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Abstract

Global navigation satellite systems (GNSSs) are the most significant service for
global positioning and timing. The high relevance and wide spread of these
systems contrast with the risk for interference or even manipulations of GNSS
signals. One specific threat is GNSS spoofing. A spoofer counterfeits satellite
signals to mislead the receiver to an erring position/time estimation. The tech-
nological progress enabling affordable and easy-to-use spoofer hardware further
increases the relevance of this threat. To maintain the integrity of the position/
time information, it is mandatory to be able to assess the errors induced by
spoofing. The paper at hand derives a bound of the code tracking bias in relevant
spoofing scenarios extending the well-known Multipath Error Envelope. These
new bounds can be used as a tool to estimate the position/time error, especially
but not exclusively for receivers that are collateral damage of a spoofing attack.
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1 | INTRODUCTION

Global navigation satellite systems (GNSSs) are widely used for positioning and
timing. These systems are not only used as a navigation aid by land, air, and water
vessels, but also by critical infrastructure elements as well as further automated
and autonomous processes. The increasing number of private and commercial
unmanned aerial vehicles (UAVs) and the upcoming of autonomous driving cars
will further increase the number of systems relying on GNSSs. This results in signif-
icant economical, safety, and security risks associated with possible GNSS service
disruptions caused by radio frequency interference (RFI) on navigation signals.

One specific type of such interference is spoofing: A spoofer transmits GNSS-like
signals to affect the position, velocity, and time (PVT) solution of a GNSS receiver.
In contrast to jamming, where the reception of the navigation signals is restrained
or even blocked and the availability of the receiver’s PVT solution is compromised,
a spoofer attack aims at manipulating the PVT solution that is deceived by the
counterfeit signals. A user affected by spoofing may not even realize that some-
thing is wrong, which compromises the integrity of GNSS positioning and timing
services. The spoofing effect observed in the user receiver highly depends on the
type of the spoofing attack (Humphreys et al., 2008).
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This aspect is addressed in Fernandez-Hernandez et al. (2019), Giinther (2014),
and Humphreys et al. (2008), in which the possible types of spoofing are iden-
tified. One of the most general classifications of spoofing attacks is provided by
Humphreys et al. (2008) from the perspective of the technical realization where
three categories are proposed: simplistic, intermediate, and sophisticated spoofing.

Simplified, the simplistic attack is an unsynchronized spoofing attack, for exam-
ple, by radiating GNSS signals produced by a suitable signal generator with the
counterfeit signals not necessarily well-aligned with the corresponding authentic
signals. Intermediate spoofing synchronizes each spoofing signal to the authentic
one. However, in this category, the synchronization is assumed to be limited to
the phase of the spreading code (i.e., of PRN code) and carrier Doppler. The most
sophisticated realizations of spoofing falling into the last category are supposed to
additionally exploit carrier-phase synchronicity and, possibly, multiple transmit-
ters enabling different directions-of-arrival of the counterfeit signals in order to
deceive a target receiver. Recently, Ferndndez-Herndndez et al. (2019) suggested
a new classification accounting for the operational aspects of spoofing mitigation
with seven categories ranging from S1 to S7. In addition to the technical complex-
ity, these categories also account for the intention of the spoofing if it is targeted or
occurs as collateral damage.

From the point of view of the integrity of GNSS services, the most dangerous are
scenarios in which the spoofer attempts to imperceptibly substitute the authentic
satellite signals with their counterfeit copies so that the signal tracking process
in the target receiver is least distorted. Such scenarios can be realized, for exam-
ple, by using the spoofers of the intermediate or sophisticated types discussed
above. In the initial phase of such a spoofing attack, each affected satellite chan-
nel would track the authentic signal but encounter a mixture of the authentic and
counterfeit signals. The spoofer aims at overpowering the authentic signals with-
out being recognized by the user and pulls the satellite channel away from the
authentic signal. At the end of this phase, the stronger spoofing signal becomes
the only signal being tracked (if we ignore the multipath-like effect of the still
present authentic signal).

Being aware of this mechanism of a spoofing attack, the question arises: Is it
possible to assess the effect of spoofing on the tracking process of the authen-
tic signal? Such an assessment is not only beneficial for improving and devel-
oping receiver systems, but also for the development of new signal structures
for future GNSSs that are more resilient against spoofing. It can be helpful to
detect spoofing signals and mitigate their effects by configuring the tracking
loop parameters, as well as developing integrity monitors. This is also a very
interesting question from the point of view of assessing the collateral damage
occurring at non-targeted GNSS receivers (e.g., in the case of using spoofing for
taking control of an illegally used drone autonomously flying with GNSS navi-
gation and preserving, at the same time, the correct operation of GNSS services
for other users).

One of the most practical approaches to address the question is to apply the
concept of an error envelope, bounding the maximum bias of the PRN-code
phase tracking error. This concept has already been applied to the case of mul-
tipath propagation where a Multipath Error Envelope (MEE) is widely used
(Teunissen & Montenbruck, 2017). Indeed, on the signal level, the spoofing signal
is comparable to a multipath signal: Both are time-shifted replicas of the authen-
tic/line-of-sight (LOS) satellite signal. Van Nee (1992) derived the MEE for the
GPS L1 C/A signal, giving an overbound of the tracking error in the presence of
a multipath signal.
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Since then, the method was further developed to be more accurate (Braasch,
1997) and to cover other (newer) GNSS signals (Irsigler et al., 2004). However,
the spoofing signal corresponds to a more generic case. Unlike the multipath
signal, it can be received earlier than the authentic signal and its power can be
higher. Taking into account that the MEE is limited to multipath signals which
have less signal power than the corresponding LOS signals, the paper at hand
will address this limitation by extending the concept of the Multipath Error
Envelope for signals that can be stronger than the LOS signal: Spoofing signals.
The correspondingly extended error envelope will be called the Spoofing Error
Envelope (SEE).

The SEE will help to understand the basic mechanisms of how a spoofing signal
affects satellite tracking in a classical GNSS receiver. It gives a sense of the expected
(initial) tracking error after the spoofer is enabled. The SEE lays the foundation
for further research and can be used to explain and predict simulated results (e.g.,
Bamberg et al. [2018]). The next section gives an overview over the assumptions
made while deriving the SEE.

2 | SCENARIO DEFINITION AND ASSUMPTIONS
2.1 | Receiver

In a GNSS receiver, the processing of a satellite signal can be subdivided into two
states: The acquisition state and the tracking state. The acquisition state is only
used to acquire new satellite signals and to reacquire a signal that was lost in the
tracking process. In order to ensure that all satellites are in the acquisition state, a
spoofer would either need to jam the satellite signals before spoofing or be active
before the receiver is switched on. The latter option is usually beyond the control
of the spoofer. Jamming all satellites, on the other hand, is relatively easy to detect
(e.g., by observing the automatic gain control level [Akos, 2012]) and the disruption
of the service warns the user that something is wrong. In contrast, a receiver stay-
ing in the tracking state does not give obvious signs indicating a spoofing attack.
It is, therefore, the more critical state. This paper assumes that the receiver tracks
the authentic satellite signal before and stays in the tracking state when a spoofing
signal is encountered.

In the tracking state, the tracking bias depends on the implemented tracking
architecture. The classical and still widespread architecture to track a satellite sig-
nal is the delay lock loop (DLL). The DLL is fed by a discriminator indicating the
residual tracking error. Different discriminators can be used (Kaplan & Hegarty,
2005). In order to define a bound, it is inevitable to restrict the type of architecture.
Due to its wide spread, we assume a receiver using a DLL with an early-late dis-
criminator (Kaplan & Hegarty, 2005). To this day, many GNSS receivers still highly
rely on the GPS L1 C/A signal. Therefore, we will focus our research on the GPS L1
C/A signal. The method introduced in this paper can easily be extended to other
signals and discriminators.

Last but not least, we assume that the receiver does not implement a dedicated
approach to mitigate the spoofing signal. This assumption is justified by two facts.
First, it is reasonable to expect that such an approach reduces the tracking bias.
However, this paper aims to define a worst-case bound, which still holds. Second,
most of the on-shelf GNSS receivers do not mitigate spoofing signals. Considering,
for example, civil aviation. A receiver used in this field must fulfill the Minimal
Operational Performance Standards (MOPS) as defined by RTCA SC-159 (2019).
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For now, this standard does not include any methods to mitigate spoofing. A
receiver using an approach to mitigate spoofing signals would probably even vio-
late the standard.

2.2 | Scenario

For our analysis, we assume that the delay between the spoofing and the authen-
tic signal remains constant. This is, for example, given when the spoofer generates
signals faking a position with a constant offset to the real position (and a con-
stant clock offset). A movement of the individual components (spoofer, receiver,
satellites) is uncritical, as long as the spoofer accounts for the corresponding
movement.

Naturally, in this scenario, a relative Doppler between the authentic and the
spoofing signal is about zero to match the movement of the signal delay with the
signal Doppler. However, a spoofer can generate counterfeit signals with an arbi-
trary (relative) Doppler. Therefore, we account for both cases: In the derivation of
the bounds of the tracking bias, we assume no relative Doppler, whereas Section 6
discusses the effect of a relative Doppler on the derived bound.

2.3 | Summary

Summed up, we identified four assumptions which must hold in order to define
a worst-case tracking bias:

1. The observed receiver is in and stays in its tracking state when the spoofing
signal is encountered.

2. The GPS L1 C/A code signal is tracked and a classical early-late discriminator
is used.

3. The observed receiver does not apply any approach to mitigate spoofing
signals.

4. The delay between the spoofing and the authentic signal stays approximately
constant (over the period under observation).

These assumptions should not be seen as limitations, rather they lay the
foundation for further research. There are many relevant scenarios in which
these assumptions are fulfilled. If we consider, for example, a spoofer aiming to
deceive its victim unperceived, the spoofer must not use high power. High-power
GNSS signals will knock out a receiver forcing it to go into its acquisition state.
Therefore, such a spoofer transmits signals that drive the tracking loops of a
victim receiver slowly from the authentic to the spoofing signal. To do this,
the spoofer needs to be synchronized to the authentic signal at the receiving
antenna of the victim. If the spoofer transmits its signals over the air, most static
or slowly moving receivers, which use a classical early-late discriminator, fulfill
the four assumptions.

2.4 | Spoofer

Regarding the spoofer, these assumptions can be fulfilled by an intermediate
or sophisticated spoofer that is synchronized to the authentic signals. According
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to the classification of Fernandez-Herndndez et al. (2019), all categories except S2
and S3 can (theoretically) fulfill the assumptions.

3 | SIGNAL TRACKING AND THE MULTIPATH
ERROR ENVELOPE

Prior to defining the Spoofer Error Envelope (SEE), some relevant aspects of
GNSS signal processing are discussed in this section. Also, the Multipath Error
Envelope that serves as a starting point for this research is shortly reviewed.

In order to estimate the user’s position, a GNSS receiver calculates pseudoranges
for each satellite. A pseudorange includes the distance and the clock offset between
the satellite and the receiver. To calculate the pseudorange, a precise receiving time
of the incoming satellite signal is obligatory. This time is obtained by correlating
the incoming signal with a time-shifted local replica of the known PRN code of
the satellite. In addition, the incoming signal is correlated with a Doppler-shifted
carrier to account for the relative velocity between the satellite and the receiver.
The two-dimensional correlation function is called the Ambiguity Function (Presti
& Motella, 2010). The highest peak of this ambiguity function indicates the best
match of the local with the satellite signals. In the acquisition state, the receiver
aims to find a coarse match by considering a large number of time-shifts and
Doppler frequencies. After the acquisition, a conventional receiver computes only
a small number of correlations (to save computational power) to track the peak of
the ambiguity function. This process is referred to as tracking.

As stated in Section 2, we assume that the code tracking is performed by a DLL
using a code discriminator. The output of the discriminator that is computed using
the correlation results has to be proportional to the misalignment between the local
reference and the received PRN code. In the presence of two time-shifted signals
with the same PRN code (e.g., a satellite signal and a multipath), the discriminator
function (also called S-curve) is distorted. This distortion drives the DLL to track an
offset relative to the satellite signal.

This section starts with a mathematical description of the ambiguity function
(Section 3.1) and the discriminator function (Section 3.2) in a degraded scenario.
Section 3.3 describes the effect of the discriminator function on the tracking. The
last subsection (Section 3.4) is a short recap of the Multipath Error Envelope.

3.1 | Ambiguity Function in the Presence of an
Additional Signal

An approximated ambiguity function in the absence of noise for a single satellite
signal is given as (Presti & Motella, 2010):

(5. f,) = e R@)sine(£,T,) )
where ¢ describes the (initial) offset of the phase, t describes the offset of the
code (lag value) in units of PRN chips, and f, describes the offset of the Doppler
frequency between the local replica and the incoming satellite signal. The param-
eter A is the amplitude of the satellite signal and T, is the (coherent) integration
time of the correlation. The function R(.) represents the normalized autocorrela-
tion function of the PRN code and sinc(.) represents the normalized sinc-function

defined as sinc(x) = %ﬁ")
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Due to the linearity of the correlation process, the ambiguity function of the
superposition of a satellite and one additional signal (with the same PRN) can be
described as:

Sy (. f,)
_ At o, R(r)sinc(f,T,)
- (2)
. % e 19 R(z —d_)sine((f, - f,)T.)
_ % e 3% sinc( £T.)
sine((f, - f)T.) ?

R roe ORE ~d) =3 1)

where d, is the relative signal delay (in units of chips) and f,, the relative fre-
quency offset between the satellite and the additional signal. The subscripts sat
and add indicate that the parameter refers to the satellite and the additional signal,
respectively.

Furthermore, we define two parameters to describe the relation between the sat-
ellite and the additional signal: ® =¢, , — ¢, describes the carrier-phase offset
and a =244 describes the amplitude ratio of the additional signal compared to the
satellite sighal. In general, it is more common to describe the relationship between
two signals by the relation of their power. The power is proportional to the square
of the amplitude. Hence, further on, we will use the square of the amplitude ratio
a? instead of the amplitude ratio a to describe the relation between the satellite
and the additional signal.

The factor before the square brackets in Equation (3) is independent of the lag
value t and works as a scaling factor. It can be neglected because it has no influ-
ence on the zero crossing of the S-curve (the importance of the zero crossing will be
described in Section 3.3). In addition, as described in Section 2, we assume for now
that the relative frequency offset is zero (i.e., f,, =0 Hz). The ambiguity function
can therefore be simplified to:

Sy (t)=R(t)+ae OR(r -d) 4

3.2 | S-Curve and Autocorrelation Function

Following the nomenclature of Van Nee (1993), a non-coherent early-late dis-
criminator (S-curve) can be defined as:

Sr +dC S! dC
T+-=< T-—=
2 o2
d d .
R[T +—CJ+(XR[T +—C—dsaJeJ®
2 2
d d .
R(r ——Cj-i-aR[r ——C—dsaJeJ®
2 2

where d, is the correlator spacing of the discriminator in units of chips defining
the offset of the early and late correlators with respect to the tracked PRN code

D(r)= - (5)
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phase. Traditionally, the autocorrelation function for GPS L1 C/A—to calculate
the MEE—is approximated by a triangular-shaped function centered around zero
(Van Nee, 1992). This function is zero outside of the triangular shape. However,
Braasch (1997) points out that the autocorrelation function for a PRN sequence
with a finite length has non-zero sidelobes. He demonstrated the relevance of these
sidelobes on the code tracking error for a multipath signal. We follow the sugges-
tion of Braasch (1997) and use the following approximation for the normalized
autocorrelation function of the PRN codes:

R(T):{1+(r—1)|r| I7]<1 @

r otherwise

where 7 is in units of chips and I' represents the level of the first sidelobe of the
autocorrelation function depending on the used spreading code. We postulate that
the sidelobe level is smaller than the main peak (i.e., |I'| <1). In the case of GPS L1

C/A, three sidelobe levels are possible. The normalized sidelobe levels are —ﬁ,
65 63

T 1023 1023
It shall be emphasized that the defined quantities 7, d_, and d, are in units of

chips. However, to get a better feeling for the corresponding values in a positioning
context, the lag value 7 and the relative delay d_, will be stated in meters, i.e.,
multiplied with the chip length of the GPS L1 C/A code: A, = 293.26%.

3.3 | Stable and Unstable Tracking Points

To understand the effect of distortion on the S-curve, it is helpful to look at two
examples. The top plots in Figure 1 show the (approximated) autocorrelation func-
tion for the satellite (green line), the additional signal (red line), and the absolute
value of the sum of these two functions (blue line). The bottom plots show the
corresponding S-curves: The output of the non-coherent early-late discriminator
as shown in Equation (6). In the undistorted case (Figure 1a), the power of the
additional signal is zero (i.e., a? =0).

-200 —-100 0O 100 200 -200 —-100 0O 100 200
0.4
0.2
\ 0
-0.2
04
—200 —100 0O 100 200 —200 —100 0O 100 200

(a) Without Multipath (&> = 0)

Lag 7Ac/s [m] Lag 7A¢/s [m]

(b) With Multipath (o® = 1)

FIGURE 1 Correlation triangles (top) and S-curve (bottom) for a satellite signal and its
1

multipath with a? =0 (a) and a?= 7

is d,A.,, =100 m and the correlator spacing d. =0.25 (d .., *73.24m). The red circle
marks the relevant stable tracking point of the scenario.

(b), respectively; the relative signal delay of the multipath

—— Satellite
—— Multipath
—— Abs(Sum(.))
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The discriminator output can be used to steer the local replica: If it is positive
(D(r)>0), the replica will be delayed, and if it is negative (D(r)<0), the replica
will be advanced. Due to this mechanism, the DLL will track a position in the
S-curve where D(7)=0 and d?j—(:) <0. We call a lag value 7 fulfilling these equa-
tions’ stable tracking points. In the bottom plot, it is marked by a red circle. In the
undistorted example, this is fulfilled at a delay of 7 4.,, =0m, enabling the DLL
to keep the replica matched with the incoming signal.

In the distorted case (Figure 1[b]), the additional signal has half the power of
the satellite signal (a? = %). It is delayed by d,4.,, =100 m and its carrier is in
counter phase to the satellite signal (i.e., ® =180°). In this example, the discrim-
inator output is negative when the local replica matches the satellite signal. The
mechanism assumes that the replica is delayed and advances it until the discrimi-
nator becomes zero or positive. That is fulfilled for a delay of about r A, =-26 m.
In the bottom plot, this stable tracking point is again marked with a red circle.
Due to the distorion of the S-curve, in this example, the multipath causes a code
tracking error of about 7 4., =26 m.

Complementary to the stable tracking points, we call a position in the S-curve,
where D(r)=0 and % >0, an unstable tracking point. Theoretically, a DLL
could settle on such a point, because the discriminator function is zero. However,
even the smallest offset to this point drives the DLL away from this position due to

the sign of the discriminator function.

3.4 | Recap of Multipath Error Envelope

The idea of the Multipath Error Envelope (MEE) is to calculate the stable track-
ing points as a function of the amplitude ratio «, the relative signal delay d_,,
and the correlator spacing d. (Van Nee, 1992). To get rid of the relative phase
offset, the MEE is defined using the worst-case tracking bias over the phase offsets.
Again, it is helpful to look at an example: Figure 2(a) shows the course of the stable
tracking points over the relative delay for the in-phase (® =0°, solid blue line), the
counter-phase (® =180°, solid red line), and one phase in-between (® =90°, solid
green line). The plot is the result of solving the S-curve for zero crossings (D(7) =0)
using the definition of Equation (6) with Equation (7). A fixed amplitude ratio,

correlator spacing, and sidelobe level have been used.

Lag 7A¢/s [m]

e R ////"""// - —@ = O°
v 200 \\\_____-<#>/_:/:—/_a;;:»»’-’:: —®=090°
T — 0 e — 0 =180
—200 B E———— —

50 100 150 200 250 300 350 O 50 100 150 200 250 300 350
Relative Delay d, Ac/s [m] Relative Delay d, Ac/s [m]
(a) Zoomed in (b) Zoomed out

FIGURE 2 Lagvalues resulting in zero crossings of the S-curve as a function of the relative

delay of the multipath; calculated for © €{0%90%180°%, d =0.25, a?=7, and ['=;>; the
solid line marks a zero crossing with a negative slope (stable tracking points) and the dash-dotted
line marks a zero crossing with a positive slope (unstable tracking points). Figure (a) limits the

y-axis to a range from -50 m to 50 m, whereas Figure (b) shows a range from -350 m to 350 m.
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The two curves corresponding to the in-phase (blue) and the counter-phase (red)
cases form the well-known MEE. Van Nee (1992) identified these cases to be the
worst regarding the tracking bias and used them to define the upper and lower
bounds. Next to the calculated courses of the zero crossings, Figure 2(a) shows the
MEE as suggested by Braasch (1997) as a black dotted line. The first two line seg-
ments of the envelope matches with the course of the zero crossings for in-phase
(blue line) and counter-phase (red line). This is similar to the MEE of Van Nee
(1992). For the last two line segments, Braasch considered the worst-case change
of the sidelobes in the autocorrelation function to overbound the tracking error
for large relative delays of the multipath echo. In contrast, the calculated course
of the zero crossings (blue and red line) is used in Equation (7) to approximate
the autocorrelation function. This approximation is limited to constant instead of
changing sidelobes.

Figure 2(b) shows the same plots, but zooms out and reveals additional solu-
tions for D(r)=0. In addition to the stable tracking points (solid lines), the unsta-
ble tracking points are plotted as dash-dotted lines. If we focus, for example, on
the counter-phase case, we can see that there are courses for two different stable
tracking points (upper and lower solid red lines). To determine which one will be
tracked, it is helpful to take a look at unstable tracking points. Due to the working
mechanism of the DLL (see Section 3.3), we can formulate the following rule:

On a vertical axis, the next stable tracking point that can be reached
without crossing an unstable tracking point will be tracked.

With this rule, it becomes obvious that it matters in which state the code track-
ing was in before the additional signal comes into play. It is reasonable to expect
that the satellite signal was tracked before the multipath occurs (z =0). With the
defined rule and the starting position, it is straightforward to evaluate the expected
tracking error in the example (Figure 2). Going back to the counter-phase case (red
lines), we can now say that (starting from 7 = 0) the lower stable tracking point will
be tracked and not the upper one.

At this point, it should be emphasized that the MEE is only valid under the
assumption that the power of the additional signal is less than the power of the
satellite signal (a? <1). This assumption is reasonable for a multipath signal,
because a multipath signal is a reflection and, therefore, usually less powerful
than the original line-of-sight signal—unless the latter one is further attenuated,
for example, by shadowing. However, this assumption does not hold for a spoof-
ing signal.

4 | CONSIDERATIONS RELEVANT FOR DERIVING THE
SPOOFER ERROR ENVELOPE

This section extends the concept of the MEE to an additional signal that is more
powerful than the authentic satellite signal (a? >1). To distinguish the additional
signal from a multipath, we call it a spoofing signal, even though a spoofing signal
could also have less power.

This section is divided into two subsections. The first subsection (4.1) demon-
strates some challenges in deriving a Spoofer Error Envelope (SEE) compared to
the MEE using an exemplary parameter set. The second subsection (4.2) extends
this demonstration to six parameter sets and gives a numerically calculated bound
of the tracking offset in the presence of a spoofing signal.
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4.1 | Effect of a Spoofing Signal on the S-Curve

In order to estimate the SEE, it is helpful to take a look at the S-curve in the pres-
ence of a spoofing signal. Figure 3 shows the correlation triangles and the S-curves
for two different scenarios.

The setup is similar to the one of Figure 1(b), but the additional signal is more
powerful relative to the authentic signal («? =2 compared to a? = %). The left sce-
nario differs from the right scenario only by one parameter: In the left plots, a rel-
ative delay of d,A.,, =100 m is used and in the right plots, d 4., =120 m. For
code tracking, this little change makes a huge difference. At this point, we want to
recall the assumption that the receiver tracks the authentic signal before the spoof-
ing signal is superposed (i.e., initially 7 = 0).

In the left scenario, the discriminator output is positive for a lag value of zero
(D(r =0) > 0). Therefore, the code replica in the receiver will be delayed until the
discriminator output becomes zero at about 7 A, =126 m (red circle in the left
plot). Whereas in the right scenario, the discriminator output is negative for a lag
value of zero (D(z =0)<0), resulting in a reduction of the delay until it reaches
about 7 4., =—158 m (red circle in the right plot). Summing up, in this example, a
difference of 20 m in the relative delay between the satellite and the spoofing signal
results in a tracking difference of about 284 m.

In the next step, we consider not only two, but a range of relative delays. Figure 4
plots the lag values yielding zeroes of the discriminator function (stable and unsta-
ble tracking points) over the relative signal delay.

At this point, we want to recall the earlier established rule governing how to
read these plots from Section 3.4. From an arbitrary point in the plot, the next
stable tracking point in the vertical direction (without crossing an unstable one)
will be tracked. Applying this rule, one can determine the expected code tracking
bias as a function of the relative delay. (To check the result: The expected tracking
bias for this scenario is plotted in the left-center plot of Figure 5). In contrast to
the expected bias in a multipath scenario, this function is not continuous. In the
counter-phase case (red), a jump occurs at about d_ A.,, =112 m. Before this point
(dg,Ac 4 <112 m), the upper solid red line will be tracked and after this point the
lower solid red line will be tracked. For the in-phase case (blue), a similar jump
occurs at about d A.,, =317 m.

——

-200 —100 0 100 200 —-200 —100 0 100 200
0.5
SUEIDZ0 N b =N VA N
-0.5
-200 —-100 0 100 200 —-200 —100 0 100 200
Lag 7A¢/s [m] Lag 7A¢/s [m]

FIGURE 3 Correlation triangles (top) and S-curve (bottom) for a satellite and a spoofing
signal with ?=2 and a signal delay of d,A.,, =100m (left) and d A.,, =120 m (right),
respectively; a correlator spacing of d, =0.25 (d 4., , = 73.24 m) is used. The red circle marks the
relevant stable tracking point of the scenario.
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Please note that such a jump does not mean that a receiver that tracks the upper
tracking point will be driven to the lower one as the relative delay of the spoofing
signal grows. Once locked onto a tracking point, the receiver will continue to stay
on it and follow, for example, the upper curve. However, the receiver will lock onto
the tracking point on the lower curve if the spoofer appears with a relative delay
behind the position of the jump. Hence, the relative delay of the spoofing signal
determines which curve (upper or lower) the receiver will follow.

—0=0——0=90°—06 =180°

Lag 7A¢/s [m]

|
100 150 200 250 300 350
Relative Delay dg, A5 [m]

0 50

FIGURE 4 Lag values resulting in zero crossings of the S-curve as a function of the relative

delay of the spoofing signal; calculated for © €{0°90°180°%, d =025 a?=2 and I' :%.

The solid line marks a zero crossing with a negative slope (stable tracking points) and the dash-
dotted line marks a zero crossing with a positive slope (unstable tracking points).

Relative Delay d, Ac/x [m] Relative Delay dg,A¢/s [m]

FIGURE 5 Expected code tracking bias based on the stable tracking points for different
power ratios and correlator spacings; the left plots are simulated using a power ratio of a? =2
and the right plots a? =8. Vertically, the used correlator spacing varies from d_, =0.1 (top) over
d, =0.25 (center) to d =1 (bottom). Each plot shows the bias for a number of carrier-phase
offsets (O € {0° 30°; 60° 90°120°150°%180°}) and a numerical calculated bound.
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4.2 | Numerical Bounds for Tracking Error

Although Figure 4 allows for a first step towards a Spoofer Error Envelope, it
still represents only a single set of parameters. To get a broader picture, Figure 5
shows the results for six scenarios with a larger variety of carrier-phase offsets
(© €{0°30°% 60°90°%120°150°%180°}). In these scenarios, the relative power
of the spoofing signal ranges from «? =2 to a? =8 and the correlator spacing
ranges from d,  =0.1 to d  =1.

Plotting all stable and unstable tracking points would be confusing due to the
number of graphs. Instead, the plots show only the stable tracking points that will
be tracked according to the rule defined in Section 3.4. Therefore, we no longer call
the lag value lag but rather the expected code tracking bias or, for short, tracking
bias. To get the tracking bias, two steps are conducted:

1. The sign of D(z =0) is checked to determine if the lag value of the relevant

stable tracking point is above (r > 0) or below (7 <0) zero.

2. The location of the next stable tracking point in the determined direction is

numerically calculated using the properties D(z)=0 and % <0.

Figure 5 shows a numerically calculated bound for the code tracking bias as a
black dashed line. This bound gives the minimal and maximal tracking bias over
the carrier-phase offsets. For the shown bound, the carrier-phase offsets from -180°
to 180° with a step size of 1° were considered.

The question we want to examine is: Can a worst-case tracking bias be
described using only the in-phase and the counter-phase cases of the relative
carrier phase? Therefore, we compare the numerical bound with the curves of
these two cases.

Looking at the six scenarios in Figure 5, the lower numerical bound (lower
black dashed line) can exclusively be described by the in-phase (blue line) and the
counter-phase (red line) cases: The first two (bottom-left plot) line segments of this
bound are given by the in-phase case. The remaining segments (after the jump) are
given by the counter-phase case.

The upper numerical bound (upper black dashed line), on the other hand, is
more tricky: Though the first two line segments of this bound can be described
by the counter-phase case (red line), the next segment depends on different rel-
ative carrier phases. The following line segments (after the jump of the upper
bound) can be described by the in-phase case (blue line). At this point, it is note-
worthy that, even though it is not plotted, the upper stable tracking point of the
counter-phase case (red line before the jump) is still present after the jump. Its
ongoing course can be seen, for example, in Figure 4 (upper solid red line). In
Figure 5, the corresponding curve stops at the jump because, at larger relative
delays d,, the DLL switches to another stable tracking point as discussed in
Section 4.1.

However, due to its course, it is useful for defining a non-tight upper bound even
after the jump. Summing up, according to the six scenarios, a non-tight bound can
be expressed exclusively by the in-phase and the counter-phase cases.

5 | SPOOFER ERROR ENVELOPE

Based on the results of the previous sections, in this section we will define
the Spoofer Error Envelope (SEE) for the non-coherent early-late discriminator
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(Section 5.1). The SEE is an analytical bound of the expected tracking bias induced
by a spoofer. The second part of this section compares the defined bound with a
numerical bound (Section 5.2) and simulation results from a receiver implementa-
tion (Section 5.3).

In addition to the results from the previous section, the concept of Braasch (1997)
will be reused to define the bound for large delays d,. For delays larger than 1+ >
he found the bound to be:

d T r

c © max _~ min (8)

ta—
2 1-T

where I' . and T' . are the maximal and minimal possible sidelobe levels
of the used PRN code (the possible sidelobe levels for GPS L1 C/A are given in
Section 3.2). This bound was defined for the MEE (& <1), but also holds under the
assumption that & < —1=L—. For GPS L1 C/A, the lowest limit of the ratio (given
by the largest sidelobe level: T = %) is ¢ < 7.5 (i.e., the power of the spoofing sig-
nal compared to the satellite signal must not exceed 17.5 dB). This limit does not
pose a problem because larger power ratios tend to knock out the receiver, forcing
it to go into acquisition mode. However, we assumed that the receiver stays in the

tracking state (compare to Section 2.3).

5.1 | Defining a Spoofer Error Envelope

The expected tracking bias can be determined by finding stable tracking points.
Stable tracking points are given solving D(r) =0, Equation (6) with (7). Including
the information of the previous sections, we can identify the stable tracking points
that will be tracked by the receiver depending on the initial tracking conditions and
parameters. For this SEE, we assume that the authentic signal is tracked prior to
the addition of the spoofing signal and that the correlator spacing is between zero
and one chip (0<d, <1).

Complementary to the MEE, we postulate that the spoofer-to-authentic signal
power is greater than one («? >1) and, in order to reuse the bound of Braasch
(1997) for long delays: o SFL. To give an overbound for all phase offsets,

we use the bounds of the in-}n)mlxlasrgn(® =0°) and counter-phase (®=180°) cases.
This is justified by the observations in Section 4.2 and the detailed derivation in
Appendix (A). Finally, a SEE can be defined as:

aal ’ 0<dsa£(1—i)d7°
d
dsa+£ (l—i)dz—c<dsaﬁl—(l+i)d2—°
d (dsa_%_l)(l_r_rmax+Fmin)_dc<rmax_rmin) 1_(1+i)d_2c<dsa
N (=T =Ty + Ty )+ 200 (1=T) < 1+d7°[1——rf;ﬂa’_rrf;‘"

-I' q oo
_C _— max min _c __ _max min
“ 2 1-T dsa >1+ 2 [1 a(1-T) }

}

(%a)

(9b)

(%)

(9d)
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and
TSEEMin
o 0<dsas(1+l)—°
sa 111 4
a+l anddsaﬁj——(ﬁ—y)
d, (1+i) < <d,
2o <1 _L(L_d_c)
=11 «\1r 2
= d, d 1 1.1 5 .
dsa_1+;__ E_;(E__)<dsagl_
A-T)= (T ~Tiin) (d _1+d_cj_d_c 1-=<d, ( |
sa dc o 1—‘11121)(71—‘rni11
A-1)(1+2) - (T ~Toin) a) 2 S1+7[1_T}
dc 1—‘max _Fmin d. a(rmax _Fmin)
o S

Cases (92a) and (9b) as well as (10a) and (10b) are basically the MEE from the
point of view of the spoofing signal (see more details in Appendix A). Case (10c)
is determined by the lower (stable) tracking point of the counter-phase. The
cases (9d) and (10e) are the above mentioned bounds of Braasch (1997). Case (9¢)
and Case (10d) can be seen as a linear transition from Case (9b) to Case (9d) and
from Case (10c) to Case (10e), respectively.

It should be noted that the formulas for the SEE are derived assuming a positive
delay (dg, >0). However, a spoofer could also steer the signals to produce a nega-
tive delay. Due to the symmetry of the autocorrelation function, the discriminator
function is odd symmetric, i.e. D(r,d,)=-D(-7,—-d). Hence, the function of
the SEE can be continued in the negative domain of d, as an odd function, i.e.,

TSEEMax (_dsa) = ~TSEEMax (dsa) and TSEEMin (_dsa) = ~TSEEMin (dsa)‘

5.2 | Comparing the SEE with a Numerical Bound

The Spoofer Error Envelope is visualized in Figure 6. Additionally, a numerical
bound calculated as described in Section 4.2 is shown. Comparing the numerical
bound with the proposed bound in Equations (9) and (10) reveals differences:

1. A part of the upper bound of the SEE (Equation [9b] and [9c]) is larger than
the numerical bound (i.e., it is a non-tight bound). The upper bound of the
SEE is determined by the upper stable tracking point of the counter-phase
case. After the jump of the lower bound, this tracking point is (usually)
no longer reached (even though it is still a valid stable tracking point).
However, the location of the jump depends on the relative phase of the
spoofing signal. This results in an upper bound depending on the relative
carrier phase. For the sake of simplicity, we stick to the bound defined by
the counter-phase case.

2. The jump of the upper bound of the SEE (transition from [9c] to [9d]) occurs
at a higher delay than in the numerical bound. It is challenging to estimate the
exact location of the jump and, in practice, this jump is not sharp. Therefore,
it is reasonable to choose this simplification.

(10a)

(10b)

(10¢)

(10d)

(10e)
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FIGURE 6 Spoofer Error Envelope with d_=0.25, a?=2; to represent a worst-case error
envelope for GPS L1 C/A, the following sidelobe levels were chosen to calculate the SEE: T = =52
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3. The jump of the lower bound (transition from [10b] to [10c]) is only tight for
some parameters. As explained in Appendix A, the location of the jump is
described by two different terms depending on the chosen parameters. The
term chosen for the SEE describes the worst case for all parameters within the
postulated ranges.

5.3 | Comparing the SEE with Simulated Tracking Errors

Besides the enumerated differences, Figure 6 gives the impression that
Equations (9d), (10d), and (10e) are not tight. This results from the approximation
of the autocorrelation function according to Equation (7), which has been used to
calculate the numerical bound. Compared to the changing sidelobes of an exact
autocorrelation function, the approximation emulates constant sidelobes. Using
the autocorrelation function of some specific PRN codes (e.g., PRN 8 of GPS L1
C/A) reaches this bound as shown in Figure 7 (right plot).

400
—0°
—30°
200 60°
90°
120°
0 150°
— 180°
‘ 200 i | ||--- SEE
100 200 300 400 O 100 200 300 400

Relative Delay d, A4 [m] Relative Delay d, A¢/,[m]

FIGURE 7 Spoofer Error Envelope and simulation results with d,=0.25, a?=2, and
© {0°30° 60°90°120°150°%180°}; PRN code 1 (left) and PRN code 8 (right) were used in
the simulations. The simulations were conducted using the simulation tool from Bamberg et al.
(2018). To represent a worst-case error envelope for GPS L1 C/A, the following sidelobe levels

. [ =65 _ .63 _ =65
were chosen to calculate the SEE: I'=_2>, I' |\ =1+, and ', =2
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Figure 7 shows the SEE for a correlator spacing of d =0.25 and with a
spoofing-to-authentic signal power ratio of a? =2. Additionally, a number of sim-
ulated tracking error curves are shown for different relative carrier-phase offsets
O between the authentic and the spoofing signal. For the simulations, the relative
delay d,A.,, was varied from 0 m to 400 m with a step size of 1 m. The resulting
tracking biases are connected with line segments. The left-hand plot shows the
simulation results using PRN code 1 and the right-hand plot using PRN code 8.

The simulation results demonstrate that the jumps of the bounds are not sharp.
In Figure 7, this is clearly visible for the red curve (® =180°). The reasons for that
is simple: Signal noise. A jump results from an unstable tracking point at 7 =0 as
described in Section 4.1. By definition, the discriminator function is zero at the
position of an unstable tracking point. Signal noise affects the discriminator output
in a way that it deviates from the ideal value. At an unstable tracking point, on the
other hand, a slight deviation of the discriminator output drives the DLL in a way
that it drifts away from that point. The sign of the deviated discriminator value
determines which stable tracking point is tracked.

Hence, the position of a jump should be interpreted as the point where the prob-
ability of tracking one or another stable tracking point is even. Due to this issue,
the defined lower bound can be crossed around the jump in a simulation including
signal noise.

Comparing the left-hand and the right-hand plot, it can be seen that the relative
delay leading to the jump of the lower bound of the SEE depends on the used PRN
code. To be more precise, it depends on the sidelobes of the autocorrelation func-
tion of the used spreading code. Regarding the position of the jump, the proposed
worst-case bound is, for example, tight for PRN 8 but non-tight for PRN 1.

6 | EFFECT OF A RELATIVE DOPPLER ON THE SPOOFER
ERROR ENVELOPE

To derive the Spoofer Error Envelope, which is defined in Section 5, it was pos-
tulated that the relative Doppler between the authentic and the spoofing signal is
zero. In this section, the effect of a relative Doppler on the Spoofer Error Envelope
will be discussed. In order to analyze this effect, it is mandatory to understand
how the SEE and the MEE depend on the power ratio. Therefore, the next two
subsections evaluate how these envelopes change for different power ratios. The
last subsection discusses the effect of a relative Doppler on the Spoofer Error
Envelope.

6.1 | The Multipath and the Spoofer Error Envelope Under
Different Power Ratios

The MEE and the SEE are complementary regarding the additional-
signal-to-authentic-signal power ratio. The MEE is defined for a signal weaker
than the authentic signal («? <1) and the SEE is defined for a stronger signal
(a? >1). Figure 8 shows the MEE (left plot) and SEE (right plot) for differ-
ent power ratios ranging from o? :% to a?=16. The result for the MEE is
not surprisingly: A smaller power ratio results in a smaller envelope (i.e., the
upper bound gets smaller and the lower bound gets larger). Due to the limited
domain of the MEE («? <1), a maximal (inflated) MEE—the largest distance
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FIGURE 8 Multipath Error Envelope (left) and Spoofer Error Envelope (right) with
d =025 and a? :{i;%;i;%;o; 2; 4; 8;16}; to represent a worst-case error envelope for GPS
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between the upper and lower bounds—is given for a power ratio close to zero
decibel a? ~1.

The result for the SEE is more complex. Two contrary behaviors can be
distinguished:

1. For large relative delays, the change of the SEE is similar to the change for
the MEE: A smaller power ratio results in a smaller envelope. Large relative
delay here means a part of the bound after the jump occurred. In Figure 8, this
applies to relative delays larger than about 330 m for the upper bound. For
the lower bound, the jump highly depends on the power ratio: A larger power
ratio results in a jump farther to the right.

2. The upper bound of the SEE for small relative delays (in this example, smaller
than about 330 m) becomes smaller and the lower bound before the jump
becomes larger for larger power ratios: The envelope shrinks. At first glance,
this seems to be counter-intuitive. However, these parts of the bound are
basically an MEE from the point of view of the spoofing signal and, from
this point of view, a larger power ratio of the spoofing signal means that the
multipath signal (actually the satellite signal) becomes relatively weaker. In
other words, for a large power ratio, the SEE is smaller, because the spoofing
signal is more dominant and can be tracked more precisely. In contrast to 1, a
small power ratio results in more uncertainty and due to the limited domain
the maximal (inflated) SEE, in this case, is given for a power ratio close to zero
decibels.

Summing up, the MEE and parts of the SEE reach a worst-case bound regarding
the tracking bias for the case that the satellite and the additional signal power are
approximately equal. However, both envelopes are not defined for a power ratio of
zero decibels and, looking at Figure 8, the envelopes do not merge for power ratio
close to zero decibels. The transition from the MEE to the SEE is the topic of the
next section.

Relative Delay d, Ac/x [m]
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| Transition From Multipath to Spoofer Error Envelope

To understand why the MEE does not merge to the SEE for equally powered
signals, it is helpful to plot the correlation triangle and the S-curve for such a case.
Figure 9 shows these plots for the counter-phase case (®=180°) and a relative
signal delay of d,A.,, =100 m.

At this point, it is helpful to recall the mechanism of how the DLL works (com-
pare with Section 3.3). Due to the negative discriminator output for a zero lag
(D(0)<0), the DLL will advance the replica signal. The next stable tracking point
is reached at about —-37 m. However, it can be observed that there is not only a
single stable tracking point in the S-curve, but a large plateau with D(r)=0 (red
ellipse). On this plateau, the DLL is mainly driven by noise so that it is not possi-
ble to determine where on the plateau the DLL will stop. Therefore, the resulting
tracking bias for this case can only be given as a range. In the example (Figure 9),
the range is ~160m <7 4,,, <-37m. A lower power ratio (a <1) results in a sin-
gle stable tracking point at about -37 m and a higher power ratio (o >1) in a single
stable tracking point at about -160 m.
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FIGURE 9 Correlation triangles (top) and S-curve (bottom) for a satellite and a spoofing
signal with a? =1 and a signal delay of dA.,, =100m; the counter-phase case is presented
(©=180°)
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FIGURE 10 Spoofer Error Envelope and Multipath Error Envelope with d =0.25 and
a?~1; to represent a worst-case error envelope for GPS L1 C/A, the following sidelobe levels
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Figure 10 plots the MEE and the SEE for an additional-signal-to-authentic-signal
power ratio of one (a =1).

The discrepancy between both envelopes is filled red. Even though some of the
discrepancy results from the non-tight bounds of the defined SEE (see Section 5.1),
it is mainly caused by the aforementioned plateaus of zero values. In practice, the
transition at (o =1) is not sharp. The closer the power ratio is to unity, the higher
the probability that an arbitrary point of the plateau is tracked. So the transition
can only be described by a random process for power ratios close to unity.

6.3 | The Effect of a Relative Doppler

In Section 4, it was described how a GNSS receiver correlates the incoming
signal with a local replica of the code and carrier signal to track the signal. The
result of this correlation is mathematically described by the Ambiguity Function.
In Section 4, it was assumed that the relative carrier frequency offset between the
satellite and the spoofing signal was zero (f,, =0 Hz). Therefore, the simplified
ambiguity function read (recall of Equation [4]):

Sy (1)=R(t)+ae9R(r —d) (11)

In this section, the relative carrier frequency offset plays a role. Hence,
Equation (3) can only be simplified to:

sinc((f, — f,)T.)
sinc(f,T,)

Sy (t)=R(t)+a e I°OR(r -d,) (12)

Equation (11) and Equation (12) differ in two significant respects:

1. The relative phase offset (®) in Equation (12) is time-dependent: In
Equation (11) we assumed no relative carrier frequency offset, so that the
relative phase offset was constant. With a relative carrier frequency offset, the
relative phase offset varies.

2. The power ratio of the spoofing signal to the satellite signal is affected by
the relative Doppler offset (f,,) and by the tracking mismatch of the carrier
tracking loop to the satellite signal ( f, ).

With the preliminary studies in the previous sections, we now have enough tools
to discuss the effect of a relative Doppler on the Spoofer Error Envelope. For all of
the following considerations, we presume that the tracking in the receiver is in a
stable state and especially that the receiver has not lost lock. The expected tracking
error in the presence of a spoofing signal depends on the relative Doppler:

1. For small relative Doppler offsets, the effect of the sinc-function in
Equation (12) is negligible. It is postulated that the phase lock loop (PLL)
tracks the satellite signal (f, =0 Hz) before the spoofing signal is switched on
and the sinc-function (in the denominator) is approximately unity for small
values. Due to a changing phase offset ©, the (relevant) stable tracking point
of the S-curve rotates between the in-phase and the counter-phase case. The
positions of the stable tracking points for varying phase offsets are visualized in
Figure 5 and Figure 7 for some examples. Due to the relatively slow-changing
phase offset, the DLL manages to follow the stable tracking points. Hence, the
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expected tracking bias for small relative Doppler offsets is within the bounds
of the SEE. With an increasing relative Doppler offset (greater than the DLL
loop bandwidth), the DLL averages the code tracking error until it converges
to a single bias. As Kelly et al. (2003) and Van Nee (1993) demonstrated, the
resulting bias is not necessarily the midpoint of the upper and lower bound of
the MEE. Due to the similarities of the envelopes, the same can be expected
for the averaged SEE bias.

2. For medium relative Doppler offsets, the effect of the sinc-function in
Equation (12) is no longer negligible. Therefore, it can occur that a spoofing
signal, which is more powerful than the satellite signal, appears to be equally
strong or even weaker than the satellite signal. In such a case, the MEE needs to
be considered as well. Even if the spoofing signal still appears to be more powerful
than the satellite signal, the bounds of the SEE would need to be adapted to a
lower power ratio (because the spoofing signal is attenuated in the correlation
process). On the other hand, if the spoofing signal still appears stronger, it is most
likely that the PLL will adapt to the spoofing signal (at least, if it is within the
pull-in range of the PLL). This turns over the effect of the sinc-function factor to
the favor of the spoofing signal and the power ratio a appears to be higher than
it actually is. In this case, the SEE needs to be adapted as well. Summed up, the
bounds for the tracking error are an overbound of the worst-case MEE (reached
at about «? =1) and/or a mixture of two SEEs (one for the highest and one for
the lowest possible power ratio). If the DLL tracks the spoofing signal but the
Doppler of the spoofing signal is outside of the pull-in range of the PLL, the PLL
might even lose lock. Depending on the implementation in the receiver, this
leads to a re-acquisition of the satellite signal.

3. For large relative Doppler offsets, the effect of the sinc-function in
Equation (12) is significant. Due to the postulation that the receiver tracks
the satellite signal (f, =0Hz) before the spoofing signal is switched on, the
spoofing signal will appear (significantly) weaker than the satellite signal.
Due to the low signal power, the PLL will continue to track the satellite signal.
Therefore, instead of the spoofer, the Multipath Error Envelope needs to
be considered. The power ratio for this resulting MEE can be calculated by
considering the relative frequency offset, i.e., a'=a sinc( fT.). The effect of
a relative Doppler offset on a multipath signal has been analyzed by Kelly
et al. (2003). The results can directly be applied to this case here.

Figure 11 shows some of the simulation results conducted with the simulation
tool from Bamberg et al. (2018). It plots the experienced tracking bias over the
relative code delay between the satellite signal and the spoofing signal for different
relative Doppler offsets. The experienced tracking bias is averaged over one sec-
ond. For each relative delay and for each Doppler offset, one simulation was con-
ducted. Additionally, the SEE was plotted for comparison. At this point, it should
be noted that the tracking errors for which the receiver detected a loss of lock of
the tracked satellite are not shown in the plot. Consequently, some plots show gaps
(e.g., f, =40Hz).

The plots in Figure 11 confirm the conclusions of this section: For small
relative Doppler offsets, an averaged tracking bias of the SEE bounds is
observed (f,, =10Hz, 25Hz, and 40 Hz). For medium relative Doppler off-
sets, the receiver tends to lose lock; however if not, the tracking error would
be between the SEE and the MEE (f,, =55Hz, 70 Hz, and 85Hz). For large
relative Doppler offsets, an average of the bounds of the MEE is tracked (e.g.,
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FIGURE 11 Spoofer Error Envelope and simulation results with d_, =0.25, a? =2, and fa
from 0 Hz to 150 Hz using PRN code 8; the simulations were conducted using the simulation tool
from Bamberg et al. (2018). The implemented tracking module used a coherent integration time

of T,=5ms, a PLL bandwidth of 15 Hz, and DLL bandwidth of 1 Hz. To represent a worst-case
error envelope for GPS L1 C/A, the following sidelobe levels were chosen to calculate the SEE:

r==% r =% andl =5
1023~ max 1023’ min 1023

[, =100 Hz, 115Hz, 130 Hz, and 145 Hz). The last mentioned plots show the
same shape as the multipath errors for relative Doppler offsets (Braasch, 1992;
Kelly et al., 2003; Van Nee, 1993), especially the plot for f, =100 Hz. These results
are in line with the findings of Kelly et al. (2003), who concluded that the average
tracking bias becomes smaller for higher Doppler offsets (even in the context of a
non-coherent discriminator).

7 | GENERALIZED TRACKING BOUND

The Spoofer Error Envelope (SEE) was derived under the assumption that the
relative delay between the spoofing signal and the authentic signal would stay
approximately constant (see Section 2.3). However, this assumption is not always
fulfilled. Due to satellite movement, dynamics of the user, active steering of the
spoofer, etc., the quasi-static relative delay only holds for a limited amount of time.
In this sense, the SEE bounds only an initial tracking error. In this section, we
derive a more generalized tracking bound that accounts for time-varying relative
delays between spoofing and authentic signals.

The main concept used to derive the SEE still applies to this generalized bound:
The DLL tracks a position where the discriminator function is zero and has a neg-
ative slope (i.e., a stable tracking point [see Section 3.3]). Therefore, the positions
of stable tracking points stay the same as in the case of the SEE. Also, the rule
introduced in Section 3.4—defining at which stable point the DLL settles—still
applies. However, in the case of the generalized bound, the DLL is not necessar-
ily assumed to track the authentic signal and, therefore, the search for the next
tracking point of the DLL can start from 7 #0. For example, due to the previous
spoofing effect, the DLL may settle on some lag value 7, within the bounds of
the SEE. If the relative delay changes, 7, needs to be considered as the new start-
ing point. Hence, for a generalized bound, we need to consider all stable tracking
points and not only those that are reached with a starting point at 7 =0 (as done
in Section 4.1).
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FIGURE 12 Lagvalues resulting in zero crossings of the S-curve as a function of the relative
delay of the spoofing signal; calculated for © in a range from 0° to 180°, d, =0.25, a?=2, and
= %. The solid line marks a zero crossing with a negative slope (stable tracking points) and
the dash-dotted line marks a zero crossing with a positive slope (unstable tracking points).

Figure 12 shows the stable and unstable tracking points for the same spoofing
scenario as Figure 4, but for more relative phase values. As mentioned before, all
stable tracking points should be taken into account in order to derive the gener-
alized bound. The stable tracking point with the largest tracking bias defines the
upper bound and the tracking point with the lowest bias defines the lower bound
of the generalized tracking bound. By comparing Figure 12 with Figure 6, it can be
observed that most parts of the SEE can be used to define the generalized bound
because the SEE is defined by the stable tracking points with the largest/lowest
tracking bias.

Considering the upper bound, it is helpful that parts of the SEE, Equation (9b)
and Equation (9c), were chosen to be non-tight (see Section 5.2). Only the last line
segment after the (upper) jump (Equation [9d]) must be redefined for the general-
ized bound. Remember: From the point of view of the spoofing signal, the authen-
tic satellite signal affects the tracking like a multipath signal. Hence, we can reuse
the multipath bounds of Braasch (1997) from the point of view of the spoofing
signal for large delays and replace Equation (9d) with:

. d (T o = Tonin )
T = —max ___min for d_>1+-—S|1+— D& mn/ 13
Max 2 1-T sa 2|: 1-T ( )

For the lower bounds of the SEE, the two segments (Equation [10a] and
Equation [10b]) before the (lower) jump of the SEE need to be redefined. The low-
est stable tracking point in this area is defined by Equation (10c), but is only partly
used for the bounds of the SEE. For the generalized bound, the range of the equa-
tion needs to be extended. For the sake of simplicity, we do not limit the exten-
sion as observed in Figure 12 but extend it until 7 =0. Hence, (10c) replaces (10a)
and (10b). The resulting equation reads:
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d d d
-1+—=~-— for 0<d,<1-— (14)

Tyin =d
M
n s a 2 a

a

The remaining parts of the SEE can be directly taken for the generalized bound.

The generalized bound is plotted in Figure 13 for different correlator spacings d._.
The SEE is also plotted in the figure so that the common parts of the SEE and the
generalized bound in the case of d, =0.1 can be clearly recognized.

It can be observed that smaller correlator spacings lead to narrower bounds.

—— Bound (d, = 0.1) — Bound (d, = 0.4)
Bound (d, = 0.7) Bound (d, = 1)
---SEE(d, =0.1)

Code Tracking Bias 74, [m]

0 100 200 300 400
Relative Delay d, Aq/x[m]

FIGURE 13 General tracking bound for d, from 0.1 to 1 and «?=2. For comparison,

the SEE is also plotted for d, =0.1 To represent a worst-case error envelope for GPS L1 C/A,

i i - = =65 —_63
the follo\;\;mg sidelobe levels were chosen to calculate the bounds: I'=>=, I', =-=, and

min " 1023°

8 | DISCUSSION OF THE APPLICATION OF
INTRODUCED BOUNDS

In this work, we presented a method allowing us to compute the bounds of the
tracking error of a receiver encountering a spoofing signal. The first bound, the
Spoofer Error Envelope (SEE), gives a minimal and maximal (initial) tracking
error for each parameter of the spoofing signal (relative delay, relative power, rel-
ative phase offset). We say initial here because the SEE assumes that, initially, the
(authentic) satellite signal is tracked and that, at least, the relative delay of the
spoofing signal remains constant. The second, more generalized bound even limits
the tracking error without this assumption (i.e., the spoofer can arbitrarily change
its signal parameters, but as soon as the DLL reaches a steady state, the correspond-
ing tracking error limits are defined by this bound). The developed bounds can be
used for these purposes:

1. The method used to derive these bounds allows for the development of a
fundamental understanding of how a tracking loop is captured by a spoofing
signal. This further gives a sense of the expected tracking error during a
spoofing attack. Having this knowledge allows us the opportunity to design
new receiver and signal structures that are more resilient against spoofing
(new discriminators, new modulation schemes, etc.).



. BAMBERG ET AL.
E€BION

2. Furthermore, the method can be used to compare the effect of different receiver
configurations, different discriminators, and different signal structures on the
expected tracking error. Consequently, state-of-the-art receiver configurations
can be adapted to reduce the effect of a spoofing signal, and, hence, be more
resilient against spoofing attacks.

3. The bounds allow for the design of integrity monitors that can identify critical
spoofing cases: A spoofing case, in the sense of delay/power combinations, is
critical if the tracking error exceeds an alert limit. To design such a monitor,
it is first necessary to analyze which spoofing cases must be detected with a
high probability. The proposed method can be used to identify these cases for
a given receiver design (discriminator, correlator spacing, etc.).

9 | CONCLUSION

In this paper, we presented a method to assess the effect of a spoofing signal on
the tracking of an authentic satellite signal in terms of a code tracking bias. To
demonstrate the method, we derived and proposed a Spoofer Error Envelope (SEE)
for the widely-used non-coherent discriminator tracking the GPS L1 C/A signal.
The SEE complements the methodology of the Multipath Error Envelope (MEE)
described by Braasch (1997) and Van Nee (1992) to spoofing signals. While the
MEE assumes that the additional signal (the multipath) is less powerful than the
satellite signal (line-of-sight), the SEE is valid for additional signals that are more
powerful than the satellite signal.

The proposed SEE is (like the MEE) independent of the relative phase between
the additional signal and the satellite signal. Both envelopes are based on the
expected tracking error of the in-phase and the counter-phase cases. To legitima-
tize this approach, we demonstrated that the aforementioned cases represent the
worst-case regarding the tracking error. Parts of this demonstration are based on
numerical results for highly relevant cases. These cases include different parameter
settings, which are, for example, within the defined range of the MOPS as defined
by RTCA SC-159 (2019). In addition, the SEE was verified by comparing it to results
from signal tracking simulations using synthetically generated signals. A complete
analytical proof is a challenge of future work.

In addition, we discussed the effect of a relative Doppler offset between the sat-
ellite and the spoofing signal on the SEE. In order to analyze the effect, we gave
a short digression on the transition from the MEE to the SEE as a function of
the additional-signal-to-satellite power ratio. Finally, we presented a generalized
bound that can be used in dynamic spoofing scenarios to assess the tracking error
development in the course of a spoofing attack.

The SEE allows us to assess the tracking error for spoofing signals as a func-
tion of the relative signal power, the relative signal delay, and the sidelobe level of
the corresponding autocorrelation function as well as the correlator spacing of the
early-late discriminator. Additionally, the methodology allows for an assessment
of the tracking errors for arbitrary discriminator functions and even for new sig-
nal structures. Consequently, the assessment can not only be used to improve the
receiver system, but also to develop new—more resilient—signal structures.
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APPENDIX
A | PROOF OF BOUNDS

In this section, we show and give evidence that the Spoofer Error Envelope
(SEE), as defined in Section 5.1, describes a bound of the tracking bias 7 for all
phase offsets ®. Let rstp(dsa, ©®) be the stable tracking point that will be tracked
according to the set of parameters and the assumption that the satellite is tracked

before the spoofing signal is switched on. Mathematically, we want to show that:

Tstp (dsa’ ®) S TSEEMax (dsa ) (Al)
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Tstp (dsa ’ ®) 2 TSEEMin (dsa ) (AZ)

for all phase offsets 0°<® <360° and all positive signal delays 0<d,,.
As described in Section 3.2 and Section 5.1, we postulate:

0<d <1 (A32)

1<a sFL (A3b)

max 1—‘min

-1<T'<1 (A3c)

Al | Zones

To proof the bounds, we analyze the envelope separately for three zones with
respect to d_,, depending on the sign of the discriminator value at 7 =0. These
zones are visualized for an exemplary SEE in Figure Al.

Zone 1 In the first zone (0<d, < dsa’jump), the discriminator output at 7 =0 is
positive for all ©, i.e., D(r =0)>0. Due to the mechanism of the DLL (see
Section 3.3), the replica will be delayed until it reaches a stable tracking point

(.e., Typ > 0). Only the upper stable tracking point needs to be considered.

sa, jump < dSa < 1+dz—°), the discriminator output
at 7=0 depends on ©. Both upper (rstp >0, delayed replica) and lower
(Tstp <0, advanced replica) stable tracking points need to be considered.

Zone 2 In the second zone (d

Zone 3 In the third zone (1+ %C <d,, ), the discriminator output at 7 =0 is always
zero. This is readily shown by solving D(r =0)=0 for d, >1+ %. However,
for the SEE, we used the tracking bias estimation of Braasch (1997) to
account for changing sidelobe levels.

In the next step, we will focus on the border between Zone 1 and Zone 2. This is
split into three sections:

1. We show that Zone 1 always exists, i.e., there is a d >0 so that

sa,jump
D(r=0)>0 for 0<d,, <d

sa,jump*

|—— SEEy,, — SEEy,

E
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FIGURE A1l Exemplary visualization of the defined zones; for this example, a Spoofer Error

i - 2 = — =65 — 63 — =65
Envelope with d =0.25, a*=2, I'= oL [k = ToRL and T' , = o Was plotted.
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2. We determine potential upper limits of Zone 1 with respect to the relative
phase ©.

3. In order to ensure that we have D(r =0)>0 in Zone 1 for all phases ©, we
determine the lowest of the potential upper limits to define the upper limit of
Zone 1 (d

sa, jump )

A.1.1 | Zonel Always Exists

Evaluating Equation (6) together with Equation (7), some algebraic manipula-
tions of D(r =0)>0 under the assumption 0<d,, < %C yield:

4d,(1- r){1 +(T —1)%}[(1 +c0s(0) >0 (A4)
>0 _ >0

for >0 for
dg,, >0and I'<1 for a>1

0<d ,<land I'>-1

As indicated, this is true for all parameters within the predefined range (A3).
Hence, Zone 1 always exists and spans at least the range 0 <d, <=.

A.2 | Potential Upper Limits of Zone 1

The discriminator function D as shown in Equation (6) is continuous because
of the approximation of the autocorrelation function in Equation (7), the applied
operations and the composed absolute value function are continuous. (The auto-
correlation function is a piecewise-defined sequence of straight lines and there is
no discontinuity at the endpoints of the subdomains.) Due to the continuity of
the discriminator function D and (A4), we can conclude that the upper limit of
Zone 1 is given by a root of the discriminator function at 7 =0.

Solving D(r =0)=0 (Equation [6] and Equation [7]) under the assumptions
defined in Equation (A3) and within the range % <d, <1+ % yields:

cos(®) 1 dc p
— r+&@1-r) _ —cos(©
@ (1—r 2 ) 0D o© g (A5a)
1 1-5(01-1) a
+_
1-T
d. ()= _
sa( ) 2005(0) 1 B d_c + < co; ©)
- - > 1-¢(1-T) .
r+&1-r
1+ dc <2— (ASb)
ety 1-% -

To determine if the equation D(r =0)=0 has a solution, we focus on the subdo-
mains of Equation (A5). Within the postulated assumption of Equation (A3), the
upper bound of Equation (A5a), —=os®) 9, s always true. Hence, we only need to
evaluate the lower bound of Equation (A5b):

r - —cos(@). (A6)
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If this cond1t10n is fulfilled, D(r =0)=0 has a solution within the range
0<d, <1 + —<. If not, Equation (A5) is not defined and the next zero of D(r =0)
(w1th respect to dg, )isgivenat d, =1+ %. (Remember that D(z =0) =0 is always
fulfilled for d, > 1+d—2°.) This means that, for some O, the discriminator output
at zero is always greater or equal to zero (D(r =0)>0), i.e., only the upper sta-
ble tracking point needs to be considered for these phases. To get a better feeling
for this condition it is helpful to set the sidelobe level to zero, i.e., I'=0. Then
Equation (A6) becomes:

—cos(®)
<—.

a

(A7)

In this special case, a lower stable tracking point (rstp <0) needs to be consid-
ered for 90°<@® <270°. For all other phases, only the upper stable tracking point

(rstp >0) needs to be considered.

A.2.1 | The Upper Limit of Zone 1

Zone 1 is supposed to span the range of d,, where all phase offsets © result in
a positive discriminator output. Therefore, we need to find the smallest delay, d_,,

defined by Equation (A5) that yield a root of the discriminator function for d, >0
over all phase offsets:

dsa’jump - 0°§rgilslso°dsa ©) (A8)

Note, that this delay also gives the earliest jump of the SEE over all phases ©
(see Section 4.1).

Basically, both sub-functions of Equation (A5) are a product of the cosine
function with a factor and a subsequent addition. The factor is positive, i.e.,

#—d— >0, for the postulated ranges d <1 and [I|<1). Hence, within
the range 0°<® <360°, both sub-functions have a global maximum at ®=0°
(in-phase case) and a global minimum at ® =180° (counter-phase case)

We now know the global minimum of the individual functions of the subdo-
mains without considering its limits. Looking at Equation (A6) shows us that
if Equation (A5) is defined for any phase, then it is also defined for ®=180°.
Furthermore, it is straightforward to show that the sub-function (A5a) is smaller

than (A5b) within the subdomain of Equation (A5b):

cos(® d
©( 1 d L1 (A9)
a 1-I 2 1-T
2c08(@)( 1 d | 1+ d,
< —— = [+ —+ =
a 1-T 2 1- 2
d
—cos(®) TI'+=QA-I
== ( )< A (A10)

a 1-%(@1-T)

Equation (A10) is the same as the upper limit of the subdomain (A5b) and, hence,
if we are in the subdomain of Equation (A5b) and if Equation (A5) is defined, this
statement is true.
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A2.2 | Summary

Summing up, we now have the following statements:

1. For 0<d, <%, we have D(r =0) > 0. ] .

2. The function of D is continuous and, in the range 7 <d, <1+ 7°, we have a
zero of D at d,(®) as described by Equation (A5).

3. The functions of the two subdomains of d_, (®), Equation (A5), have a global
maximum at ® =0° and a global minimum at ® =180°.

4. The sub-function (A5a) is smaller than the sub-function (A5b) in the
subdomain of Equation (A5b).

5. If Equation (A5) is defined for an arbitrary phase O, it is always defined for
®=180°.

Putting all the information together, we can use Equation (A5a) to define the
upper limit of Zone 1. We have shown that a relative delay d , greater than zero
but smaller than:

1 1 1 d
dsa,jump ZT__[___C) (A11)

The discriminator output at zero is always positive, i.e., D(tr =0) > 0.

A.3 | Bounds of the Tracking Bias Over all Phases

In the previous section, we defined three zones with respect to d,. In this sec-
tion, we will show for each zone individually that the stable tracking point Top
used for the SEE defined by Equation (10) and Equation (9) describes a bound over
all phase ©.

To get a better understanding of 7, Figure A2 displays the numerically calcu-
lated code tracking bias of stable tracking points as a function of the phase. The
figure is separated into eight subfigures representing different parameter sets of the
relative power o and the correlator spacing d_. In each subfigure, the relevant sta-
ble tracking point 7, is plotted as a bold line for different delays d,,. Non-relevant
stable tracking points are plotted as dashed lines. Relevant here means that this
stable tracking point is tracked due to the mechanism of the DLL evaluating the
discriminator output at 7 =0.

A31 | Zonel

Looking at the delay of 50 m (blue line), which is smaller than d, ;. for all
displayed parameter sets, confirms the statement for Zone 1: Only the upper stable
tracking point is relevant. In some subfigures, an additional lower stable track-
ing point is shown. However, it is never relevant as indicated by the dashed line.
The same applies to the red line (150 m) of the higher relative power «? =8 and
in the bottom-left subfigure (a? =2, d, =1.0) as well as for the green line in the
bottom-right subfigure (a? =8, d_ =1.0). These plots still belong to Zone 1, as the
upper limit of Zone 1 shifts to a higher relative delay d, for higher relative powers
and larger correlator spacings.
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FIGURE A2 Numerically calculated (relevant) stable tracking point Ty asafunction of the

phase @ for different delays d,, (bold line); the dashed line marks a stable tracking point that
is not tracked due to the sign of the discriminator function at 7 =0. In this figure, the correlator

spacing d_ ranges from 0.05 to 1.0 and the relative power o from 2 to 8. For the calculation, a

(constant) sidelobe level of T'==% was assumed.
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The plots indicate that there is a minimum of the upper stable tracking point
for ®=0° and a maximum for ® =180°. The exact phases of the extrema can not
be read from the plots. However, the proof that the derivative of a stable track-
ing with respect to the phase is zero at these points is supported by Appendix B.
Furthermore, the problem of solving for the upper stable tracking points can be
transferred to a multipath scenario and the extrema are then given by the MEE.
For the dual-problem, we define the spoofing signal as the satellite signal and
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the (original) satellite signal as the multipath signal. The MEE can be considered
because:

1. We postulated that the spoofing signal has higher power than the satellite
signal (o >1). Hence, the newly defined multipath signal is weaker than the
newly defined satellite signal (i.e., a’:= i <1).

2. We postulated a delayed spoofing signal compared to the satellite signal
(dg, >0). Hence, the newly defined multipath signal is advanced compared
to the newly defined satellite signal (i.e., d, =—d, <0). The MEE is usually
only defined for positive delays because a multipath signal is always a
delayed replica of the line-of-sight signal. However, due to the symmetry of
the autocorrelation function, the discriminator function is odd symmetric
D(r,d,)=-D(-7,~-d_). Hence, the function of the MEE can be continued
in the negative domain of d, as an odd function.

It is well known that the in-phase case (®=0°) poses an upper bound of the
tracking bias in the multipath scenario over all phases as well as the counter-phase
case (®=180°) poses a lower bound (Braasch, 1997; Van Nee, 1992). Due to the
odd symmetry, the upper bound of a negative delay d, becomes a lower bound
and vice-versa. Back to the SEE, we can now say that the counter-phase case is an
upper and the in-phase case a lower bound of the (upper) stable tracking point.

A32 | Zone2
In Figure A2 the following graphs belong to Zone 2:

« The remaining red plots (150 m) that are not listed in the previous section;
these are in the top three left subfigures («? =2 and d_ €{0.05,0.1,0.25}).

« All green plots (250 m) except of the one in the bottom right subfigure (a2 =8,
d, =1.0)

« The orange plots (350 m) in the bottom subfigures (d, =1.0)

In Zone 2, the situation is more complicated than in Zone 1: Depending on the
parameter set, we have up to four jumps (as it is an even function with two jumps
on each side). For a correlator spacing of d, =0.25 and, in the bottom-left plot, the
green line shows two jumps. In all remaining graphs four jumps can be observed.

We can use the same reasoning as for Zone 1 to show that the counter-phase case
(®=180°) poses an upper bound. Even though the bound is not always reached—
as the relevant stable tracking point switches to a lower one for a range around
® =180° —it is still a valid stable tracking point and, therefore, limits the tracking
bias. Remember, the presence of a stable tracking point is indicated by a dashed
line in the plots.

For the lower bound, we need to consider the lower stable tracking points (r <0).
As indicated by the jumps in the course, there are up to two different lower stable
tracking points. One lies around zero and is defined for two ranges (excluding a
range around © =180°). The second one lies lower and is defined exclusively for
a range around © =180°. The latter is needed for a bound that is lower than the
former. The graph indicates that the lower stable tracking point is a continuous
and differentiable function including a minimum at ®=180°. Hence, applying
Appendix B gives strong evidence for a minimum at ® =180° for the lower stable
tracking point.
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Summing up, for Zone 2 the in-phase case of the upper stable tracking point
gives an upper bound and the in-phase case of the lower stable tracking point gives
a lower bound.

A.3.3 | Zone3

For most of the displayed parameter settings in Figure A2, a relative delay of
350 m (orange line) belongs to Zone 3 (all except the two bottom subfigures with a
correlator spacing of d. =1.0). As already mentioned and confirmed in the plots,
finding zeros of D(r) for relative delays, d, > 1+d7°, lead to a constant solution
at 7 =0 over all phases ®. The reason for this solution is that the autocorrela-
tion function is approximated using a constant sidelobe level; see Equation (7).
However, Braasch (1997) derived a lower/upper limit of:

= iOtdc (rmax B l—‘min) (A12)
2(1-T)

by considering the maximal and minimal slope between two adjacent sidelobe lev-
els of the autocorrelation function I, —T",. . The derived limits apply for:

a<—1°0 (A13)

which was postulated in Equation (A3).

B | CHARACTERISTICS OF THE IN-PHASE AND
COUNTER-PHASE REGARDING TRACKING BIAS

In this section, we want to give evidence that the in-phase ®=0° and the
counter-phase ®=180° cases give (local) extrema regarding the tracking bias. We
assume there are continuous and differentiable functions 7y, (©) describing the
stable tracking point k (some parameter sets yield more than one solution) as a
function of the relative carrier phase. It is challenging to give an explicit solution
for all Totpk (®). Therefore, we shall confine ourselves to show that the derivation
of these functions is zero for the in-phase and the counter-phase case.

Mathematically, we want to show that:

ot ot
[ stk j -0 and [ stpk j =0 (B1)
00 Jo-o° 00 Jo-1s0°

To get the derivative without solving the explicit form, we use a method called
implicit differentiation. The approach can be described by the following steps:

1. Calculate the implicit differentiation and rearrange the equation to give the
derivative of Totp.k (®) (the derivative will be given by a fraction).

2. Show that the nominator of the derivative is zero for the in-phase and the
counter-phase cases.

3. Show that the denominator of the derivative is non-zero for the in-phase and
the counter-phase cases.
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B.1 | Calculate the Implicit Differentiation

By definition, the functions 7, , (©) give stable tracking points:
D(r,(©),0)=0 (B2)

Using the method of the implicit differentiation yields:

dD(rstp,k (), ®) _ oD +6_D 8rstp’k o (B3)
de 0® ot 00

For %(Tstp,k ()X ®) #0, we get:

aTstp,k (®) __ %(Tstpsk (®)’ ®)
00 D(z,(©),0)

(B4)

B.2 | Show That the Nominator of the Derivative is Zero for
the In-Phase and the Counter-Phase Cases

The partial derivative of the S-Curve given by Equation (6) with respect to ©
reads:

2—2(1, ®)=asin(®)

(B5)

For the in-phase and for the counter-phase, one can show by setting ® =0° and
® =180° that this partial derivative is zero:

(6—Dj =0 and (G—Dj =0 (B6)
00 Jo—ge 00 Jg-180°
With this information and Equation (B4), we know that:
07y, (©) oD
stp,k _ oY o o
(Tj@)_o" =0 for — (7ap(0°),0°) %0 (B7)
and:
07y, (©)
(Lj =0 for 6—]3(73t L (180°), 180°) £0 (BS)
00 0=180° or \ P
B.3 | Show That the Denominator of the Derivative is Non-

Zero for the In-Phase and the Counter-Phase Cases

An explicit form of the denominator of Equation (B4) is not available in general.
Therefore, we want to demonstrate that this term is only zero for a specific and
limited amount of values of ©.
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For the in-phase and the counter-phase case, Equation (6) becomes:

d d
D, (7)= R(T +7°J+ame(T +?C—dsaJ
(B9)
dC dC
—-|R| T ey +a,, R T—?—dsa
with @, =o for the in-phase and «, =-a for the counter-phase case,
respectively.
To get a better understanding of Equation (B9), we define:
R, (x)=R(x)+ aymR(x—dg, ) (B10)
With this, Equation (B9) becomes:
d d
D, (7)= Rapm (r +?C] - Ro‘pm [T_?C] (B11)

Considering the approximation of the autocorrelation function R(.) given
by Equation (7), it becomes quite obvious that R, (x) is a piecewise-defined
sequence of straight lines: R(.) isa piecewise-deﬁne&msequence of straight lines by
definition and the linear combination of two lines is, again, a line. The same goes
for the S-curve D;,.. The examples in Figure 1 and Figure 3 in the main text may
illustrate the resulting S-curve. Additionally, the S-curve D, /e is continuous due
to the continuity of the autocorrelation function R(.) and the continuity of the
applied operations. However, they are only differentiable with respect to ¢ within
one line segment and not at the corners. Summed up, the S-curve D, /e is a contin-
uous function of line segments.

Hence, the derivative of the S-curve with respect to 7 is zero if and only if the
S-curve has a horizontal line segment (i.e., a line segment with a slope of zero). A
horizontal line segment of the S-curve is only given if the positions 7 + > andt — >
are within one line segment of the summed autocorrelation function R, (x) or
within two line segments with the same slope. This can again be retraced in the
shown examples (Figure 1 and Figure 3).

By the definition of rstp,k(G)), it must hold that D(rstp,k((a),@):o. Hence,
the aforementioned horizontal line segment of the S-curve must be zero and the
positions 7 +°;—° and 7 —dz—c must be within one horizontal line segment of the
summed autocorrelation function R, (x) or within two line segments with the
same slope and same level. The summed autocorrelation function, again, is a lin-
ear combination of two autocorrelation functions that are constant except for an
isosceles-triangular-shaped part—compare to Equation (7).

The linear combination yields a horizontal line segment only if:

1. The flanks of the triangular shapes of the two functions have the same
(absolute) slope; we can neglect this case because it is only given for ‘apm‘ =1
but we presumed a >1.

2. We consider a position outside of the triangular shapes of both functions; this
position is not of interest because we start from the center of one triangular
(the satellite is tracked before spoofing) and another stable tracking point will
be reached first.
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With this reasoning, it can be said that the denominator in Equation (B4) is (in
general) not zero at the locations of stable tracking points and therefore:

ot ot
[ stk j -0 and [ stpk j -0 (B12)
00 Jo-o° 90 Je-1s0°

hold for all relevant positions. Hence, the in-phase and the counter-phase cases
give extrema or saddle points regarding the tracking error.
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