

SuCoHS

SUSTAINABLE & COST EFFICIENT HIGH-PERFORMANCE COMPOSITE STRUCTURES DEMANDING TEMPERATURE AND FIRE RESISTANCE

SuCoHS Project

Final Public Workshop

Tobias Wille (Project Coordinator on behalf of the consortium) German Aerospace Center (DLR) 22-23 February 2022

Outline

Motivation
Objectives
Consortium
Selected results
Contact

Motivation

© Several aeronautical applications demanding high thermal conditions

TemperatureFire

[®] Maintain industrial leadership through expanded use of composites for:

- Reduced weight
- Improved performance
- Increased efficiency

Reduced costs

USTAINABLE & COST EFFICIENT NIGH-PERFORMANCE COMPOSITE STRUCTURES DEMANDING TEMPERATURE NUD FIRE RESISTANCE

Objectives – Pilot Demonstrator Requirements

High temperature nacelle component (Bombardier)

Reduce part complexity
 Multidisciplinary loading
 Reduce number of subparts
 Use of composites at T>335°C

Tail cone panel substructure (Aernnova Engineering)

Avoid titanium APU housing
Use of composites at T>300°C
Ensure fire resistance
Ensure damage tolerance

Composite aircraft interior shell (Collins Aerospace)

- New structural concepts and materials for improved performance at reduced costs
- Flammability and FST requirements

Objectives – Technologies under Investigation

Objectives – Methodology

ND EIDE DESISTANCE

22-23/02/2022 6

Consortium

EU contribution 6 638 939 €

Selected results – Material Assessment

Material screening and down selection according to use case requirements

 \rightarrow Cf. public deliverable C. Huchette et al.: Review and evaluation of material candidates compared to industrial requirements, SuCoHS D2.1, August 2019

SuCoHS ISTAINABLE & COST EFFICIENT GH-PERFORMANCE COMPOSITE STRUCTURES

EMANDING TEMPERATURE

ND EIRE RESISTANCE

AED tail cone substructure Impact resistance Fire proof @ T_{cure} < 210°C No post curing @ T_>300°C

ROC interior shell

Fire certified material system. AFP processing and production rate of 3 parts per day Output Low cost material

130°C

Sefficient test procedures and material characterisation using combined TGA/DSC

 \rightarrow Cf. A. Kühn, M. Monkiewitsch: Know your fire – from laboratory methods to fire simulation, DLR Innovation Report, 2021

Selected results – Material Development

Over the ster based toughened thin ply prepreg

→ Cf. presentation by Ch. Brauner et al. → Cf. presentation by Th. Ricard et al.

© CF/PFA composites with enhanced fire performance

 \rightarrow Cf. presentation by H. Hoydonckx et al.

Selected results – Manufacturing Technologies

Automated Fibre Placement

- Material verification for excellent deposition accuracy
- Complex geometry
- Fibre Steering
- Thin ply material
- Sensor integration
- ۵...

→ Cf. presentation by
 W. Gerrits et al.
 and lab tour

Selected results – Process Monitoring and Evaluation

Fibre Deposition Monitoring at review meeting in MAR 2020

© Cure Process Monitoring \rightarrow Cf. presentation by N. Pantelelis et al.

Selected results – Load and Structural Health Monitoring

Embedded FBG sensors

Cure monitoring

- Solution Structural Health Monitoring
- \rightarrow Cf. presentation by G. Langedijk et al.

Selected results – Allowables

Sector Structural reserves

Nonlinear material modeling
Enhanced analysis methods
Allowables
Design criteria

Thermal Potential

Material modeling

StiffnessStrength

Degradation

Selected results – Analysis Methods

Probabilistic structural analysis \rightarrow Cf. M. Liebisch et al.

© Fire simulation \rightarrow Cf. J Penche et al.

Selected results – Fire Testing and Validation

EMANDING TEMPERATURE

AND FIRE RESISTANCE

Thermomechanical Testing
 → Cf. M. Liebisch et al. (lab tour)

Finally...

Comprehensive investigation and development of new Materials, Manufacturing Technologies, Methods, Tools and Systems

Industrial Demonstration (Manufacturing and Testing)

 Tail Cone Panel

 Aernnova Engineering

Contact – Stay tuned

Homepage <u>www.sucohs-project.eu</u>

Publication downloads
 Public deliverables
 Conference presentations
 Journal papers
 Final Public Workshop
 Presentations
 Videos
 Q&A

Newsletters 1-5 published

Please note that all open access publications issued from the SuCoHS project are also available in the SuCoHS community in the open access repository Zenodo.

Linkedin account for SuCoHS ("company page")
 <u>https://www.linkedin.com/company/sucohs-project/</u>

Contact – SuCoHS Coordinator

SuCoHS Coordinator:

German Aerospace Center (DLR) Dr.-Ing. Tobias Wille Phone: +49 (0)531 – 295 3012 Mobile: +49 (0)173 – 276 4599 Email: tobias.wille@dlr.de

in

& COST EFFICIENT ORMANCE COMPOSITE STRUCTURES DING TEMPERATURE AND FIRE RESISTANCE

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 769178.

www.sucohs-project.eu https://www.linkedin.com/company/sucohs-project/