined by the ensemble
of pseudo-observations; see Sect. 2.6). Here, by construc-
tion, the observation operator is linear and is denoted H. On
this basis, the analytical Bayesian inversion allows for the
computation of the covariance matrix of the posterior uncer-
tainty (uncertainty in the posterior estimate of the fluxes) A
as a function of H, of the covariance matrix of the prior un-
certainty (uncertainty in the prior estimate of the fluxes; see
Sect. 2.5.2) B, and of the model and observation errors co-
variance matrix R (in the observation space; see Sect. 2.6.3),
following Tarantola (2005):

A=
[
B−1
+HTR−1H

]−1
. (1)

The observation operator H is decomposed, following the no-
tations of Staufer et al. (2016), into

H=HsampleHtranspHdistr. (2)

Hdistr defines (i) the spatial and temporal distribution of the
fluxes within each area corresponding to a control parameter
and beyond the temporal resolution of these control parame-
ters, (ii) the flux budgets to be rescaled by the inversion for
these areas at the control resolution, and (iii) the application
of the isotopic signatures to CO2 fluxes. Here, this operator
is based on the flux products and on the signatures described
in Sect. 2.3.

Htransp is the atmospheric transport operator, correspond-
ing to our configuration of the transport model CHIMERE
described in Sect. 2.2.

Hsample corresponds to the computation of XCO2 and to
the sampling of XCO2 or of near-ground mole fractions of
CO2 and 14CO2 at the observation time and locations from
the output of the CHIMERE model. Section 2.6 provides
more details on this operator.

The H observation operator matrix is built explicitly to
solve for Eq. (1) analytically, which requires an extensive set

of simulations. The different columns of H correspond to the
imprints in the observation space of the different control vari-
ables. They are computed by applying the sequence of oper-
ators Hdistr, Htransp, and then Hsample to each control variable
set to 1, keeping the others null (Broquet et al., 2018). In
practice, the application of the Htransp operator corresponds
to passive tracer transport simulations with the CHIMERE
model which bears non-linearities that are assumed to be
negligible (see Sect. 2.2.1) and thus that are assumed to be
well emulated via the building of H. A generalized H ma-
trix is actually stored for the analytical inversion system to
anticipate any option for Hsample or for the control vector,
by recording the full fields from the application of Hdistr and
Htransp to all control variables considered in this study.

By focusing on the analysis of uncertainties in the control
parameters, this study requires the application of Eq. (1) but
not the actual computation of emission estimates based on
synthetic data. The computation of H is the main and most
demanding step in the preparation of the inversion system. In
addition to this computation, the application of Eq. (1) only
requires the derivation of the B and R matrices, and the inver-
sions of positive-definite matrices corresponding to the con-
trol space. This analytical expression of the inversion frame-
work allows for the uncertainties in the individual control
parameters or for budgets of emissions integrated in space
or in time to be analysed and for many options for the ob-
servation system to be tested despite the dimension of the
high-resolution inversion problem.

2.2 Atmospheric transport

2.2.1 Transport model configuration

The transport operator of CO2 and 14CO2 in the atmosphere,
Htransp, relies on the CHIMERE transport model, driven here
by the Community Inversion Framework (CIF, Berchet et al.,
2021). The domain and the horizontal grid for the CHIMERE
configuration used here are represented in Fig. 1. The domain
covers a part of western Europe (longitude: −6.82 to 19.18◦,
latitude: 42.0 to 56.39◦). The resolution of the horizontal
grid varies between 50 and 2 km. The 2 km× 2 km resolu-
tion zoom covers northern France, Luxembourg, Belgium, a
large part of the Netherlands, and western Germany (longi-
tude: −1.25 to 10.64◦, latitude: 47.45 to 53.15◦). The ver-
tical grid is composed of 29 pressure layers extending from
the surface to 300 hPa (approximately 9 km above the ground
level).

Our configuration of CHIMERE ignores chemistry since
CO2 and 14CO2 are inert species at the timescale considered
in this study (24 h). The actual transport of passive tracers
is linear, but non-linearities arise in the models due to their
inherent discretization of the transport. However, these non-
linearities are small, and this explains why the resulting at-
mospheric transport operator is assumed to be well emulated
via the building of the H matrix. CHIMERE is forced by me-
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Figure 1. CO2 flux map (based on values from the TNO inven-
tory and VPRM simulations for 1 July 2015 at 12:00 UTC) over the
atmospheric transport modelling grid. The red lines delimit the spa-
tial resolution changes within the domain (from 2 to 10 km and then
50 km from the middle to the edges of the domain).

teorological variables provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF) for the CHE
project at 9 km resolution (Agusti-Panareda, 2018). Figure 2
provides indications on the typical horizontal transport con-
ditions during the day of inversions over the area of interest:
on 1 July 2015, a southeast wind over the northeast part of the
domain spreads the atmospheric signature of FF emissions in
the northwest direction.

2.2.2 Simulation of CO2 and 14CO2 transport

In this section, we present a formal decomposition of the
CO2 and 14CO2 transport in order to introduce the notation
and assumptions used in the inversion framework. The de-
composition of the 14CO2 transport and its formulation in a
specific unit (parts per million per mil, ppm ‰) follow that
of Wang (2016).

Ca =Htransp [FFF+FBF+FNPP+FHR]+Hbc [Cbc] (3)

Ca · δa =Htransp [δFF ·FFF+ δBF ·FBF+

δNPP ·FNPP+ δHR ·FHR+

1/Rstd ·FNucl
]
+

Hbc [Cbc · δbc]

(4)

– Ca is the CO2 atmospheric mole fraction.

– Fx terms correspond to different types x of CO2 fluxes
within the transport modelling domain: FF emissions,
BF emissions, NPP, and HR. Of note is that the sign of
fluxes in this equation corresponds to the atmosphere
point of view: they are positive when CO2 is emitted to
the atmosphere and negative when it is absorbed from
the atmosphere. In particular, FNPP is positive when the
NPP is negative.

Figure 2. Morning (a) and afternoon (b) wind averaged in the first
two vertical layers of the CHIMERE grid (i.e. heights between 0
and 28 m above the ground).

– Cbc represents the boundary (top and lateral) and initial
conditions of CO2 mole fraction and Hbc their transport
within the modelling domain, but they are ignored in
this inversion study (see Sect. 2.3.3).

– δa represents the 14CO2/
12CO2 ratios in the atmosphere

(R), normalized by the 14C/12C ratio in the modern
standard ((R/Rstd− 1); Rstd = 1.176× 10−12). Simi-
larly, in the following, all δ values are also normalized
ratios.

– δx represents the 14CO2 isotopic signatures of the fluxes
listed above.

– FNucl corresponds to 14CO2 fluxes from nuclear power
plants.
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2.3 Flux maps

2.3.1 CO2 flux maps

The anthropogenic CO2 emissions, from both FF and BF
combustion, are derived from two inventories of the an-
nual emissions produced by the Netherlands Organisation
for Applied Scientific Research (TNO) over Europe for
the year 2015 (Denier van der Gon et al., 2017; Super
et al., 2020). These inventories provide emission maps
for 15 activity sectors following the Gridded Nomencla-
ture For Reporting (GNFR) of the United Nations Frame-
work Convention on Climate Change (UNFCCC). The emis-
sions in the 2 km resolution area of the domain are in-
terpolated from a ∼1 km (1/60◦×1/120◦) resolution inven-
tory (TNO_GHGco_1×1km_v1_1), which entirely covers
this area but not the whole CHIMERE domain (its extent
being −2 to 19◦ in longitude and 47 to 56◦ in latitude).
The emissions in the rest of the CHIMERE domain are in-
terpolated from a ∼ 6 km (1/10◦×1/20◦) resolution inven-
tory (TNO_GHGco_v1_1, covering −30 to 60◦ in longitude
and 30 to 72◦ in latitude). These data are projected on the
CHIMERE horizontal grid ensuring mass conservation. The
temporal disaggregation at an hourly scale is based on coef-
ficients provided with the TNO inventories for each sector of
activity and as a function of the time zones provided in the
CHE project (Marshall et al., 2019). Emissions from point
sources are projected on the CHIMERE vertical grid with
coefficients depending on the activity sectors (Bieser et al.,
2011), also provided with the TNO inventories, while emis-
sions from diffused sectors of activity (traffic, heating, etc.)
are emitted from the ground in the model.

No distinctions between CO2 BF emissions from woods
and crops are made in the TNO inventories. However this
split is needed to derive 14CO2 fluxes (see below). Conse-
quently, assumptions are made based on emission categories
used in the TNO inventory. In this study, we consider that
BF from woods is burned in power plants and in the indus-
try and residential sectors only, i.e. in categories A to C. BF
from crops is burned in categories F and L only, which corre-
spond to road transport and agriculture. We assume that the
BF emissions from the other sectors are negligible since they
represent less than 2 % of the total BF emissions in the vast
majority of countries.

The CO2 biogenic fluxes are interpolated from simula-
tions at 1 h and 5 km resolution with the VPRM model (Veg-
etation Photosynthesis and Respiration Model, Mahadevan
et al., 2008) for the year 2015, provided by MPI-Jena over
Europe (over latitude 31 to 68.7◦, longitude −35.5 to 60.5◦).
The VPRM simulations provide estimates of gross primary
production (GPP) and total respiration. However, we need to
split the biogenic fluxes into NPP and HR since they bear
different isotopic signatures. Therefore, we recombine GPP
and respiration from VPRM into NPP and HR fluxes, us-
ing daily partition coefficients (αHR) that are derived from

ORCHIDEE-MICT simulations at 0.5◦ resolution over Eu-
rope in 2015 (Guimberteau et al., 2018). The total biogenic
fluxes correspond to the net ecosystem exchange (FNEE =

FNPP + FHR = FGPP + FResp).
The total CO2 fluxes for 1 July 2015 at 12:00 UTC are

presented in Fig. 1.

2.3.2 Isotopic signatures and 14CO2 flux maps

To produce 14CO2 fluxes, corresponding isotopic signatures
are applied to the CO2 fluxes.
δFF =−1000‰ was applied to FFF for the whole year and

domain.
We distinguish δBF,wood from δBF,crop because crops and

wood have a different age at harvest, resulting in different
14C abundance. In a first approximation, we determined these
δBF values as a spatial and temporal average of 14CO2 con-
tent in vegetation, δbiomass, simulated with the emulator of the
ORCHIDEE-MICT model (Guimberteau et al., 2018; Naipal
et al., 2018; Wang, 2016) over the whole ORCHIDEE-MICT
Europe domain in 2015, selecting the relevant plant func-
tional types (PFTs): non-tropical trees for δBF,wood and crops
for δBF,crop. Such a computation of δBF relies on the hypoth-
esis that the wood or crop fuel burnt in Europe comes from
European (European Commission et al., 2017) and recently
cut vegetation. As a result, δBF,wood = 95 ‰ and δBF,crop =

19 ‰.
δNPP monthly maps at 5 km spatial resolution were derived

for application to the VPRM biogenic fluxes:

δNPP = δa,surf− ε, (5)

where δa,surf is the radiocarbon signature in the surface at-
mospheric layer and ε is the sum of kinetic and enzymatic
14CO2 fractionation with respect to 12CO2 depending on the
C3 or C4 photosynthesis pathway of the vegetation.

Monthly background measurements of the radiocarbon ra-
tio in the conventional definition (114C, Stuiver and Po-
lach, 1977) are available, in 2015, at Schauinsland in Ger-
many (Hammer and Levin, 2017). The conversion to the nor-
malized ratio, δa,surf, is done following Stuiver and Polach
(1977), with δ13C from Graven et al. (2017). The resulting
δa,surf varies between 46 ‰ and 49 ‰. Here, we neglect the
impact of variations in this δa,surf at high spatial and tempo-
ral resolution on the 14CO2 NPP fluxes themselves. Account-
ing for such variations for a precise computation of the δNPP,
and so 14CO2 NPP fluxes, would have required a dynamical
computation with δa,surf depending on 14CO2 mole fractions
calculated by the transport model and would have introduced
non-linearities. Accounting for such non-linearities in the ob-
servation operator would have required a complex inversion
framework including the use of synthetic data and the itera-
tive linearization of the observation operator into an evolving
H matrix (Wang, 2016). However, over 1 d, these variabilities
within each region and month are assumed to be negligible
as was found by Wang (2016).
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The value of ε is 36 ‰ for C3 vegetation and 8 ‰ for C4
vegetation as described by Wang (2016) from Farquhar et al.
(1989) and Degens (1969). We derive the C3–C4 distribu-
tion on the VPRM grid and per month, from the combina-
tion of three land cover maps: the VPRM and ORCHIDEE
land cover maps and monthly MIRCA2000 crop map (Port-
mann et al., 2010). This combination allows us to capitalize
on the high spatial resolution of the VPRM land cover map at
5 km derived from SYNMAP at 1 km resolution (Jung et al.,
2006) and a more precise PFT information in ORCHIDEE
land cover maps at 0.5◦ resolution to determine the C3 or
C4 photosynthesis type. In the case of the crop PFT, the
MIRCA2000 crop map at ∼ 0.08◦resolution indicates the
surface area covered by each crop type, and thus the rele-
vant photosynthesis type, with a finer resolution than in OR-
CHIDEE and with the monthly variability of the year 2000.
The resulting δNPP varies between 10 ‰ and 41 ‰.
δHR daily maps for the year 2015 are derived from simu-

lations with the above-mentioned ORCHIDEE-MICT emu-
lator. For each grid cell, the daily CO2 and the correspond-
ing 14CO2 emissions from litter respiration and three types
of soil respiration were aggregated. Their ratio, δHR, is then
interpolated from the ORCHIDEE-MICT grid to the VPRM
grid. The resulting δHR varies between 22 ‰ and 177 ‰.

Nuclear 14CO2 emissions are calculated following Graven
and Gruber (2011) based on the annual activity of each reac-
tor, in 2015, reported in Zazzeri et al. (2018). For each reac-
tor, activity data A in TBq yr−1 is converted into 14C produc-
tion in kg14C yr−1:

FNucl = A×α× 109, (6)

with α = Rstd/0.226, where 0.226 Bq gC−1 is the conversion
factor from activity to carbon production.

2.3.3 Ignoring ocean fluxes, cosmogenic production,
biomass burning emissions, and the regional
boundary conditions

This study is focused on the analysis of uncertainties and of
their propagation between the control and observation space.
Therefore, the components that have to be taken into account
in the transport simulation are those which bear uncertainties
whose impact is accounted for or those which interfere with
the transport of the components which bear uncertainties.

The impact of the uncertainties in the initial condition
(at 00:00 UTC on 1 July 2015) and in the boundary condi-
tions (at the lateral and top boundaries of the CHIMERE do-
main) are assumed to be negligible. The analysis by Santaren
et al. (2021) suggests that the large-scale uncertainties should
not have a large impact on the results, due to the good dis-
tinction between smooth background signal from the ini-
tial and boundary conditions and the imprints of the local
and regional fluxes. Furthermore, the fine-scale uncertainties
should have a limited impact at the observation times due to
the 10 h time lag between the initial conditions and the first

observations (see Sect. 2.6.2) and since the model boundaries
are quite far from the area of interest. These conditions are
thus ignored in the definition of our inversion problem and in
the atmospheric transport operator.

Regarding the CO2 (and thus 14CO2) ocean fluxes, we
also assume that they can be neglected here because the
CHIMERE domain is mostly continental.

The cosmogenic production of 14C becomes significant
above ∼ 700 hPa, well above the planetary boundary layer
(Turnbull et al., 2009), while we are interested in simulating
14CO2 mole fractions near the ground. Even though we use
some high-altitude stations, we can assume that most of the
influence from the cosmogenic production at these surface
stations comes from the model lateral boundaries and that
the cosmogenic production within the modelling domain can
be neglected.

CO2 and 14CO2 biomass burning emissions are also ne-
glected since they are generally relatively weak in our mod-
elling domain (especially in the 2 km resolution part of the
modelling grid on which the analysis focuses).

2.4 Resulting CO2 and 14CO2 fields

Figure 3 illustrates the resulting signals simulated with
CHIMERE at 12:00 UTC, on 1 July 2015, after 12 h of simu-
lation. The CO2 (Fig. 3a) and 14CO2 (Fig. 3b) mole fraction
surface fields and the XCO2 2D field (Fig. 3c; as computed
from the CHIMERE 3D fields; see Sect. 2.6.1) reveal the
fine-scale patterns associated with the anthropogenic emis-
sions (with a strong negative amplitude up to −10 ppm ‰ in
the 14CO2 field) and larger-scale variations associated with
biogenic fluxes and diffuse emissions. The 14CO2 field also
shows the positive signature from the nuclear emissions and,
in particular, the plume from the La Hague nuclear reprocess-
ing plant with large values, which can exceed 80 ppm ‰.

2.5 Control vector

2.5.1 Definition of the control vector

The control vector is spatialized based on a decomposition
of the flux maps into large or administrative regions, large
urban areas, and large industrial plants.

The study focuses on a set of 23 regions, called “the main
area of interest” hereafter: the nine administrative regions of
Belgium, Luxembourg, seven administrative regions of the
southern Netherlands, three administrative regions in north-
ern France, and three administrative regions in western Ger-
many (all comprised in the 2 km× 2 km resolution zoom of
the CHIMERE grid; see Fig. 4).

In this main area of interest, the CO2 FF emission bud-
gets from major industrial plants (22 plants for which the
annual emissions exceed 1 MtC for CO2, FFPS; see the dots
in Fig. 8a) and the FF, BFwood, and BFcrop CO2 emission
budgets from the large urban areas (the 42 urban areas repre-
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Figure 3. CO2 (ppm) and 14CO2 (ppm ‰) mole fractions at the surface and XCO2 (ppm) at 12:00 UTC, on 1 July 2015: simulations from
00:00 to 12:00 UTC , without initial and boundary conditions.

Figure 4. Main area of interest, i.e. the 23 administrative regions
where major urban areas (contours of the urban areas also repre-
sented here) and point source emissions are controlled separately
for anthropogenic emissions in the 2 km× 2 km resolution zoom of
the CHIMERE transport model. The names of these administrative
regions are listed in Table 1. Ground-based 14CO2 and CO2 obser-
vation sites are also shown (red dots; see Fig. 7, for the network on
the whole domain).

sented in Fig. 4) are controlled separately. In each of these 23
regions, the budget of the rest of the FF, BFwood, and BFcrop
CO2 emissions is controlled separately. Outside this main
area of interest, the FF, BFwood, and BFcrop CO2 emission
budgets of 43 administrative or larger regions are controlled
(Fig. 5).

Single 14C signatures of the BFwood and BFcrop fluxes are
controlled assuming that they apply over the whole mod-
elling domain. The 14C fluxes from 47 nuclear power plants,
across the whole modelling domain, are separately con-
trolled.

Biogenic fluxes and isotopic signatures (NPP, HR, and
δHR) are only controlled at the resolution of the 66 adminis-
trative regions and larger areas (23 in the main area of interest

Table 1. List of areas of control in the main area of interest and
corresponding number of stations in these areas.

Number of
Number Area name stations

1 Île-de-France 3
2 Lorraine 1
3 Nord-Pas-de-Calais 1
4 North Rhine-Westphalia 3
5 Rhineland-Palatinate 1
6 Saarland 0
7 Gelderland 0
8 Limburg 1
9 North Brabant 3
10 Utrecht 1
11 Zeeland 1
12 Scheldt (see) 0
13 South Holland 0
14 Luxembourg 1
15 Brabant/Brussels 1
16 Anvers 0
17 Limburg 0
18 East Flanders 0
19 West Flanders 0
20 West Hainaut 0
21 East Hainaut 0
22 Liege 0
23 Namur/Luxembourg 0

and 42 outside, Fig. 5); i.e. the spatial resolution of the con-
trol vector is nearly the same as for anthropogenic emissions,
but it does not isolate urban areas and major point sources.

The control vector is actually composed of scaling factors
to be applied to maps of local (from plant and urban area)
and regional fluxes from the products presented in Sect. 2.3
over these spatial control areas at a 1 h temporal resolution
except for the 14C signature of the HR, of wood burning,
and of crops BF emissions which are controlled at the daily
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Figure 5. Administrative regions and coarser areas for which the
biogenic flux budgets and the anthropogenic emission budgets (with
more details for regions highlighted in Fig. 4) are controlled. The
red line delimits the 2 km× 2 km resolution zoom of the CHIMERE
transport model.

scale. Indeed, anthropogenic emissions and biogenic fluxes
of CO2 can have a high temporal variability at the hourly
scale. While the product used to define the component of
Hdistr corresponding to nuclear emissions is based on annual
values (see Sect. 2.3), the actual nuclear emissions can vary a
lot at fine temporal scales (studies such as that of Cany et al.,
2018, show large variations in the nuclear production of in-
dividual sites, and the emissions may actually be primarily
driven by maintenance processes). The composition of the
control vector is summarized in Table 2.

2.5.2 Prior error covariance matrix B

B is built assuming a 3 h temporal auto-correlation of the
prior uncertainty in hourly budgets for each type of con-
trolled flux. An exponentially decaying function is used to
model these temporal correlations: e−d/3, where d is the time
lag, expressed in hours, between two hourly fluxes. We also
assume that there is no correlation of the prior uncertainties
in space (between different point sources, urban areas, and
regions) or between different types of fluxes or isotopic sig-
natures. The standard deviations of the prior uncertainties in
control parameters for individual spatial areas at a daily scale
are set to 30 % for FF and BF emissions, to 100 % for 14C sig-
natures, and to 60 % for biogenic fluxes (Table 3). The result-
ing standard deviations of prior uncertainty in regional 24 h,
morning, and afternoon budgets of FF emissions in the main
area of interest range from 10 % to 45 % (Table 4). Hereafter,
when analysing uncertainties in temporal budgets of fluxes,
“morning” and “afternoon” are used to designate the time
windows 06:00–13:00 and 13:00–19:00 UTC, respectively.

Figure 6. Simulation of the XCO2 sampling and observation er-
ror standard deviation (by IUPB in the ESA-PMIF project) for a
selected orbit of the spectral imaging satellite, in parts per million
(ppm).

2.6 Observation vector and corresponding sets of
experiments

2.6.1 Satellite observations from an XCO2 spectral
imager similar to CO2M

Some of the experiments assimilate pseudo-retrievals of
XCO2 from a single orbit of a CO2M-like satellite passing
over western Europe at 12:00 UTC. The simulation of these
XCO2 satellite observations is based on the simulations of
the CO2M 2 km resolution sampling, with a∼ 300 km swath,
and L2 error statistics in the surface and atmospheric condi-
tions for the year 2014 from the ESA-PMIF project (Wang
et al., 2020; Lespinas et al., 2020). These simulations ac-
count for cloud cover, which is moderate for the selected
orbit (Fig. 6). The observation vector is defined by the indi-
vidual cloud-free pixels of the satellite. The extraction of this
observation vector from the model outputs is made by select-
ing the model grid cells in which the centres of these pixels
are located. The spatial resolution of our transport model in
the area of interest is similar to that of the satellite observa-
tion. However, since the satellite ground pixels do not per-
fectly correspond to the model grid cells in this area, some
model grid cells can correspond to several observations. In
the coarser part of the model grid, model grid cells corre-
spond to several observations.

XCO2 is computed from the CHIMERE 3D fields of CO2
following the rationale of Santaren et al. (2021), notably as-
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Table 2. Number of parameters in the control vector. The control vector is composed of scaling factors to be applied to budgets and maps of
local and regional fluxes from the products presented in Sect. 2.3 (FFPS, FFother, BFcrop, BFwood, NPP, HR, 14CBFcrop, 14CBFwood, 14CHR,
and Nucl). This table gives number and type of areas in the control vector: 66 administrative or coarser regions (Reg) defined in Fig. 5 and
more detailed areas in the main area of interest. PS: point source emissions, UA: large urban area emissions, NUA: non-urban area i.e. the
rest of the region when excluding the UA and domain: whole domain budget. In a 24 h inversion window, 24 temporal parameters correspond
to 1 h temporal resolution and one parameter corresponds to daily resolution.

FFPS FFother BFcrop BFwood NPP HR 14CBFcrop
14CBFwood

14CHR FNucl

Spatial In main area 22 PS 42 UA 42 UA 42 UA
of interest – 23 NUA 23 NUA 23 NUA 66 Reg 66 Reg 1 Domain 1 Domain 66 Reg 47 PS

Outside 43 Reg 43 Reg 43 Reg

Total 22 108 108 108 66 66 1 1 66 47

Temporal 24 24 24 24 24 24 1 1 1 24

Total 528 2592 2592 2592 1584 1584 1 1 66 1128

Control vector size 12 668

Table 3. Standard deviations of the prior uncertainties in 24 h budgets of controlled fluxes or in controlled isotopic signatures for each control
area.

FFPS FFother BFcrop BFwood NPP HR 14CBFcrop
14CBFwood

14CHR Nucl

Prior uncertainty (%) 30 30 30 30 60 60 100 100 100 100

Table 4. Range of standard deviations of the prior uncertainty in
regional 24 h, morning, and afternoon budgets of FF emissions in
the main area of interest. These budgets include the urban areas and
point sources within the regions

Prior uncertainty
in regional budget (%) 24 h Morning Afternoon

Min 10 15 16
Mean 20 29 31
Max 30 43 45

suming a constant vertical weighting function:

XCO2(lat, lon)

=

CO2(Ptop)×Ptop+
∫ Psurf(lat,lon)
Ptop

(CO2(lat, lon,P )× dP)

Psurf(lat, lon)
, (7)

where “lat” and “lon” are the latitude and the longitude, re-
spectively, and P is the atmospheric pressure. Psurf is the sur-
face pressure, and Ptop (300 hPa) is the pressure at the top
boundary of the model. For pressures lower than Ptop, we as-
sume that the CO2 mole fractions equal the horizontal aver-
age of the top-level mixing ratios in CHIMERE (CO2(Ptop)).

2.6.2 Ground-based network

We use a surface network (Fig. 7) of 113 stations in our
modelling domain that are located following the scenario
proposed by Marshall et al. (2019). This scenario is based

on existing continuous CO2 measurement sites of the In-
tegrated Carbon Observation System (ICOS, https://www.
icos-cp.eu/, last access: 25 August 2022), other air sampling
stations of the National Oceanic and Atmospheric Admin-
istration (NOAA), and the Global Atmosphere Watch Pro-
gramme of World Meteorological Organization (GAW, https:
//community.wmo.int/activity-areas/gaw, last access: 25 Au-
gust 2022), but also local meteorological or air quality sam-
pling stations and local science and engineering faculties. We
assume that these stations have appropriate infrastructures
and locations to observe atmospheric CO2 and 14CO2.

The sampling height at these stations ranges between 10
and 344 m above the ground level. We assume that all sta-
tions of this network simultaneously measure CO2 and/or
14CO2. In order to simplify the pseudo-data framework and
since the main area of interest has a relatively low and flat
topography, each virtual site is assumed to provide hourly
CO2 data that are suitably assimilated between 10:00 and
17:00 UTC and/or a 7 h average sample of 14CO2 over
10:00–17:00 UTC, following the common practice of assim-
ilating data from low-altitude stations only when the plane-
tary boundary layer (PBL) is well developed (Broquet et al.,
2011; Monteil et al., 2020; Munassar et al., 2022). The avail-
ability of CO2 7 h averages when deriving 14CO2 7 h aver-
ages from air samples is ignored.
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Figure 7. Ground-based 14CO2 and CO2 observation networks. A
total of 113 stations located following the scenario proposed by
Marshall et al. (2019), based on real or potential observation net-
works (ICOS, NOAA, GAW, more details in Sect. 2.6.2).

2.6.3 Observation error covariance matrix R

The matrix R combines the uncertainty in the data that are
assimilated and the corresponding uncertainty from the ob-
servation operator. Here we assume that the uncertainty in
the observation operator is dominated by that of the transport
model and we ignore temporal and spatial auto-correlations
in these uncertainties. The representation and aggregation
errors associated with the spatial and temporal resolutions
of the transport model and control vector (Kaminski et al.,
2001; Wang et al., 2017) are assumed to be small in the main
area of interest since these resolutions are relatively high for
this area in our inverse modelling framework. They are ne-
glected over the whole domain. For individual data, the stan-
dard deviation of the observation error is therefore

σobs =

√
σ 2

meas+ σ
2
mod. (8)

For satellite observations, σmeas is the uncertainty in the
CO2M XCO2 data as simulated by IUPB. These values are
represented in Fig. 6. σmod is taken as 1 ppm for individual
data (Basu et al., 2018; Marshall et al., 2019). As described
in Sect. 2.6, since the satellite ground pixels do not perfectly
correspond to the model grid cells, some model grid cells
can correspond to several observations. We assume that the
observation errors are uncorrelated: the aggregation ofN ob-
servations results in decreasing errors by a factor 1/

√
N .

For the near-surface CO2 and 14CO2 observations, the
configuration of σmeas follows the guidelines of Marshall
et al. (2019, Tables 5-1 to 5-3).

– The uncertainty in CO2 hourly measurements is taken
as the target measurement uncertainty, σCO2,meas =

0.05 ppm.

– The 1σ uncertainty on 14CO2 7 h data is taken as
200 ppm ‰, based on the following uncertainty prop-
agation:

σ14CO2,meas

=

√(
CO2× σδ14C,meas

)2
+

(
δ14C,a× σCO2,meas/

√
7
)2
, (9)

with

– CO2 the atmospheric mole fraction set to 400 ppm,

– the atmospheric δ14C,a set to 40 ‰,

– σCO2,meas/
√

7, the CO2 measurement uncertainty at
the 7 h scale, assuming that there is no autocorrela-
tion in the CO2 measurement errors at the hourly
scale,

– σδ14C,meas = 0.5 ‰ the δ14C measurement uncer-
tainty at the 7 h scale.

We use the estimate of the model error from Marshall
et al. (2019, Tables 5-2 and 5-3 ): σCO2,model =1 ppm and
σ14CO2,model = 1.26× 10−12 ppm multiplied by a coefficient
ranging between 1 and 5. This coefficient corresponds to the
amplitude of the variability of the signal and to the level of
complexity for the transport simulation at the different types
of stations: 1.0 for tall towers, 1.5 for mountain sites, 3.0
for continental low-altitude stations, and 5.0 for sites within
urban areas or close to strong sources. For 14CO2, the con-
version was done from ppm to ppm ‰ by multiplying by
1000/Rstd. Ignoring autocorrelations in the model error at
the hourly scale, the model error for 7 h 14CO2 mean mole
fraction data is taken as 1/

√
7 times the model error derived

at the 1 h scale.
The range of the resulting error statistics on the different

types of data and from the model are reported in Table 5.

2.6.4 List of experiments

Table 6 provides labels for the different sets of experiments
as a function of the sets of pseudo-observations that are as-
similated, using or combining the satellite data, the surface
CO2 data, and/or the surface 14CO2 data. The problem of
the attribution of inferred fluxes to FF or BF emissions, to
NEE, or to nuclear emissions is investigated by conducting
sensitivity tests in which the NEE, the BF emissions, or the
nuclear emissions are ignored, i.e. assuming no uncertainty
in these fluxes. For the sake of simplicity, we do not define
specific labels for this, and the text will clarify whenever di-
agnostics refer to these tests “without BF emissions, NEE, or
nuclear emissions”.

2.7 Diagnostics

When analysing the results from the inversions and assessing
the potential of the different types of observation networks,
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Table 5. Data, model, and observation operator 1σ uncertainty.

Error Near-surface Satellite

Meas Model Obs Meas Model Obs

CO2 (ppm) 0.05 1 to 5 1 to 5 0.38 to 0.75 1 1.07 to 1.11
14CO2 (ppm ‰) 200 405 to 2025 451 to 2034

Table 6. List of performed experiments.

Inversion system observations Name

Satellite XCO2 INV-SAT
Surface CO2 INV-CO2
Surface 14CO2 INV-14C
Satellite XCO2 + surface CO2 INV-SAT-CO2
Satellite XCO2 + surface 14CO2 INV-SAT-14C
Satellite XCO2 + surface CO2 + surface 14CO2 INV-SAT-CO2-14C

we focus on the standard deviation of the prior and posterior
uncertainties in flux budgets, and on their relative difference
(called uncertainty reduction or UR hereafter):

UR= 1−
σpost

σprior
. (10)

Our analyses are focused on budgets for regions in the
2 km resolution area and more particularly in the main area
of interest as defined in Fig. 4.

To evaluate the impact of ground-based networks, we also
define1URRef

Test as the difference between UR for 24 h FF re-
gional budgets, with a test configuration and UR with a refer-
ence configuration: 1URRef

Test=URtest−URRef. In these cases
the reference configurations are the ones when assimilating
the data from the satellite track, either alone or with CO2 data
from the ground network (INV-SAT and INV-SAT-CO2; see
Table 6).

3 Results

3.1 Potential of the satellite observations as a
standalone observation system

This section describes results when assimilating the data
from the satellite track only, i.e. results from the INV-SAT
inversion.

3.1.1 General results in the morning

This section focuses on results on morning budgets for which
the constraint in the inversion from the satellite observation
is the highest. Indeed, the maximum UR for regional morn-
ing budgets reaches 32 % against 3 % for afternoon budgets
(Table 7).

Figure 8 shows the example of a panel of URs from INV-
SAT, for the morning budget of CO2 fluxes, at the scale of

point sources to that of regions. The URs for the morning
budgets of large industrial plant emissions (FFPS) are signif-
icant in the satellite field of view (FOV, corresponding to the
vertical projection of the satellite image on the ground), with
values larger than 50 % (Fig. 8a), but are marginal outside
this FOV. The northwest direction of the wind on the day
of analysis (see Sect. 2.2) explains that the observation foot-
print appears to be slightly extended out of this FOV, in the
east, with, for example, significant UR in the region of Essen.
URs are also significant for other fossil fuel emission bud-
gets (FFother) and HR (heterotrophic respiration, as defined
above) in the satellite FOV, with URs up to 50 % and more.
The UR for NPP is much larger than for the other fluxes.
This can be explained by the fact that the level of UR for a
given flux is strongly driven by the ratio in the observation
space between the imprint of the uncertainty in this flux and
that of the uncertainty in the other fluxes added to the ob-
servation and transport model errors. The NPP is relatively
large in July and thus bears a large absolute uncertainty with
a widespread imprint, so that this ratio is high for this flux.
The UR for BF emissions is generally much smaller than for
the FF emissions. The much weaker level of emissions re-
lated to BF combustion explains the lack of UR for this type
of fluxes.

3.1.2 Uncertainties in FF emissions

The uncertainty reductions for the 24 h regional budgets of
FF emissions (regional budget aggregate emissions from ur-
ban areas, point source, and the rest of the regions here-
after) range from 0 % to 18 % in the main area of inter-
est (Fig. 10a, Table 7). The URs are similar or rise in a
range from 0 % to 32 % for the regional morning budget
(Fig. 9a and Table 7). Larger emission budgets generally lead
to larger URs. However, for similar or lower emission bud-
gets (median 8 vs. 14 kTCO2 d−1, respectively), URs are sig-
nificantly higher for emissions from urban areas than for the
other regional emissions (max 18 % vs. 10 %, respectively)
since dense emissions areas generate atmospheric signatures
with large amplitudes that are easier to filter from other sig-
natures and from the observation noise than more extended
but more diffuse emissions areas (Santaren et al., 2021). URs
for the afternoon emissions entirely rely on the specification
of 3 h temporal auto-correlation in the prior uncertainties in
the emissions since these afternoon emissions are not directly
seen by the satellite in our regional inverse problem with a

Atmos. Meas. Tech., 15, 5261–5288, 2022 https://doi.org/10.5194/amt-15-5261-2022



E. Potier et al.: XCO2, CO2, and 14CO2 data to monitor FFCO2 emissions 5273

Table 7. Best score statistics of the uncertainty reductions (UR max for the highest UR) and the posterior uncertainty (Post min for the
smallest posterior uncertainty) in inversions with and without NEE, for regional 24 h, morning, and afternoon FF emission regional budgets.
In the main area of interest, these budgets combine emissions from urban areas, large plants, and the more diffuse regional sources.

Uncertainties (%) INV-SAT INV-CO2 INV-SAT-CO2 INV-14C INV-SAT-CO2-14C

With NEE
24 h

UR max 18.4 12.6 23.6 23.0 32.9
Post min 8.0 8.6 7.5 7.6 6.6

Morning UR max 32.4 17.7 37.8 32.7 50.8
Post min 10.0 12.2 9.2 10.0 7.3

Afternoon UR max 2.9 14.7 15.8 10.8 20.5
Post min 15.6 14.9 14.6 15.1 14.0

Without NEE
24 h

UR max 32.2 26.4 39.2 23.4 40.7
Post min 6.7 7.2 6.0 7.5 5.8

Morning UR max 59.9 36.9 64.4 33.3 66.0
Post min 5.9 9.3 5.3 9.9 5.0

Afternoon UR max 3.9 17.0 17.0 10.8 21.2
Post min 15.5 13.7 13.4 15.1 13.2

satellite overpass at 12:00 UTC. Consequently, URs are low
for all types of sources. Figure 9b and Table 7 show URs for
afternoon regional budgets ranging from 0 % to 3 %. Over-
all, the results show contrasting capacities for the monitor-
ing of the FF emissions. The scores of URs result in vari-
ous levels of precision on the emission estimates, with 8 %
to 30 % posterior uncertainties in 24 h and regional budgets
of FF emissions in the main area of interest (Table 7). The
lack of constraint outside the satellite FOV and during pe-
riods other than the morning confirms the need for comple-
mentary data to extrapolate the information derived from the
satellite observations in space and time.

3.1.3 Impact of NEE and BF emissions on FF emissions
uncertainties

The UR for NEE is much larger than for the FF emissions
(Fig. 9b and c) while the UR for BF emissions is generally
much smaller than for the FF emissions (Fig. 8). The problem
of the attribution of inferred fluxes to FF emissions, NEE,
or BF emissions is investigated with the sensitivity tests in
which the NEE or BF emissions are ignored (results when
ignoring BF emissions are not shown in the figures and ta-
bles for the reasons given below). The INV-SAT experiment
ignoring the NEE shows significantly larger URs for the FF
regional 24 h budgets (Fig. 10), up to 60 % in the satellite
FOV, for the FF regional morning budget (Table 7, without
NEE). This increase in the URs yields posterior uncertainties
in 24 h regional budgets which can reach values as low as
6.7% in the satellite FOV (Table 7).

The sensitivity of the INV-SAT experiment to the inclusion
of BF emissions shows a very weak impact of BF emissions
on the UR for FF emissions (not shown) even though the
spatial distribution of these two types of emissions is strongly

correlated. This is directly attributed to the weak amplitude
of BF emissions compared to FF emissions. Typically, the
posterior uncertainty in the FF emissions (6 % to 30 % of the
24 h BF+FF emission budget) is much larger than the prior
uncertainty in BF emissions (0 % to 7 % of the 24 h BF+FF
emission budget).

3.2 Potential of the ground-based hourly CO2 network

This section evaluates the impact of co-assimilating data
from the ground-based hourly CO2 network and the potential
complementarity between the satellite and the CO2 ground-
based hourly observations. This evaluation is based on the
analysis of INV-CO2 and INV-SAT-CO2 and comparisons
with the results from INV-SAT.

3.2.1 General results for the FF emissions

INV-CO2 (Fig. 11) reveals the limited role of the horizon-
tal atmospheric transport near the surface to propagate URs
from regions with several measurement stations to other re-
gions. URs of more than 4 %, median at 12 %, and maxi-
mum at 13 %, for 24 h budgets can be achieved in regions
with three stations, like Île-de-France (Reg. 1, 12 %) and
North Rhine-Westphalia (Reg. 4, 13 %) in the main area of
interest (see also Fig. A1), or in regions with more stations
outside this area like southeast England (10 %) and Baden-
Württemberg (26 %), which have five stations. However, the
UR can also be much lower in regions with many stations,
e.g. for Lower Saxony and Bremen, which have five sta-
tions but a 4 % UR. UR in regions with one or two stations
ranges between 0 % and 6 %. The URs are generally below
1 % for other regions. These URs reach lower or comparable
values than in the INV-SAT experiment in the main area of
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Figure 8. Uncertainty reduction in INV-Sat inversions: for morning
budgets of large plants (a, FF_PS, magenta circled dots), other FF
(b) and BF (c, crop and wood) emissions (urban area and rest of the
region budgets), net primary production (d, NPP), and heterotrophic
respiration (e, HR) (regional budgets). Stripes are indicative of the
satellite field of view (see Fig. 6 for the full track).

interest (Fig. A1, Table 7). However, outside the main area
of interest, Baden-Württemberg reaches a higher value than
the largest one with the INV-SAT experiment (Rhineland-
Palatinate, Reg. 5, 18 %).

Of note is that the highest UR in the whole inversion do-
main (47 % for 24 h budgets and 56 % for morning budgets)
corresponds to large regions of the coarse-resolution area of
the transport model (not represented in Fig. 11). This result
is primarily driven by the extrapolation of information from
the sites to the coarse model grid cells and further to the
whole extent of the control areas in which they stand, which
is suitable here because of the optimistic lack of account for

Figure 9. Uncertainty reduction in INV-Sat inversion: for morning
(a, c) or afternoon (b, d) budgets of FF and biogenic fluxes (NEE).
Stripes are indicative of the satellite field of view (see Fig. 6 for the
full track).

Figure 10. Uncertainty reduction in INV-Sat inversion with (a) and
without (b) NEE, for 24 h budgets of FF emissions. Stripes are in-
dicative of the satellite field of view (see Fig. 6 for the full track).

the representation and aggregation errors that impact obser-
vations in the coarse-resolution part of the transport and in-
verse modelling domains (see Sect. 2.6). This optimistic bias
from the inversion configuration would actually result in rep-
resentation and aggregation errors when conducting experi-
ments with real data. The difficulty to characterize these er-
rors (Wang et al., 2017) justifies and supports the use of the
finer-resolution control vector in the main area of interest and
the focus of our analysis on the 2 km resolution model sub-
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Figure 11. Uncertainty reduction in INV-CO2 (a, c) and INV-Sat-
CO2 (b, d) inversions: for 24 h budgets of FF emissions and bio-
genic fluxes (NEE). Stripes are indicative of the satellite field of
view. Green dots indicate the ground stations.

domain. Unlike satellite data alone in INV-SAT, the ground-
based CO2 data constrain both afternoon and morning emis-
sion estimates, with URs of 4 % to 18 % and 4 % to 15 %, re-
spectively, for morning and afternoon regional budgets of FF
emissions in the regions with three or more stations (Figs. A3
and A4).

3.2.2 Co-assimilation of the satellite observations

Only one region of the 2 km resolution model subdomain
with three stations is located in the satellite FOV: North
Rhine-Westphalia. When comparing the URs for the 24 h re-
gional budgets of FF emissions from INV-SAT-CO2 to that
from INV-SAT and INV-CO2 (Table 8, Fig. A1) two signifi-
cant changes can be seen. The first one is the decrease of 5 %
in the posterior uncertainty for this region, i.e. less than the
UR for this region in INV-CO2 (12 %). The second one is
the increase in UR for the regions outside the satellite FOV
with more than three ground-based stations from nearly 0 %
to values that are nearly the same as in INV-CO2. The URs
at a 24 h scale in INV-SAT-CO2 are smaller than the addition
of URs in the INV-SAT and INV-CO2 experiments (Figs. 12
and A1)

The ground-based CO2 data constrain both afternoon and
morning emission estimates, with URs of 3 % to 30 % and of
1 % to 27 %, respectively, for morning and afternoon regional
budgets of FF emissions in the regions with three or more sta-
tions (data not shown). The comparison between results for
afternoon budgets of the FF emissions from INV-SAT-CO2
and INV-SAT shows again, in INV-SAT-CO2, an increased
UR that is smaller than the sum of the URs obtained in INV-
SAT and INV-CO2 (Table 7). Combining the satellite data
with the afternoon data from the ground network does not
increase the ability to extrapolate the spatially widely spread
information from these satellite data to the afternoon.

3.2.3 Impact of NEE and BF emissions on FF emissions
uncertainty

INV-CO2 and the results of INV-SAT-CO2 outside the FOV
of the satellite show different situations regarding the com-
parison between UR for NEE and FF emissions (Fig. 11). In
regions with large cities and industrial plants (like the Paris
area and Baden-Württemberg), the URs for NEE are smaller
than for FF as in INV-SAT. However, in other regions, the
signal at the surface stations is dominated by the signature of
the biogenic fluxes, and URs for NEE are larger than for FF
emissions. Due to the relatively weak signal from BF emis-
sions, the URs for these emissions are much smaller than for
FF emissions (less than 3 %, less than 0.1 % on average) in
INV-CO2.

The impact of the attribution problem when using the sur-
face CO2 network is quantified, here again, by conducting
sensitivity tests in which NEE is ignored (Fig. 12 and Ta-
ble 7). As the surface network has many stations mostly sen-
sitive to the NEE signal, it is expected to support the distinc-
tion between NEE and FF emissions in the inversion, even
if the stations measure CO2 only. In inversion INV-CO2,
the UR for FF emissions is higher when ignoring the NEE,
reaching a range between 18 % and 46 % for 24 h budgets in
the regions with more than three stations. However, the com-
parison between results from INV-SAT-CO2 and INV-SAT
when ignoring these fluxes hardly demonstrates a potential of
the surface CO2 network to reduce the problem of attribution
between FF emissions and other fluxes (Figs. 12 and 13). Fig-
ure 12 shows 1URSAT

SAT−CO2,NoNEE larger than 1URSAT
SAT−CO2

on average; i.e. adding the CO2 network when ignoring the
NEE yields a larger increase in the UR than when account-
ing for NEE. This is linked to the smaller UR associated with
CO2 data when accounting for NEE. There is a lack of indi-
rect feedback on the UR for FF emissions from the lowering
of uncertainties in NEE when complementing the satellite
data with CO2 data.

Regarding BF emissions, the results are similar to those
described in Sect. 3.1, i.e. a very weak impact of BF emis-
sions on the UR for FF emissions. With INV-SAT-CO2 the
posterior uncertainties in FF emissions (7 % to 30 % of the
24 h BF+FF emission budget) are much larger than the prior
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Table 8. CO2 and/or 14CO2 ground network impact in addition to satellite observation:1URRef
Test on 24 h, morning, and afternoon FF regional

budgets, maximal value on the AOI (column Max), and value of the two most impacted areas (Île-de-France and North Rhine-Westphalia
columns).

1URRef
Test(%)

North Rhine-
Test Ref Max Mean Île-de-France Westphalia

Daily

INV-SAT-CO2 INV-SAT 13.3 1.6 13.3 5.2
INV-SAT-14C INV-SAT 14.6 2.5 14.6 12.7
INV-SAT-CO2-14C INV-SAT 20.8 3.3 20.8 14.5
INV-SAT-CO2-14C INV-SAT-CO2 9.3 1.8 7.5 9.3

Morning

INV-SAT-CO2 INV-SAT 12.7 1.7 12.7 5.4
INV-SAT-14C INV-SAT 16.5 2.7 11.9 16.5
INV-SAT-CO2-14C INV-SAT 19.2 3.7 19.2 18.4
INV-SAT-CO2-14C INV-SAT-CO2 13 2.1 6.5 13

Afternoon

INV-SAT-CO2 INV-SAT 15.8 1.2 15.8 6.4
INV-SAT-14C INV-SAT 10.8 1 10.8 5.6
INV-SAT-CO2-14C INV-SAT 20.5 1.8 20.5 10
INV-SAT-CO2-14C INV-SAT-CO2 4.7 0.5 4.7 3.6

Figure 12. Average on the main area of interest of the UR on 24 h FF regional budgets in a set of inversion configurations, with (blue) and
without (orange) NEE and average of the difference between 1URSAT

test with and without NEE (green). Negative values highlight an increase
in the additional observation network potential when NEE is taken into account. Positive values highlight a decrease in the additional
observation network potential when NEE is taken into account. High absolute values highlight strong NEE impact.

uncertainty in BF emissions (0 % to 7 % of the 24 h BF+FF
emission budget).

3.3 Potential of the ground-based 14CO2 network

This section evaluates the impact of co-assimilating data
from the ground-based 7 h average 14CO2 network and the
potential complementarities between the satellite and hourly
CO2 7 h average 14CO2 ground-based observations. This
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Figure 13. Impact of the NEE on the ground network capability at the top of the satellite observations for each area of control in the main area
of interest: differences between 1URSAT

test on 24 h FF regional budgets, with and without NEE. Negative values highlight an increase in the
additional observation network potential when NEE is taken into account. Positive values highlight a decrease in the additional observation
network potential when NEE is taken into account. High absolute values highlight strong NEE impact. The number of stars indicates the
number of stations in each controlled area. The areas are listed in Table 1.

evaluation is based on the analysis of INV-14C and INV-
SAT-CO2-14C and comparisons with the results from INV-
CO2 and INV-SAT-CO2.

3.3.1 General results for the FF emissions

The spatial distribution of the regional URs for 24 h, morn-
ing, or afternoon budgets when using surface 7 h average
14CO2 data alone is similar to that when using hourly CO2
surface data only (Fig. 14). These URs are very low for re-
gions with fewer than two stations (< 7 %) and range be-
tween 12 % and 34 % for the morning budgets and between
4 % and 14 % for the afternoon budgets for regions with more
than three sites. The URs on daily and morning budgets are
larger in INV-14C (Table 7, Figs. A2 and A5), i.e. when us-
ing the sampling of 14CO2 representative of 7 h averages of
the mole fractions, than in INV-CO2 (Table 7, Figs. A1 and
A3), when using 7-hourly CO2 data at each site. However,
the URs on afternoon budgets are smaller in INV-14C than
in INV-CO2. In most regions these differences remain rel-
atively small except in Region 4, North Rhine-Westphalia,
with up to 15 percentage points in difference from the morn-
ing budget. The higher potential of 14CO2 data (7 h averages)
than hourly CO2 data to filter the signal from FF emissions,
if both were measured at the same temporal resolution, is
balanced by the finer temporal resolution of the continuous
hourly CO2 measurements. The hourly CO2 data’s finer tem-
poral resolution helps capture the high-frequency patterns of
the signal from FF emissions.

Figure 14. Uncertainty reduction in INV-14C (a, c) and INV-Sat-
CO2-14C (b, d) inversions: for 24 h budgets of FF emissions (a, b)
and biogenic fluxes (NEE, c, d). Stripes are indicative of the satellite
field of view (see Fig. 6 for the full track). Green dots indicate the
ground stations.
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3.3.2 Co-assimilation of the satellite and surface hourly
CO2 observations

The fact that the URs when combining two networks are
smaller than the sum of the URs when using each of these
networks shown when comparing INV-SAT, INV-CO2, and
INV-SAT-CO2 also applies when adding the surface net-
work, i.e. when comparing INV-SAT-14C to INV-SAT and
INV-14C or INV-SAT-CO2-14C to INV-SAT-CO2 and INV-
14C. The combination of 7 h average 14CO2 data with other
types of data does not lead to further synergies of the ad-
vantages for each network: the spatial extent of the satellite
observation, the temporal coverage of the ground-based net-
works, the temporal resolution of the hourly CO2 surface net-
work, and the higher sensitivity to FF emissions of the 7 h av-
erage 14CO2 network. In North Rhine-Westphalia, where the
configuration is favourable, with three stations in the satel-
lite FOV, the UR for the daily budget increases from 18 %
with INV-SAT to 33 % with INV-SAT-CO2-14C (Fig. 14,
Reg. 4). This configuration leads to 6.6 % posterior uncer-
tainty. In Île-de-France (Reg. 1) outside the satellite FOV
and with three stations, the UR reaches 21 % in INV-SAT-
CO2-14C, reaching 18% posterior uncertainty. In Saarland
(Reg. 6), in the satellite FOV and without stations, the UR
remains similar in INV-SAT-CO2-14C to in INV-SAT, 17 %,
corresponding to 15 % posterior uncertainty.

3.3.3 Impact of 14CO2 sources: nuclear emissions,
NEE, and BF emissions

The impact of nuclear emissions in the inversions assimilat-
ing 14CO2 data is analysed by conducting experiments where
these emissions are ignored. The comparison of INV-14C ex-
periments with and without nuclear emissions shows a de-
crease in the URs, in the range of 0–1.7 percentage points
(Fig. A7a), when these 14C emissions are taken into ac-
count. In the main area of interest, the most impacted ar-
eas are the Zeeland, Brabant/Brussels, Anvers, and Flan-
ders regions where the stations are close to nuclear power
plants (Fig. A7b). Outside the main area of interest, Baden-
Württemberg is also strongly impacted, with up to 9 % dif-
ference.

Concerning the impact of NEE, in INV-14C, the URs
for FF emissions in the regions with more than three sta-
tions are higher when ignoring the NEE, reaching a range
between 15 % and 33 % for 24 h budgets. The comparison
of the experiments INV-14C with and without NEE shows
a much smaller impact of NEE on the URs for FF emis-
sions than in experiments INV-CO2 or INV-SAT, which con-
firms the much smaller sensitivity of 14CO2 data to NEE
than CO2 data. An interesting consequence is that, on aver-
age, 1URSAT

14C , 1URSAT
SAT−14C (Fig. 12), or 1URSAT−CO2

SAT−CO2−14C
(not shown) is slightly larger when accounting for the NEE
than when ignoring them. The potential of the 14CO2 net-
work to complement the satellite observation is higher when

NEE is accounted for, while Sect. 3.2 showed the opposite
results for the surface CO2 network. This increase in the
impact of the 14CO2 network when accounting for NEE is
however relatively small, reaching its maximum in the re-
gion of North Rhine-Westphalia, which has three stations,
and where the posterior uncertainty decrease for the 24 h re-
gional budgets of FF emissions from INV-SAT to INV-SAT-
14C is 15 %.

4 Discussion and conclusions

4.1 Configuration of the inversion

Several caveats should be raised for the interpretation of
these results. Part of the lack of amplification of the impact
from the different observation subsystems when combining
them could be due to our set-up of the prior uncertainties
in which we ignore spatial correlations and assume that the
temporal correlations are relatively low. These assumptions
are conservative and, we believe, safer, in a context where
the correlations of uncertainties in current inventories are
still poorly characterized and, since they are probably highly
complex and far from isotropic, homogeneous, decreasing
with distance or time. For instance, distant plants or cities
can have more similar processes than emitters that are spa-
tially near each other, and the emissions and their underlying
processes can vary rapidly depending on the time, weather,
or socio-economic drivers. Inversions assuming large tempo-
ral and spatial correlations in the prior uncertainties in in-
ventories would indicate a stronger ability to extrapolate the
information from atmospheric data but would be overly opti-
mistic.

The control of the diffuse anthropogenic emissions and
natural fluxes at the regional scale, rather than at the spa-
tial resolution of the transport model, allowed for solving for
Eq. (1) analytically, but its impact on the results could be
questioned. However, the size of the control regions is quite
small. Furthermore, the control of such diffuse fluxes is tra-
ditionally handled by assigning isotropic spatial correlations
to the prior uncertainty in these fluxes. When considering the
fluxes at high spatial resolution, this can hardly better cor-
respond to actual errors than the partition among adminis-
trative regions, at least for the anthropogenic emissions (as
highlighted above).

The study focuses on the assessment of the potential and
limitation of the observation samplings, but random transport
model error statistics are assigned in order to reflect the re-
spective weight of these errors on in situ and satellite data.
The specific values attributed to these statistics would di-
rectly impact the scores of posterior uncertainty and of URs.
However, we assume that the ratio of transport model error
statistics between the different types of observations appro-
priately reflects modelling skills to simulate in situ or satel-
lite data (Marshall et al., 2019) so that the comparison of
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the scores of URs from the assimilation of different sub-
sets of observations is meaningful. Furthermore, the specific
values given to the error statistics, within a realistic range,
should not impact the more qualitative insights brought by
our analysis, regarding the spatial and temporal coverage of
the information on the fluxes provided by the different types
of observation networks and regarding the attribution prob-
lem.

When using real data, the actual precision of the flux esti-
mates would be strongly impacted by atmospheric radiative
transfer and transport modelling uncertainties (Schuh et al.,
2019; Crowell et al., 2019). Our model of the uncertainty in
the atmospheric transport is relatively simple here: a Gaus-
sian distribution without any spatial and temporal correlation
in the observation space of the inversion problem, as tradi-
tionally done in atmospheric inversions (Peiro et al., 2022;
Crowell et al., 2019). Complex modelling errors could actu-
ally shift or modify the patterns of the atmospheric signature
of the FF emissions, which could increase the weight of the
attribution problem and thus the potential of the combina-
tion between satellite and surface data. However, very dense
surface networks would be needed to support the identifica-
tion and adjustment of transport errors. Uncertainties in the
radiative transfer inverse modelling, which underlies the re-
trieval of XCO2, yield systematic errors in the XCO2 data,
i.e. errors with spatial correlations. These errors are a ma-
jor component of the observation errors. Their impact on the
inversions highly depends on their structure and on the abil-
ity, in the inversion systems, to anticipate for such a com-
plex error component (Santaren et al., 2021). We deliberately
avoided accounting for such error components resulting from
numerical models because they can hardly be characterized
appropriately by the type of OSSEs conducted here and be-
cause they consist in unknown time-evolving residuals, for
which existing studies hardly provide more than qualitative
insights or case-specific values. They tend to diminish along
with model and remote sensing progress, in contrast to ran-
dom errors, which explains the focus of this study on the po-
tential and limitation of the observation systems.

Other types of errors may have been ignored in our in-
version configuration while potentially having a significant
impact. Our reasoning pushed for neglecting the uncertainty
in the large- and fine-scale patterns of the initial and bound-
ary conditions. Santaren et al. (2021) showed a low impact
of uncertainties in a single scaling factor for the whole ini-
tial and boundary conditions of the modelling window and
domain at the 6 h scale, and the fine-scale patterns are as-
sumed to vanish quickly in time. However uncertainties in
the gradients along the boundaries and in synoptic patterns
might actually have a large amplitude which persists across
the modelling domain and perturbs the identification of at-
mospheric imprints of the local and regional fluxes. Results
have shown that the representation and aggregation errors
should be accounted for at the ground observation stations
outside the main area of interest, where the spatial transport

and inversion resolutions are coarse. These errors might also
need to be re-assessed in the high-resolution part of the do-
main, but Bréon et al. (2015) used similar transport and con-
trol resolutions, and they showed that there errors should be
low, even at stations at the edge of urban areas. In a more
general way, the quantitative results from our experiments,
like those from all OSSEs, can suffer from the lack of ac-
count for specific sources of errors or for the lack of ability
to properly characterize complex ones. However, they sup-
port a good understanding of the inversion processes and of
the potential of the observation networks.

The use of XCO2 sampling and error simulations for a day
in 2014 while the flux and transport modelling framework
corresponds to another day in 2015 raises an inconsistency
between the cloud patterns and the meteorological forcing of
the atmospheric transport. However, the cloud cover in the
selected satellite track is moderate, the gaps due to this cover
are spread relatively homogeneously along the track, and a
redistribution of these gaps with similar fraction of cloudy
scenes should not impact the general results. Similarly, the
potential inconsistency between the variations in space of the
XCO2 errors (which are limited, in the range 0.4 to 0.7 ppm)
and the atmospheric conditions is assumed to be negligible.

The results, in particular those of the sensitivity tests with
and without NEE or nuclear emissions, demonstrate the need
for a complex simulation of the CO2 and 14CO2 transport,
taking into account the diversity of 14CO2 sources and sinks,
and are more realistic than the common simplification which
consists of representing only the dilution of radiocarbon-free
FF CO2 emissions. This and an inversion system at high res-
olution are more suitable for assessing the real ability to
extrapolate information from the 14CO2 atmospheric data.
However, given its high spatial and temporal resolution, the
analytical inversion framework used here can hardly be run
over several days, because the size of the matrices to be in-
verted would become too large. Therefore, inversions have
been run for 1 d only, on 1 July 2015, i.e. for very specific
atmospheric conditions and biogenic fluxes. In summer the
biogenic fluxes are relatively high. Tests over different days,
e.g. in winter, could bring a more precise characterization of
the complementarity of in situ networks with satellite data,
but the primary focus of this study was to investigate the
problem of the separation between the biogenic fluxes and FF
emissions. By limiting the inversion window to a single day,
we avoid analysing to which extent the temporal correlations
of the uncertainties in the FF CO2 emission inventories al-
low for cross-referencing the information of data from differ-
ent days. This assessment should rely on a strong knowledge
on the structures of uncertainties in the FF emissions, which
is still incomplete, as illustrated above, even though efforts
have been conducted to improve this issue (Wang et al., 2020;
Super et al., 2020).

Finally our study tested a surface network roughly cor-
responding to the extension of a continental network like
ICOS for the monitoring of regional FF emission budgets.
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The deployment of networks dedicated to specific cities
with stations around and within the urban areas (Wu et al.,
2016) would correspond to a different strategy and could re-
sult in different conclusions for the monitoring of city emis-
sions.

4.2 Insights from the results

The results presented here raise contrasting conclusions re-
garding the potential of the combination between the satel-
lite observation and the surface networks. The satellite ob-
servation, as a stand-alone system, can yield estimates of the
regional budgets of FF emissions in the morning correspond-
ing to its days of overpass with uncertainties down to 10 %
(prior 15 %, UR 32 %) in its FOV. However, it does not pro-
vide direct information on emissions during the afternoon
or during the night, and it hardly provides information on
plants, cities, and regions outside its FOV. Furthermore, pre-
vious publications (Broquet et al., 2018; Wang et al., 2020;
Lespinas et al., 2020; Kuhlmann et al., 2019) have shown
that, even with a CO2M constellation of three or more satel-
lites, the number of overpasses producing local images with
low cloud cover is limited each year. The data gaps are not
random over time and hamper the estimation of annual bud-
gets or their anomalies, as illustrated in the case of the “great
lockdown” (Chevallier et al., 2020). The need for comple-
mentary sources of information to derive daily to annual bud-
gets is thus critical.

The problem of attributing the inferred CO2 fluxes to spe-
cific emission and absorption types appears to be nearly sec-
ondary compared to that of the satellite observation preci-
sion, but our results confirm that there is a significant im-
pact of the uncertainty in the NEE for the estimate of FF
emissions. The uncertainty in BF emissions does not ap-
pear to have a large impact on the estimate of FF emis-
sions, but this is related to the fact that the posterior uncer-
tainty in FF emissions remains larger than the prior uncer-
tainty in BF emissions, i.e. to the relatively low level of BF
emissions compared to the typical uncertainties in FF emis-
sions at regional to local scales. If the goal is to achieve
higher-precision estimates of the FF emissions than those
obtained with the present configuration, for example with
higher-precision spaceborne instruments, and if the share of
BF emissions increases in the future, the uncertainty in BF
emissions would probably become a major problem due to
the strong correlation between the spatial distributions of FF
and BF emissions. The problem of attribution to NEE fluxes
would also increase with this goal of higher-precision esti-
mates of the FF emissions in the future.

Surface CO2/
14CO2 networks can help further decrease

the uncertainty in the FF emissions estimates when com-
bined with satellite observations. In North Rhine-Westphalia,
the addition of CO2 and 14CO2 stations decreases the poste-
rior uncertainty in daily regional emissions from 8 % with the
satellite alone to 6.6 %. However, relatively dense networks

close to highly emitting areas are needed to support such a
decrease. The isolated stations far from the urban areas do
not provide a direct strong constraint for the estimate of the
FF emissions nor a significant indirect constraint for this esti-
mate by solving for the attribution problem. Our results sug-
gest that surface CO2 and/or 14CO2 measurements in support
of the FF emission monitoring should be targeting FF emis-
sion areas directly and located close to these areas rather than
in the more remote countryside dominated by signals from
the NEE. Both hourly CO2 and daily 14CO2 data can provide
useful information on the FF emissions, the former catching
the signature of these emissions at high frequency and the lat-
ter being much less sensitive to the uncertainty in the NEE.

Overall, the results illustrate a decrease in the potential of
each observation subsystem rather than an amplification of
these potentials when combining them together into a large
observation system with satellite and surface data. This is
the natural consequence of the asymptotic convergence of the
precision of inversions towards some low value when adding
observations. In our experiments, crossing the spatial extent
of the satellite observation, the temporal coverage (with ob-
servations between 10:00 and 17:00 UTC and a wider tempo-
ral representativity) of the ground-based networks, the tem-
poral resolution (hourly) of the CO2 surface network, and the
higher sensitivity to FF emissions of the 14CO2 network do
not lead to the expected synergy with wide spatio-temporal
coverage of the FF emissions at high resolution. There is a
lack of new extrapolation of information from the combi-
nation of observation subsystems. This may be due to the
specificities of the attribution and extrapolation problems in
our inversion case.

Therefore, these results support the deployment of very
dense CO2–14CO2 surface networks to support the satellite
observation, with at least three sites per European admin-
istrative region. The large-scale deployment of such dense
networks is probably unaffordable in the coming decade, but
some regions are now equipped with many stations, and in
some locations, the complementarity between satellite and
surface networks could thus be demonstrated. Frequent (up
to daily) samplings of 14CO2 would be needed to ensure
14CO2 data can bring information on FF emissions more pre-
cise than that of hourly CO2 measurements.
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Appendix A

Figure A1. Uncertainty reduction in INV-SAT, INV-CO2, and INV-SAT-CO2 inversions for 24 h budgets of FF emissions of each controlled
area in the main area of interest. The number of stars indicates the number of stations in each controlled area. The areas are listed in Table 1.

Figure A2. Uncertainty reduction in INV-SAT, INV-14C, INV-SAT-14C, and INV-SAT-CO2-14C inversions for 24 h budgets of FF emissions
of each controlled area in the main area of interest. The number of stars indicates the number of stations in each controlled area. The areas
are listed in Table 1.
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Figure A3. Uncertainty reduction in INV-SAT, INV-CO2, and INV-SAT-CO2 inversions for morning budgets of FF emissions of each
controlled area in the main area of interest. The number of stars indicates the number of stations in each controlled area. The controlled areas
are listed in Table 1.

Figure A4. Uncertainty reduction in INV-SAT, INV-CO2, and INV-SAT-CO2 inversions for afternoon budgets of FF emissions of each
controlled area in the main area of interest. The number of stars indicates the number of stations in each controlled area. The names of the
controlled areas are listed in Table 1.
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Figure A5. Uncertainty reduction in INV-SAT, INV-14C, INV-SAT-14C, and INV-SAT-CO2-14C inversions for morning budgets of FF
emissions of each controlled area in the main area of interest. The number of stars indicates the number of stations in each controlled area.
The names of the controlled areas are listed in Table 1.

Figure A6. Uncertainty reduction in INV-SAT, INV-14C, INV-SAT-14C, and INV-SAT-CO2-14C inversions for afternoon budgets of FF
emissions of each controlled area in the main area of interest. The number of stars indicates the number of stations in each controlled area.
The names of the controlled areas are listed in Table 1.
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Figure A7. (a) Uncertainty reductions, on 24 h FF budgets, with
and without nuclear emissions in INV-14C inversion, for each con-
trolled area in the main area of interest. The names of the controlled
areas are listed in Table 1. (b) Maps of the 2 km resolution area
of the differences between uncertainty reductions with and without
nuclear emissions (shades of red) in INV-14C inversions and un-
certainty reductions on F

14C nuclear power plant budgets (FNucl in
the main text) (dots, shades of blue). Green dots indicate the ground
stations.

Code and data availability. The surface fluxes, the emissions, the
database for the ground stations, and the simulation of the XCO2
sampling by CO2M in input of our modelling and inversion
frameworks are available from the institutions that are respon-
sible for these products and that are referred to in Sect. 2.
The code of the Community Inversion Framework (CIF) and
its coupling to the CHIMERE model that are used as a ba-
sis for our transport modelling framework are available on
https://doi.org/10.5281/zenodo.6304912 (Berchet et al., 2022).
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