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Abstract

An important part of atmospheric remote sensing is the monitoring of its composi-
tion, which can be retrieved from radiance measurements, e.g. in the short-wave
infrared (SWIR). For deriving trace gas concentrations in the SWIR spectral region
a radiative transfer model is fitted to observations by least squares optimization.
The aim of this thesis is to present the well-established variable projection method
for solving separable nonlinear least squares problems and to examine and config-
ure it for trace gas retrieval. For this, a Python implementation of the algorithm,
called varpro.py, will be outlined and later utilized in retrievals with real satellite
observations. These are meant to assess the efficiency, accuracy and robustness of
three iterative algorithms for nonlinear least squares problems which have been
built into varpro.py. Furthermore, a new feature — applying bounds to the non-
linear fit parameters — will be included in the implementation and evaluated for
its quality and usefulness. As a result of these tests, a new ’default’ configuration
will be suggested based on the algorithm with the best performance for trace gas
retrieval. Also, ideas for analysing and testing strategies which could lead to even
more insights will be proposed. Finally, possible future applications for trace gas
retrieval will be motivated and suggestions for further research and modifications
of varpro.py will be made.
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Chapter 1

Introduction

The measurement of geophysical quantities is of central importance for improving
the understanding of the atmosphere and environment including phenomena like air
pollution, ozone depletion or climate change. Especially for the latter, it is essential
to monitor the concentrations of important greenhouse gases, such as carbon dioxide
(CO2) and methane (CH4) on a global scale in order to quantify their impact on the
earth’s climate. These can be derived from satellite measurements of the incoming
radiation. The resulting process is called trace gas retrieval which will be introduced
in Chapter 2.

One essentially needs three things for it: a radiative transfer model, space-borne
measurements and a retrieval method. As the required precision for retrieval
products increases, all of these are subject of ongoing research and improvements.
A radiation transfer model, for instance, can be formulated in many ways and
considerably modified in different wavelength regions. In this thesis, the line-by-
line code, Py4CAtS (PYthon for Computational ATmospheric Spectroscopy) [1],
is utilized for this purpose. Regarding space-borne measurements, the Orbiting
Carbon Observatory (OCO-2) [2] is introduced as an example in Chapter 2. It
observes CO2 in the short-wave infrared (SWIR) with an almost unrivalled high
precision and coverage compared to satellites with the same goal, which is why its
measurements are used for the retrievals in this thesis.

Instead of focusing on models or measurements, this thesis deals with the in-
version method, which is the process of using both to retrieve the underlying
atmospheric parameters, such as trace gas concentrations. For this, a fit between
the model and observation has to be performed. Such an approximation is usu-
ally based on least squares optimization which will be motivated and described in
Chapter 3. As the corresponding problems may not only differ heavily but also rise
in complexity, countless variations of least squares algorithms have been developed
and extended over the past decades (see [3] as an example). One of them is the
Variable Projection algorithm introduced by Golub and Pereyra [4] in 1973, which is
specialized for nonlinear problems that are separable. A thorough derivation of its
theory, including how separability can be exploited to reduce the size of the problem
and make the fit more efficient, can be found in Chapter 4. It is also reasoned why
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Chapter 1 Introduction

this algorithm can and should be applied to the mathematical problem posed by
trace gas retrieval.

The idea of this thesis is to motivate the replacement of the currently used standard
least squares solver by a more suitable and efficient one and to assess its properties.
An implementation of the Variable Projection method based on [5], called varpro.py,
was used for this. The goal of the conducted tests was to find the best configuration
for its use and to explore new features. Chapter 5 holds the results of this assessment.

Ultimately, the purpose of this thesis was to lay the foundation for the establish-
ment of a more suitable method for trace gas retrieval. It is argued in Chapter 6
that this could result in a considerable improvement of the inversion process (see
Section 2.3) in the future. After all, such advancements are essential for the ongoing
developments in atmospheric science and research.
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Chapter 2

Atmospheric Remote Sensing

In order to monitor the state of the atmosphere on a global scale it is necessary
to observe the earth from a far distance. These observations are accomplished by
space-borne sensors on satellites that measure incoming radiation. Most instruments
are passive, which means that they do not have their own source of radiation but
instead use emission by the sun or thermal emission of the atmosphere itself. The
characteristics of such measurements and exemplary satellites will be introduced in
Section 2.2.

The principle of passive remote sensing is simple: light (or more generally:
radiation) traversing the atmosphere is to some extent absorbed and scattered by
molecules or other particles like clouds or aerosols before it reaches an observing
satellite. The resulting change in measured intensity can thus be used to determine
the atmospheric state including its composition [6, chapter 2]. For a quantification
of parameters like the amount of trace gases present, it is usually necessary to have
a radiation transfer model (see Section 2.1) which is able to mimic the observed
radiance spectra. By comparing the measured signals to the simulated ones with
approximative methods (see chapters 3 and 4), the sought atmospheric parameters
can be determined.

The work for this thesis is based on of many areas of remote sensing: a pro-
cess called trace gas retrieval (see Section 2.3), which has the goal to estimate trace
gas concentrations in the atmosphere. It is just one of many areas of remote sensing.
The applicability of this method depends very strongly on the wavelength region
chosen for the molecule under scrutiny.

In this thesis the near and short-wave infrared (NIR and SWIR) regions are dealt
with, which approximately reach from 14 000 cm−1 to 4000 cm−1 (0.8 µm to 2.5 µm)1.
This spectral range allows the precise monitoring of important greenhouse gases
such as CH4 and CO2 which play a significant role in global warming. In it, thermal
emission is of little relevance and scattering is comparatively weak (except for heavy

1For the infrared spectral region it is advantageous to use the more natural units of cm−1 corres-
ponding to the wavenumber ν which is the inverse of the wavelength λ. It can be calculated as
ν[cm−1] = 10000/λ[µm]
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Chapter 2 Atmospheric Remote Sensing

aerosols loading or cloudy conditions). As a result, the light path can be assumed
to be straight from the sun to the earth’s surface and back to the satellite [7]. This
considerably simplifies the model which will be described in the following section.

2.1 Radiative Transfer Model

In order to retrieve atmospheric state parameters (i.e. trace gas concentrations,
temperature, or aerosol and cloud parameters), it is necessary to understand the
sources of electromagnetic radiation and its transport through the atmosphere.
According to Burrows et al. [6, chapter 1] there are three main sources of radiation
in the atmosphere: external radiation from the sun, thermal emission by particles in
the atmosphere or from the ground itself, and scattering, i.e. the radiation scattered
into and out of the primary beam. On its way though the atmosphere this radiation
is attenuated by processes of absorption and scattering (denoted by the subscripts a
and s), which are commonly referred to as the extinction [6, chapter 1]. Combining
all those processes, one can describe the change of intensity of the incoming radiation
I at a certain wavenumber ν traversing the distance ds with the radiation transfer
equation for a single species as [6, chapter 1]

dI(ν, Ω)

ds
= − [εa(ν) + εs(ν)] I(ν, Ω)︸ ︷︷ ︸

attenuation

+ εa(ν) B(ν, T)︸ ︷︷ ︸
thermal emission

+ εs(ν)
∫ S(Ω′, Ω)

4π
I(ν, Ω′) dΩ′︸ ︷︷ ︸

scattering

.

(2.1)

The parameters in equation (2.1) are:

εa,s(ν) = n · σa,s(ν) : absorption/scattering coefficient of particle

n : number density of absorbing/scattering particle

σa,s(ν) : absorption/scattering cross section of particle

B(ν, T) : Planck’s function of black body radiation at temperature T

S(Ω′, Ω) : dimensionless scattering phase function

As mentioned, an advantage of the NIR and SWIR spectral regions is that they
allow to neglect thermal emissions and molecular (Rayleigh) scattering [6, chapter 2].
If only cloud-free measurement scenes are considered, the last term in (2.1) for
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2.1 Radiative Transfer Model

scattering on clouds can be dropped, as well. This considerably simplifies2 equation
(2.1) to

dI(ν)
ds

= −n · σ(ν) · I(ν) (2.2)

which is called the Beer-Lambert law. Thus, for the most simple solution of the
radiation transport equation, the observed spectral signatures are directly related to
the absorption spectra of atmospheric constituents. In the integrated form and for
several absorbing molecular species3 this means

I(ν) = r Isun(ν) exp

− ∫
path

(
∑
m

nm(s) σ(ν)

)
ds

 (2.3)

which serves as a model for the intensity of the sun’s radiation after having taken
a path through the earth’s atmosphere. The dependence of the cross section σ on
the path will be explained later in this section. The factor r accounts for the surface
reflectivity, often called albedo. It is defined by the ratio of reflected to transmitted
radiance and usually depends on the wavenumber ν. However, this dependence
differs strongly over the globe [6, chapter 2], which is why the ν-dependent function
r must be fitted for each measurement.

For the purpose of this thesis, a code called Py4CAtS (PYthon for Computa-
tional ATmospheric Spectroscopy) [1] was used to model the radiation transfer
described in (2.3). Py4CAtS is a Python re-implementation of an earlier Fortran code
called GARLIC (Generic Atmospheric Radiation Line-by-line Infrared Code) [8],
which — as the name suggest — is a line-by-line model. The strategy of such models
is to start by computing the absorption cross section of a particular molecule m for a
given pressure p and temperature T by summing up the contributions from many
lines l (cf. line-by-line) as

σm(ν, p, T) = ∑
l

Sml(T) g(ν; ν̂ml , γml(p, T)), (2.4)

where each line is characterized by its temperature-dependent strength Sml and a
normalized shape function g describing the broadening of the line [1]. The combined
effect of pressure and Doppler broadening is represented by a Voigt line profile

2Since scattering is neglected only the absorption components of equation (2.1) are considered and
therefore the subscripts a are dropped in this and later equations. This fact cancels out the only
Ω-dependent part of the equation, namely the scattering phase function S(Ω′, Ω), which is why
this dependency is also dropped in later expressions.

3The only change when considering several molecules appears in the absorption coefficient εa which
turns into a sum of all molecular (absorption) cross sections multiplied by their number density.
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Chapter 2 Atmospheric Remote Sensing

[6, chapter 1] at a position ν̂ml with the broadening parameters γml . The necessary
molecular properties can be picked out of comprehensive line databases that list
line parameters "for millions to billions of lines of some dozen molecules" [1]. The
reason why the cross section in equation (2.3) is indirectly dependent on the path
length s, is because p and T vary with it. Their atmospheric height profiles differ
across the globe which is why such temperature and pressure profiles are necessary
input data for a radiation transport simulation.

The next step in line-by-line codes, such as Py4CAtS, is to compute the absorption
coefficients εm and with them the total optical depth τm, which is defined as

τm(ν) =
∫

path

εm(ν, s, p, T) ds =
∫

path

nm(s) σm(ν, p(s), T(s)) ds. (2.5)

This is only possible with apriori knowledge about the number density nm of each
molecule in the atmosphere on the specific path. Considering the geometry of the
problem (see the double slant path in figure 2.1) and assuming a plane parallel
atmosphere, one can split the integral (2.5) into two separate paths, parameterized
by s′ and s′′, which are uniquely related to the altitude z by

s′ =
z

cos(θvza)
≡ z

µ
s′′ =

z
cos(θsza)

≡ z
µ�

vza = viewing zenith angle
sza = solar zenith angle . (2.6)

As most atmospheric data (such as pressure and temperature profiles) are specified
in terms of altitude, this relation is necessary to rewrite the from (2.5) to

τm(ν) =

ztoa∫
zsrf

(
1
µ
+

1
µ�

)
εm(ν, z, p, T) dz. (2.7)

Here, the integral limits have been shifted to only include parts from the actual
surface height (srf) to the top of the atmosphere4 (toa), because all relevant molecular
absorption processes take place within that range.

To model an actual observation Î the incoming radiation I has to be convoluted
with the instrumental spectral response S, which accounts for the fact that the actual
signals are not fully resolved in a sensor. Including all mentioned considerations (i.e.
optical depths, solar and viewing geometry, instrument resolution, etc.) a radiance
measurement can be simulated by

Î(ν) = r(ν) · µ� · Isun(ν) · exp

(
−∑

m
τm(ν)

)
⊗ S(ν) (2.8)

4For the application of trace gas retrieval ztoa is usually taken to be between 80 km and 100 km.
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2.2 Space-borne Measurements

surface

sun sensor

top of atmosphere

molecules

zs‘‘ s‘

Figure 2.1: Schematic illustration of radiation transfer in passive remote sensing.

which forms the foundation of the forward model in a SWIR trace gas retrieval
algorithm. The incident radiation of the sun Isun(ν) that reaches the earth can be
well approximated with Planck’s law for black-body radiation using its effective
temperature of 5778 K. The factor µ� accounts for the fact that the solar radiation
does not reach the earth’s surface perpendicularly, but under an angle θsza (see figure
2.1), so that the radiant flux per area is reduced by a factor cos θsza, which is µ�.
Most surface types (e.g. sand, snow, ice) are well described by the approximation
of Lambertian reflection characteristics, which assume isotropic distribution of
reflected light [6, chapter 2]. Therefore, the surface reflectivity r(ν) can be assumed
to depend only on the wavenumber ν and not on the geometry of the problem.
In fact, it can be fitted by a polynomial5 in ν (see beginning of Section 2.3). The
exponential term in equation (2.12) is called the transmission T , which is defined as
the ratio of incoming and outgoing radiation.

2.2 Space-borne Measurements

There are several earth observing satellites operating in various spectral regions and
thereby monitoring different trace gas species. In this thesis measurements from the

5Usually, in order to avoid over-fitting this is taken to be first- or second-degree. For a short analysis
of problem conditioning in terms of finding the right amount of fitting parameters in SWIR trace
gas retrieval, see [9, chapter 4].
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Chapter 2 Atmospheric Remote Sensing

OCO-2 (Orbiting Carbon Observatory-2) satellite are utilised in later calculations
(see Chapter 5) which is why it is used as an example in this section. The OCO-2
satellite [2] was launched on July 2, 2014 and was NASA’s first spacecraft dedicated
to studying atmospheric CO2 from space. Its mission statement [2] is the following:

The OCO-2 Project primary science objective is to collect the first space-
based measurements of atmospheric carbon dioxide with the precision,
resolution, and coverage needed to characterize its sources and sinks
and quantify their variability over the seasonal cycle.

A disadvantage of space-borne measurements used to be their coarse spatial
resolution which is not fine enough to resolve individual power plants or even large
cities in detail [7]. This could be crucial, however, to understand the atmospheric
behaviour of important green house gases like CO2. This is why OCO-2 among other
measures significantly improved spatial resolution compared to other operating
instruments. Another reason why densely-spaced samples are advantageous is that
it increases the number of measurements that are not impaired by the presence of
clouds or uneven terrain such as mountains. Clouds and optically thick aerosols
can shield the atmosphere below them from the satellite view while topographic
variations can also block the light and therefore cause incomplete measurements [7].

OCO-2 flies in a sun-synchronous orbit, which means that it samples each location
at a constant local time [see 2, for Mission Overview]. Each sample covers an area of
about 3 km2 when the instrument is looking straight down. This viewing geometry
is called nadir6 and it usually also means viewing directions up to 60° around
the zenith (for a schematic illustration see figure 2.1). This way, the instrument
can gather 72,000 soundings on the sunlit side of any orbit [see 10, for further
specifications] which ensures quite a good number of high quality measurements.
The OCO-2 instrument has three specific spectral bands in the NIR and SWIR where
it measures intensity at the same location on the earth’s surface simultaneously.
These regions are specified in [10] as follows:

O2 (A-band) CO2 (weak-band) CO2 (strong-band)

0.758 to 0.773 1.590 to 1.622 2.043 to 2.083 in [µm]
12 937 to 13 193 6165 to 6289 4801 to 4895 in [cm−1]

Table 2.1: Spectral range of OCO-2’s measurement channels.

The designers of OCO-2 added the complementary absorption measurement of
another atmospheric gas, O2, because its concentration is constant, well-known and

6Note that, another common viewing geometry is limb which refers to horizontally sounding instru-
ments.
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2.2 Space-borne Measurements

uniformly distributed throughout the atmosphere. Therefore, atmospheric oxygen
is the best candidate for providing reference measurements to assure the accuracy
of CO2 products [2].

For the measurement of carbon dioxide itself, two specific absorption bands in the
SWIR are covered by the OCO-2 instrument (see yellow lines at the top of figure 2.2).
The weak band measurements are said to be "relatively clear and unambiguous"
[see 2, for Measurement Approach] because no other gas has significant absorption
within this range. The strong channel serves the purpose of providing a second
independent measure of the CO2 abundance. However, observations in this band
are more sensitive to the presence of aerosols and variations in atmospheric pressure
and humidity, which is why it can be used to detect (and reduce) such impacts on
the final results [2].

0
1 GOSAT

AIRS OCO-2

0

1

H2O

1000 2000 3000 4000 5000 6000
0

1

CO2

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2.2: Monochromatic transmission spectrum of atmospheric CO2 and H2O in
the TIR, NIR and SWIR spectral regions simulated with Py4CAtS [1]. The measure-
ment ranges of the satellites AIRS, GOSAT and OCO-2 are indicated at the top.

In general, CO2 concentrations can also be derived from radiance measurements in
other spectral regions like the thermal infrared (TIR) with even longer wavelengths
than the SWIR or NIR. Figure 2.2 shows the transmission spectrum of carbon
dioxide in the atmosphere with clearly visible CO2 absorption bands throughout
the entire spectrum. Examples for two satellites that (also) measure in the TIR
are GOSAT (Greenhouse Gases Observing Satellite) [11] and AIRS (Atmospheric
Infrared Sounder) [12]. Their exact spectral regions are indicated in figure 2.2. The
reason why they are so much broader than OCO-2’s range is because they consider
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Chapter 2 Atmospheric Remote Sensing
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Figure 2.3: Radiance spectrum of atmospheric CO2 in the strong and weak band
measured by OCO-2 (data frame 1144 of orbit 31366a on the 05/25/2022).

other trace gases, as well, that have their absorption peaks in the vicinity of carbon
dioxide. Especially in the TIR, a large number of different atmospheric trace gases
can be observed [7]. However, a disadvantage of this region is that thermal emission
of the surface and atmosphere itself have to be considered in the radiation transfer
model which significantly complicates later retrievals. So in order to observe CO2
with a high sensitivity across all atmospheric layers it is advantageous to use only
the SWIR and NIR ranges as OCO-2 does.

In figure 2.2 it is also noticeable that the chosen OCO-2 ranges are relatively
narrow (just one band peak) compared to the total width of the CO2 absorption.
Large fitting windows are unfavourable due to their increased noise and the fact
that they include more overlapping lines of different trace gases [6, chapter 2]. It is
also advantageous to choose windows with low water absorbance, because H2O
concentrations vary largely across the globe, so that the retrieval of it could pose
as an additional source of error in the final CO2 results. This is why the OCO-2
spectral ranges (as classified in table 2.1) can be used unaltered as retrieval windows.

An example for the observed spectral radiance measured by OCO-2 can be
seen in figure 2.3. As was already mentioned in Section 2.1 it is important to
consider the fact that the measured values are never fully resolved spectrally but
taken at instrument resolution. For a grating spectrometer as OCO-2 the shape of the
spectral response function (SRF) is well represented by a Gaussian. Still, OCO-2 [10]
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2.3 Trace Gas Retrieval

offers tabulated SRF values for each spectral pixel of every measurement in all bands.
Other important information that is included in their product is data quantifying
the viewing geometry, solar position, geographic position, surface elevation and
quality flags for each measurement. These are all necessary to accurately simulate
the measured spectrum with the model described in Section 2.1.

2.3 Trace Gas Retrieval

The essence of trace gas retrieval is to use space-borne measurements and a cor-
responding forward model to derive parameters that describe the molecular com-
position of the atmosphere. In the spectral region used for CO2 retrievals the nadir
viewing geometry does not allow to obtain information on the vertical distribution
of the gases [13]. In this case the result of a retrieval is the total column density of
the molecule m

Nm =

ztoa∫
zsrf

nm(z) dz, (2.9)

which is the integral over its number density nm along the path7. A related, but even
more common quantity used to express retrieval results for trace gases like CO2, is
the total column averaged dry air mole fraction defined as

xCO2 =
NCO2

Nair − NH2O
, (2.10)

which is also often denoted as the "concentration" of the molecule. Its current
monthly average for CO2 is approximately 417 ppm [14].

But how are the quantities described in equation (2.9) and (2.10) related to the
forward model (2.8) and how can they be derived in a fit?

Comparing the total column density Nm to the previously introduced total optical
depth τm from equation (2.5), one can see that they scale the same way. Now, both of
these measures can only be calculated along a given path using apriori assumptions
on the composition of the atmosphere, namely the number density nm(s). Thus, the
actual total optical depth of a molecule m can be written as

τm(ν) = αm · τprior
m (ν), (2.11)

which is the reference τ
prior
m based on apriori assumptions multiplied by a molecular

scaling factor αm. With this relation the fitting function can be derived from the

7For this reason, it inherently depends on the surface height zsrf at which the light path is reflected.
This dependence is not shown in the formulas for simplicity.
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Chapter 2 Atmospheric Remote Sensing

forward model (2.8) to be

Î(ν) = r(ν) · µ� · Isun(ν) · exp

(
−∑

m
αm · τprior

m (ν)

)
⊗ S(ν). (2.12)

Here, the unknown (fitting) parameters are the reflectivity parameters from the
surface albedo polynomial r(ν) and the molecular scaling factors αm.

The only two molecules that must be considered for a retrieval in the OCO-2
spectral regions are CO2 and H2O (cf. absorption bands in figure 2.2). Using a first
degree polynomial to describe the surface reflectivity, this results in the state vector

x = ( αCO2 , αH2O , r0 , r1 )
> (2.13)

consisting of four unknown parameters. Inversion of a nonlinear model like (2.12)
means to use an initial guess x0 for the state vector and then iteratively improve the
values until the model spectrum they produce best approximate the measurements.
Finally, the state vector x̂ that created the "best" spectrum is considered as the result.

Figure 2.4 shows a schematic illustration of the just described methodology. The
necessary input data in trace gas retrieval (apart from an initial state vector) are the
solar zenith angle, the solar irradiance, the optical depths based on atmospheric
state data and the surface elevation, and tabulated instrument response values (see
overview at the end of this section for more detail).

Model Observation

initial guess

Input Data

final result
compared to

update parameters

Figure 2.4: Schematic illustration of an iterative retrieval algorithm.

In order to accurately separate the effects of absorbing molecules and surface
reflectance on the radiance measurement, it is necessary to use observations at
several wavelengths [6, chapter 2]. In the strong CO2 band of OCO-2 there are
approximately 1000 spectral pixels, which are far more than the fitting parameters
are. Such a system is called over-determined. Figure 2.5 shows an example of how
a simulated spectrum can approximate a measured one in the strong band after a
fit has been performed. The optimization method used for such a fit is called least
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2.3 Trace Gas Retrieval

squares which is motivated and explained in Chapter 3. The idea is to minimize the
squared differences between model and observation, called residuals. The lower
plot in figure 2.5 shows the remaining residuals of the fit that come from errors in
the measurement (such as noise) or inaccuracies in the model.
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Figure 2.5: Example of measured and simulated radiance spectra after approximation
has been performed in the strong CO2 band. The lower plot displays the residuals
of the fit. The y-axis of both plots has the radiance unit [erg/s cm2 sr cm-1].

With the final state vector x̂ that is produced by the iteration method, physically
meaningful results such as the distribution of trace gases can be derived. The final
molecular scaling factors αm can be used to calculate the actual total column density
of a molecule m, in the form

Nm = αm · Nprior
m . (2.14)
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Chapter 2 Atmospheric Remote Sensing

In this thesis the code BIRRA (Beer InfraRed Retrieval Algorithm) [13] was
used for the retrievals done (see Chapter 5, particularly). It has been validated
for the trace gas retrieval of CO in the SWIR in [15] and was recently translated
to Python from the original Fortran implementation [16]. This way it can be used
together with the radiative transfer model Py4CAtS which calculates the optical
depths for the forward equation (2.8). BIRRA performs a least squares fit to retrieve
the atmospheric composition and surface parameters (cf. state vector (2.13)).

In fact, the special form of the model function (2.12) allows the use of an even
more specific method within the least squares framework described in Chapter 3,
called Variable Projection. In it, a separation between the nonlinear parameters, αCO2

and αH2O, and linear parameters, r0 and r1, is done to simplify the mathematical
problem and increase the performance of the algorithm. This idea is subject of the
assessment done in this thesis. Its underlying theory and a detailed description of it
can be found in Chapter 4.

Finally, for overview, a summary is given of all auxiliary data that were used
as input for the retrievals performed in this thesis:

• The molecular spectroscopic parameters Sml , ν̂ml and γml(p, T) for the line-by-
line calculations (cf. equation (2.4)) used in the forward model Py4CAtS were
obtained from HITRAN (HIgh-resolution TRANsmission molecular absorp-
tion database) [17].

• The apriori number densities for the two relevant molecules nCO2 and nH2O
were taken from the AFGL (Air Force Geophysical Laboratory) atmospheric
constituent profiles [18].

• The temperature and pressure profiles T(z) and p(z) were taken from reana-
lysis data of the National Center for Environmental Prediction (NCEP).

• The radiance measurements Î(ν) and the corresponding geometry parameters
θsza and θvza, surface elevation zsrf, and tabulated instrumental line shape
values S(ν) were extracted from the level 1b products of OCO-2 [10].

14



Chapter 3

Least Squares Approximation

The purpose of this chapter is to explain and motivate a highly acclaimed approx-
imation method used in scientific computing. Björck [19] formulated its essence as
follows:

A fundamental task in scientific computing is to estimate parameters in
a mathematical model from observations that are subject to errors. A
common practice is to reduce the influence of the errors by using more
observations than the number of parameters.

From this follows a mathematical problem that arises in numerous disciplines within
science and engineering. It is not surprising to find it in trace gas retrieval, as well.
Here, the main idea is to find parameters (i.e. molecular scaling factors) such that
the predicted model spectra match the measured ones to the best extent possible. In
this chapter it is derived that under certain assumptions the "best linear unbiased
estimate" is made by minimizing the sum of the squared difference between model
and measurement, which is called least squares approximation. In order to do this,
numerical algorithms have been developed some of which are going to be derived in
the following. Furthermore, the underlying mathematical theorems and correlations
will be outlined.

3.1 Linear Least Squares

Before diving into the theory of least squares problems some remarks on notation
are necessary. Bold lower case letters denote (column) vectors, while bold upper
case letters are used for matrices. As usual, the transpose of a matrix A will be
written as A>. In this thesis only the `2-vector norm

‖x‖2 =
√

x>x =
(
∑

i
|xi|2

)1/2 (3.1)

corresponding to the Euclidean length will be used and the subscript 2 will be
omitted in the following.
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Chapter 3 Least Squares Approximation

Given a vector b ∈ Rm and a matrix A ∈ Rm×n, the aim is to find a vector
x ∈ Rn such that the product of Ax is the best approximation to b. The vector of
observation b is assumed to be subject to an error e which is why no x satisfies
Ax = b exactly, but rather

Ax = z with b = z + e. (3.2)

In order to reduce the influence of the error in the observations one would like to
use a greater number m of measurements than the number of unknown parameters
n in the model which leads to an over-determined system. Furthermore, a usual and
necessary statistical preliminary is that the errors in the observations are random
and uncorrelated, which means that their expectation value is zero, they all have the
same variance and that their covariance matrix has entries only on the diagonal 1.
The stated case is called Gauss-Markov model which is the basis for the following
Gauss-Markov theorem (cf. [19, chapter 2.1]):

Theorem. Consider the linear Gauss-Markov model (3.2), where the matrix A ∈ Rm×n

has full column rank n and the standard assumptions stated above hold. Then, the best linear
unbiased estimator of x is the vector x̂ that minimizes the sum of squares

min
x
‖b− Ax‖2. (3.3)

This vector is unique and equal to the solution of the normal equation

A>Ax = A>b (3.4)

which represent a system of n linear equations in n unknowns.

This theorem has laid a sound theoretical basis for the method of least squares as
the "best" approximation tool. By defining the residual vector

r = b− Ax (3.5)

the normal equations (3.4) can be rewritten as

A>(b− Ax) = A>r = 0. (3.6)

In the full column ranked case, A>A is a symmetric positive definite matrix, and so
the solution of the normal equation can be formulated as

x̂ = (A>A)−1A>b = A†b (3.7)

1It is assumed that the reader has some familiarity with these mathematical and statistical properties.
If not, [20, chapter 1] is recommended.
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3.1 Linear Least Squares

where the matrix A† denotes the pseudo-inverse2 of A.

There are three direct methods for solving the linear least squares problem
(3.3). A more detailed survey of these can be found in [21, chapter 6]:

• A simple and intuitive method is solving the normal equations (3.4) by directly
calculating the center part of solution (3.7) which includes calculating the inverse
of A>A. However, this method yields the drawback of poor stability and ro-
bustness, especially for ill-conditioned problems, and it rapidly deteriorates with
increasing conditions.

• A more stable way to proceed is provided by orthogonal transformations like the
QR decomposition. It exploits the property that for any matrix A ∈ Rm×n with
full column rank n there exists an orthogonal matrix Q ∈ Rm×m and a matrix
[R0 ] ∈ Rm×n where R ∈ Rn×n is upper triangular and 0 ∈ R(m−n)×n is the zero
matrix, such that

A = Q
[

R
0

]
. (3.8)

Using this decomposition the residual within (3.3) can be reformulated to a
reduced form for which the solution can be expressed as

x̂ = R−1(Q>b). (3.9)

• Sufficiently more robust for problems with rank-deficient A is the singular value
decomposition (SVD). It is based on the theorem that for any A ∈ Cm×n with
rank r there exist the unitary matrices U ∈ Cm×m and V ∈ Cn×n such that

A = UΣV H where Σ =

[
Σr 0
0 0

]
(3.10)

Here, V H denotes the conjugate transpose of the matrix V and Σr = diag(σ1, ..., σr)
with the unique singular values σ1 ≥ ... ≥ σr > 0 of A. This is a powerful tool for
solving linear least squares problems, because the unitary matrices that transform
A into a diagonal form do not change the Euclidean norm of vectors [20, chapter 1].
This way the solution of (3.3) can be written as the latter part in (3.7) containing
the pseudo-inverse

x̂ = V
[

Σr
−1 0

0 0

]
UH b. (3.11)

2Another name for the pseudo-inverse is the Moore-Penrose inverse. The idea of these inverses is
going to be used again in Section 4.2
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Chapter 3 Least Squares Approximation

3.2 Nonlinear Least Squares

A more common problem is the one that arises when trying to fit given data (yi, ti)
with i = 1 : m to a model function g(x, ti) which does not depend linearly on its
parameters. The error in the model prediction for the ith observation can be denoted
as

ri(x) = yi − g(x, ti) with i = 1 : m, (3.12)

which leads to a residual vector of the form r(x) = [r1(x), ..., rm(x)]>. The problem of
finding a global minimizer for the sum of squares of the residuals can be formulated
as

min
x∈Rn

f (x) with f (x) =
1
2

m

∑
i=1

r2
i (x). (3.13)

This equation3 naturally implies an approach which can be stated as in [19]: "The
nonlinear least squares problem is a simple special case of the optimization problem
to minimize a convex objective function." In this case the objective function in (3.13)
is f (x) which can also be written as

f (x) =
1
2

r(x)>r(x) =
1
2
‖r(x)‖2 (3.14)

The factor 1
2 is chosen for convenience which will become apparent in the following,

where derivative information necessary for solving the nonlinear least squares
problem (3.13) is introduced.

The first derivatives of the residual vector can be written within a matrix called the
Jacobian

J(x) ∈ Rm×n with J(x)ij =
∂ri(x)

∂xj
and i=1:m

j=1:n (3.15)

and the second derivatives of the ith element of r(x) can be stored in a matrix called
the Hessian

H i(x) ∈ Rn×n with H i(x)jk =
∂2ri(x)
∂xj ∂xk

and j=1:n
k=1:n (3.16)

which is by definition symmetric. A necessary condition for x̂ to be a critical point
of the objective function f (x) is that the gradient ∇ f (x) vanishes at that point.
Furthermore, a sufficient condition for x̂ to be a local minimizer is that the Hessian
matrix ∇2 f (x) evaluated at x̂ is positive definite. Fortunately, both the gradient and

3For simplicity, the over-determined case of m ≥ n will be considered in this section and f (x) will be
a twice continuously differentiable function.
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3.2 Nonlinear Least Squares

the second derivatives of f (x) can be written in terms of the just defined Jacobian
(3.15) and Hessian (3.16) as

∇ f (x) = J(x)>r(x) (3.17)

∇2 f (x) = J(x)> J(x) +
m

∑
i=1

ri(x)H i(x). (3.18)

The essence of all methods for solving (3.13) is to reformulate the problem into
a linear one which can be solved numerically. The simplest way to do this is to
approximate the behaviour of r(x) in the neighborhood of a given point xk by the
linear model4

r(x) ≈ r(xk) + J(xk)(x− xk). (3.19)

By solving the linear least squares problem at what the point xk within an iteration

min
x
‖r(xk) + J(xk)(x− xk)‖2 (3.20)

one can derive a new approximate solution.
In fact, all methods for nonlinear optimization are iterative and each iteration step

usually requires the solution of a related linear problem. Their idea is to start from a
sufficiently good initial approximation which is then successively improved until a
sufficiently accurate solution is obtained.

The method described above is a well-established one, called the Gauss-Newton
method. The original idea of it is to compute the correction pk to the current
approximation xk by solving

min
pk
‖r(xk) + J(xk)pk‖2 (3.21)

and then repeating the calculation at the new approximation point

xk+1 = xk + pk. (3.22)

As described in the previous section, the Gauss-Newton step is the solution to the
linear problem (3.21) and can therefore be derived as

pk = −J(xk)
†r(xk) ∈ Rn (3.23)

by using a stable direct method such as the QR decomposition or SVD of J(xk).
The only issue with the original method is that it generally has only a linear rate of

4This corresponds to the first degree Taylor polynomial of r(x) at xk.

19



Chapter 3 Least Squares Approximation

convergence and may not even locally converge at all on problems that are very
nonlinear or have large residuals5. This is the reason why out of this framework
many modified methods have evolved, all known as "Gauss-Newton type methods"
which improve the strategy into a globally convergent one. Ruhe and Wedin
reported and confirmed in [22] that the asymptotic convergence of these algorithms
is fast for problems with small final residuals which should apply whenever a
good mathematical model is used. These methods are the so called line search,
trust region and damped methods, some of which are going to be outlined in the
following section.

In addition, the idea of Newton-type methods which are contrary to the Gauss-
Newton approach are briefly depicted now. It can be derived out of the conditions
made for (3.17) and (3.18) at the solution. One starts with a quadratic model6 of the
objective function in a small neighbourhood around the current iterate

f (xk + h) ≈ f (xk) +
[
∇ f (xk)

]>h +
1
2

h>
[
∇2 f (xk)

]
h (3.24)

which leads to the linear approximation of the gradient

∇ f (xk + h) ≈
[
∇ f (xk)

]
+
[
∇2 f (xk)

]
h. (3.25)

By demanding (3.25) to vanish at the minimizer of (3.24) one can find the current
step hk as the solution to[

∇2 f (xk)
]
h = −

[
∇ f (xk)

]
= −J(xk)

>r(xk). (3.26)

The minimizer of (3.24) will then be used as the next iterate

xk+1 = xk + hk. (3.27)

An important advantage of this approach is that under usual circumstances it is
quadratically convergent to a local minimizer rather that just linearly. A downside,
however, is that it requires the calculation of the Hessian (3.18). This can be compu-
tationally expensive, which is why most methods only approximate it. These are
then called Quasi-Newton methods, but they will not be discussed in this thesis.

5For a detailed analysis of convergence rates [20, chapter 9] and [19, chapter 2.8] are recommended.
6This corresponds to the second degree Taylor expansion of f (x) around xk. It needs to be second

degree because Newton’s well-known method for finding the roots of a function is applied to its
first derivative here. This way it instead finds the minima of that function.
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3.3 A Survey of Iterative Methods

There have been many modifications to the previously mentioned methods to make
them more stable and achieve better convergence. In this section three commonly
used algorithms for solving nonlinear least squares problems are introduced. The
reason for choosing those specific ones will become apparent in Chapter 5, when a
thorough comparison between them will be pursued.

3.3.1 Levenberg-Marquardt Algorithm

A well-established method for unconstrained nonlinear optimization is the
Levenberg-Marquardt method. Levenberg [23] in 1944 and Marquardt [24] in 1963
both independently proposed approaches to further stabilize the Gauss-Newton
method and thereby overcome the possibility of failure by cleverly constraining
the Gauss-Newton step. A first idea was to limit the size of pk by introducing a
damping parameter µk > 0 which results in the extension of (3.21) to

min
pk

{
‖r(xk) + J(xk)pk‖2 + µk‖pk‖2} (3.28)

which is therefore called a damped method. This can be further stabilized by
constraining the Gauss-Newton step instead of damping it. The resulting strategy is
to solve the linear least squares problem (3.21) which is now subject to

‖Dk pk‖ ≤ δk. (3.29)

with Dk being a diagonal scaling matrix7. This way the set of feasible vectors
complying with (3.29) can be thought of as a trust region for the linear model (3.19),
which is why this method is called a trust region method.

Even though this is a very elegant algorithm for the numerical solution of
nonlinear least squares problems, early implementations of it lacked robustness and
a solid theoretical justification. Moré [25] then proposed one that is efficient and
has strong convergence properties. For this reason he implemented it as a Fortran
package called MINPACK [26] which is a collection of quality optimization software.
His algorithm can be outlined8 as follows:

Starting with the initial values x0, D0 and δ0 and a β ∈ (0, 1). For k = 0, 1, 2, ...

1. Determine xk as a solution to (3.21) subject to the constraints (3.29).

7The initial matrix D0 is chosen such that the algorithm is scale-invariant, meaning that it generates
the same iterations if applied to r(Dkxk).

8This particular depiction can be found in [20, chapter 9] and has been chosen to be presented here
for its clarity instead of the original formulation by [25] which uses a slightly different notation
and specific values that have shown to be replaceable.
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Chapter 3 Least Squares Approximation

2. Compute the gain ratio

ρk =
‖r(xk)‖2 − ‖r(xk + pk)‖2

‖r(xk)‖2 − ‖r(xk) + J(xk)pk‖2 =
actual decrease of f (x)
model decrease of f (x)

(3.30)

which indicates the agreement between the linear model (3.19) and the nonlin-
ear function r(x).

3. If ρk > β the step is considered successful and one can set xk+1 = xk + pk.
Otherwise, the iteration is considered unsuccessful and xk+1 = xk.

4. Update9 the scaling matrix Dk and the trust region boundary δk.

A detailed elaboration on all of these steps and different strategies for choosing the
parameters can be found in the original paper [25].

3.3.2 Trust Region Reflective Algorithm

The next algorithm introduced is another adaptation of a trust region method. It
is based on Branch et al. [28] who extended an interior and reflective Newton
method [29], that can solve bound-constraint nonlinear least squares problems, to
a subspace method which is additionally well-suited for large-scale and sparse
problems. Because the size of the problem (2.12) posed by trace gas retrieval in the
SWIR is quite manageable, this outline will focus more on the idea of the method
being interior and reflective and less on the subspaces.

Another reason for this is, that reflection is a technique for dealing with bounds
which have not yet been addressed. The bound-constraint problem can be written
as

min
x∈Rn

{
f (x) : l < x < u

}
(3.31)

with the lower and upper bounds l and u. An algorithm being able to solve this can
be called interior because the iterates {xk} are in the strict interior of the feasible
region (l, u). In the original method by [29], the subproblem

min
s∈Rn

{
Ψk(s) : ‖Dks‖ ≤ δk

}
(3.32)

is solved as in standard trust region methods (i.e. Section 3.3.1), except that the
quadratic Newton approximation (3.24) is used for Ψk(s) instead of a linear Gauss-
Newton approximation like (3.19). Another difference is that a special affine scaling
matrix is used for Dk which shows improved performance compared to other
methods. Details on this can be found in [28].

9A summary of convenient strategies for choosing these measures can be found in [27].
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3.3 A Survey of Iterative Methods

Furthermore, both [29] and [28] use a reflection technique that is said to substan-
tially reduce the number of iterations and accelerate convergence. Without it, the
strategy is to determine the step sk from either minimizing Ψk(s) along pk or along
the scaled steepest descent direction10. Now, a (single) reflection step is defined in
[28] as follows:

Given a step pk, consider the first bound constraint crossed by pk, as-
suming it is the ith (lower or upper) bound constraint. Then the reflection
step becomes pk

R = pk, except in the ith component where pR
k,i = −pk,i.

Since the reflected step pk
R permits further descent, a new possibility for determin-

ing the step sk — minimizing the value of Ψk(s) along the "reflected"11 direction pk
R

— could be added to the original strategy. Apparently, this addition significantly
enhances the performance.

3.3.3 Powell’s Dogleg Method

The last method outlined here is Powell’s dogleg method [30] which was then
modified for better performance in [31]. Again, this is a trust region algorithm
allowing for bounds on the parameters. The essence of all trust region methods can
be summarized as follows:

1. Approximate the objective function either by a Gauss-Newton or a Newton
model.

2. Compute the corresponding step while constraining its norm to be within a
certain trust region.

3. Compare the reduction of the model function to that in the objective function.
If they agree to a certain extent, the step is accepted and the trust region can
be expanded. Otherwise, the step is rejected and the trust region is contracted.

The original method of Powell was all about his special strategy of choosing the
next step (called the dog leg step) to stay within the trust region. The authors of [31],
however, focused more on the shape of the trust region. Defining a general trust
region as

Tk = {x ∈ Rn | ‖x− xk‖ ≤ ∆k}, (3.33)

it is obvious that the shape of it depends on the norm used. While the Euclidean
norm ‖ ‖2, which has been in use up until now, always corresponds to a hyper

10A calculation of this can be found in [28]. Generally, a descent direction is one that decreases the
objective function value.

11As explained above the reflection (i.e. changing signs) is only done along one direction in which the
first bound was crossed.
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Chapter 3 Least Squares Approximation

sphere in the n dimensional parameter space, the uniform norm12 ‖ ‖∞ defines a
hyper box. This approach using a rectangular geometry is advantageous for it allows
effortless adaptation to bound constraint problems. With this method, one can solve
the more general bound constrained problem (3.31) using Newton’s approximation
and restricting the ith component of the step hk from (3.27) to

max [li − xi,−∆k] ≤ hk,i ≤ min [ui − xi, ∆k]. (3.34)

Without bounds13, the shape of the trust region corresponds to a hyper cube while
bounds transform it into a rectangle. This small change in norm and therefore
geometry of the problem into a dogbox showed a dramatically improved performance
for bound constrained least squares compared to Powell’s original dogleg approach.
In adaptation to the new shape, a modification of the strategy of choosing the step
was made in [31] which further improved convergence. This is probably the reason
why in most tests the rectangular trust region approach outperformed the original
one even in the absence of constraints.

12The uniform norm is defined as ‖x‖∞ = max1≤i≤n|xi|, which corresponds to the absolute value of
the largest element in x.

13This means setting li to −∞ and ui to ∞.
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Chapter 4

Variable Projection Method

In this chapter a special class of nonlinear problems is characterized in which the
variables are separable into two sets. One will see that these types of problems are
based on a powerful paradigm that allows more efficient ways of solving them.
In 1973, Golub and Pereyra [4] described a method for such problems which they
coined Variable Projection that is still in use today due to its many advantages. Even
though they were not the first ones to come up with the idea, they thoroughly
expounded the mathematical properties by justifying the concepts behind it. In this
thesis, an algorithm based on this method is tested and applied to the problem of
trace gas retrieval.

The reason why this algorithm is explored in this thesis is, that it has proven to
not only be more efficient than other separable solvers1, but also more versatile for
different classes of problems (see [35] for a survey on successful applications of the
variable projection method). Another motivation for using this method is that it is
well suited for exponential problems such as (2.12). See [35] and [36] for a detailed
analysis of this property.

4.1 Separable Problems

The main idea of separable approaches like variable projection is seen in least squares
problems consisting of two sets of parameters, i.e. nonlinear and linear ones α and
β, where the linear ones can be explicitly eliminated such that a reduced problem
arises:

min
β,α
‖y− η(β, α)‖2 = min

α
‖y− η(β(α), α)‖2 . (4.1)

This method has some apparent advantages. As Golub and Pereyra pointed out
in their review paper [35] on 30 years of developments in the area of separable
problems:

1Examples for other least squares algorithms that exploit separability are the continuation method
[32], the alternating least squares method [33] and the Shen-Ypma algorithm [34] which is actually
quite similar to the Variable Projection one.
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Chapter 4 Variable Projection Method

This procedure not only reduces the dimension of the parameter space
but also results in a better-conditioned problem. The same optimiza-
tion method applied to the original and reduced problems will always
converge faster for the latter.

They mention two important aspects: efficiency and better convergence. Both
properties have also been explored and proven by Ruhe and Wedin [22], who were
able to show by comparing different algorithms that the ones based on separation
always need a smaller number of iterations and therefore require considerably less
time than when done without separation. In addition to that Sagara and Fukushima
[32] pointed out that a considerable amount of storage can be saved by reducing
the problem to one that depends on fewer parameters due to the smaller number
of equations. Another important argument is that a smaller initial guess vector is
needed for the problem as the most common method of solving (4.1) is to perform
optimization with the nonlinear parameters α first and then solve for the remaining
linear parameters β. Also, the reduced parameter space possibly causes a reduced
number of local minimizers making it more likely to find a global minimum as
Golub and Pereyra pointed out in [5].

All these advantages strongly hint that, whenever there is an apparent prop-
erty of separability, it should be exploited in a least squares estimation. Especially
large or complex problems like exponential fitting benefit from it as this method
dramatically reduces computing time [35]. Considering the mathematical model
(2.12) behind trace gas retrieval in the short-wave infrared a separable solver as the
variable projection algorithm seems to be a very suitable candidate for exploration
and testing. In the following the mathematical theories based on [4] and a possible
algorithm outline by [5] are presented.

4.2 Theoretical Background

Most often the incentive of separable problems is to fit a nonlinear model2

η(β, α, t) =
n

∑
j=1

β j ϕj(α, t) (4.2)

which can be expressed as a linear combination of nonlinear functions ϕj, that
need to be continuously differentiable with respect to α, to given data (ti, yi) with
i = 1, .., m. One can therefore say that the variables separate into

2This problem was formulated more generally by Ruhe [22] who (as previously stated) considered
the separation into two sets of variables, but in the case of the mathematical model (2.12) the
separation into nonlinear and linear variables considered in [4] seems just as reasonable.
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4.2 Theoretical Background

• linear parameters β = [β1, ..., βn]> ∈ Rn and

• nonlinear parameters α = [α1, ..., αk]
> ∈ Rk

Consequently, minimizing the nonlinear functional

r(β, α) = ‖y− η(β, α)‖2 =
m

∑
i=1

[
yi −

n

∑
j=1

β j ϕj(α, ti)

]2

= ‖y−Φ(α)β‖2

(4.3)

can be rewritten by separating the parameters and defining {Φ(α)}ij := ϕj(α, ti)
with i = 1 : m and j = 1 : n as a matrix function. A necessary condition for the
following formalism is that minimizing (4.3) represents a fully or over-determined
problem with m ≥ n + k.

At this point it is necessary to introduce the notation Φ†, which is the Moore-
Penrose generalized inverse3 of a matrix Φ. A useful reference for details on the
formalism of pseudo-inverses is [19, chapter 2.2]. Assuming that for any given α
there is a minimal least squares solution

β(α) ≡ Φ†(α)y (4.4)

to the linear problem, we can reformulate the original functional (4.3) as

r̃(α) = ‖y−Φ(α)Φ†(α)y‖2 (4.5)

which is called the variable projection functional [4]. The reason for this name is
that for each α there is a linear operator

PΦ(α) = Φ(α)Φ†(α) (4.6)

that is an orthogonal projection onto the column space of the matrix Φ(α)4. Keeping
the notation from [4], P⊥Φ(α) := I − PΦ(α) is the projector on the orthogonal comple-
ment of the column space of Φ(α). One can now rewrite the functional (4.5) and
obtains

r̃(α) = ‖P⊥Φ(α)y‖
2. (4.7)

One should mention at this point that the use of orthogonal projectors is justified
due to their main property of norm preservation, which means that applying an

3Shortly after [4] established this formalism, Kaufman [37] showed that it is sufficient to use a
symmetric generalized inverse Φ− satisfying the conditions ΦΦ−Φ = Φ and (ΦΦ−)> = ΦΦ−.

4It is assumed that the reader has some familiarity with orthogonal transformations and why they
are important in numerical computations. Else, a useful reference can be [19, chapter 2].
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Chapter 4 Variable Projection Method

orthogonal transformation in a floating point environment does (in principle) not
amplify errors [21, chapter 4]. It is easy to see that the variable projection functional
(4.7) translates into a purely nonlinear least squares problem of the form

min
α

r̃(α) = min
α
‖P⊥Φ(α)y‖

2 (4.8)

which can be solved using familiar methods for nonlinear problems as described in
Section 3.2. The idea of Golub and Pereyras’ method is to first solve the reduced
problem (4.8) to obtain the nonlinear minimizers α̂, and then insert them into
equation (4.4) to get the optimal linear parameters β̂.

In order to justify this procedure and to show equivalence of the solution for
the original functional (4.3) as well as the reduced functional (4.7), Golub and
Pereyra proved the following theorem [4]:

Theorem. Assuming that the matrix Φ(α) has constant rank r ≤ min(m, n) for α ∈ Ω ⊂
Rk with Ω being an open set containing the solution α̂. Further, let r denote r(β, α) as in
(4.3) and r̃ denote r̃(α) as in (4.5) and (4.7).

• If α̂ is a critical point (or a global minimizer in Ω) of r̃, and

β̂ = Φ†(α̂)y (4.9)

then (β̂, α̂) is a critical point of r (or global minimizer in Ω) and r(β̂, α̂) = r̃(α̂).

• If (β̂, α̂) is a global minimizer of r for α ∈ Ω, then α̂ is a global minimizer of r̃ in Ω and
r̃(α̂) = r(β̂, α̂). Furthermore, if there is a unique α̂ among the minimizing pairs of r, then
α̂ must satisfy (4.9).

This theorem shows the correspondence between the critical points of r(β, α) and
r̃(α), and therefore proves the viability of this method.

Being familiar with critical points, one would expect that the proof of the theorem
involves derivatives of the variable projection functional (4.7). The same applies for
most iterate methods for finding a solution to the minimization problem (4.8). For
these, it is necessary (cf. Section 3.2) to calculate derivatives. It is important to state
the condition that the rank of Φ(α) must be locally constant at the point, where the
derivative is calculated. Otherwise, the pseudo-inverse Φ†(α) is not a continuous
function and therefore not differentiable. By using the property PΦΦ = Φ one can
derive the following formula for the derivative of an orthogonal projector5

d
dα

PΦ = P⊥Φ
dΦ

dα
Φ† +

(
P⊥Φ

dΦ

dα
Φ†
)>

. (4.10)

5Let PΦ denote PΦ(α) for simplicity.
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4.3 Algorithm Outline

For a detailed proof and derivation of this formula see [4]. Knowing the definition
of P⊥Φ(α) it is easy to see that

d
dα

P⊥Φ =
d

dα

(
I − PΦ(α)

)
= − d

dα
PΦ . (4.11)

Using (4.10) and (4.11) one can derive the final formula for the Jacobian of the
residual vector from the variable projection functional (4.7) as

J =
d

dα
(P⊥Φy) = −

[
P⊥Φ

dΦ

dα
Φ† +

(
P⊥Φ

dΦ

dα
Φ†)>]y (4.12)

which is an m× k matrix necessary for most iterative methods of solving (4.8).

Shortly after this was approach formulated, Kaufman [37] considered a sim-
plification by dropping the second term in (4.12) in order to save function and
gradient evaluation costs and therefore reduce the computing time per iteration.
However, this also marginally increased the number of iterations.

For many years, it was reasoned that this still takes less time than computing
the extra term, and Kaufman’s simplification became established for many variable
projection algorithms. Recently, O’Leary and Rust [5] pointed out that the balance
between the computing time of extra iterations vs. the second term in (4.12) can
change.

One reason for this is that the efficiency of matrix computation on modern com-
puters exceeds that of function evaluations. Another is that evaluating functions
often requires a simulation that has a high computational cost. In their paper [5] they
could demonstrate that including the full Jacobian matrix reduces the number of
iterations. This is the reason for using the original formula (4.12) in their algorithm.

4.3 Algorithm Outline

Papers on the development of a variable projection algorithm focus mainly on the
development of numerical methods for solving the reduced nonlinear or linear least
squares problem. In this thesis the outline of a typical variable projection algorithm
is presented without going into the details of these two procedures, since direct
methods for linear systems have already been discussed in Section 3.1 and the ideas
of common iterative methods for nonlinear problems were explained in Section 3.3.

The presented algorithm will be based on a MATLAB implementation developed
by O’Leary and Rust [5]. In addition to solving the standard separable least squares
problem of minimizing (4.3) they allow for weights on the residuals and for bounds
on the parameters:
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Chapter 4 Variable Projection Method

β = [β1, ..., βn]> ∈ Sβ ⊂ Rn

α = [α1, ..., αk]
> ∈ Sα ⊂ Rk .

The so (constrained and weighted) reduced problem can be written as

min
α∈Sα

‖W(y− η(β(α), α))‖2 (4.13)

using an approach analogous to the one described in the previous section. One
defines W as a diagonal matrix containing weights, which are chosen to make the
standard deviation of the errors in the weighted observations ωiyi approximately
equal. Since most level 1b satellite data do not include apriori weights on their
measurements, this property was not exploited in the translated Python implementa-
tion [38] that is used in the present thesis.

Returning to the algorithm, a general approach proceeds as follows:

1. The user supplies the values y, an initial guess for the nonlinear variables α,
the number of linear parameters n and a subroutine supplying the evaluation
of the nonlinear function Φ and its derivative at a certain α.

2. Generate the variable projection functional (4.5) dependent on α by calculating
β(α) as in (4.4) and inserting it into (4.3).

3. Use the partial derivatives of Φ with respect to α (which have ideally been
supplied by the user) in order to generate the Jacobian (4.12) of the variable
projection functional dependent on α6.

4. Solve (4.8) using an already existing nonlinear least squares solver (ideally
allowing bounds) to get the optimal parameters of α̂ as a result.

5. Once having the final nonlinear minimizers, solve the linear equation (4.4) for
the optimal linear parameters β̂.

6. Optionally, compute statistical diagnostics from the solution to help validate
the estimated parameters.

There will be further remarks on step 1, how the user is supplying the input in the
following section. For step 4, different solvers for nonlinear problems (based on the
ideas of Section 3.3) will be mentioned in Section 4.4 and tested in the following
chapter. Regarding step 5 and the general calculation of (4.4) in step 2, there are two
well-established algorithmic options for directly solving linear systems as outlined
in Section 3.1.

6A detailed description of this procedure can be found in section 2.3 in [5].
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4.4 Implementation

A "standard" approach in general-purpose software is the QR decomposition since
it is fast and reliable for well-conditioned problems. A modified approach based
on this has also been used by Golub and Pereyra [4]. Another approach is SVD
(Singular Value Decomposition) which is mostly used when there is rank deficiency
in which case the QR approach may not be sufficiently robust. The SVD based
approach is very robust, and therefore advised for ill-conditioned problems [21].
However, it is significantly more expensive in computing time. Still, O’Leary and
Rust chose to use this method, because their implementation makes it appropriate
for small- and medium-size problems.

Moving on to step 6, which is fairly common in least squares algorithms. There is
a lot of statistical information that the implementation of O’Leary and Rust offers
to the user. This particularly makes it attractive and suitable for the kind of testing
that will be performed in this thesis. The important diagnostic features that occur in
the Python translation and have been used for the assessment will be described in
detail in Chapter 5.

4.4 Implementation

In the course of the past 40 years there have been several implementations of
variable projection algorithms in many different programming languages. The
first ones were Fortran implementations like VARPRO [39] based on [4] which was
written in 1977 by Pereyra. At Stanford University, John Bolstad streamlined the
code and improved the documentation of VARPRO under the guidance of Gene
Golub. Later, a graduate student at Stanford, Randy LeVeque, wrote a modified
version of the VARPRO code called VARP2, which extended the original code
to problems with multiple right-hand sides [40]. These refer to special types of
problems which were later refined in [41] and will also be mentioned in Chapter
6. Other well-established least squares implementations including the variable
projection method and its advancements can be found in the PORT Mathematical
Subroutine Library [42].

One could argue that these implementations are nowadays somewhat outdated.
Therefore the newer implementation by O’Leary and Rust based on [5] from 2013,
which has been proven to be effective, is examined in this thesis. In the correspond-
ing paper, the authors argue that the Fortran implementations, though running
efficiently, sacrifice readability and often have lengthy and cryptic documentations.

In contrast, their implementation uses the language MATLAB which reduces
efficiency, but it consists of only about 160 executable lines and in addition provides
statistical diagnostics. The brevity of their code is partially due to the fact that they
use the already existing nonlinear solver lsqnonlin.m instead of implementing their
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Chapter 4 Variable Projection Method

own one, so it is modular. This way it can simply be exchanged if a better version
becomes available. These features make the code varpro.m easily understandable
and therefore well suited for translations into other languages.

Last year, Schreier exploited this property and wrote his own Python version of
the code called varpro.py [38]. This is especially useful because the forward model
Py4CAtS [1], described and mentioned in Chapter 2, and the retrieval algorithm
BIRRA [13] itself are both Python implementations. Figure 4.1 shows schematically,
how it works.

varpro

Input Data solve_linear_beta

least 
squares
solver

inital guess

number of linear 
parameters

observation

ada
function

jacobian
final nonlinear

parameters

Statistical Data

final linear 
parameters

final 
result

user input variable projection algorithm output

Figure 4.1: Simplified Illustration of data flows and calculations within varpro.py

In a first step, the user has to provide all the necessary input data concerning the
satellite measurements y as mentioned in Section 2.2. Before the start of this thesis
a Python program was specifically developed for this purpose, which derives all
necessary input from OCO-2 data files and calculates optical depths with Py4CAtS
(the radiation transfer code mentioned in Section 2.1). Additionally, a function ada
has to be set up that models the nonlinear part Φ of the forward function (2.12)
and its derivatives dΦ. This was already implemented within BIRRA (retrieval
algorithm mentioned in Section 2.3) [16]. Finally, initial guesses for the nonlinear
parameters α and the number of linear parameters nβ have to be supplied.

After this, the function varpro can start the approximation, which in a first step
tests all the input parameters for consistency. Before the nonlinear least squares
solver can be used, one needs two additional functions that use output from
ada to generate values for the nonlinear functional (4.5) and its Jacobian (4.12),
called fct4nls and jac4nls, respectively [38]. These and the initial guess α0 are the
input which the nonlinear least squares solver needs to derive the final nonlinear
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4.4 Implementation

parameters α̂. Existing least squares algorithms already provide some additional
statistical data on the results, which can be used to calculate useful measures in
order to asses the algorithm. Lastly, the linear parameters β̂ are calculated using the
SVD approach within the function solve_linear_beta (cf. figure 4.1). The final output
of the varpro function are together α̂, β̂ and statistical diagnostics.

The original code has used the function leastsq [43] from the scipy.optimize module
for solving the reduced purely nonlinear problem. This has been modified in this
thesis for two reasons. The function leastsq is a wrapper around the MINPACK
implementations LMDIF and LMDER for solving nonlinear least squares problems
with the Levenberg-Marquardt algorithm [see 26, for details]. The original algorithm
based on [25] as described in Section 3.3.1, however, does not allow constraints on
the parameters and has some other limitations in its usability.

These drawbacks can be avoided using the function least_squares [44] which is
part of the same module scipy.optimize. It offers not only two additional methods for
solving nonlinear problems but these also come with the ability to handle bounds
on the parameters. One of the additions is the trust region reflective algorithm
based on [28], as outlined in Section 3.3.2 and the other is a rectangular trust region
dogleg approach based on [31], as described in Section 3.3.3. This small modification
gives the opportunity to test varpro.py for several methods and find out which is
best for the application of trace gas retrieval. Further, constraints on the nonlinear
parameters7 (e.g. positivity) can be assessed for their benefits. Both features serve
an important purpose in this thesis and will be utilized in Chapter 5.

7Since the linear least squares method used in this implementation does not allow bounds on the
linear parameters this naturally implies that any variable that requires constraints should be
included in the nonlinear parameters.
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Chapter 5

Testing and Comparison

The objective of this chapter is the assessment of varpro.py for the application of
trace gas retrieval in the SWIR as it was described in Chapter 2. Beforehand, a few
remarks on the testing strategy are necessary:

There is no reason to conduct yet another comparison between a variable projec-
tion solver and a normal nonlinear one, since this has already been done several
times (e.g. [22] for a general numerical comparison and parts in [9] for trace gas
retrieval, in particular). Another reason why such a comparison would not be
very meaningful for the retrieval setups in this thesis is, that the number of linear
parameters used in the forward model (described in Chapter 2) is not significantly
exceeding the number of nonlinear ones. This way, most of the benefits (mentioned
in the beginning of Chapter 4) arising from the reduction of the problem size would
not show up in the calculations suggested in Section 2.3.

However, the number of linear parameters may increase considerably in future
applications (see Chapter 6 for more detail). In this respect, the idea of this thesis
was to merely conduct tests within the varpro.py framework without including
comparisons to "classical" least squares solvers or a verification of the algorithm (as
[5] already did on varpro.m) itself.

According to [21], there are three criteria for assessing an algorithm: Accur-
acy, efficiency and robustness. The first can be indicated by the magnitude of
error of the results which were calculated by the algorithm. Different measures to
estimate this magnitude will be mentioned in Section 5.1. Intuitively, the measures
for the efficiency of an algorithm are its rate of convergence1, number of iterations
and operation counts per iteration. About the second, the following was stated
in [33]: "In fact, to compare iterative algorithms only on the basis of the number
of iterations they require is not very meaningful, because the costs per iteration
are very different." This is why in this thesis, the analysis of efficiency is focused
on a comparison of the algorithms’ running times which combines the above

1The rate of convergence is usually assessed by making theoretical statements regarding the algorithm
(see [22] as an example) and not by actual calculations, because often it largely depends on the
input data, instead of the underlying structure of the algorithm.
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measures. The last criterion, robustness, refers to the algorithm’s sensitivity to
different conditions and therefore to its stability.

Taking these measures into consideration, there are three objectives of assess-
ment in this thesis, all applied to the nonlinear solver function least_squares
[44] which is utilized within the Python implementation varpro.py. The first is a
comparison of the three nonlinear solving methods, that are offered by least_squares,

• ’lm’ - Levenberg-Marquardt Algorithm based on [25] (see Section 3.3.1)

• ’trf’ - Trust Region Reflective Algorithm based on [28] (see Section 3.3.2)

• ’dogbox’ - Powell’s Dogleg Method based on [31] (see Section 3.3.3)

in terms of computational efficiency and accuracy of the retrieval results in Section
5.1. Secondly, these methods are tested for their robustness and accuracy when
given different sets of initial guesses for the nonlinear parameters in Section 5.2.
Lastly, varpro.py is examined for the use of bound-constraints on the nonlinear
parameters (i.e. molecular scaling factors) in terms of their effects on the efficiency
and robustness of the algorithm.

The following evaluations are all based on approximately 500 retrievals each
using real measurements of radiance spectra from summer 2020 of the OCO-2
satellite mentioned in Section 2.2. For these retrievals of CO2, the exemplary state
vector (2.13) was chosen for the fit including 4 unknown parameters (two linear
ones, r0 and r1, for the reflectivity polynomial and two nonlinear ones, αCO2 and
αH2O, as the relevant molecular scaling factors). All of the plots in the following two
sections where generated from the same data set containing retrieval results from
the strong CO2 band of OCO-2.

5.1 Nonlinear Solvers

The first and most obvious idea of the assessment was to compare the computational
times for all three methods lm, trf and dogbox within the varpro solver. Such compar-
isons are especially meaningful in scientific applications with real measurements,
because the number of fits to be performed can reach up to several millions (cf.
remarks in Section 2.2), then even small running time differences can have a large
total impact.

Figure 5.1 shows a histogram of the time each method took for solving the nonlin-
ear problem (cf. equation (4.8)) in the algorithm varpro. From this it can be concluded
that the Levenberg-Marquardt algorithm used in least_squares is considerably slower
than the other two methods. Even though the mean value of running time per
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Figure 5.1: Histogram of the running times2and their mean values for three methods
used to evaluate the least_squares function.

retrieval of the lm-method only differs by approximately half a second, this could
have a significant effect when performing several thousands of such fits.

This is different for the even smaller time-difference between the dogbox and
trust region reflective method. In order to better compare their performances, figure
5.2 shows the relative running time-difference (tx − ttrf)/ttrf for both methods lm
and dogbox compared to trf in each single retrieval. One can derive that while lm
performed consistently slower by an average of 43 %, the dogbox method performed
rather comparatively only taking approx. 5 % longer3 than trf.

Another interesting feature to compare is the termination reason of the algorithms.
The user defines certain tolerance levels for changes of both the function to minimize,
r̃(α) (cf. equation (4.7)), and the value it is minimized for, α. For the least_squares
function these can be specified in the input arguments ftol and xtol4. As soon as an

2The absolute times displayed in this figure have no general informative value as they depend on
external factors like the computing power of the device used for the retrievals.

3This difference is so small that it can be neglected, as background processes could be the cause of it.
4The currently demanded accuracy of xCO2 products is at 1 ppm which corresponds to 0.25 % of the
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iteration produces values that differ from their previous ones by less than the given
tolerances, it stops. This is to avoid over-fitting, meaning that the algorithm should
produce results which are more precise than what is possible from the uncertainty
of the input data.
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Figure 5.2: Relative time difference of the lm and dogbox method for each retrieval
compared to the trf method.

Figure 5.3 shows a comparison of how often each method stopped because either
"ftol was satisfied" or "both ftol and xtol were satisfied". Again, the results of the
Levenberg-Marquardt algorithm seem to differ from the other two. Apparently it is
less likely to end up satisfying both criteria (ftol and xtol). This means, the algorithm
terminates more often, because the iterative change in the model spectrum has
reached the uncertainty of the actual spectrum. In such cases, the least squares
algorithm indicates that the noise of the spectrum does not allow for the desired
accuracy of the α̂ values, e.g. αCO2 . Actually, the dogbox and trust region reflective
method seem to have this "problem" fewer times (cf. figure 5.3).

Lastly, to judge the accuracy of results, it is necessary to introduce some statistical
measures. A standard output for any least squares routine is the value of the cost

initial guess of 400 ppm. Therefore, ∆αCO2 = 10−3 was used for xtol. In the level 1b product of
OCO-2 [10] the signal-to-noise ratio (SNR) is specified for each spectrum ranging from about 100
to 1000. As the value used for ftol should approximately correspond to 1/SNR, 10−3 was chosen.
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Figure 5.3: Bar diagram comparing the incidences of different termination reasons
for all three methods.

function5 at the solution, which in the case of least_squares means the variable
projection functional (4.7) evaluated at the final α, namely r̃(α̂). This is commonly
referred to as the residual mean squared which can be seen as a general measure
to compare the final error between model and observation after a fit has been
performed. One calculates the sigma of regression

σ =

√
r̃(α̂)

m− n− k
, (5.1)

which is the square root of the variance of the model (residual mean squared)
divided by the number of degrees of freedom (number of data points minus number
of linear and nonlinear variables). Finally, in unconstrained uses of the function,
least_squares returns the uniform norm of the gradient, ‖∇r̃(α̂)‖∞, which is called
optimality in the documentation [44]. It can be viewed as a measure of how close
the algorithm has got to the "actual" minimum of the cost function (4.7) before it
terminated.

As they are closely related to one another, all three measures behave similarly as
diagnostics for the accuracy of an algorithm. Figure 5.4 shows the regression sigma
(5.1) and the gradient norm for all test retrievals done with the three algorithms.
One can see that with respect to accuracy they all performed quite comparably.

5This generally refers to the function which is minimized, namely the squared euclidean norm of the
residual vector.
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Figure 5.4: Histogram of the regression sigma and gradient norm of each retrieval
for three methods.

5.2 Initial Guesses

The next step of the assessment was to compare the three nonlinear solving methods
within varpro with respect to their robustness in using different sets of initial
guesses for the nonlinear parameters αCO2 and αH2O. In optimization routines it is
usually advised to use initial values that are as close to the actual result as possible.
Fortunately, the concentration of CO2, as defined in (2.10) in Chapter 2, only varies
by a few percent on a global scale [14]. Using current atmospheric data for the
model, setting the initial αCO2 to 1 will already fulfill this criterion.

In this thesis, four additional first guesses were tested (both for αCO2 and αH2O)
with the three algorithms lm, trf and dogbox corresponding to ±50 % and ±100 %.
The evaluation showed that the accuracy of their retrieval results were still quite
comparable. Only the gradient norm turned out to have small discrepancies for
the three methods (see figure 5.5). Especially for the initial guess αCO2 = 0, the
Levenberg-Marquardt algorithm got better results than the other two. In order to
rule out the possibility that this discrepancy is sheer coincidence, the same tests
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Figure 5.5: Mean gradient norm of retrievals using different initial guesses of αCO2 .

were performed using the weak CO2 band which showed the same behaviour. This
finding agrees with [44], calling the lm method "very robust".

In order to really be able to compare the robustness of the methods on a larger
scale, it would be necessary to conduct further tests with even "worse" initial guesses.
These would not have any physical meaning, and therefore it is sufficient to stay
with the present results. However, it might be interesting to find out in future
analysis why all methods had their minimal mean gradient norm at αCO2 = 0.5 (see
figure 5.5) instead of at the "best" guess 1.

5.3 Bound-Constraints

Lastly, the (in comparison to the initial version of varpro.py by [16]) novel feature
was assessed, which was the use of bound-constraints on the nonlinear parameters.
As already mentioned at the end of Chapter 4, in the implementation of least_squares
only the trust region reflective and dogbox method come with this opportunity. The
idea was to find out whether the application of nonlinear bound-constraints have
any effect on the performance of the algorithms in terms of efficiency and accuracy.
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The following sets of bounds (l; u) were tested for αCO2
6:

• Setting 0 : ( 0 ; ∞ )

• Setting 1 : ( 0 ; 2 )

• Setting 2 : ( 0.9 ; 1.1 )

Setting 0 corresponds to the physical fact, that (trace gas) concentrations are always
positive. This can be considered the most simple setting, as it only incorporates
a lower bound. The second setting is stepping this up by adding a physically
meaningful upper bound. At least for CO2, a doubling of concentrations is not
realistic in the next few years. The last setting is motivated by the most upper and
lower limits of typical retrieval results from OCO-2, which for an initial guess of
xCO2 = 400 ppm would correspond to a range from 360 ppm to 440 ppm. Although
this approach can not be regarded as scientifically justifiable in trace gas retrieval,
as it might prevent important findings for the atmosphere (i.e. ozone hole), it still
seemed numerically interesting whether such harsh restrictions on the parameter
αCO2 would have any effect on the algorithms speed or number of iterations.

Figure 5.6 shows the running time for both methods trf and dogbox in all three
settings. In spite of the small difference between the two algorithms, they both show
the same result, namely that setting 1 is slightly faster than the other two. Setting 2
seemed to be the slowest, therefore the previously mentioned possibility of narrow
bound-constraints having a positive effect on an algorithm’s speed is refuted.

When it comes to accuracy, again all retrieval results were comparable within
uncertainty. The only noticeable difference was in the development of their mean
gradient norms (see figure 5.7). For better comparability, a setting with no bounds
was included into this analysis. While the optimality measure kept getting worse for
each narrower setting for the trf method, it stayed on a quite low7 level and even
decreased a little with the dogbox method.

Finally, to answer the question of "bounds or no bounds" new retrievals8 were
performed with both trf and dogbox, one without bound-constraints and one using
setting 1 as bounds.

6Different values were used for αH2O, as the concentration of water in the atmosphere varies much
more strongly than xCO2.

7The different magnitudes of order in the optimality measure for both methods in figure 5.7 are due to
the fact, that in constrained uses of least_squares the mean gradient norms are calculated differently
for each of those methods [44].

8In order to decrease the possibility of bias from the data and to make the evaluation more conclusive,
different radiance measurements (from other orbits on a different day) were taken for this last
calculation. The number of final retrievals stayed in the same magnitude.
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0

200

Trust Region Reflective

setting 0

Dogbox

setting 0

0

200 setting 1 setting 1

0 1 2 3
0

200 setting 2

0 1 2 3

setting 2

0.0 0.2 0.4 0.6 0.8 1.0
Running Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r 

of
 R

et
ri

ev
al

s

Figure 5.6: Histograms of the running times for the methods trf and dogbox for all
bounds settings. The dashed lines indicate the mean values of these times.

The resulting mean running times were:

trf dogbox

no bounds 1.135 s 1.159 s

bounds 1.160 s 1.135 s

Even though these are all very close to each other, it leaves the impression that
while trf is faster than dogbox without bounds, it is the opposite when bounds are
applied. This tiny difference also showed up in the retrievals done for figure 5.6.
A comparison of the number of function evaluations for each method can be seen
in figure 5.8, which shows that the trust region reflective algorithm with bounds
was the only one that needed more than 3 iterations for some retrievals. Such a
behaviour is also mentioned by [44] stating about the dogbox method: "The algorithm
often outperforms ‘trf’ in bounded problems with a small number of variables."
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Chapter 6

Conclusions and Outlook

The objective of this thesis was the assessment of a least squares solver for trace
gas retrieval. To this end the fundamentals of remote sensing of the atmospheric
composition and the theory behind solving the nonlinear least squares problem
arising in this context were explained. In particular, a separable least squares
algorithm called variable projection was motivated and the implementation varpro.py
[38] was described and evaluated for the application of trace gas retrieval in the
short-wave infrared. The goal of the assessment was to find a nonlinear least squares
solver for varpro.py that is best and most useful for this particular application and to
work out suggestions for improvements and future research.

In this thesis three algorithms (all outlined in Section 3.3) were compared and tested
acting as the nonlinear solvers within varpro.py. Because of the very specific problem
treated, the results of the assessment are not automatically transferable to other
atmospheric retrievals. However, they were able to show certain tendencies, based
on which recommendations for future uses of varpro.py in trace gas retrieval in the
SWIR can be made.

It is advised to exchange the originally used function leastsq [43] for solving the
nonlinear problem with least_squares [44], as the leastsq algorithm is identical to the
Levenberg-Marquardt (lm) method implemented in the latter, which continuously
showed worse efficiency (see Section 5.1) than the other two options, the trust region
reflective algorithm (trf ) and the dogbox approach (dogbox). However, from the
calculations done in this thesis it was not possible to determine which one of these
two is generally more efficient, but this might be studied in future tests with more
or different data (for example from other satellites, like GOSAT [11]). A comment
made by the scipy.optimize documentation [44], claiming that trf and lm are very
similar and have generally comparable performance, must be refuted. This is to say
that in the conducted retrievals trf actually outperformed the Levenberg-Marquardt
method.

Instead of following the advise of [44] that the Levenberg-Marquardt algorithm
should be the first choice for unconstrained problems, it is rather recommended to
stick with the default method trf or use dogbox, which showed even more comparable
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performance. Regarding accuracy all methods performed equally well, but in terms
of robustness it could be interesting to further analyse the conditioning of the
problem.

When it comes to the use of different sets of bounds, these do not show significant
changes to the unbounded use of varpro in terms of efficiency or accuracy1. However,
it turned out that whenever bounds were used, the dogbox algorithm slightly
outperformed the trf method (as it was also stated in [44]). If, the model described
in Section 2.1 is advanced in the future to also incorporate scattering by aerosols in
the atmosphere, it might simplify the retrieval when physically meaningful bounds
are applied to the increased number of fit parameters.

All tests and the theoretical background given in this thesis have focused mainly on
the nonlinear part of the problem posed by trace gas retrieval. Therefore an idea
for future research could be the modification of the linear least squares solver in
varpro.py.

At present, the linear problem is solved via the SVD approach (cf. Section 3.1),
and it is not possible to apply bound-constraints to the linear parameters (such
as r0 ∈ [0, 1]). It would be interesting to analyse the effects that different linear
solvers such as QR or even iterative algorithms have on the performance of varpro,
especially if the complexity of the problem increases in future advancements. Such
a change could create the possibility to also have bound-constraints for the linear
parameters, which might be advantageous when their number increases.

All of these modifications and possible improvements of varpro.py are aimed
to be ultimately incorporated into the Python version of the BIRRA retrieval al-
gorithm [13] for future trace gas retrieval applications. There are several problems,
in which one could really profit from using the variable projection structure instead
of a regular nonlinear least squares solver (due to the advantages described in
Chapter 4):

One of them would be multi-window fitting, which essentially means that several
spectral windows (from one spectrum) are retrieved for one αCO2 simultaneously.
In 1979, Golub and LeVeque [40] published a paper introducing the mathematical
formalism of such problems. This was explored further in 1992 by Kaufman and
Sylvester [41] who called the problem "separable nonlinear least squares with mul-
tiple right-hand sides". The idea was later taken up again and expanded in [45].
These papers describe the theoretical procedure for solving separable problems with
multiple data sets, in which "the linear parameters are to be specified for each data

1This could mean that the used retrieval formalism of scaling total column densities, as proposed
in Section 2.3, is already sufficiently well conditioned and therefore does not need any further
constraints.
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set, but the nonlinear parameters have to minimize the least-squares function for all
the data sets" [41].

For trace gas retrieval this would mean fitting the nonlinear parameters, such as
the molecular scaling factors αCO2 and αH2O, for several radiance spectra simultan-
eously, while the linear variables, e.g. reflectivity coefficients r0 and r1, vary for each
data set. An implementation of such an algorithm could therefore not only be used
for a multi-window fit of one data set, but also for an one window fit of many data
sets. Especially for a trace gas like CO2, which has fairly constant concentrations
throughout the atmosphere, this could be a way to retrieve a kind of mean value for
certain areas across the globe. Such problems would therefore have a significantly
higher number of linear parameters (∼ hundreds to thousands of spectra in one
orbit) than nonlinear ones (∼ trace gas species).

Final note: During the research on this thesis many different approaches for
solving separable least squares problems have been explored with the intention
to find out, whether one might perform best for the specific problem of trace gas
retrieval. In all papers (including recent ones) it was always the variable projection
algorithm that had the most arguments in favor. For this reason none of the others
were described in this thesis and varpro.py is considered as the new default solver
for the currently used Python implementation of BIRRA [13].

47





Acknowledgements

First of all, I would like to express my gratitude to Prof. Thomas Trautmann for
letting me work as a student research assistant at his department at the DLR (German
Aerospace Center), giving me the opportunity to write my Bachelor’s thesis there,
and for reviewing it.

Secondly, I would like to thank my former theoretical physics professor at TUM,
Prof. Norbert Kaiser, for his unreserved interest and support of this thesis and for
taking the time to engage in my research. Without his contribution, this work would
not have been possible.

Furthermore, I am very grateful to my supervisor Dr. Franz Schreier, for motiv-
ating me to write my thesis at the DLR. I am much obliged to his many research
incentives (not to mention all the books and papers that ended up on my desk
because of him) and the continuing support and review of my work during the
past months, which really brought me closer to the scientific way of thinking and
working.

Also, I really have to thank Dr. Philipp Hochstaffl for the frequent scientific
discussions and all the competent explanations, every time I needed help. These
discussions clearly helped to deepen my knowledge of the subject.

Lastly, I want to express my gratitude to the Hanns-Seidel-Stiftung for supporting
me throughout my entire bachelor studies by granting me a scholarship.

49





Bibliography

[1] F. Schreier et al. »Py4CAtS—PYthon for Computational ATmospheric Spectro-
scopy«. In: Atmosphere 10.5 (2019), p. 262. DOI: 10.3390/atmos10050262.
URL: https://atmos.eoc.dlr.de/tools/Py4CAtS/.

[2] California Institute of Technology Jet Propulsion Laboratory. Orbiting Car-
bon Observatory-2. URL: https://ocov2.jpl.nasa.gov/ (visited on
30/05/2022).

[3] J. Moré and S. Wright. Optimization Software Guide. Philadelphia (USA): SIAM,
1993. ISBN: 9780898713220.

[4] G. Golub and V. Pereyra. »The Differentiation of Pseudo-Inverses and Nonlin-
ear Least Squares Problems Whose Variables Separate«. In: SIAM Journal on
Numerical Analysis 10.2 (1973), pp. 413–432. DOI: 10.1137/0710036.

[5] D. O’Leary and B. Rust. »Variable projection for nonlinear least squares prob-
lems«. In: Computational Optimization and Applications 54.3 (2013), pp. 579–593.
DOI: 10.1007/s10589-012-9492-9.

[6] J. Burrows, U. Platt and P. Borrell. The Remote Sensing of Tropospheric Composition
from Space. Physics of earth and space environments. Heidelberg (Germany):
Springer, 2011. ISBN: 9783642147906.

[7] A. Richter. »Satellite remote sensing of tropospheric composition – principles,
results, and challenges«. In: EPJ Web of Conferences 9 (2010), pp. 181–189. DOI:
10.1051/epjconf/201009014.

[8] F. Schreier et al. »GARLIC — A general purpose atmospheric radiative transfer
line-by-line infrared-microwave code: Implementation and evaluation«. In:
Journal of Quantitative Spectroscopy and Radiative Transfer 137 (2014), pp. 29–50.
DOI: https://doi.org/10.1016/j.jqsrt.2013.11.018.

[9] P. Hochstaffl. »Trace gas concentration retrieval from short-wave infrared
nadir sounding spaceborne spectrometers«. PhD thesis. Ludwig-Maximilians-
Universität München, 2022. DOI: 10.5282/EDOC.29404.

[10] D. Crisp et al. Level 1B Algorithm Theoretical Basis: Orbiting Carbon Observatory –
2 & 3 (OCO-2 & OCO-3). Ed. by National Aeronautics and Space Administra-
tion (NASA). Pasadena, California, 2021.

51

https://doi.org/10.3390/atmos10050262
https://atmos.eoc.dlr.de/tools/Py4CAtS/
https://ocov2.jpl.nasa.gov/
https://doi.org/10.1137/0710036
https://doi.org/10.1007/s10589-012-9492-9
https://doi.org/10.1051/epjconf/201009014
https://doi.org/https://doi.org/10.1016/j.jqsrt.2013.11.018
https://doi.org/10.5282/EDOC.29404


[11] A. Kuze et al. »Thermal and near infrared sensor for carbon observation
Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite
for greenhouse gases monitoring«. In: 48.35 (2009), pp. 6716–6733. DOI: 10.
1364/AO.48.006716.

[12] M. Chahine et al. »AIRS: Improving Weather Forecasting and Providing New
Data on Greenhouse Gases«. In: 87 (2006), pp. 911–926. DOI: 10.1175/BAMS-
87-7-911.

[13] S. Gimeno García et al. »Near infrared nadir retrieval of vertical column
densities: methodology and application to SCIAMACHY«. In: Atmospheric
Measurement Techniques 4.12 (2011), pp. 2633–2657. DOI: 10.5194/amt-4-
2633-2011.

[14] California Institute of Technology Jet Propulsion Laboratory. Vital Signs of
the Planet - Carbon Dioxide. URL: https://climate.nasa.gov/vital-
signs/carbon-dioxide/ (visited on 01/06/2022).

[15] P. Hochstaffl et al. »Validation of Carbon Monoxide Total Column Retriev-
als from SCIAMACHY Observations with NDACC/TCCON Ground-Based
Measurements«. In: Remote Sensing 10.2 (2018). DOI: 10.3390/rs10020223.

[16] F. Schreier. personal communication. 2022.

[17] I. Gordon et al. »The HITRAN2016 molecular spectroscopic database«. In:
Journal of Quantitative Spectroscopy and Radiative Transfer 203 (2017), pp. 3–69.
DOI: 10.1016/j.jqsrt.2017.06.038.

[18] G. Anderson et al. AFGL atmospheric constituent profiles (0.120 km). Tech. rep.
Air Force Geophysics Lab Hanscom AFB MA, 1986.

[19] Å. Björck. Numerical Methods in Matrix Computations. Vol. 59. SpringerLink
Bücher. Springer International Publishing, 2015. ISBN: 9783319050898.

[20] Å. Björck. Numerical Methods for Least Squares Problems. Vol. 51. Other titles
in applied mathematics. Philadelphia, Pa: SIAM Society for Industrial and
Applied Mathematics, 1996. ISBN: 0898713609.

[21] U. Ascher and C. Greif. A first course in numerical methods. Vol. 7. Computational
science & engineering. Philadelphia: SIAM Society for Industrial and Applied
Mathematics, 2011. ISBN: 9780898719987.

[22] A. Ruhe and P. Wedin. »Algorithms for Separable Nonlinear Least
Squares Problems«. In: SIAM Review 22.3 (1980), pp. 318–337. DOI: 10 .
1137/1022057.

[23] K. Levenberg. »A method for the solution of certain nonlinear problems in
least squares«. In: Quarterly of Applied Mathematics 2.2 (1944), pp. 164–168.

52

https://doi.org/10.1364/AO.48.006716
https://doi.org/10.1364/AO.48.006716
https://doi.org/10.1175/BAMS-87-7-911
https://doi.org/10.1175/BAMS-87-7-911
https://doi.org/10.5194/amt-4-2633-2011
https://doi.org/10.5194/amt-4-2633-2011
https://climate.nasa.gov/vital-signs/carbon-dioxide/
https://climate.nasa.gov/vital-signs/carbon-dioxide/
https://doi.org/10.3390/rs10020223
https://doi.org/10.1016/j.jqsrt.2017.06.038
https://doi.org/10.1137/1022057
https://doi.org/10.1137/1022057


[24] D. Marquardt. »An Algorithm for Least-Squares Estimation of Nonlinear
Parameters«. In: Journal of the Society for Industrial and Applied Mathematics 11.2
(1963), pp. 431–441. DOI: 10.1137/0111030.

[25] J. Moré. »The Levenberg-Marquardt algorithm: Implementation and theory«.
In: Numerical Analysis. Springer, Berlin, Heidelberg, 1978, pp. 105–116. DOI:
10.1007/BFb0067700.

[26] J. Moré, B. Garbow and K. Hillstrom. User guide for MINPACK-1. USA, 1980.
DOI: 10.2172/6997568.

[27] Madsen, K. and Nielsen, H. and Tingleff, O. »Methods for Non-linear Least
Squares Problems«. In: Informatics and Mathematical Modelling, 2004.

[28] M. Branch, T. Coleman and Y. Li. »A Subspace, Interior, and Conjugate
Gradient Method for Large-Scale Bound-Constrained Minimization Prob-
lems«. In: SIAM Journal on Scientific Computing 21.1 (1999), pp. 1–23. DOI:
10.1137/S1064827595289108.

[29] T. Coleman and Y. Li. »An Interior Trust Region Approach for Nonlinear
Minimization Subject to Bounds«. In: SIAM Journal on Optimization 6.2 (1996),
pp. 418–445. DOI: 10.1137/0806023.

[30] M. Powell. »A New Algorithm for Unconstrained Optimization«. In: Nonlinear
Programming. Elsevier, 1970, pp. 31–65. ISBN: 9780125970501.

[31] C. Voglis and I. Lagaris. »A Rectangular Trust Region Dogleg Approach
for Unconstrained and Bound Constrained Nonlinear Optimization«. In:
WSEAS International Conference on Applied Mathematics Vol. 7 (2004). DOI:
10.1201/9780429081385-138.

[32] N. Sagara and M. Fukushima. »A continuation method for solving separ-
able nonlinear least squares problems«. In: Journal of Computational and Ap-
plied Mathematics 10.2 (1984), pp. 157–161. DOI: 10.1016/0377-0427(84)
90052-9.

[33] P. Comon, X. Luciani and A. de Almeida. »Tensor decompositions, alternating
least squares and other tales«. In: Journal of Chemometrics 23.7-8 (2009), pp. 393–
405. DOI: 10.1002/cem.1236.

[34] Y. Shen and T. Ypma. »An Efficient Algorithm for the Separable Nonlin-
ear Least Squares Problem«. In: Algorithms 10.3 (2017), p. 78. DOI: 10 .
3390/a10030078.

[35] G. Golub and V. Pereyra. »Separable nonlinear least squares: the variable
projection method and its applications«. In: Inverse Problems 19.2 (2003), R1–
R26. DOI: 10.1088/0266-5611/19/2/201.

53

https://doi.org/10.1137/0111030
https://doi.org/10.1007/BFb0067700
https://doi.org/10.2172/6997568
https://doi.org/10.1137/S1064827595289108
https://doi.org/10.1137/0806023
https://doi.org/10.1201/9780429081385-138
https://doi.org/10.1016/0377-0427(84)90052-9
https://doi.org/10.1016/0377-0427(84)90052-9
https://doi.org/10.1002/cem.1236
https://doi.org/10.3390/a10030078
https://doi.org/10.3390/a10030078
https://doi.org/10.1088/0266-5611/19/2/201


[36] V. Pereyra and G. Scherer, eds. Exponential data fitting and its applications.
Bentham eBooks, 2010. ISBN: 9781608050482.

[37] L. Kaufman. »A variable projection method for solving separable nonlinear
least squares problems«. In: BIT Numerical Mathematics 15.1 (1975), pp. 49–57.
DOI: 10.1007/BF01932995.

[38] F. Schreier. varpro.py. Version 2. 2021.

[39] SUBROUTINE VARPRO. 9.05.1985. URL: http : / / www . netlib .
org/opt/varpro.

[40] G. Golub and R. LeVeque. Extensions and Uses of the Variable Projection Algorith
for Solving Nonlinear Least Squares Problems. Stanford, CA, 1979.

[41] L. Kaufman and G. Sylvester. »Separable Nonlinear Least Squares with Mul-
tiple Right-Hand Sides«. In: SIAM Journal on Matrix Analysis and Applications
13.1 (1992), pp. 68–89. DOI: 10.1137/0613008.

[42] J. Dennis, D. Gay and R. Welsch. »Algorithm 573: NL2SOL— An Adaptive
Nonlinear Least-Squares Algorithm«. In: ACM Transactions on Mathematical
Software (TOMS) 7.3 (1981), pp. 369–383.

[43] SciPy v1.8.0 Manual. scipy.optimize.leastsq. 6.02.2022. URL: https://docs.
scipy.org/doc/scipy/reference/generated/scipy.optimize.
leastsq.html.

[44] SciPy v1.8.0 Manual. scipy.optimize.least_squares. 6.02.2022. URL: https :
//docs . scipy . org/doc/scipy/reference/generated/scipy .
optimize.least_squares.html.

[45] L. Kaufman. »Solving separable nonlinear least squares problems with
multiple datasets«. In: Exponential data fitting and its applications. Ed. by V.
Pereyra and Godela Scherer. Bentham eBooks, 2010, pp. 94–109. DOI: 10.
2174/978160805048211001010094.

54

https://doi.org/10.1007/BF01932995
http://www.netlib.org/opt/varpro
http://www.netlib.org/opt/varpro
https://doi.org/10.1137/0613008
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://doi.org/10.2174/978160805048211001010094
https://doi.org/10.2174/978160805048211001010094

	Abstract
	Introduction
	Atmospheric Remote Sensing
	Radiative Transfer Model
	Space-borne Measurements
	Trace Gas Retrieval

	Least Squares Approximation
	Linear Least Squares
	Nonlinear Least Squares
	A Survey of Iterative Methods

	Variable Projection Method
	Separable Problems
	Theoretical Background
	Algorithm Outline
	Implementation

	Testing and Comparison
	Nonlinear Solvers
	Initial Guesses
	Bound-Constraints

	Conclusions and Outlook
	Acknowledgements
	Bibliography

